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Abstract. In a bankruptcy problem framework we consider rules immune to
possible manipulations by the creditors involved in the problem via merging or
splitting of their individual claims. The paper provides characterization theorems
for the non manipulable rules, the no advantageous merging parametric rules and
the no advantageous splitting parametric rules.
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1 Introduction

When a firm goes bankrupt, how should its liquidation value be divided among
its creditors? A common solution is to allocate the firm’s aspetportionally
to the creditors’ claims or entitlements. There are arguments, however, in favor
of other rules. Aumann and Maschler[1], for instance, argue that if the net worth
of the firm does not exceed the smallest claim, then equal division among the
creditors makes good sense as any claim by one person that goes beyond the
entire net worth of the firm might well be considered irrelevant.

The literature devoted to the formal analysidahkruptcy problemsas tried
to identify solutions orrules which associate with each bankruptcy problem a
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desirable division between the creditors of the net worth of the¥iimrthis paper

we study bankruptcy rules that are immune to strategic manipulations whereby
a group of creditorgnerge(i.e., consolidate their claims) in order to represent a
single creditor, or a single creditgplits her claim to represent several creditors.
We will say that a rule satisfieso advantageous mergingNAM) when no group

of creditors is able to benefit by consolidating their claims and being treated as a
single creditor. We will say that a rule satisfies advantageous splittingNAS)

when no creditor is able to benefit by representing several creditors whose claims
add up to her. A no advantageous merging and no advantageous splitting rule will
be callednon manipulable Non manipulable rules have been studied previously
by O’Neill[8] and by Chun[2].

Immunity to these strategic manipulations is relevant in practice as in many
bankruptcy problems it is feasible for the creditors to merge or to split. A husband
and wife, for example, could present themselves as a single creditor, or the
partners of a firm could appear as different creditors. Sometimes, however, it
may only be feasible for the creditors to manipulate either by merging or by
splitting. Whenever the creditors are just the owners of liabilities issued by a
bankrupt firm, manipulation by merging may be possible while manipulations
by splitting may not; whereas, if the creditors are banks then manipulations by
splitting may enter in a natural way since a bank could divide its claim by
transferring it to its subsidiary banks.

In this paper we provide characterization theorems for the rules immune to either
kind of these strategic manipulations.

We show that the proportional rule is the only non manipulable bankruptcy
rule. For the family of consistent, symmetric and continuous rules (i.e., the para-
metric rules) we show that the concavity (convexity) of the parametric represen-
tation of a rule with respect to the individual claims determines its non manip-
ulability by merging (non manipulability by splitting). Finally, we show that a
NAM parametric rule maximizes a strictly concave welfare function where the
measure of welfare is the utility derived by the creditors from the award received;
whereas a NAS parametric rule minimizes a strictly convex loss function where
the measure of loss is the sacrifice that the rule imposes upon the creditors. This
result implies that NAM rules are in the spirit of egalitarianism in gains, whereas
NAS rules are in the spirit of egalitarianism in losses.

The organization of the paper is as follows. In Sect. 2 we introduce the main
concepts and definitions. Section 3 discusses the property of non manipulability.
Section 4 contains the characterization results for the NAM and the NAS rules.
Finally, the Appendix contains the proofs of the characterization theorems in
Sect. 4.

1 For survey on the axiomatic analyses of bankruptcy and taxation problems, see Thomson[12]
Notice that the problem of identifying well-behaved taxation rules is formally identical to that of
identifying bankruptcy rules, and that all the results for the bankruptcy problem can be reinterprested
in the context of taxation
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2 Preliminaries

We first introduce the class of problems that we study and the necessary nota-
tion. Most of the definitions that follow and the notation have been taken from
Thomson[12].

A typical bankruptcy problem is that of dividing the net woElof a bankrupt
firm among a group of claimant$y, whose claims are specified by a vector
d = (d)ien. We denote byn the cardinality ofN, and byD the total claim.
Since we consider situations involving an arbitrary finite number of claimants, it
is useful to distinguish between the set of “potential claimants”, whose members
are identified by a natural number, and the set of claimants actually present in
a bankruptcy problem, which we represent by a finite subsétof the set of
natural numbers,/” c N.

A Bankruptcy Problenis obtained by first specifying a set of ageNtss ./,
then a paird; E) € RY x R, such that)", . di > E.2ForN €./, we denote
by BN the class of these problems.

A Bankruptcy Rule Xs a function defined on the union of all of tlB&', for
N € .47, which associates with evely € ./ and every (dE) € BN a vector
xeRY: Y yx =E.

Alternatively, a bankruptcy problem can be seen as a problem of dividing
a net lossD — E, among the claimants. Nevertheless, the viewpoint we adopt,
will affect the allocation, since a given rule may assign gains in a different way
than losses. This consideration is related to the concept of dual rule.

ieN

Definition 1: Let X be a Bankruptcy rule. Based on X we define its dUah the
following way: For all(d; E) € BN, X(d;E) =d — X(d;D — E).2

Note thatX = X.

Both rules,X andX, can be considered as a “philosophy” or as a recommen-
dation about how to undertake the division implicit in every bankruptcy problem.
A natural requirement for a rule is that it applies the same “philosophy” regard-
less of the data (number of creditors, individual claims and net worth of the firm).
A way to ensure this is to demand consistency. Consistent rules in this context
fulfill a general principle of distributive justice that states that an allocation that
is equitable for a group of individuals should be equitable when restricted to a
subgroup of individualé.

Definition 2: The rule X satisfies consistendyfor all M, N c .47, for all
(d;E) € BN, if M C N and(du; >y %) € BM, where x = X(d; E), then
(% )iem =X(dm; > oy %)

2 We denote byRN the cartesian product ¢N| copies ofR indexed by the elements .

3 Notice that our definition of Bankruptcy rules implies that the dual of a Xule a well defined
rule only if X is claim-bounded (ieX(d;E) < d; foralli € N).

4 Consistency has been a widely used principle in the economic literature in diverse areas, ranging
from abstract game theoretic models to concrete taxation and apportionment problems For a review
of the role played by the consistency principle in the axiomatic approach to these quite diverse
problems, see Thomson [11]

3



The interpretation of consistency is as follows. Suppose that theXrds-
signs allocationx to the bankruptcy problemd(E). Suppose, too, that some
subset of creditors wants to reallocate the total amount assigned to them. If we
apply the same rule to allocate this amount among these creditors, each one will
get the amount originally assigned to them, providéds consistent. So, for
example, if (5075,100) is the recommendation &f to the bankruptcy problem
(100,150,200; 225)c BN whereN = {1,2,3}, then (5075) must be the recom-
mendation ofX to the problem (10Q150; 125)c BM for M = {1,2}, provided
that X is a consistent rule.

We consider next the possibility that a group of agents may consolidate their
claims and be treated as a single claimant, or, conversely, that a given claimant
may divide her claim and represent several claimants whose claims add up to
her.

Definition 3: A rule X satisfies no advantageous mergiffpr all M ,N c ./,
for all (d;E) € BN and(d;E) € BM, if M ¢ N and there isie M such
that d =d +3, & and forallj € M \{i}, d = d then X(d";E) <
Xi(d;E) + 37 cnyw X (d; E).

Here no possible coalition of creditors has an incentive to pool their claims

to be treated as a single creditor whose claim is the sum of the individual claims
of their constituents.

Definition 4: A rule X satisfies no advantageous splittifigor all M ;N C ./,
for all (d;E) € BN and(d’;E) € BM, if M c N and there is ic M such
that d =d +3, & and forallj € M \{i}, d = d then X(d";E) >
Xi(diE) + 3 enyw X (A E).

Namely, no claimant has an incentive to divide her claim to represent several
creditors whose claims add up to her.

Definition 5: A rule X is called non manipulabli it satisfies no advantageous
splitting and no advantageous merging.

Whenever a rule satisfies no advantageous merging it is called a NAM rule,
whereas if it satisfies no advantageous splitting it is called a NAS rule.

Proposition 1 shows that there is a dual relation between the family of no
advantageous splitting rulesy”, and the family of no advantageous merging
ones, 7.

Proposition 1. If X is a bankruptcy rule such that its duXl is well defined, then
X € ./ if and only ifX € .7.

Proof. The proof of the statement requires to prove:

a) If X € .74 andX is well defined therX ¢ ., and

b) If X is well defined anK € . thenX € .Z.
We first show (a) by way of contradiction. Assuec ..#2 andX is well defined
butX ¢ .7 . SinceX ¢ .7 there existq;E) € BN and (d;E) e BM,N > M,
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and there is € M with d' =d; + 2 jenm G and with dj’ =d forallj eM
\{i }, for which
X(d5E) <X(E)+D | X(diE) &

EN\M

Applying the definition of dual rule (1) can be rewritten as follows:

d —X(d;D —E)<d —X(d;D—E)+ ZEN\M - ZjeN\M Xj(d;D—(Ez))
Sinced, =d; + >, cy\w ¢ and sincedD’ = D then (2) becomes

X(d;D—E)>X(d;D—E)+) X;(d; D — E).

jEN\M
The above result contradic¥ € .# since it is advantageous for the members
of T (T =N\M u{i}) to merge their claims to be treated as a single creditor.
Thus if X € .7 andX is well defined therX € .. The proof of the statement:

If X €. andX is well defined therX € .#, is similar to the previous one
and therefore it is omitted. -

Now to prove b) letX be a well defined rule such thXt < .. SinceX ¢ .
andX = X we have thalX € .# as we claimedO

To illustrate the strategic properties defined earlier we now apply them to
the Talmudic rule. This rule was first studied by Aumann and Maschler. The
definition that follows is taken from Thomson[12].

The Talmudic rule: For all (d; E) € BN and for alli € N,
[If E < D/2, thenx = min{\,di/2}, where X is chosen so that
Yien MIN{Adi/2} = E,
-If E > D/2, thenx = di — min{\,di/2}, where X is chosen so that
Yien Min{A,di/2} =D —E.

Notice that for bankruptcy problems in whiéh< D /2 the Talmudic rule can
be regarded as a special case of the Constrained-Equal-Award rule; and for those
problems in whictE > D /2, itis a special case of the Constrained-Equal-Losses
rule.

The Talmudic rule is an example of a rule that it is manipulable by splitting
and by merging. Moreover, it can be shown that whenever the net worth of the
firm is smaller than half the total claim the Talmudic rule is manipulable by
splitting and not by merging, while the opposite holds whenever the net worth
of the firm is greater than half the total claim. Section 4 provides a formal proof
of this statement. Here we only give numerical examples to illustrate the above
statement.

Consider the problem (10200,300,400; 400)c BN whereE = 400< D/2 =
500,andN = {1,2,3,4}. The Talmudic shares are (5000,125,125). Suppose
that creditor 4 with a claim of 400 divides her claim into two equal claims to rep-
resent creditors 4 and 5 in the bankruptcy problem (200,300,200,200; 400)
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€ BM whereM = {1,2,3,4,5}. The shares are now (587.5,87.5,87.5,87.5).

That creditor gets now 87.5+8&= 175> 125, so she has incentives to manip-
ulate by splitting.

Consider now the problem (10800,300,400;700)c BN whereE = 700 >

D/2 = 500 andN = {1,2,3,4}. The Talmudic shares are (5016.6,216.6,
316.6). If creditors 1 and 2 merge their claims to be represented by creditor 1
in the bankruptcy problem (30800,400;700)c BP whereP = {1,3,4} the
shares will be (20@®00,300). Since 200> 50 + 1166 creditors 1 and 2 have
incentives to manipulate by merging.

3 Non manipulable rules

In the previous section we showed that the Talmudic rule is a manipulable rule.
The result obtained for the Talmudic rule can be expanded to the egalitarian rules
of which that is a special case. It is also known, from the work by O’Neill[8],
that there is at least a rule whereby the creditors have no incentive to either
merge or split their individual claims. O’Neill provided a characterization of the
proportional rule as the only rule that satisfies (1) symmetry, (2) continuity at
at least one point, (3) independency of the addition of dummy creditors with
zero claim and (4) strategy-proofness. Strategy-proofness is equivalent to non
manipulability, as we mentioned earlier. A natural question arises from this result:
Is there some other non manipulable rule if (1), (2) and (3) are not required? We
provide a negative answer to this question through a characterization theorem that
states that the proportional rule is the only rule that satisfies hon manipulability
for all possible bankruptcy problems.

We will devote this section to study the implications of non-manipulability.
Let us recall thahon manipulablerules are those satisfying no advantageous
splitting and no advantageous merging. ThuX ifs a non manipulable rule then
forall M,N c ./, for all (d;E) € BN and (d;E) € BM, if M c N and there
is k € M such thatdy = dy + 3, .y & With & =d; for all j € M\{k}, then
Xc(d; E) + 35 cnym X (A5 E) = X(d ' E).

An immediate consequence of the above remark (see next proposition) is that
non manipulable rules assign to each creditor a share that only depends upon the
total claim, the net worth of the bankrupt firm and her own claim.

Proposition 2. If the rule X satisfies non manipulability, then for all & .47,
(d;E)e BN andforalli € N, ifd’ = (di, d¢) where ¢ =D —d; and ke N\{i}
then X(d; E) = X(di,D — di; E).

The proof follows immediately from the definition of non manipulable rules.
Consider (dE) € BN and (d;E) € BM such thatM ¢ N with M = {i k},
with d, = D —d; and withd, = d;. By non-manipulabilityX,(d; E) = X(d'; E) =
Xk(di, D — di; E). By budget balance we have thét(d; E) = X(di,D — d;; E).
Notice that when a set of creditors (a coalitibtnC N) merge their claims
they will be represented by one of the members of the coalition who will show a
6



claim equal to the sum of the claims of the creditors in the coalition. Therefore,
the coalition can choose among its members who will represent it. Similarly,
when a creditori € N facing the problemd;E) € BN decides to split her
claim into, for instance, two parts, she will then represent hersedfind another
creditorj. She can choose any name Jof any natural number) provided thiat
is not inN. Because of our definition of mergers and splitting, non manipulable
rules will assign shares that do not depend upon the names of the créditors.
We now show that non manipulable rules satisfy symmetry, the dummy ax-
iom, and order preservation.

Proposition 3. Every non manipulable rule satisfies symmetry, that is, for all
N €./, all (d;E) e BN and all i € N, if di = d; then X(d; E) = X (d; E).

Proof. Assume, by way of contradiction, that is a non manipulable rule that
violates symmetry, that is, there extéte . /" and (¢ E) € BN, withdi =d, =d
for somei,j € N, but with X (d; E) > X;(d; E). Consider first the case > 3.
Letk e N, k #1i,j.

Assume that all creditors iN butj merge their claims under the name lof
The resulting bankruptcy problem will bel’¢ E) € BM with M = {j,k}, such
thatd; = D —d andd/ = d = d. Clearly, if Xx(d;E) # E — X(d;E) then
X is manipulable. Thux(d’;E) = E — X;(d; E). Let us assume now that all
creditors inN buti facing the problemd; E) € BN decide to merge their claims
under the name ok. The resulting bankruptcy problem will bel(; E) € BP,

P ={i,k}, with d, =D —d andd, =d; =d. By non manipulability,

Xk(d";E) = E — X (d;E) < E — X (d; E) = Xc(d'; E)

Because of budget balanck,(d”;E) > X;(d’; E). We now show thatX is
manipulable by splitting. Assume creditbffacing the problemd’; E) divides
her claim into two equal claims to represent creditaith claim d/2 and creditor
j with claimd/2 in the problemd; E) € BT whereT = {i,j,k}. Because of non
manipulabilityX; (d”; E) = X (d; E)+X; (d; E). Assume now that creditgrfacing
the problem §’; E) divides her claim into two equal claims to represent creditor
i with claim d/2 and creditorj with claim d/2 in the problem ¢;E) € BT.
Since X (d";E) = X (d; E) + X;(d; E) > X;(d’;E), we can conclude thaX is
manipulable by splitting, a contradiction.

Consider now the case= 2. Let (d; E) € BN be a bankruptcy problem such
thatd; = d,. Suppose both creditors divide their claims into two equal claims.
Now symmetry fom = 3 plus non-manipulability implies symmetry far= 20

5 To illustrate this statement consider the ri{ighat gives all the net worth of the bankrupty firm
to the claimant with the smallest(ie X(d;E) = E if i = minen j andX;(d; E) = 0 otherwise)
Thus creditor 3 facing the problend;(E) € BN with N = {2,3,4} €./ will get a zero payment
If this creditor divides her claim into two equal claims to represent creditor 1 and creditor 3 in the
bankruptcy problem (d E) € BM with M = {1,2,3,4} and withdj/ =d forall j € M\{3}, then
Xl(d'; E)+ X3(d'; E) = E > X3(d; E) = 0. HenceX will be manipulable by splitting
7



Proposition 4. Every non manipulable rule X satisfies the dummy axiom, that is,
forallN € .47, (d;E) € BN and for all i € N, if d; = 0then X(d;E) = 0.

The proof is immediate. It follows from the fact that if it does not hold then
there exists some creditor who has incentives to split her claim into her claim
and some zero claims to get a better share.

Proposition 5. If a rule is non manipulable then it satisfies order preservation,
i.e., forallN e. /", (d;E) e BN and foralli € N, if ¢ < d; then X(d;E) <
X (d; E).

Proof. Let N € .4 and (d E) € BN, such that there existandj in N with
d < dj .

Assume that creditgr divides her claim to represent credijowith claimd; and
creditork, k ¢ N, with claim d; — d; in the bankruptcy problem (dE) € BM
whereM = NU{k} andds = d; for all s € N\ {j }. Symmetry implies¥; (d"; E) =
Xi(d"; E) and non-manipulability impliex;(d"; E) = X;(d; E). Therefore

Xj(d;E) = X (d;E) + X(d;E) = X (d; E) + Xc(d'; E) > Xi(d; E).

We now show thai (d; E) > X;(d; E) by proving thatX,(d'; E) > 0.
Consider the bankruptcy problem (tE) € BP such thaP = {i,k},d’ =D —d,
andd, =d, =d, — d;. Appealing to Proposition 1 we know that

X(d';E) = X(d, dy s E) = X«(D — d +di,d —di,;E).

Let us assume first thanL;d' e N. If creditor i facing the problemd’; E)

divides her claim |ntom equal claims to represer%d_d'—d' creditors each
with a claim ofd, — d; then non manipulability (and consequently symmetry)
plus budget balance yiel (d; E) > 0.

Assume now th d+d‘ ¢ N. Let us denote byt to the maximum integer

smallest thanIm If creditori divides her claim to represent- 1 creditors,

t of them W|th a clalm ofd; — di and the remaining creditor with a claim of
— (t+1)(d — d:), then this splitting yields a bankruptcy probledt E) ¢ BR
with P c R in which a; < di —d forall s € R Let us assume, w.l.o.g. that
d, = D—(t+1)(d —d;). By non manipulabilityX,(d;”, d, ; E) = xk(a E). Because
of symmetrka(d E) = Xs(d;E) for all s € R\{2}, with Xq(d; E) > Xz(d E)
sincedy = d —d > d,. These results plus budget balance implyd’; E) =

X (d; E) > 0.0

Theorem 1. There is exactly one non manipulable bankruptcy rule: the propor-
tional rule.

Proof. It is known that the proportional rule is non manipulable. The proof of
the converse statement is done in two steps.
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Step 1. We first show that for alN € ./, and for all ¢;E) € BN, a non
manipulable rule assigns a sharesif/t to any individual claim ofsD/t, for
any integerss andt such that 0< s <'t.

Let (d; E) be a bankruptcy problem such thét= sD/t for somei € N.
Without loss of generality let = 1. SinceD — d; = (t — s)D/t, Proposition 1
implies that

X1(d; E) = X(sD/t, (t — s)D/t; E). 3)

Let us denote byd’ to the vector §D/t, (t — s)D/t). Because of non manip-
ulability if creditor with claim ¢ — s)D/t facing the problem d’;E) presents
herself ast(— s) creditors each with a claim dd /t she will not gain by doing
so. Therefore

X1(sD/t, (t — S)D/t;E) = X (d"; E) (4)

whered, =d; =sD/t andd’ =D/t for all j # 1. Without loss of generality let

j =2 ..,t —s+1 Assume now that creditor 1 facing the probled {E) splits
her claim intos equal claims ofD /t to represent creditors,L—s+2,...,t in
the bankruptcy problerrd( E) € BM whered; = D/t for alli € M. Notice that

di+ Y o= andd =g forallj =2 ...t —s+1 Appealing to non
manipulability by spllttlng We have that

X' E) = X(@E) + Y X (@E) ©®)

Symmetry implies that the right hand side of (5)si8/t. Thus (3), (4) and (5)
imply that X;(d; E) = sE/t.

Step 2.We now show that for and < ./ and (¢ E) € BN any non manipulable
rule assigngl, E/D to any claim ofd;, for anyi € N.

It is well known that for any value ofd /D) € [0, 1], and for everyK > 1,
there exists some intedepc, 0 < px < 2¢, such that:B < & < LB<. Thus
for anyN € ./ and (¢ E) € BN and for anyi € N the foIIowmg inequality
holds:

Dpk < DA +px).

K == 2K
Proposition 1 implies thaX; (d, E) = X;(di,D—d;, E) = X, (d", E) wheneved be
such thatl, = d forallk € N,k #],1,d’ = pcD/2 andd, = d +dj —px D /2K.
Notice thatd" = d if dj = pKD/ZK Sinced, = ¢ < di = d order preser-
vation and symmetry implyX; (d,E) < X (d E) Because of result in step
1 (takes = pc andt = 2¢) we know thatXj(d’,E) = pcE/2¥. Therefore
pcE/2¢ < X (d',E).
Similarly, by appeallng again to proposition 1, we know th&(d,E) =
X,(th d,E) = X.(d E) for d” such thatd, = dk forall k e N,k #j,1,
d = (1+pk)D/2X andd =d +d — (1 +pc)D/2¢. Result in step 1 yields

<d <

6 pk is nothing but the integer part of '(%). We write %i in binary representation



X (d ,E)=(1+pc)E/2¢. Sinced” = d, < d’ order preservation and symmetry
imply
Epc

S EXEE) <

Elpx +1)
oK

The sequencey /2¢ is bounded and increasing i§, whereas the sequence
(L +pk)/2X is bounded and decreasing . As K — oo they converge to
di/D. The limiting relation 4€ < X;(d,E) < £ implies that a rule is non
manipulable if and only if gives proportional shares.

Let us now comment on the related work by Chun[2]. Chun characterizes the
proportional rule by imposing symmetry, continuity, Non advantageous reallo-
cation (NAR, for short) and the dummy axiom. NAR says that no coalition can
benefit from redistributing the claims among its members. Chun also shows that
the dummy axiom in O'Neill’s result is redundant and that NAR and the dummy
axiom imply strategy-proofness. Clearly, a non manipulable rule satisfies NAR,
while the converse does not hold (think of the egalitarian in gains rules that sat-
isfy NAR but are manipulable by splitting). Hence the main difference between
Theorem 1 and Chun’s earlier results is that Theorem 1 shows that continuity
and symmetry are no longer required to characterize the proportional rule.

4 No advantageous merging and no advantageous splitting rules

Theorem 1 tells us that to require non manipulability is equivalent to require pro-
portional division. One could argue that this property is too demanding because
it rules out strategic manipulations that may, for some bankruptcy problems, not
be feasible. This consideration is particularly relevant in the context of income
taxation. There only manipulations by merging are possible -when the married
taxpayers choose between filing a joint return or filing an individual return- but
manipulations by splitting are not possible. This consideration has brought us to
search for bankruptcy rules that satisfy either no advantageous merging or no
advantageous splitting. Among all possible bankruptcy rules we focus on those
that satisfy consistency. Consistency seems to us a natural requirement to impose
on any rule. About this property W. Thomson[11] writes : “Consistency says that
if some of the claimants leave with their awards, and the situation is reevaluated
from the viewpoint of the remaining claimants, the solutsimuld assignto
them the same awards as initially”.

The implications of consistency has been described very completely, with
very few auxiliary conditions. Consider indeed the following class of rules in-
troduced by Young (1987).

Parametric rules. Let h : [a,b] x .22, — .22, where [ab] C [—oo, +o0],
be a function that is a continuous, is (weakly) monotonic in its first argument,
and satisfies(a,d;) = 0 andh(b, d;) = d, for all d; € .22.. Then, giverN € ./~
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and (@ E) € BN, the parametric rule relative to hselects the poink ¢ .72N
such that for some € [a,b], >,y X =E andx =h(),d) foralli € N.7

Young [13] has shown that a continuous rule is symmetric and consistent if
and only if it is a parametric rule. This section is devoted to study the parametric
rules that satisfy either non manipulablity by merging or non manipulability by
splitting.

Next theorem which builds in the work by Young shows that two inter-
esting subfamilies of the parametric family can be identified by imposing the
requirement of no advantageous merging or the requirement of no advantageous
splitting.

Theorem 2. a). A continuous, symmetric and consistent rule is non manipulable
by splitting, if and only if it is a parametric rule relative to a function h that is
convex in its second argument for each value of the parameter

b). It is non manipulable by merging, if and only if it is a parametric rule
relative to a function h that is concave in its second argument for each value of
the parameten.

Proof. See Appendix.O

Remark 1.A continuous, symmetric and consistent rule is non manipulable if
and only if it is a parametric rule relative to a functibnthat is linear in its
second argument for each value of the paramater

In light of Theorem 2 we can now easily study whether some of the most well-
known parametric rules are non manipulable by splitting and/or non manipulable
by merging. Consider the following parametric rules:

h(\, di) = min{\,d;}, 0 < A < oo (Constrained-Equal-Award rule),

h(A, di) = max{04d, — 1/A}, 0 < X\ < co (Constrained-Equal-Losses rule),

h(\,d) = \d, 0 < X\ <1 (Proportional rule).

The Constrained-Equal-Award rule is non manipulable by merging since its
parametric representation is concaveinwhereas the Constrained-Equal-Losses
rule is non manipulable by splitting. The proportional rule is non manipulable
since its parametric representation is lineardin Finally, the Talmudic rule is
non manipulable by merging if and only i < D /2, since only in that case its
parametric representation satisfies concavity in its second argument (recall that its
parametric representation in that cask(, d;) = min{\,d; /2}), whereas iE >
D/2, it is a non manipulable by merging rule since its parametric representation
ish(\, d)=max{0di /2 —1/A}.

7 Notice that the functiom(\, dj) = Adiz does not represent a parametric rule since it does not
existb such thath(b, di) = d; for all d; € .22+. By construction ot it is deduced that a parametric
rule always satisfies Claim-boundness (ie<®()\, d;) < d;). Thus, a parametric rule satisfies the
dummy axiom It is also deduced from the definitiontothat, as) rises froma to b, the function
ZiEN h()\, d;) continuously increases (or is constant) from OEiEN di Therefore the equation
ZiEN h(\, d;) = E has a solution if and only iEi N di > E It may have several solutions if all

functionsh(\, d;) are flat in\ at the same time, but the vector of shares is always unique
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It is also known from Young’s work that a parametric rblean be obtained
by minimizing a symmetric, continuous and additively separable loss function
>ien H(X,di) over the constraint sefx € 22" : > x =E, 0<x <d},
whereH (.,.) is a strictly convex function. The relationship betweerand H
is the following: H (x, di) = foﬁ f(a,d)da, wheref is any pseudo-inverse of
h.8 From this approach we now show that any NAM parametric rule minimizes
a convex loss function that only depends on the amount recekiéd ,(d;) =
U (X)), while any NAS parametric rule minimizes a convex loss function that
depends on the sacrifice imposed on the creditd(;( d;) = U (d;)—U (di —x)).
One may think ofU (.) andV (.) as utility functions that apply to all individuals.
Thus, any NAM parametric rule is somehow egalitarian in gains, whereas any
NAS parametric rule is somehow egalitarian in losses.

Theorem 3. a). A parametric rule satisfies no advantageous splitting if and only
if its solutions minimize a symmetric, continuous, additively separable, strictly
convex objective function that takes the fornixHd;) = U (d;) — U (d; — x) for
any no advantageous splitting parametric rule but the proportional rule for which
H(Xi,di) = )(‘2/2(*

b). It satisfies no advantageous joining if and only if the objective function
takes the form Hx,d;) = U (x) for any no advantageous merging parametric
rule but the proportional rule for which Kk, di) = x?/2d.

Proof. See Appendix.O

5 Conclusion

In this paper we have proposed three axioms with a strategic flavor: non manip-
ulability, non advantageous merging and non advantageous splitting. We have
shown that the combination of the axiom of consistency with either NAM or
NAS characterizes a family of rules that always include the proportional one.
Moreover the shares of any consistent and NAM rule will go from the uniform
in gains (the most egalitarian in gains) to the proportional ones (the least egali-
tarian), and, analogously, the shares of any consistent and NAS rule will go from
proportional (the least egalitarian in losses) to the uniform in losses (the most
egalitarian).

Finally we comment on related work in the literature. Three well known
axioms are related to those in this paper: Strategy-proofness, non advantageous
reallocation and composition. As we mentioned in Sect. 3, any strategy-proofness
rule is non manipulable. Any non manipulable rule satisfies NAR, furthermore,
they are a subset of the NAM ones, while they are manipulable via divisions.
Finally, in Young [14] a characterization based mainly in the axiom of composi-
tion is provided. Composition says that every increment of the estate should be

8 Whenever is an strictly monotone increasing kfunction,f will be the inverse oh. Notice
thatf is not necessarily continuous Nevertheless, for fided> O, f(xi, d;) is monotone increasing
in x; , hence the set of points wheref is discontinuous is countable
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assessed equitably relative to the creditor’'s current loss. Young has shown that
a strictly monotonic, strictly order-preserving rule satisfies consistency, compo-
sition and scale invariance if and only if it equalizes absolute sacrifice. We have
here shown that any rule in this family is a NAS mechanism.

6 Appendix: proofs

Notation. Throughout this appendix we denote byd) the set of values that
solve the equatior}"; ., h(),d) = E for the problem (dE) € BN, N € ./
EachA(-) is always non empty and closed (recall thas a continuous function).
A(") is compact if the closed interval on whichis defined is compact. It will
be a singleton whenevér is strictly monotonic in\.

We now rewrite the property of NAS for a parametric rule. The NAM property
is similar.

A parametric rule is non manipulable by splitting if for atl;E) € BN and
(d,E) € BM, M C N if there isi € M with d = d; + >,y ¢ and with
d =d forallj € M \{i}, thenx > X for any A € A(d) and\" € A(d").
Notice that in order to ensure that creditohas no incentive to split her claim
to represent (#)NM ) + 1 creditorsh(\, ¢) > h(\",d) must hold for allj € M
\{i}. It is deduced from this definition that a NAS parametric rule satisfies, for
fixed A, superadditivity in its second argument.

Proof of Theorem 2The proof relies on the following auxiliary lemma.

Lemma 1. Let N € ./ and let(d; E) and(d’; E) be two bankruptcy problems
in BN such that ¢ = d, forallk #i,j andd =d = (d +d;)/2. Any non
manipulable by splitting parametric rule satisfies that for all € A(d") there
exists\ € A(d) such thatx < X'

Proof. Assume firsi = 2. Thus, let ¢; E) and @'; E) be two bankruptcy prob-
lems such thatl = (dy,dy) andd” = ((dy + d)/2,(dy + d2)/2). Let A be the
smallest value inA(d), and let\" € A(d"). Assume, by way of contradiction,
A> N

By the (weak) monotonicity o and since\” ¢ A(d) (Notice that\ > A" implies
that \" ¢ A(d)) the following inequality must hold:

d1+d2 ’ d1+d2

h(\',dy) +h(X', dg) < h(\', =) +h(X,

) (6)

Let us denotel; by x, (d; +dy)/2 byy and, finally, ¢, — d;)/2 by z. Inequality
above can be rewritten as:

h(\,y+2z) — h(\,y) < h(\",x +2) — h(\', x), (7)

wherex,y,z > 0 andx < y. Now, appealing to Proposition 8 in Sharkey and
Telser [10]h has to satisfy:
13



h(\',x) —h(\',x — 6z)
9 b

h(\,x) —h(\',x —2) < (8)

wherex — 0z > 0 andé > 1.

As x — 0z — 0", h(\',x — 6z) — 0 thus inequality (3) becomes()\’,x) <
XXTZh(X,x — 2), contradicting thath is a NAS rule® Therefore\ cannot be
greater than\.

Let nown > 2. Let d;E) and @’;E) be two bankruptcy problems iBN
such thatd, = d for all k #i,j andd, =d’ = (di +d;)/2, and letA € A(d) and
A\ € A(d"). Consistency implies that the shares of claimanémdj when they
face the problemd; E) coincide with their shares when they face the reduced
problem (¢y; A), whereA equalsE — ka h(A, d¢) and wheredy = (di, d;);
analogously, the shares of claimantandj when they face the problend ¢ E)
coincide with their shares when they face the reduced probﬂémli), where
dy = ((d +d)/2,(di +d)/2) andB = E — 3 h(\', dy), for any A € A(d)
and )\ € A(d"). Obviously any\ € A(d) also belongs to1((dy ; A)), and any
A e A(d") belongs toA((dy; B)) as well. Thus, we have:

h(\,d)+h(\d) = A
+di +d + o+ _
h(, =) +h(\',=52) = B.

For A < B we have that\ < )" since this is the case for= 2. ForA > B
the result holds sinc& > B implies 3", ; h(\, dk) < Yy ; h(\', dk) which
implies A < \".

Thus for any number of creditors the statement halds.

Proof of the only if part of (a) in Theorem Zrom Young'’s result we know that
any continuous, symmetric and consistent rule is a parametric rule relative to a
function h. We now show that ifh is non manipulable by splitting, thelm is
convex in its second argument for each value of the parameter

To prove this result, sinck is continuous on (0x), it suffices to show that
for all d;, d; and for fixed :

h(x d ;dj> < .46

LetN €./ and let ¢I;E) and @'; E) be two bankruptcy problem iBN such
thatd, = d, for all k #i,j andd =d = (d +d;)/2. Let A € A(d). Because of
Lemma 1 we know that there exists € A(d’) such thatx < \'.

Since A < A" we havey ,; h(\,d) < Y4, h(\',dy). This implies

h(\,d) +h(\,d) > 2h (AQ (d +dj)/2) > 2 h () (d +d)/2), where the

last inequality follows from the monotonicity ¢f in A.
Thus h (), 458) < MON09),

9 A NAS rule is necessarily superadditive, and thus, appealing to Theorem 1 4 3 in Rosenbaum
[9], it must satisfy weak superhomogeneity as well, (see also Newman[7])
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Proof of the if part of (a) in Theorem 2\Ve now show that if a parametric rule is

convex in its second argument then it is a no advantageous splitting rule. Note

that Young'’s theorem implies that it is also continuous, symmetric and consistent.
To prove the statement we only need to show that the convexityiofits

second argument implies that for &ll, M in ./, with N D M, if (d;E) € BN

and (d,E) € B are such that there existse M with d = d; + 37 .\ G

and withd, = dy for all k € M\{i}, then A > X holds for any\ € A(d) and
N e Ad).

Sinceh is a parametric rule it satisfies thia¢\, 0) = 0 for all A. Thus for A
fixed, Theorem 1.4.3. in Rosenbaum[9] ensures tha a superadditive in its
second argument function since it is convex and it satigfigs0) = 0. Now,
di' =d + ZjeN\M d; and the superadditivity dfi imply

h(Ld) >hd)+Y " h(),d) ©)

jEN\M

By addinngeM\{i} h()\, di) to both sides of (9), budget balance yields
h(\, d) + ZkeM\{i} h(\, d¢) > E. (10)

The left hand side of (10) is equal ® at A" (recall thatdy = d, for all k e
M\{i }). Thus the (weak) increasing monotonicitytoin its first argument allows
to conclude that > \'. O

Proof of the only if part of (b) in Theorem 2et h be a NAM parametric rule.

If h is parametric so is its dual. Lgtbe the parametric rule which is dual lof

By the result in Proposition 4 is a NAS rule, and hence, by part (a) in theorem
2, g(A\, di) is convex ind.

Since h is the addition of two concave id; functions, recall thah(\, d;) =

d — g(), di), it has to be concave id;, as we claimedO

Proof of the if part of (b) in Theorem Zoncavity ofh in d; implies that its dual
is convex ind; and so a NAS rule as we have shown. If the dual is a NAS rule,
Proposition 1 implies thaht is a no advantageous merging rufe.

Proof of (a) in Theorem 3The proof relies on the following auxiliary lemma.

Lemma 2. If h is a non advantageous splitting parametric rule X then any
pseudo-inverse of h is an almost concave functfon.

10 From Kuczma [3] it is known that a functioh: | x | — .72 is almost concave if

(050> S [0 +1)].

holds for all (xy) € | x| excepton aseM C | x| of Lebesgue measure zero, whérés any
open interval of the real line Kuczma proves that an almost concave function is equal to a concave
function almost everywhere
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Proof. Let N € ./ and let (d E) and (d;E) be two bankruptcy problems in
BN such thatd, = d for all k #i,j andd, = d = (d +0)/2. In lemma
1 we showed that any no advantageous splitting parametric rule satisfies that
for all A" € A(d") there exists\ € A(d) such thatA < \. Henceh()\,d;) +
h(\,d) > 2h(\', (di +d;)/2), for A < X'. Let x = h(\,d;), y = h()\,d;), and
z=h(\',(d + d;)/2). Denoting byf any pseudo-inverse df, we have that for
the points wheré is continuous\ = f (x,d;) = f(y, d;) and\ =f(z, (d +d)/2).
Sincez < (x +y)/2 there isd > 0, such thatz = (x +y)/2 — 4. ThusA < \’
implies:
f(dei)+f(y7dJ)§f(X+y7 X+y7di+dj)’
2 2 2 2

where the last inequality follows from the monotonicityfoin its first argument.

Hence for anyx; € (0,00), and anyd; € (0,00) except at the countable set
of points wheréf is discontinuous, -a set with Lebesgue measure zérisan
almost concave functior

di+dj
<
5,528 < 1(

Proof of (a) in Theorem 3If h minimizes an objective function that takes the
form we claim then it is straightforward to check that it satisfies convexity in its
second argument. To prove the converse statemettit ket a no advantageous
splitting parametric rule. From Theorem 2 in Young [13] it is known that
solution of the following optimization problem:

min>"iL, H (%, di) subject o>, % = E and 0< x < d;.

As solution to the above programhas to satisfy the Kuhn-Tucker conditions
associated with the optimization program. Three cases have to be considered:

1. The constraints & x < d; are never binding at the optimum.
If the constraints are never binding theris a inverse oh. It will be strictly
concave wheneveh is strictly convex. Moreover it satisfies 9 f (x;, d;) =
A< 1. If A =1thenh(1,d) = d for all di. Thush must be linear ing;
for A = 1 (similarly for A = 0). Continuity implies thah must be linear in
di for all A\. Thus we must hava(), d) = dia()) where X = a~1( % /d;).
Sincea(\) has to be continuous, strictly monotone increasing,iand with
«(0) = 0 anda(1) = 1 then we can take(\) = A\ . Thusx, = h(\, di) =di A,
and A\ =f(x,di) = x /di. ConsequentlyH (x,d;) = fg“ f(a, dj)da will take
the formH (x,d;) = x2/2d .

2. Some of the Kuhn-Tucker coefficients associated with the constsqirts;
are strictly positive.
For suchi we will have x; = di. Hencex = h()\,d;) will take the form
x = min{d,H, (), d)}. SinceH (), d;) is almost concave , and since the
minimum of two concave functions is a concave function as wek, h(), d;)
will be concave ind,. Therefore 2. can never be the case.

3. Some of the Kuhn-Tucker coefficients associated with the constraidits O
are strictly positive.
For suchi we will have x; = 0. Hencex, = h(\,d;) will take the form
% = max{0H (), di)}. For the maximum to be convex i, H, (), di)
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has to be linear im;. Since the constrains are binding for at least brilen
H, (), di) < O for thati. Taking into account the definition of parametric
rules we can writeh(\,d;) = di — «()\) for some~(.) weakly monotone
decreasing in\. This yields\ = f(x,d) = v 1(di — x). ThusH (x;,d;) =
f(;“ f(a, di)da will take the formH (x,d;) = —U(di — x) + C, whereU has
to be a strictly convex function. Sind¢(0,d;) has to be equal to 0 for adi,
thenC has to be equal ttJ (d;). ThusH (x,d)) =U(di) — U (di —x). From
the three cases we have studied we concludeHltat, d;) will take the form
H(x,d)=U(d)—U(d —x) for any NAS rule but the proportional one.

Proof of (b) in Theorem 3.et h be a NAM parametric rule, but the proportional.
Theorem 2 (b) states thhtis concave ird; and Proposition 1 states thats the
dual of some NAS parametric rule. ThEs=h(\,d;) =d; — % =d; — g(A, di),
whereh is the dual ofg. From the previous theorem we know thg\, d;) can
be constructed by solving the following program:

min>_i_, U(di) — U(di — %) subject to>i_; % =E and 0< x < dj,
whereU (dj)) —U (d — %) = fé“ s(a, dj)da, wheres is a pseudo-inverse af

Denoting byf to the pseudo inverse ¢f, the dual relationship yields:

A =s(%,d) = s(di —Xj,di), andU(di) — U(di —x) = OX‘ s(a,di)da =

f(;(' f(d| —a, di)da.
Equalities above imply

Jo f(a,d)da= [y s(d —a,d)da=U(d)+U(d —(d —x))+C =U(d)+

Ux)+C,
for someU strictly convex. NowH (0,d;) = 0 impliesC = —U (d).

Finally, since the proportional rule is self-dual then pai} ¢f this theorem

impliesH (x, di) = x?/2d for the proportional rulen
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