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Abstract. In a bankruptcy problem framework we consider rules immune to
possible manipulations by the creditors involved in the problem via merging or
splitting of their individual claims. The paper provides characterization theorems
for the non manipulable rules, the no advantageous merging parametric rules and
the no advantageous splitting parametric rules.
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1 Introduction

When a firm goes bankrupt, how should its liquidation value be divided among
its creditors? A common solution is to allocate the firm’s assetsproportionally
to the creditors’ claims or entitlements. There are arguments, however, in favor
of other rules. Aumann and Maschler[1], for instance, argue that if the net worth
of the firm does not exceed the smallest claim, then equal division among the
creditors makes good sense as any claim by one person that goes beyond the
entire net worth of the firm might well be considered irrelevant.

The literature devoted to the formal analysis ofbankruptcy problemshas tried
to identify solutions orrules which associate with each bankruptcy problem a
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desirable division between the creditors of the net worth of the firm.1 In this paper
we study bankruptcy rules that are immune to strategic manipulations whereby
a group of creditorsmerge(i.e., consolidate their claims) in order to represent a
single creditor, or a single creditorsplits her claim to represent several creditors.
We will say that a rule satisfiesno advantageous merging(NAM) when no group
of creditors is able to benefit by consolidating their claims and being treated as a
single creditor. We will say that a rule satisfiesno advantageous splitting(NAS)
when no creditor is able to benefit by representing several creditors whose claims
add up to her. A no advantageous merging and no advantageous splitting rule will
be callednon manipulable. Non manipulable rules have been studied previously
by O’Neill[8] and by Chun[2].

Immunity to these strategic manipulations is relevant in practice as in many
bankruptcy problems it is feasible for the creditors to merge or to split. A husband
and wife, for example, could present themselves as a single creditor, or the
partners of a firm could appear as different creditors. Sometimes, however, it
may only be feasible for the creditors to manipulate either by merging or by
splitting. Whenever the creditors are just the owners of liabilities issued by a
bankrupt firm, manipulation by merging may be possible while manipulations
by splitting may not; whereas, if the creditors are banks then manipulations by
splitting may enter in a natural way since a bank could divide its claim by
transferring it to its subsidiary banks.
In this paper we provide characterization theorems for the rules immune to either
kind of these strategic manipulations.

We show that the proportional rule is the only non manipulable bankruptcy
rule. For the family of consistent, symmetric and continuous rules (i.e., the para-
metric rules) we show that the concavity (convexity) of the parametric represen-
tation of a rule with respect to the individual claims determines its non manip-
ulability by merging (non manipulability by splitting). Finally, we show that a
NAM parametric rule maximizes a strictly concave welfare function where the
measure of welfare is the utility derived by the creditors from the award received;
whereas a NAS parametric rule minimizes a strictly convex loss function where
the measure of loss is the sacrifice that the rule imposes upon the creditors. This
result implies that NAM rules are in the spirit of egalitarianism in gains, whereas
NAS rules are in the spirit of egalitarianism in losses.

The organization of the paper is as follows. In Sect. 2 we introduce the main
concepts and definitions. Section 3 discusses the property of non manipulability.
Section 4 contains the characterization results for the NAM and the NAS rules.
Finally, the Appendix contains the proofs of the characterization theorems in
Sect. 4.

1 For survey on the axiomatic analyses of bankruptcy and taxation problems, see Thomson[12]
Notice that the problem of identifying well-behaved taxation rules is formally identical to that of
identifying bankruptcy rules, and that all the results for the bankruptcy problem can be reinterprested
in the context of taxation
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2 Preliminaries

We first introduce the class of problems that we study and the necessary nota-
tion. Most of the definitions that follow and the notation have been taken from
Thomson[12].

A typical bankruptcy problem is that of dividing the net worthE of a bankrupt
firm among a group of claimants,N , whose claims are specified by a vector
d = (di )i ∈N . We denote byn the cardinality ofN , and by D the total claim.
Since we consider situations involving an arbitrary finite number of claimants, it
is useful to distinguish between the set of “potential claimants”, whose members
are identified by a natural number, and the set of claimants actually present in
a bankruptcy problem, which we represent by a finite subsetN of the set of
natural numbers,N ⊂ N.

A Bankruptcy Problemis obtained by first specifying a set of agentsN ∈ N ,
then a pair (d; E) ∈ RN

+ × R+ such that
∑

i ∈N di ≥ E.2 For N ∈ N , we denote
by BN the class of these problems.

A Bankruptcy Rule Xis a function defined on the union of all of theBN , for
N ∈ N , which associates with everyN ∈ N and every (d; E) ∈ BN a vector
x ∈ RN

+ :
∑

i ∈N xi = E.
Alternatively, a bankruptcy problem can be seen as a problem of dividing

a net loss,D − E, among the claimants. Nevertheless, the viewpoint we adopt,
will affect the allocation, since a given rule may assign gains in a different way
than losses. This consideration is related to the concept of dual rule.

Definition 1: Let X be a Bankruptcy rule. Based on X we define its dualX in the
following way: For all (d; E) ∈ BN , X(d; E) = d − X(d; D − E).3

Note thatX = X.
Both rules,X andX, can be considered as a “philosophy” or as a recommen-

dation about how to undertake the division implicit in every bankruptcy problem.
A natural requirement for a rule is that it applies the same “philosophy” regard-
less of the data (number of creditors, individual claims and net worth of the firm).
A way to ensure this is to demand consistency. Consistent rules in this context
fulfill a general principle of distributive justice that states that an allocation that
is equitable for a group of individuals should be equitable when restricted to a
subgroup of individuals.4

Definition 2: The rule X satisfies consistencyif for all M , N ⊂ N , for all
(d; E) ∈ BN , if M ⊂ N and (dM ;

∑
M xi ) ∈ BM , where x = X(d; E), then

(xi )i ∈M = X(dM ;
∑

M xi ).

2 We denote byRN the cartesian product of|N | copies ofR indexed by the elements ofN .
3 Notice that our definition of Bankruptcy rules implies that the dual of a ruleX is a well defined

rule only if X is claim-bounded (i e ,Xi (d; E) ≤ di for all i ∈ N ).
4 Consistency has been a widely used principle in the economic literature in diverse areas, ranging

from abstract game theoretic models to concrete taxation and apportionment problems For a review
of the role played by the consistency principle in the axiomatic approach to these quite diverse
problems, see Thomson [11]
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The interpretation of consistency is as follows. Suppose that the ruleX as-
signs allocationx to the bankruptcy problem (d; E). Suppose, too, that some
subset of creditors wants to reallocate the total amount assigned to them. If we
apply the same rule to allocate this amount among these creditors, each one will
get the amount originally assigned to them, providedX is consistent. So, for
example, if (50,75,100) is the recommendation ofX to the bankruptcy problem
(100,150,200; 225)∈ BN whereN = {1,2,3}, then (50, 75) must be the recom-
mendation ofX to the problem (100,150; 125)∈ BM for M = {1,2}, provided
that X is a consistent rule.

We consider next the possibility that a group of agents may consolidate their
claims and be treated as a single claimant, or, conversely, that a given claimant
may divide her claim and represent several claimants whose claims add up to
her.

Definition 3: A rule X satisfies no advantageous mergingif for all M , N ⊂ N ,

for all (d; E) ∈ BN and (d
′
; E) ∈ BM , if M ⊂ N and there is i∈ M such

that d
′
i = di +

∑
j ∈N\M dj and for all j ∈ M \{i }, d

′
j = dj then Xi (d

′
; E) ≤

Xi (d; E) +
∑

j ∈N\M Xj (d; E).

Here no possible coalition of creditors has an incentive to pool their claims
to be treated as a single creditor whose claim is the sum of the individual claims
of their constituents.

Definition 4: A rule X satisfies no advantageous splittingif for all M , N ⊂ N ,

for all (d; E) ∈ BN and (d
′
; E) ∈ BM , if M ⊂ N and there is i∈ M such

that d
′
i = di +

∑
j ∈N\M dj and for all j ∈ M \{i }, d

′
j = dj then Xi (d

′
; E) ≥

Xi (d; E) +
∑

j ∈N\M Xj (d; E).

Namely, no claimant has an incentive to divide her claim to represent several
creditors whose claims add up to her.

Definition 5: A rule X is called non manipulableif it satisfies no advantageous
splitting and no advantageous merging.

Whenever a rule satisfies no advantageous merging it is called a NAM rule,
whereas if it satisfies no advantageous splitting it is called a NAS rule.

Proposition 1 shows that there is a dual relation between the family of no
advantageous splitting rules,S , and the family of no advantageous merging
ones,M.

Proposition 1. If X is a bankruptcy rule such that its dualX is well defined, then
X ∈ M if and only if X ∈ S .

Proof. The proof of the statement requires to prove:
a) If X ∈ M andX is well defined thenX ∈ S , and
b) If X is well defined andX ∈ S thenX ∈ M.

We first show (a) by way of contradiction. AssumeX ∈ M andX is well defined
but X /∈ S . SinceX /∈ S there exist (d; E) ∈ BN and (d

′
; E) ∈ BM , N ⊃ M ,
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and there isi ∈ M with d
′
i = di +

∑
j ∈N\M dj and with d

′
j = dj for all j ∈ M

\{i }, for which

X̄i (d
′
; E) < X̄i (d; E) +

∑
j ∈N\M

X̄j (d; E) (1)

Applying the definition of dual rule (1) can be rewritten as follows:

d
′
i −Xi (d

′
; D

′ −E) < di −Xi (d; D −E) +
∑

j ∈N\M
dj −

∑
j ∈N\M

Xj (d; D −E)

(2)
Sinced

′
i = di +

∑
j ∈N\M dj and sinceD

′
= D then (2) becomes

Xi (d
′
; D − E) > Xi (d; D − E) +

∑
j ∈N\M

Xj (d; D − E).

The above result contradictsX ∈ M since it is advantageous for the members
of T (T = N\M ∪ {i }) to merge their claims to be treated as a single creditor.
Thus if X ∈ M andX is well defined thenX ∈ S . The proof of the statement:
If X ∈ S and X is well defined thenX ∈ M, is similar to the previous one
and therefore it is omitted.
Now to prove b) letX be a well defined rule such thatX ∈ S . SinceX ∈ M

andX = X we have thatX ∈ M as we claimed.ut
To illustrate the strategic properties defined earlier we now apply them to

the Talmudic rule. This rule was first studied by Aumann and Maschler. The
definition that follows is taken from Thomson[12].

The Talmudic rule: For all (d; E) ∈ BN and for all i ∈ N ,
-If E ≤ D/2, then xi = min{λ,di /2}, where λ is chosen so that∑

i ∈N min{λ,di /2} = E,
-If E ≥ D/2, then xi = di − min{λ,di /2}, where λ is chosen so that∑

i ∈N min{λ,di /2} = D − E.

Notice that for bankruptcy problems in whichE ≤ D/2 the Talmudic rule can
be regarded as a special case of the Constrained-Equal-Award rule; and for those
problems in whichE ≥ D/2, it is a special case of the Constrained-Equal-Losses
rule.

The Talmudic rule is an example of a rule that it is manipulable by splitting
and by merging. Moreover, it can be shown that whenever the net worth of the
firm is smaller than half the total claim the Talmudic rule is manipulable by
splitting and not by merging, while the opposite holds whenever the net worth
of the firm is greater than half the total claim. Section 4 provides a formal proof
of this statement. Here we only give numerical examples to illustrate the above
statement.
Consider the problem (100,200,300,400; 400)∈ BN whereE = 400 < D/2 =
500, andN = {1,2,3,4}. The Talmudic shares are (50, 100,125,125). Suppose
that creditor 4 with a claim of 400 divides her claim into two equal claims to rep-
resent creditors 4 and 5 in the bankruptcy problem (100,200,300,200,200; 400)
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∈ BM whereM = {1,2,3,4,5}. The shares are now (50, 87.5,87.5,87.5,87.5).
That creditor gets now 87.5 + 87.5 = 175> 125,so she has incentives to manip-
ulate by splitting.
Consider now the problem (100, 200,300,400; 700)∈ BN where E = 700 >
D/2 = 500 andN = {1,2,3,4}. The Talmudic shares are (50, 116.6,216.6,
316.6). If creditors 1 and 2 merge their claims to be represented by creditor 1
in the bankruptcy problem (300, 300,400; 700)∈ BP where P = {1,3,4} the
shares will be (200,200,300). Since 200> 50 + 116.6 creditors 1 and 2 have
incentives to manipulate by merging.

3 Non manipulable rules

In the previous section we showed that the Talmudic rule is a manipulable rule.
The result obtained for the Talmudic rule can be expanded to the egalitarian rules
of which that is a special case. It is also known, from the work by O’Neill[8],
that there is at least a rule whereby the creditors have no incentive to either
merge or split their individual claims. O’Neill provided a characterization of the
proportional rule as the only rule that satisfies (1) symmetry, (2) continuity at
at least one point, (3) independency of the addition of dummy creditors with
zero claim and (4) strategy-proofness. Strategy-proofness is equivalent to non
manipulability, as we mentioned earlier. A natural question arises from this result:
Is there some other non manipulable rule if (1), (2) and (3) are not required? We
provide a negative answer to this question through a characterization theorem that
states that the proportional rule is the only rule that satisfies non manipulability
for all possible bankruptcy problems.

We will devote this section to study the implications of non-manipulability.
Let us recall thatnon manipulablerules are those satisfying no advantageous
splitting and no advantageous merging. Thus ifX is a non manipulable rule then
for all M , N ⊂ N , for all (d; E) ∈ BN and (d

′
; E) ∈ BM , if M ⊂ N and there

is k ∈ M such thatd
′
k = dk +

∑
j ∈N\M dj with d

′
j = dj for all j ∈ M \{k}, then

Xk(d; E) +
∑

j ∈N\M Xj (d; E) = Xk(d
′
; E).

An immediate consequence of the above remark (see next proposition) is that
non manipulable rules assign to each creditor a share that only depends upon the
total claim, the net worth of the bankrupt firm and her own claim.

Proposition 2. If the rule X satisfies non manipulability, then for all N∈ N ,
(d; E) ∈ BN and for all i ∈ N , if d′ = (di , dk) where dk = D − di and k ∈ N\{i }
then Xi (d; E) = Xi (di , D − di ; E).

The proof follows immediately from the definition of non manipulable rules.
Consider (d; E) ∈ BN and (d

′
; E) ∈ BM such thatM ⊂ N with M = {i , k},

with d
′
k = D −di and withd

′
i = di . By non-manipulabilityXk(d; E) = Xk(d′; E) =

Xk(di , D − di ; E). By budget balance we have thatXi (d; E) = Xi (di , D − di ; E).
Notice that when a set of creditors (a coalitionT ⊂ N ) merge their claims

they will be represented by one of the members of the coalition who will show a
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claim equal to the sum of the claims of the creditors in the coalition. Therefore,
the coalition can choose among its members who will represent it. Similarly,
when a creditori ∈ N facing the problem (d; E) ∈ BN decides to split her
claim into, for instance, two parts, she will then represent herself,i , and another
creditor j . She can choose any name forj ( any natural number) provided thatj
is not in N . Because of our definition of mergers and splitting, non manipulable
rules will assign shares that do not depend upon the names of the creditors.5

We now show that non manipulable rules satisfy symmetry, the dummy ax-
iom, and order preservation.

Proposition 3. Every non manipulable rule satisfies symmetry, that is, for all
N ∈ N , all (d; E) ∈ BN and all i ∈ N , if di = dj then Xi (d; E) = Xj (d; E).

Proof. Assume, by way of contradiction, thatX is a non manipulable rule that
violates symmetry, that is, there existN ∈ N and (d; E) ∈ BN , with di = dj = d
for somei , j ∈ N , but with Xi (d; E) > Xj (d; E). Consider first the casen ≥ 3.
Let k ∈ N , k /= i , j .
Assume that all creditors inN but j merge their claims under the name ofk.
The resulting bankruptcy problem will be (d′; E) ∈ BM with M = {j , k}, such
that d′

k = D − d and d′
j = dj = d. Clearly, if Xk(d′; E) /= E − Xj (d; E) then

X is manipulable. ThusXk(d′; E) = E − Xj (d; E). Let us assume now that all
creditors inN but i facing the problem (d; E) ∈ BN decide to merge their claims
under the name ofk. The resulting bankruptcy problem will be (d

′′
; E) ∈ BP,

P = {i , k}, with d
′′
k = D − d andd

′′
i = di = d. By non manipulability,

Xk(d
′′

; E) = E − Xi (d; E) < E − Xj (d; E) = Xk(d′; E)

Because of budget balance,Xi (d
′′

; E) > Xj (d′; E). We now show thatX is
manipulable by splitting. Assume creditori facing the problem (d

′′
; E) divides

her claim into two equal claims to represent creditori with claimd/2 and creditor
j with claim d/2 in the problem (̃d; E) ∈ BT whereT = {i , j , k}. Because of non
manipulabilityXi (d

′′
; E) = Xi (d̃; E)+Xj (d̃; E). Assume now that creditorj facing

the problem (d′; E) divides her claim into two equal claims to represent creditor
i with claim d/2 and creditorj with claim d/2 in the problem (̃d; E) ∈ BT .
SinceXi (d

′′
; E) = Xi (d̃; E) + Xj (d̃; E) > Xj (d′; E), we can conclude thatX is

manipulable by splitting, a contradiction.
Consider now the casen = 2. Let (d; E) ∈ BN be a bankruptcy problem such

that d1 = d2. Suppose both creditors divide their claims into two equal claims.
Now symmetry forn = 3 plus non-manipulability implies symmetry forn = 2.ut

5 To illustrate this statement consider the ruleX that gives all the net worth of the bankrupty firm
to the claimant with the smallesti (i e Xi (d; E) = E if i = minj ∈N j and Xi (d; E) = 0 otherwise)
Thus creditor 3 facing the problem (d; E) ∈ BN with N = {2,3,4} ∈ N will get a zero payment
If this creditor divides her claim into two equal claims to represent creditor 1 and creditor 3 in the
bankruptcy problem (d

′
; E) ∈ BM with M = {1,2,3,4} and withd

′
j = dj for all j ∈ M \{3}, then

X1(d
′
; E) + X3(d

′
; E) = E > X3(d; E) = 0. HenceX will be manipulable by splitting
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Proposition 4. Every non manipulable rule X satisfies the dummy axiom, that is,
for all N ∈ N , (d; E) ∈ BN and for all i ∈ N , if di = 0 then Xi (d; E) = 0.

The proof is immediate. It follows from the fact that if it does not hold then
there exists some creditor who has incentives to split her claim into her claim
and some zero claims to get a better share.

Proposition 5. If a rule is non manipulable then it satisfies order preservation,
i.e., for all N ∈ N , (d; E) ∈ BN and for all i ∈ N , if di < dj then Xi (d; E) <
Xj (d; E).

Proof. Let N ∈ N and (d; E) ∈ BN , such that there existi and j in N with
di < dj .
Assume that creditorj divides her claim to represent creditorj with claim di and
creditor k, k /∈ N , with claim dj − di in the bankruptcy problem (d

′
; E) ∈ BM

whereM = N∪{k} andds = d
′
s for all s ∈ N\{j }. Symmetry impliesXj (d

′
; E) =

Xi (d
′
; E) and non-manipulability impliesXi (d

′
; E) = Xi (d; E). Therefore

Xj (d; E) = Xj (d
′
; E) + Xk(d

′
; E) = Xi (d; E) + Xk(d

′
; E) ≥ Xi (d; E).

We now show thatXj (d; E) > Xi (d; E) by proving thatXk(d
′
; E) > 0.

Consider the bankruptcy problem (d
′′

; E) ∈ BP such thatP = {i , k}, d
′′
i = D−d

′
k

andd
′′
k = d

′
k = dj − di . Appealing to Proposition 1 we know that

Xk(d
′
; E) = Xk(d

′′
i , d

′′
k ; E) = Xk(D − dj + di , dj − di , ; E).

Let us assume first thatD−dj +di

dj −di
∈ N. If creditor i facing the problem (d

′′
; E)

divides her claim intoD−dj +di

dj −di
equal claims to representD−dj +di

dj −di
creditors each

with a claim of dj − di then non-manipulability (and consequently symmetry)
plus budget balance yieldXk(d

′
; E) > 0.

Assume now thatD−dj +di

dj −di
/∈ N. Let us denote byt to the maximum integer

smallest thanD−dj +di

dj −di
· If creditor i divides her claim to representt + 1 creditors,

t of them with a claim ofdj − di and the remaining creditor with a claim of
D − (t + 1)(dj − di ), then this splitting yields a bankruptcy problem (d̃; E) ∈ BR

with P ⊂ R in which d̃s ≤ dj − di for all s ∈ R. Let us assume, w.l.o.g. that
d̃2 = D−(t+1)(dj −di ). By non manipulabilityXk(d

′′
i , d

′′
k ; E) = Xk(d̃; E). Because

of symmetryXk(d̃; E) = Xs(d̃; E) for all s ∈ R\{2}, with Xk(d̃; E) ≥ X2(d̃; E)
since d̃k = dj − di > d̃2. These results plus budget balance implyXk(d

′
; E) =

Xk(d̃; E) > 0.ut
Theorem 1. There is exactly one non manipulable bankruptcy rule: the propor-
tional rule.

Proof. It is known that the proportional rule is non manipulable. The proof of
the converse statement is done in two steps.
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Step 1. We first show that for allN ∈ N , and for all (d; E) ∈ BN , a non
manipulable rule assigns a share ofsE/t to any individual claim ofsD/t , for
any integerss and t such that 0≤ s ≤ t .

Let (d; E) be a bankruptcy problem such thatdi = sD/t for some i ∈ N .
Without loss of generality leti = 1. SinceD − d1 = (t − s)D/t , Proposition 1
implies that

X1(d; E) = X1(sD/t , (t − s)D/t ; E). (3)

Let us denote byd
′

to the vector (sD/t , (t − s)D/t). Because of non manip-
ulability if creditor with claim (t − s)D/t facing the problem (d

′
; E) presents

herself as (t − s) creditors each with a claim ofD/t she will not gain by doing
so. Therefore

X1(sD/t , (t − s)D/t ; E) = X1(d
′′

; E) (4)

whered
′′
1 = d

′
1 = sD/t andd

′′
j = D/t for all j /= 1. Without loss of generality let

j = 2, ..., t − s + 1. Assume now that creditor 1 facing the problem (d
′′

; E) splits
her claim intos equal claims ofD/t to represent creditors 1, t − s + 2, ..., t in
the bankruptcy problem (̃d, E) ∈ BM whered̃i = D/t for all i ∈ M . Notice that
d̃1 +

∑t
i =t−s+2 d̃i = d

′′
1 and d

′′
j = d̃j for all j = 2, ..., t − s + 1. Appealing to non

manipulability by splitting we have that

X1(d
′′

; E) = X1(d̃; E) +
∑t

i =t−s+2
Xi (d̃; E) (5)

Symmetry implies that the right hand side of (5) issE/t . Thus (3), (4) and (5)
imply that X1(d; E) = sE/t .

Step 2.We now show that for anyN ∈ N and (d; E) ∈ BN any non manipulable
rule assignsdi E/D to any claim ofdi , for any i ∈ N .

It is well known that for any value of (di /D) ∈ [0, 1], and for everyK ≥ 1,
there exists some integer6 pK , 0 ≤ pK ≤ 2K , such that:pK

2K ≤ di
D ≤ 1+pK

2K · Thus
for any N ∈ N and (d; E) ∈ BN and for anyi ∈ N the following inequality
holds:

DpK

2K
≤ di ≤ D(1 + pK )

2K
·

Proposition 1 implies thatXi (d, E) = Xi (di , D−di , E) = Xi (d
′
, E) wheneverd

′
be

such thatdk = d
′
k for all k ∈ N , k /= j , l , d

′
j = pK D/2K andd

′
l = dl +dj −pK D/2K .

Notice thatd
′

= d if dj = pK D/2K . Since d
′
j = DpK

2K ≤ di = d
′
i order preser-

vation and symmetry implyXj (d
′
, E) ≤ Xi (d

′
, E). Because of result in step

1 (take s = pK and t = 2K ) we know thatXj (d
′
, E) = pK E/2K . Therefore

pK E/2K ≤ Xi (d
′
, E).

Similarly, by appealing again to proposition 1, we know thatXi (d, E) =

Xi (di , D − di , E) = Xi (d
′′
, E) for d

′′
such thatdk = d

′′
k for all k ∈ N , k /= j , l ,

d
′
j = (1 + pK )D/2K and d

′
l = dl + dj − (1 + pK )D/2K . Result in step 1 yields

6 pK is nothing but the integer part of (2K di
D ). We write di

D in binary representation

9



Xj (d
′′
, E) = (1+pK )E/2K . Sinced

′′
i = d

′
i ≤ d

′′
j order preservation and symmetry

imply

EpK

2K
≤ Xi (d, E) ≤ E(pK + 1)

2K
·

The sequencepK /2K is bounded and increasing inK , whereas the sequence
(1 + pK )/2K is bounded and decreasing inK . As K → ∞ they converge to
di /D . The limiting relation di E

D ≤ Xi (d, E) ≤ Edi
D implies that a rule is non

manipulable if and only if gives proportional shares.ut

Let us now comment on the related work by Chun[2]. Chun characterizes the
proportional rule by imposing symmetry, continuity, Non advantageous reallo-
cation (NAR, for short) and the dummy axiom. NAR says that no coalition can
benefit from redistributing the claims among its members. Chun also shows that
the dummy axiom in O’Neill’s result is redundant and that NAR and the dummy
axiom imply strategy-proofness. Clearly, a non manipulable rule satisfies NAR,
while the converse does not hold (think of the egalitarian in gains rules that sat-
isfy NAR but are manipulable by splitting). Hence the main difference between
Theorem 1 and Chun’s earlier results is that Theorem 1 shows that continuity
and symmetry are no longer required to characterize the proportional rule.

4 No advantageous merging and no advantageous splitting rules

Theorem 1 tells us that to require non manipulability is equivalent to require pro-
portional division. One could argue that this property is too demanding because
it rules out strategic manipulations that may, for some bankruptcy problems, not
be feasible. This consideration is particularly relevant in the context of income
taxation. There only manipulations by merging are possible -when the married
taxpayers choose between filing a joint return or filing an individual return- but
manipulations by splitting are not possible. This consideration has brought us to
search for bankruptcy rules that satisfy either no advantageous merging or no
advantageous splitting. Among all possible bankruptcy rules we focus on those
that satisfy consistency. Consistency seems to us a natural requirement to impose
on any rule. About this property W. Thomson[11] writes : “Consistency says that
if some of the claimants leave with their awards, and the situation is reevaluated
from the viewpoint of the remaining claimants, the solutionshould assignto
them the same awards as initially”.

The implications of consistency has been described very completely, with
very few auxiliary conditions. Consider indeed the following class of rules in-
troduced by Young (1987).

Parametric rules. Let h : [a, b] × R+ → R+, where [a, b] ⊂ [−∞, +∞],
be a function that is a continuous, is (weakly) monotonic in its first argument,
and satisfiesh(a, di ) = 0 andh(b, di ) = di for all di ∈ R+. Then, givenN ∈ N

10



and (d; E) ∈ BN , the parametric rule relative to hselects the pointx ∈ RN

such that for someλ ∈ [a, b],
∑

i ∈N xi = E andxi = h(λ, di ) for all i ∈ N .7

Young [13] has shown that a continuous rule is symmetric and consistent if
and only if it is a parametric rule. This section is devoted to study the parametric
rules that satisfy either non manipulablity by merging or non manipulability by
splitting.

Next theorem which builds in the work by Young shows that two inter-
esting subfamilies of the parametric family can be identified by imposing the
requirement of no advantageous merging or the requirement of no advantageous
splitting.

Theorem 2. a). A continuous, symmetric and consistent rule is non manipulable
by splitting, if and only if it is a parametric rule relative to a function h that is
convex in its second argument for each value of the parameterλ.

b). It is non manipulable by merging, if and only if it is a parametric rule
relative to a function h that is concave in its second argument for each value of
the parameterλ.

Proof. See Appendix.ut

Remark 1.A continuous, symmetric and consistent rule is non manipulable if
and only if it is a parametric rule relative to a functionh that is linear in its
second argument for each value of the parameterλ.

In light of Theorem 2 we can now easily study whether some of the most well-
known parametric rules are non manipulable by splitting and/or non manipulable
by merging. Consider the following parametric rules:

h(λ, di ) = min{λ,di }, 0 ≤ λ ≤ ∞ (Constrained-Equal-Award rule),
h(λ, di ) = max{0,di − 1/λ}, 0 ≤ λ ≤ ∞ (Constrained-Equal-Losses rule),
h(λ, di ) = λdi , 0 ≤ λ ≤ 1 (Proportional rule).
The Constrained-Equal-Award rule is non manipulable by merging since its

parametric representation is concave indi , whereas the Constrained-Equal-Losses
rule is non manipulable by splitting. The proportional rule is non manipulable
since its parametric representation is linear indi . Finally, the Talmudic rule is
non manipulable by merging if and only ifE ≤ D/2, since only in that case its
parametric representation satisfies concavity in its second argument (recall that its
parametric representation in that case ish(λ, di ) = min{λ,di /2}), whereas ifE ≥
D/2, it is a non manipulable by merging rule since its parametric representation
is h(λ, di ) = max{0,di /2 − 1/λ}.

7 Notice that the functionh(λ, di ) = λd2
i does not represent a parametric rule since it does not

exist b such thath(b, di ) = di for all di ∈ R+. By construction ofh it is deduced that a parametric
rule always satisfies Claim-boundness (i e , 0≤ h(λ, di ) ≤ di ). Thus, a parametric rule satisfies the
dummy axiom It is also deduced from the definition ofh that, asλ rises froma to b, the function∑

i ∈N
h(λ, di ) continuously increases (or is constant) from 0 to

∑
i ∈N

di Therefore the equation∑
i ∈N

h(λ, di ) = E has a solution if and only if
∑

i ∈N
di ≥ E It may have several solutions if all

functionsh(λ, di ) are flat inλ at the same time, but the vector of shares is always unique

11



It is also known from Young’s work that a parametric ruleh can be obtained
by minimizing a symmetric, continuous and additively separable loss function∑

i ∈N H (xi , di ) over the constraint set
{

x ∈ Rn :
∑n

i =1 xi = E, 0 ≤ xi ≤ di
}

,
where H (., .) is a strictly convex function. The relationship betweenh and H
is the following: H (xi , di ) =

∫ xi

0 f (a, di )da, where f is any pseudo-inverse of
h.8 From this approach we now show that any NAM parametric rule minimizes
a convex loss function that only depends on the amount received (H (xi , di ) =
U (xi )), while any NAS parametric rule minimizes a convex loss function that
depends on the sacrifice imposed on the creditors (H (xi , di ) = U (di )−U (di −xi )).
One may think ofU (.) andV (.) as utility functions that apply to all individuals.
Thus, any NAM parametric rule is somehow egalitarian in gains, whereas any
NAS parametric rule is somehow egalitarian in losses.

Theorem 3. a). A parametric rule satisfies no advantageous splitting if and only
if its solutions minimize a symmetric, continuous, additively separable, strictly
convex objective function that takes the form H(xi , di ) = U (di ) − U (di − xi ) for
any no advantageous splitting parametric rule but the proportional rule for which
H (xi , di ) = x2

i /2di .
b). It satisfies no advantageous joining if and only if the objective function

takes the form H(xi , di ) = U (xi ) for any no advantageous merging parametric
rule but the proportional rule for which H(xi , di ) = x2

i /2di .

Proof. See Appendix.ut

5 Conclusion

In this paper we have proposed three axioms with a strategic flavor: non manip-
ulability, non advantageous merging and non advantageous splitting. We have
shown that the combination of the axiom of consistency with either NAM or
NAS characterizes a family of rules that always include the proportional one.
Moreover the shares of any consistent and NAM rule will go from the uniform
in gains (the most egalitarian in gains) to the proportional ones (the least egali-
tarian), and, analogously, the shares of any consistent and NAS rule will go from
proportional (the least egalitarian in losses) to the uniform in losses (the most
egalitarian).

Finally we comment on related work in the literature. Three well known
axioms are related to those in this paper: Strategy-proofness, non advantageous
reallocation and composition. As we mentioned in Sect. 3, any strategy-proofness
rule is non manipulable. Any non manipulable rule satisfies NAR, furthermore,
they are a subset of the NAM ones, while they are manipulable via divisions.
Finally, in Young [14] a characterization based mainly in the axiom of composi-
tion is provided. Composition says that every increment of the estate should be

8 Wheneverh is an strictly monotone increasing inλ function, f will be the inverse ofh. Notice
that f is not necessarily continuous Nevertheless, for fixeddi ≥ 0, f (xi , di ) is monotone increasing
in xi , hence the set of pointsxi wheref is discontinuous is countable
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assessed equitably relative to the creditor’s current loss. Young has shown that
a strictly monotonic, strictly order-preserving rule satisfies consistency, compo-
sition and scale invariance if and only if it equalizes absolute sacrifice. We have
here shown that any rule in this family is a NAS mechanism.

6 Appendix: proofs

Notation. Throughout this appendix we denote byΛ(d) the set of values that
solve the equation

∑
i ∈N h(λ, di ) = E for the problem (d; E) ∈ BN , N ∈ N .

EachΛ(·) is always non empty and closed (recall thath is a continuous function).
Λ(·) is compact if the closed interval on whichλ is defined is compact. It will
be a singleton wheneverh is strictly monotonic inλ.

We now rewrite the property of NAS for a parametric rule. The NAM property
is similar.

A parametric rule is non manipulable by splitting if for all (d; E) ∈ BN and
(d

′
, E) ∈ BM , M ⊂ N if there is i ∈ M with d

′
i = di +

∑
j ∈N\M dj and with

d
′
j = dj for all j ∈ M \{i }, then λ ≥ λ

′
for any λ ∈ Λ(d) and λ

′ ∈ Λ(d
′
).

Notice that in order to ensure that creditori has no incentive to split her claim
to represent (#N/M ) + 1 creditors,h(λ, dj ) ≥ h(λ

′
, d

′
j ) must hold for allj ∈ M

\{i }. It is deduced from this definition that a NAS parametric rule satisfies, for
fixed λ, superadditivity in its second argument.

Proof of Theorem 2.The proof relies on the following auxiliary lemma.

Lemma 1. Let N ∈ N and let(d; E) and (d
′
; E) be two bankruptcy problems

in BN such that dk = d
′
k for all k /= i , j and d

′
i = d

′
j = (di + dj )/2. Any non

manipulable by splitting parametric rule satisfies that for allλ
′ ∈ Λ(d

′
) there

existsλ ∈ Λ(d) such thatλ ≤ λ
′
.

Proof. Assume firstn = 2. Thus, let (d; E) and (d
′
; E) be two bankruptcy prob-

lems such thatd = (d1, d2) and d
′

= ((d1 + d2)/2, (d1 + d2)/2). Let λ be the
smallest value inΛ(d), and letλ

′ ∈ Λ(d
′
). Assume, by way of contradiction,

λ > λ
′
.

By the (weak) monotonicity ofh and sinceλ
′

/∈ Λ(d) (Notice thatλ > λ
′

implies
that λ

′
/∈ Λ(d)) the following inequality must hold:

h(λ
′
, d1) + h(λ

′
, d2) < h(λ

′
,

d1 + d2

2
) + h(λ

′
,

d1 + d2

2
) · (6)

Let us denoted1 by x, (d1 + d2)/2 by y and, finally, (d2 − d1)/2 by z. Inequality
above can be rewritten as:

h(λ
′
, y + z) − h(λ

′
, y) < h(λ

′
, x + z) − h(λ

′
, x), (7)

wherex, y, z ≥ 0 andx < y. Now, appealing to Proposition 8 in Sharkey and
Telser [10]h has to satisfy:
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h(λ
′
, x) − h(λ

′
, x − z) <

h(λ
′
, x) − h(λ

′
, x − θz)

θ
, (8)

wherex − θz > 0 andθ ≥ 1.
As x − θz → 0+, h(λ

′
, x − θz) → 0+ thus inequality (3) becomesh(λ

′
, x) <

x
x−z h(λ

′
, x − z), contradicting thath is a NAS rule.9 Thereforeλ cannot be

greater thanλ
′
.

Let now n > 2. Let (d; E) and (d
′
; E) be two bankruptcy problems inBN

such thatdk = d
′
k for all k /= i , j andd

′
i = d

′
j = (di + dj )/2, and letλ ∈ Λ(d) and

λ
′ ∈ Λ(d

′
). Consistency implies that the shares of claimantsi and j when they

face the problem (d; E) coincide with their shares when they face the reduced
problem (dM ; A), whereA equalsE − ∑

k/=i ,j h(λ, dk) and wheredM = (di , dj );

analogously, the shares of claimantsi and j when they face the problem (d
′
; E)

coincide with their shares when they face the reduced problem (d
′
M ; B), where

d
′
M = ((di + dj )/2, (di + dj )/2) andB = E − ∑

k/=i ,j h(λ
′
, dk), for any λ ∈ Λ(d)

and λ
′ ∈ Λ(d

′
). Obviously anyλ ∈ Λ(d) also belongs toΛ((dM ; A)), and any

λ
′ ∈ Λ(d

′
) belongs toΛ((d

′
M ; B)) as well. Thus, we have:

h(λ, di ) + h(λ, dj ) = A

h(λ
′
,

di + dj

2
) + h(λ

′
,

di + dj

2
) = B.

For A ≤ B we have thatλ ≤ λ
′

since this is the case forn = 2. For A > B
the result holds sinceA > B implies

∑
k/=i ,j h(λ, dk) <

∑
k/=i ,j h(λ

′
, dk) which

implies λ < λ
′
.

Thus for any number of creditors the statement holds.ut

Proof of the only if part of (a) in Theorem 2.From Young’s result we know that
any continuous, symmetric and consistent rule is a parametric rule relative to a
function h. We now show that ifh is non manipulable by splitting, thenh is
convex in its second argument for each value of the parameterλ.

To prove this result, sinceh is continuous on (0,∞), it suffices to show that
for all di , dj and for fixedλ :

h

(
λ,

di + dj

2

)
≤ h(λ, di ) + h(λ, dj )

2
·

Let N ∈ N and let (d; E) and (d
′
; E) be two bankruptcy problem inBN such

that dk = d
′
k for all k /= i , j andd

′
i = d

′
j = (di + dj )/2. Let λ ∈ Λ(d). Because of

Lemma 1 we know that there existsλ
′ ∈ Λ(d

′
) such thatλ ≤ λ

′
.

Since λ ≤ λ
′

we have
∑

k/=i ,j h(λ, dk) ≤ ∑
k/=i ,j h(λ

′
, dk). This implies

h(λ, di ) + h(λ, dj ) ≥ 2h
(
λ

′
, (di + dj )/2

)
≥ 2 h

(
λ, (di + dj )/2

)
, where the

last inequality follows from the monotonicity ofh in λ.

Thus h
(
λ,

di +dj

2

)
≤ h(λ,di )+h(λ,dj )

2 · ut
9 A NAS rule is necessarily superadditive, and thus, appealing to Theorem 1 4 3 in Rosenbaum

[9], it must satisfy weak superhomogeneity as well, (see also Newman[7])
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Proof of the if part of (a) in Theorem 2.We now show that if a parametric rule is
convex in its second argument then it is a no advantageous splitting rule. Note
that Young’s theorem implies that it is also continuous, symmetric and consistent.

To prove the statement we only need to show that the convexity ofh in its
second argument implies that for allN , M in N , with N ⊃ M , if (d ; E) ∈ BN

and (d
′
, E) ∈ BM are such that there existsi ∈ M with d

′
i = di +

∑
j ∈N\M dj

and with d
′
k = dk for all k ∈ M \{i }, thenλ ≥ λ

′
holds for anyλ ∈ Λ(d) and

λ
′ ∈ Λ(d

′
).

Sinceh is a parametric rule it satisfies thath(λ, 0) = 0 for all λ. Thus forλ
fixed, Theorem 1.4.3. in Rosenbaum[9] ensures thath is a superadditive in its
second argument function since it is convex and it satisfiesh(λ, 0) = 0. Now,
d

′
i = di +

∑
j ∈N\M dj and the superadditivity ofh imply

h(λ, d
′
i ) ≥ h(λ, di ) +

∑
j ∈N\M

h(λ, dj ) (9)

By adding
∑

k∈M \{i } h(λ, dk) to both sides of (9), budget balance yields

h(λ, d
′
i ) +

∑
k∈M \{i } h(λ, dk) ≥ E. (10)

The left hand side of (10) is equal toE at λ
′

(recall thatdk = d
′
k for all k ∈

M \{i }). Thus the (weak) increasing monotonicity ofh in its first argument allows
to conclude thatλ ≥ λ

′
. ut

Proof of the only if part of (b) in Theorem 2.Let h be a NAM parametric rule.
If h is parametric so is its dual. Letg be the parametric rule which is dual ofh.
By the result in Proposition 1g is a NAS rule, and hence, by part (a) in theorem
2, g(λ, di ) is convex indi .
Since h is the addition of two concave indi functions, recall thath(λ, di ) =
di − g(λ, di ), it has to be concave indi , as we claimed.ut

Proof of the if part of (b) in Theorem 2.Concavity ofh in di implies that its dual
is convex indi and so a NAS rule as we have shown. If the dual is a NAS rule,
Proposition 1 implies thath is a no advantageous merging rule.ut

Proof of (a) in Theorem 3.The proof relies on the following auxiliary lemma.

Lemma 2. If h is a non advantageous splitting parametric rule X then any
pseudo-inverse of h is an almost concave function.10

10 From Kuczma [3] it is known that a functionf : I × I → R is almost concave if

f (
x + y

2
) ≥ 1

2

[
f (x) + f (y)

]
,

holds for all (x, y) ∈ I × I except on a setM ⊆ I × I of Lebesgue measure zero, whereI is any
open interval of the real line Kuczma proves that an almost concave function is equal to a concave
function almost everywhere
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Proof. Let N ∈ N and let (d; E) and (d
′
; E) be two bankruptcy problems in

BN such thatdk = d
′
k for all k /= i , j and d

′
i = d

′
j = (di + dj )/2. In lemma

1 we showed that any no advantageous splitting parametric rule satisfies that
for all λ

′ ∈ Λ(d
′
) there existsλ ∈ Λ(d) such thatλ ≤ λ

′
. Henceh(λ, di ) +

h(λ, dj ) ≥ 2h(λ
′
, (di + dj )/2), for λ ≤ λ

′
. Let x = h(λ, di ), y = h(λ, dj ), and

z = h(λ
′
, (di + dj )/2). Denoting byf any pseudo-inverse ofh, we have that for

the points wheref is continuousλ = f (x, di ) = f (y, dj ) andλ
′

= f (z, (di +dj )/2).
Sincez ≤ (x + y)/2 there isδ ≥ 0, such thatz = (x + y)/2 − δ. Thus λ ≤ λ

′

implies:

f (x, di ) + f (y, dj )
2

≤ f (
x + y

2
− δ,

di + dj

2
) ≤ f (

x + y
2

,
di + dj

2
),

where the last inequality follows from the monotonicity off in its first argument.
Hence for anyxi ∈ (0,∞), and anydi ∈ (0,∞) except at the countable set

of points wheref is discontinuous, -a set with Lebesgue measure zero-,f is an
almost concave function.ut

Proof of (a) in Theorem 3.If h minimizes an objective function that takes the
form we claim then it is straightforward to check that it satisfies convexity in its
second argument. To prove the converse statement leth be a no advantageous
splitting parametric rule. From Theorem 2 in Young [13] it is known thath is
solution of the following optimization problem:

min
∑n

i =1 H (xi , di ) subject to
∑n

i =1 xi = E and 0≤ xi ≤ di .
As solution to the above programh has to satisfy the Kuhn-Tucker conditions

associated with the optimization program. Three cases have to be considered:

1. The constraints 0≤ xi ≤ di are never binding at the optimum.
If the constraints are never binding thenf is a inverse ofh. It will be strictly
concave wheneverh is strictly convex. Moreover it satisfies 0< f (xi , di ) =
λ < 1. If λ = 1 thenh(1,di ) = di for all di . Thus h must be linear indi

for λ = 1 (similarly for λ = 0). Continuity implies thath must be linear in
di for all λ. Thus we must haveh(λ, di ) = di α(λ) whereλ = α−1( xi /di ).
Sinceα(λ) has to be continuous, strictly monotone increasing inλ, and with
α(0) = 0 andα(1) = 1, then we can takeα(λ) = λ . Thusxi = h(λ, di ) = di λ,
andλ = f (xi , di ) = xi /di . Consequently,H (xi , di ) =

∫ xi

0 f (a, di )da will take
the formH (xi , di ) = x2

i /2di .
2. Some of the Kuhn-Tucker coefficients associated with the constraintsxi ≤ di

are strictly positive.
For suchi we will have xi = di . Hencexi = h(λ, di ) will take the form
xi = min{di , H −1

x (λ, di )}. SinceH −1
x (λ, di ) is almost concave , and since the

minimum of two concave functions is a concave function as well,xi = h(λ, di )
will be concave indi . Therefore 2. can never be the case.

3. Some of the Kuhn-Tucker coefficients associated with the constraints 0≤xi

are strictly positive.
For such i we will have xi = 0. Hencexi = h(λ, di ) will take the form
xi = max{0,H −1

x (λ, di )}. For the maximum to be convex indi , H −1
x (λ, di )
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has to be linear indi . Since the constrains are binding for at least onei , then
H −1

x (λ, di ) < 0 for that i . Taking into account the definition of parametric
rules we can writeh(λ, di ) = di − γ(λ) for someγ(.) weakly monotone
decreasing inλ. This yieldsλ = f (xi , di ) = γ−1(di − xi ). Thus H (xi , di ) =∫ xi

0 f (a, di )da will take the formH (xi , di ) = −U (di − xi ) + C , whereU has
to be a strictly convex function. SinceH (0,di ) has to be equal to 0 for alldi ,
thenC has to be equal toU (di ). ThusH (xi , di ) = U (di ) − U (di − xi ). From
the three cases we have studied we conclude thatH (xi , di ) will take the form
H (xi , di ) = U (di ) − U (di − xi ) for any NAS rule but the proportional one.ut

Proof of (b) in Theorem 3.Let h be a NAM parametric rule, but the proportional.
Theorem 2 (b) states thath is concave indi and Proposition 1 states thath is the
dual of some NAS parametric rule. Thusxi = h(λ, di ) = di − xi = di − g(λ, di ),
whereh is the dual ofg. From the previous theorem we know thatg(λ, di ) can
be constructed by solving the following program:

min
∑n

i =1 U (di ) − U (di − xi ) subject to
∑n

i =1 xi = E and 0≤ xi ≤ di ,
whereU (di ) − U (di − xi ) =

∫ xi

0 s(a, di )da, wheres is a pseudo-inverse ofg.
Denoting byf to the pseudo inverse ofh, the dual relationship yields:

λ = s(xi , di ) = s(di − xi , di ), and U (di ) − U (di − xi ) =
∫ xi

0 s(a, di )da =∫ xi

0 f (di − a, di )da.
Equalities above imply∫ xi

0 f (a, di )da =
∫ xi

0 s(di − a, di )da = U (di ) + U (di − (di − xi )) + C = U (di ) +
U (xi ) + C,
for someU strictly convex. NowH (0,di ) = 0 impliesC = −U (di ).

Finally, since the proportional rule is self-dual then part (a) of this theorem
implies H (xi , di ) = x2

i /2di for the proportional rule.ut
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