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Abstract

When a large number of moment restrictions is available there may be restrictions that are

more important or credible than others. In these situations it might be desirable to weight each

restriction based on our beliefs. This is automatically implemented by a Bayesian procedure.

We study, in this paper, how to impose moment restrictions on the data distribution through

a semiparametric prior distribution for the data generating process F and the structural pa-

rameter θ. We show that a Gaussian process prior for the density function associated with F

is particularly convenient in order to impose over-identifying restrictions and allows to have a

posterior distribution in closed-form. The posterior distribution resulting from our prior speci-

fication is shown to be consistent and asymptotically normal.
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1 Introduction

In many practical applications and empirical economic studies a large set of moment re-

strictions characterizing the parameter of interest is available. Examples are provided for

instance in Cazals et al. (2004) and Fève et al. (2006). Such a situation is complicated

to manage since it requires cumbersome computations due to the high number of moment

restrictions. It is often the case that the researcher does not equally believe in all the

restrictions. Therefore, it is desirable to have a procedure that assigns a specific weight to

each moment restriction based on our beliefs and that updates it (and eventually decides
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whether to include or not a restriction) based on the information contained in the data.

This may be easily done by a Bayesian procedure where each moment restriction can have

a different weight based on the prior and posterior distribution.

The purpose of this paper is to develop a Bayesian approach to the generalized method

of moments (GMM). In a Bayesian framework, the computation of a posterior distribu-

tion requires the specification of a likelihood function – or sampling distribution – and a

prior distribution. In many cases of econometric practice, however, the researcher has only

limited information on the data generating process (DGP). This is typical in the GMM

framework where the structural information on the DGP is limited to a set of moment

conditions. Any parametric specification of the likelihood function is, therefore, completely

arbitrary. In this paper we study how to formulate a sampling distribution based only on

such a set of moment restrictions.

Let x be a random element in Rm with distribution F and x1, . . . , xn be an i.i.d. sample

of x. We are interested in a vectorial parameter θ ∈ Θ ⊂ Rk which is linked to F through

the relation (moment restrictions)

A(θ, F ) = EF (h(θ, x)) = 0

where h is a known function with values in Rr. This model is semiparametric since it

includes a finite dimensional structural parameter θ and a functional parameter F which,

apart from the moment restrictions, is not at all constraint.

We impose the moment restrictions in the prior for (θ, F ) so that the random parameter

generated from the prior satisfies the moment restrictions by construction. Specification

of semiparametric priors which incorporate moment restrictions may encounter difficulties

depending on the relationship existing between θ and F . More precisely, when the model is

just-identified, that is k = r, the relation A(θ, F ) = 0 characterizes θ as an explicit function

of F : θ = B(F ), where B is a function defined on the space of probability distributions.

For particular functional forms of B, the prior of θ may be recovered from the prior of F

and automatically satisfies the constraints.

On the contrary, in an overidentified model where k < r, a solution to A(θ, F ) = 0

exists only for some particular F so that the distribution F must be constraint to guarantee

the existence of a solution to the moment equation. In a Bayesian approach this entails

that if we endow F with a prior distribution then this one can not be determined indepen-

dently of θ and vice-versa. In an overidentified model, the restrictions on F are in general

complicated to incorporate in its prior distribution. The approach proposed in Florens and

Rolin (1994), for instance, which is based on a Dirichlet process prior distribution, presents

several difficulties to deal with overidentified models. Our proposal improves the treatment

of overidentified models and allows to deal with just-identified as well as over-identified

models by imposing easily the moment restrictions in the prior for the data probability
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density function.

The purpose of developing Bayesian estimation under moment restrictions has already

been undertaken by several papers. Kitamura and Otsu (2011) use a Dirichlet process

prior (see Ferguson (1973, 1974)) and then construct the restricted prior on F by mini-

mizing the Kullback-Leibler divergence with respect to the Dirichlet process prior under

the moment constraint. A Dirichlet process prior has nice properties due to the fact that

it is a natural conjugate of the i.i.d. model, however the treatment of the overidentified

case is much more complicated. Empirical Likelihood methods have been proposed in the

literature as an alternative to the Dirichlet process prior. Kim (2002) proposes a limited

information likelihood approach which allows to derive a posterior distribution for θ even

when the true likelihood is not available. Schennach (2005) proposes a maximum entropy

nonparametric Bayesian procedure which, instead of employing the Dirichlet process prior,

rely on a non-informative prior on the space of distributions.

This paper proposes a new Bayesian approach to GMM based on Gaussian process

(GP) priors. At the best of our knowledge this prior has not been used yet in the GMM

framework. We do not restrict the DGP F except for the fact that we assume it admits

a density function f with respect to some positive measure Π and satisfies the moment

restrictions. Then, we specify a GP prior for f conditional on θ. The essential reason for

the appropriateness of a GP prior in a GMM framework is due to the fact that A(θ, F ) = 0

is a linear constraint in f . The linearity of the model matches extremely well with a GP
prior since it allows to incorporate the (over-identifying) moment conditions in an easy way

by constraining the prior mean and prior covariance of f .

An advantage of our method is that, in both the just-identified and overidentified cases,

the moment restrictions are imposed directly through the (conditional) prior of f (given

θ) without requiring a second step projection as in Kitamura and Otsu (2011). In the

overidentified case we first specify a prior on θ and then we specify a GP prior on f condi-

tional on θ. In the just-identified case we may either proceed as in the overidentified case

or specify an unrestricted GP prior on f and deduce from it the prior for θ through the

(linear) transformation θ = B(f). After observing the data we compute the posteriors –

both marginal and conditional – for θ and f . For estimation purposes we are interested in

the marginal posterior distribution of θ. This is usually not available in closed-form but it

is possible to simulate easily from it by using MCMC methods.

The second main novelty of our approach is the way in which we construct the sam-

pling distribution. Instead of using directly F , we construct a functional transformation of

the data set that weakly converges towards a GP . In this way our analysis benefits of the

advantages of a conjugate model without assuming any functional form for the sampling

distribution. The motivation for this choice is that if we used F as the sampling distri-
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bution, then we would have neither a conjugate model nor a closed form for the posterior

distribution of f given θ. On the contrary our approach allows for conjugacy and makes

computations quite easy.

In the next section we present our approach. In section 3 we analyze asymptotic

properties of the posterior distribution of θ and of f . In section 4 we detail how to implement

our method for both the just identified case and the overidentified case.

2 The General Semiparametric Model

Throughout the paper we denote the true data generating process by F∗ and its density

with respect to some positive measure Π by f∗. Therefore, x1, . . . , xn are i.i.d. observations

each distributed according to F∗. The data generating process for x could be more general

than an i.i.d. sampling process but we focus on this case for simplicity. We denote by θ∗

the true value of θ which satisfies EF∗(h(θ∗, x)) = 0.

The general model is based on the relation EF (h(θ, x)) = 0 where h : Θ×Rm → Rr is
a known function and F is absolutely continuous with respect to some positive measure Π

with density function f . The parameters of the model are (θ, f). While θ is the parameter

of interest and has finite dimension, f is a functional nuisance parameter. Let Θ ⊆ Rk and

EM ⊆M where M denotes the set of probability density functions on Rm. The parameter

space is

Λ =

{
(θ, f) ∈ Θ× EM ;

∫
h(θ, x)f(x)dΠ = 0

}
so that a prior distribution on (θ, f) must incorporate the moment restriction. The model

is made up of three elements that we detail in the following: a prior on θ, a conditional

prior on f , given θ, and the sampling model.

2.1 Prior distribution

We put a prior probability measure µ on the pair (θ, f) of the form µ = µθ ⊗ µθf , where µθ

denotes a marginal distribution on θ and µθf denotes a conditional probability distribution

on f given θ.

Prior on θ

The parameter of interest θ ∈ Θ ⊂ Rk is endowed with a prior distribution, denoted by µθ.

If it admits a density with respect to the Lebesgue measure we denote this density by µθ(θ)

as well, by abuse of notation. We can specify any prior distribution which incorporates any

information available to the econometrician about the parameter θ of interest.
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Conditional prior on f given θ

Let S be a subset of Rm endowed with the trace of the Borelian σ-field BS and Π be

a measure on this subset. We denote by E = L2(S,BS ,Π) the Hilbert space of square

integrable functions on S and by BE the Borel σ-field generated by the open sets of E . We

assume that the true probability density function (pdf ) f∗ belongs to the space EM := E∩M .

The function f is the functional parameter of our model and since it is the density of F with

respect to Π it must satisfy the restriction
∫
fdΠ = 1. Further, we make the assumption of

square integrability of f with respect to Π, that is,
∫
f2dΠ < ∞. This restriction reduces

the parameter space to a subset of M and is verified for instance if f is bounded and Π is

a bounded measure.

The conditional prior distribution of f , conditional on θ, is specified as a Gaussian

distribution on the Borel σ-field generated by the open sets of E with mean function f0θ ∈
EM and covariance operator Ω0θ : E → E . We denote this prior distribution by µθf . The

covariance operator Ω0θ is one-to-one, linear, positive semidefinite, self-adjoint and trace-

class. A trace-class operator is a compact operator with eigenvalues that are summable.

Remark that this guarantee that the trajectories f generated by µθf satisfy
∫
f2dΠ <∞.

This prior distribution has to be “compatible” with the moment conditions. This means

that, for any given θ, µθf must generate pdf s f that satisfy the moment conditions with

probability 1. We implement this by imposing the following restrictions on f0θ and Ω0θ.

Restriction 1 (Restrictions on f0θ). The prior mean function f0θ has to be a pdf on S

with respect to Π and has to verify the condition∫
h(θ, x)f0θ(x)Π(dx) = 0. (2.1)

Restriction 2 (Restrictions on Ω0θ). The operator Ω0θ must be specified such that{
Ω
1/2
0θ h(θ, x) = 0

Ω
1/2
0θ 1 = 0.

(2.2)

The conditions in (2.2) imply that the operator Ω0θ is not injective. In fact, the null space

of Ω0θ, denoted by N (Ω0θ), contains effectively the constant 1 – which implies that the

trajectory f generated by the prior integrates to 1 almost surely – and the function h(θ, x)

– which implies that the trajectory f satisfies almost surely the moment condition. In

practice, this means that Ω0θ is degenerate in the directions along which we want that the

corresponding projections of f and f0θ are equal. This is the meaning of the next lemma

Lemma 2.1. The conditional Gaussian prior distribution µθf , with mean function f0θ and

covariance operator Ω0θ satisfying the restrictions 1 and 2, generates trajectories f which

satisfy µθf -a.s. the conditions
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∫
f(x)Π(dx) = 1 and

∫
h(θ, x)f(x)Π(dx) = 0.

Proof. Let H(Ω0θ) denote the reproducing kernel Hilbert space associated with Ω0θ and

embedded in E and H(Ω0θ) denote its closure. If f |θ ∼ N (f0θ,Ω0θ) then (f−f0θ) ∈ H(Ω0θ),

µθF -almost surely. Moreover, H(Ω0θ) = D(Ω
−1/2
0θ ) = R(Ω

1/2
0θ ) where D and R denote the

domain and the range of an operator, respectively. This means that ∀φ ∈ H(Ω0θ) there

exists ψ ∈ E such that φ = Ω
1
2
0θψ. Moreover, for any φ ∈ H(Ω0θ) we have < φ, h(θ, ·) >=∫

φ(x)h(θ, x)Π(dx) =< Ω
1
2
0θψ, h(θ, ·) >=< ψ,Ω

1
2
0θh(θ, ·) >= 0 and < φ, 1 >= 0 by a similar

argument. Hence,

H(Ω0θ) ⊂
{
φ ∈ E ;

∫
φ(x)h(θ, x)Π(dx) = 0 and

∫
φ(x)Π(dx) = 0

}
. (2.3)

Since the set on the right of this inclusion is closed we have

H(Ω0θ) ⊂
{
φ ∈ E ;

∫
φ(x)h(θ, x)Π(dx) = 0 and

∫
φ(x)Π(dx) = 0

}
.

We deduce that µθF -almost surely∫
(f − f0θ)(x)Π(dx) = 0 and

∫
(f − f0θ)(x)h(θ, x)Π(dx) = 0.

Condition (2.1) and the fact that f0θ is a pdf imply the results of the lemma.

�

Remark 2.1. Our assumption implies that
∫
fdΠ = 1 but it does not ensure that f ≥ 0.

This condition is incompatible with the choice of a Gaussian prior. The alternative would

be to write f = g2, g ∈ E , and to specify a conditional prior distribution, given θ, for g

instead of for f . We do not pursue this approach here since it would lead to a non-linear

inverse problem that is beyond the scope of this paper.

From a practical implementation point of view, the construction of a covariance op-

erator Ω0θ which satisfies (2.2) may appear complicated. In reality, such a construction

may be realized quite easily by using the following procedure based on the eigensystem

(λθj , φθj)j∈N of Ω0θ, where λθj and φθj denote the eigenvalues and eigenfunctions of Ω0θ,

respectively. Let us consider the null space N (Ω0θ) ⊂ E which is generated by 1 and the

elements of h(θ, ·). Suppose that this subspace has dimension r + 1. We can always con-

struct an orthonormal basis {φθj}j≥0 of E where the r+1 first elements (φθ0, φθ1, . . . , φθr)

are the elements that generate N (Ω0θ), that is, φθ0 = 1 and (φθ1, . . . , φθr)
′ = h. Thus, we

can construct Ω0θ as
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Ω0θg =
∞∑
j=0

λθj < g, φθj > φθj , g ∈ E .

If we assume λθj = 0, ∀j = 0, 1, . . . , r, then condition (2.2) is fulfilled since < φθj , φθj′ >=

δjj′ , where δjj′ denotes the Kronecker delta. In order to completely specify Ω0θ we have

to choose the remaining components {φθj}j>r such that {φθj}j≥0 forms a basis of E and

{λθj}j>r such that
∑

j>r λθj < ∞. In section 4 we provide some examples that explain in

a detailed way the construction of Ω0θ.

Remark 2.2. In the just-identified case where r = k and θ is a linear transformation of f

we may adopt an alternative scheme for constructing the prior on (θ, f). Since the moment

restrictions EF (h(θ, x)) = 0 rewrite in an explicit form as θ = B(f), where B is a linear

functional, then we may recover the prior of θ through a transformation of the prior for f .

In this case we specify a Gaussian process prior µf for f with a mean function f0 restricted

to be a pdf and a covariance operator Ω0 restricted to satisfy Ω
1/2
0 1 = 0. If, for instance,

θ = Ef (x) then B(f) =< f, ι > where ι ∈ E denotes the identity function ι(x) = x. The

prior for θ recovered from µf would be N (< f0, ι >,< Ω0ι, ι >).

For clarity reasons, we summarize in the table 1 below the notation used for the prior

distributions in the overidentified and in the just-identified case.

Table 1: Prior distribution

Case: over-identified just-identified: 1st possibility just-identified: 2nd possibility

Marginal of θ µθ(θ) µθ(θ) µθ(θ) through θ = B(f)

Conditional of f |θ µθ
f (f |θ) µθ

f (f |θ) –

Marginal of f – – µf (f)

2.2 The sampling model

Conditional on f , the sample likelihood is
∏n
i=1 f(xi). While this is the natural choice for

the sampling distribution it has the disadvantage to make the posterior distribution of f

given θ not available in closed-form. Indeed, a Gaussian prior distribution is usually used

in Bayesian modeling with the purpose of making the analysis of the posterior distribution

mathematical tractable. For these reasons and in order to exploit the advantage of a

conjugate model we propose a different and new way for the construction of the sampling

model.

We construct the sampling distribution by considering a functional transformation r̂

of the sample x1, . . . , xn. This transformation r̂ is chosen by the researcher such that the

following characteristics are satisfied. I. r̂ converges weakly towards a Gaussian process; II.
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it is an observable element of an infinite-dimensional Hilbert space, for instance a L2-space;

III. it is linked to the nuisance parameter f according to the following linear scheme

r̂ = Kf + U (2.4)

where K : E → F is a linear operator, F is an infinite-dimensional separable Hilbert space

and U is a Hilbert space-valued random variable (H-r.v.). We recall that, for a complete

probability space (Z,Z,P), U is a H-r.v. if it defines a measurable map U : (Z,Z,P) →
(F ,BF ), where BF denotes the Borel σ-fields generated by the open sets of F .

More precisely, let T ⊂ Rp, we first select a function k(t, x) : T × S → R+ that is a

measurable function of one observation ∀t ∈ T . We then represent the data through the

expectation of k(t, ·) under the empirical measure:

r̂ =
1

n

n∑
i=1

k(t, xi).

Thus, by denoting with Kf :=
∫
k(t, x)f(x)Π(dx) the expectation of k(t, ·) under F , model

(2.4) rewrites:

r̂ =
1

n

n∑
i=1

k(t, xi) =

∫
k(t, x)f(x)Π(dx) + U(t). (2.5)

Moreover, the function k must be such that r := Kf and r̂ are elements of F = L2(T,BT , ρ)

with ρ a measure on T . Here BT denotes the Borel σ-field generated by the open sets of

T . Conditionally on f , the expectation of r̂ is equal to Kf and the error term U has zero

mean and covariance kernel

σF (t, s) = EFU(t)U(s) =
1

n

[
EF (k(t, x)k(s, x))−EF (k(t, x))EF (k(s, x))

]
.

We denote by P f∗n,∗ the true distribution function of r̂ satisfying r̂ = Kf∗+U∗ where U∗

is an H−r.v. with zero mean and covariance kernel σF∗(t, s) by construction. Similarly, we

denote by P fn,∗ the conditional distribution of r̂ given f satisfying r̂ = Kf+U and based on

the true P f∗n,∗. In general, P fn,∗ is either unknown or not suitable in order to construct the

posterior distribution. For this reason we consider as the sampling distribution an approx-

imation of P fn,∗ that we denote by P fn and that is the weak limit of P fn,∗ as n→ ∞. There-

fore, the sampling model that we consider is misspecified in finite samples. In practice, it is

sufficient to choose k(t, ·) to be Donsker so that the weak limit of P fn,∗ is a Gaussian distribu-

tion with mean Kf and covariance kernel 1
n

[
EF (k(t, x)k(s, x))−EF (k(t, x))EF (k(s, x))

]
.

Therefore, the sampling distribution P fn that we use in the following is
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P fn = N (Kf,Σn), Σn =
1

n
Σ : F → F (2.6)

Σφ =

∫ [
EF (k(t, x)k(s, x))−EF (k(t, x))EF (k(s, x))

]
φ(s)ds, φ ∈ F .

Due to the Gaussianity of the prior µθf of f , a Gaussian distribution is a convenient choice

for P fn . Under P fn , U is a zero-mean Gaussian H-r.v. with covariance operator Σn which

is one-to-one, linear, positive definite, self-adjoint and trace-class. In several examples the

covariance operator Σn is unknown and therefore estimated. We estimate it in a frequentist

way by replacing F with the empirical cdf. We have shown in Florens and Simoni (2012a)

that this does not affect any asymptotic properties of our procedure. We clarify our con-

struction of the sampling model (2.4) in the next example.

Example 2.1. Let us suppose that we dispose of an i.i.d. sample of x: (x1, . . . , xn), where

xi ∈ R, i = 1, . . . , n. By using this sample we can construct a functional transformation

r̂. For example, r̂ may be the empirical cumulative distribution function (cdf ) F̂ (t) =
1
n

∑n
i=1 1{xi ≤ t} or the empirical characteristic function Φ̂(t) = 1

n

∑n
i=1 e

itxi for t ∈ R. In
these two cases we can write:

F̂ (t) =

∫
1{s ≤ t}f(s)Π(ds) + U(t),

Φ̂(t) =

∫
eitsf(s)Π(ds) + U(t),

respectively. In the first case r̂ = F̂ and ∀φ ∈ E , Kφ =
∫
1{s ≤ t}φ(s)Π(ds) = F (t),

while r̂ = Φ̂ and ∀φ ∈ E , Kφ =
∫
eitsφ(s)Π(ds) = Φ(t) in the second case. In these

two cases, by the Donsker’s theorem, U is asymptotically Gaussian with zero mean and

covariance operator characterized by the kernel 1
n(F (s ∧ t) − F (s)F (t)) in the first case

and 1
n(Φ(s+ t)−Φ(s)Φ(t)) in the second case. These variances are clearly unknown when

f is unknown but we can estimate them consistently by replacing F and Φ by F̂ and Φ̂,

respectively.

The following lemma gives an useful characterization of the operator Σn in terms of K

and its adjoint K∗. We recall that the adjoint K∗ is such that < Kφ,ψ >=< φ,K∗ψ >,

∀φ ∈ E and ψ ∈ F . In our case Kφ =
∫
S k(t, x)φ(x)Π(dx) and F = L2(T,BT , ρ), then an

elementary computation shows that K∗ψ =
∫
T k(t, x)ψ(t)ρ(dt).

Lemma 2.2. Let K : E → F be the operator: ∀φ ∈ E, Kφ =
∫
S k(t, x)φ(x)Π(dx) and

K∗ : F → E be its adjoint, that is, ∀ψ ∈ F , K∗ψ =
∫
T k(t, x)ψ(t)ρ(dt). Moreover, denote

with f∗ the true value of f that characterizes the DGP. Thus, the operator Σn = 1
nΣ takes

the form
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∀ψ ∈ F , Σψ = KMfK
∗ψ − (KMf1) < Mf ,K

∗ψ > (2.7)

where Σ : F → F and Mf : E → E is the multiplication operator ∀φ ∈ E, Mfφ = f∗(x)φ(x).

Proof. The result follows trivially from the definition of the covariance operator Σn : F →
F : ∀ψ ∈ F ,

Σnψ =
1

n

[∫
T

∫
S
(k(t, x)k(s, x)) f∗(x)Π(dx)ψ(t)ρ(dt)−

∫
T

∫
S
k(t, x)f∗(x)Π(dx)

(∫
S
k(s, x)f∗(x)Π(dx)

)
ψ(t)ρ(dt)

]
=

1

n

[∫
S
k(s, x)f∗(x)

∫
T
k(t, x)ψ(t)ρ(dt)Π(dx)−

∫
S
k(s, x)f∗(x)Π(dx)

(∫
S

∫
T
k(t, x)ψ(t)ρ(dt)f∗(x)Π(dx)

)]
=

1

n

[
KMfK

∗ψ − (KMf1) < Mf ,K
∗ψ >

]

where the second equality has been obtained by using the Fubini’s theorem.

�

The following lemma states the relationship between the range of K and the range of

Σ
1
2 . We denote by D the subset of E whose elements integrate to 0 with respect to Π:

D :=

{
g ∈ E ;

∫
g(x)Π(dx) = 0

}
.

We remark that D contains the subset of functions in E that are the difference of pdf of

F with respect to Π. Moreover, R(Ω
1
2
0θ) ⊂ D where R(Ω

1
2
0θ) ≡ H(Ω0θ) has been defined in

(2.3).

Lemma 2.3. Let K : E → F be the operator: ∀φ ∈ E, Kφ =
∫
S k(t, x)φ(x)Π(dx) and

denote by K|D the operator K restricted to D ⊂ E. Then, if K|D is injective we have

R(K|D) = D(Σ− 1
2 ).

Proof. We can rewrite Σ as

∀ψ ∈ F , Σψ =

∫
T
E (v(x, t)v(x, s))ψ(t)ρ(dt)

=

∫
T

∫
S
(v(x, t)v(x, s)) f∗(x)Π(dx)ψ(t)ρ(dt)

where v(x, t) = [k(x, t)−E(k(x, t))]. Then, ∀ψ ∈ F we can write Σψ = RMfR
∗ψ where

R : E → F , Mf : E → E and R∗ : F → E are the operators defined as

∀ψ ∈ F , R∗ψ =

∫
T
v(x, t)ψ(t)ρ(dt)

∀φ ∈ E , Mfφ = f∗(x)φ(x)

∀φ ∈ E , Rφ =

∫
S
v(x, t)φ(x)Π(dx).
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Moreover, we have D(Σ− 1
2 ) = R(Σ

1
2 ) = R((RMfR

∗)
1
2 ) = R(RM

1/2
f ).

Let h ∈ R(K), that is, there exists a g ∈ E such that h(t) =
∫
S k(t, x)g(x)Π(dx). Then

h ∈ D(Σ− 1
2 ) if there exists an element ν ∈ E such that h(t) =

∫
S v(x, t)f

1
2
∗ (x)ν(x)Π(dx).

By developing this equality, the element ν has to satisfy∫
S
k(t, x)g(x)Π(dx) =

∫
S
v(x, t)f

1
2
∗ (x)ν(x)Π(dx)

⇔
∫
S
k(t, x)g(x)Π(dx) =

∫
S

[
k(x, t)−

(∫
S
k(x, t)f∗(x)Π(dx)

)]
f

1
2
∗ (x)ν(x)Π(dx)

⇔
∫
S
k(t, x)g(x)Π(dx) =

∫
S
k(x, t)

[
f

1
2
∗ (x)ν(x)− f∗(x)

(∫
S
f

1
2
∗ (x)ν(x)Π(dx)

)]
Π(dx).

If K is injective it follows that such an element ν must satisfy

g(x) = f
1
2
∗ ν(x)− f∗(x)

(∫
S
f

1
2
∗ (x)ν(x)Π(dx)

)
which in turn implies that

∫
S g(x)Π(dx) = 0, i.e. that h ∈ R(K|D). Therefore, one

solution is ν(x) = f
− 1

2
∗ g(x) which proves that the range of the truncated operator K|D in

contained in D(Σ− 1
2 ). On the other side, let h ∈ D(Σ− 1

2 ), then there exists a ν ∈ E such

that h =
∫
S v(x, t)f

1
2
∗ (x)ν(x)Π(dx). By the previous argument and under the assumption

that K|D is injective, this implies that h ∈ R(K|D) since there exists g ∈ D such that

g(x) = f
1
2
∗ ν(x) − f∗(x)

(∫
S f

1
2
∗ (x)ν(x)Π(dx)

)
. This shows the inclusion of D(Σ− 1

2 ) in

R(K|D) and concludes the proof.

�

2.3 Posterior distribution

The posterior distribution is constructed by using the approximated (or misspecified) sam-

pling distribution P fn . The Bayesian model can be summarized in the following way:


θ ∼ µθ

f |θ ∼ µθf ∼ N (f0θ,Ω0θ),
∫
h(θ, x)f0θ(x)Π(dx) = 0 and Ω

1
2
0θ(1, h(θ, ·)

′)′ = 0

r̂|f, θ ∼ r̂|f ∼ P fn ∼ N (Kf,Σn)

which defines a joint distribution on Λ × F . This joint probability distribution may be

examined under different aspects. First, let us consider the joint conditional distribution of

(f, r̂) conditional on θ. Following Theorem 1 in Florens and Simoni (2012a) we can show

that (
f

r̂

)∣∣∣∣∣ θ ∼ N

((
f0θ

Kf0θ

)
,

(
Ω0θ Ω0θK

∗

KΩ0θ Σn +KΩ0θK
∗

))
(2.8)
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where the operator (Σn+KΩ0θK
∗) is an operator from F to F , while Ω0θK

∗ : F → E and

KΩ0θ : E → F .

From (2.8) we deduce the sampling distribution of r̂ conditional on θ by integrating

out f :

r̂|θ ∼ N (Kf0θ,Σn +KΩ0θK
∗). (2.9)

We denote by P θn this distribution. The marginal posterior for θ ∈ Θ depends on the nui-

sance parameter f only through the integrated sampling distribution P θn .

2.3.1 Conditional posterior distribution of f , given θ

The conditional distribution of f given (r̂, θ), that is, the posterior distribution of f , is a

Gaussian distribution. This has been proven for instance in Florens and Simoni (2012a).

This distribution is fully characterized by its mean and variance and, in general, the compu-

tation of these moments rises problems of regularization when the dimension of the problem

is infinite. While this point has been broadly discussed in (Florens and Simoni , 2012a,b)

and references therein, in this section we analyze it in the particular case considered in the

paper where the operators take a specific form.

We recall briefly the problem encountered in the computation of the moments of the Gaus-

sian posterior distribution of f given θ is the following. It is well known that in finite

dimensional problems the conditional moments of joint Gaussian distributions require the

inversion of the covariance matrix of the conditioning variable. So that in our case we

should inverse (Σn +KΩ0θK
∗) in order to construct the posterior mean and covariance of

f given (r̂, θ). The problem arises because the inverse operator (Σn + KΩ0θK
∗)−1 is in

general defined only on a subset of F of P θn,∗-measure 0. Therefore, in general there is no

closed-form available for the posterior mean and variance of µr̂,θf .

However, in the framework under consideration we determine mild conditions that

allows to solve this problem so that the inversion of (Σn + KΩ0θK
∗), necessary for con-

structing the posterior mean and variance of f , does not rise any continuity problem. Now,

we are going to illustrate these conditions in the lemmas below.

Lemma 2.4. Consider the Gaussian distribution (2.8) on BE × BF and assume that

f
−1/2
∗ ∈ R(K∗). Then, the conditional distribution on BE conditional on BF ×B, denoted

by µr̂,θf , exists, is regular and almost surely unique. It is Gaussian with mean

E[f |r̂] = f0θ +A(r̂ −Kf0θ) (2.10)

and trace class covariance operator

12



V ar[f |r̂] = Ω0θ −AKΩ0θ : E → E (2.11)

where

A := Ω0θM
−1/2
f

(
1

n
I − 1

n
M

1/2
f < M

1/2
f , · > +M

−1/2
f Ω0θM

−1/2
f

)−1

((K∗)−1M
−1/2
f )∗

is a continuous and linear operator from F to E.

Proof. The first part of the theorem follows from theorem 1 (ii) in Florens and Simoni

(2012b). From this result, since Σn = 1
nΣ, where Σ : F → F is defined in lemma 2.2,

we know that E[f |r̂] = f0θ + Ω0θK
∗( 1nΣ + KΩ0θK

∗)−1(r̂ − Kf0θ) and V ar[f |r̂] = Ω0θ −
Ω0θK

∗( 1nΣ+KΩ0θK
∗)−1KΩ0θ. Hence, we have to show that Ω0θK

∗( 1nΣ+KΩ0θK
∗)−1 = A

and thatA is continuous and linear. Denote M̃ =

(
1
nI −

1
nM

1
2
f < M

1
2
f , · > +M

− 1
2

f Ω0θM
− 1

2
f

)−1

and

M̆ =

(
1

n
KMfK

∗ − 1

n
(KMf1) < Mf ,K

∗· > +KΩ0θK
∗
)−1

.

By using the result of lemma 2.2, we can rewrite the operator Ω0θK
∗( 1nΣ+KΩ0θK

∗)−1 as

Ω0θM
− 1

2
f M̃((K∗)−1M

− 1
2

f )∗ +Ω0θ

[
K∗M̆ −M

− 1
2

f M̃((K∗)−1M
− 1

2
f )∗

]
.

This is equal to Ω0θM
− 1

2
f M̃((K∗)−1M

− 1
2

f )∗ since

[
K∗M̆ −M

− 1
2

f M̃((K∗)−1M
− 1

2
f )∗

]
is equal

to [
K∗ −M

− 1
2

f M̃((K∗)−1M
− 1

2
f )∗M̆−1

]
M̆

=M
− 1

2
f M̃

[(
1

n
M

1
2
f − 1

n
M

1
2
f < Mf , · > +M

− 1
2

f Ω0θ

)
K∗ − ((K∗)−1M

− 1
2

f )∗M̆−1

]
M̆

which is zero.

We now show that the operator A is continuous and linear on F . First, remark that

the assumption f
− 1

2
∗ ∈ R(K∗) ensures that (K∗)−1M

− 1
2

f exists and is bounded. Since Ω0θ

is the covariance operator of a Gaussian measure on a Hilbert space then, it is trace class.

This means that Ω
1
2
0θ is Hilbert-Schmidt, which is a compact operator. Therefore, since the

product of two bounded and compact operators is compact, it follows that Ω0θ, Ω0θM
− 1

2
f

and M
− 1

2
f Ω0θM

− 1
2

f are compact.

It is also easy to show that the operator 1
nM

1
2
f < M

1
2
f , · >: E → E is compact since its

Hilbert-Schmidt norm is equal to 1. In particular this operator has rank equal to 1 since it

has only one eignevalue different from 0 and which is equal to 1. This eigenvalue corresponds

to the eigenfunction f
1
2
∗ . Therefore, the operator ( 1nM

1
2
f < M

1
2
f , · > −M− 1

2
f Ω0θM

− 1
2

f ) is
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compact.

By the Cauchy-Schwartz inequality we have

∀ϕ ∈ E , < M̃−1ϕ, ϕ > =
1

n
||ϕ||2 − 1

n
< f

1
2
∗ , ϕ >

2 + < Ω
1
2
0θf

− 1
2

∗ ϕ,Ω
1
2
0θf

− 1
2

∗ ϕ >

≥ 1

n
||ϕ||2 − 1

n
||f

1
2
∗ ||2||ϕ||2 + ||Ω

1
2
0θf

− 1
2

∗ ϕ||2

≥ ||Ω
1
2
0θf

− 1
2

∗ ϕ||2 ≥ 0

since ||f
1
2
∗ ||2 = 1. Therefore, we conclude that M̃ is injective. Then, from the Riesz Theo-

rem 3.4 in Kress (1999) it follows that the operator M̃ : E → E is bounded.

Finally, the operator A is bounded and linear since it is the product of bounded linear

operators. We conclude that A is a continuous operator from F to E .

�

Remark 2.3. If f−1
∗ ∈ R(K∗) then the operator A : F → E of the theorem may be written

in an equivalent way as: ∀φ ∈ F

Aφ = Ω0θ

(
1

n
I +

1

n
< f∗, · > +f−1

∗ Ω0θ

)−1

((K∗)−1f−1
∗ )∗. (2.12)

Remark 2.4. If f∗ is assumed to be bounded away from 0 and ∞ on its support, then

the condition f−1
∗ ∈ R(K∗), as well as the condition f

−1/2
∗ ∈ R(K∗), can not be satisfied if

k(t, x) is such that ∀ψ ∈ F , K∗ψ =
∫
T k(t, x)ψ(t)ρ(dt) vanishes at some x in the support

of f∗. This excludes the kernel k(t, x) = 1{x ≤ t} when T is equal to a compact set, say

T = [a, b]. This remark suggests that some care must be taken by the researcher when

he/she chooses the operator K according to its prior information about f∗.

The next lemma provides a condition alternative to the one given in lemma 2.4 which

also guarantees continuity of the inverse of (Σn +KΩ0θK
∗).

Lemma 2.5. Consider the Gaussian distribution (2.8) on BE × BF and assume that

K|H(Ω0θ) is injective and that Ω0θ is such that R(KΩ
1
2
0θ) ⊆ R(Σ). Then, the result of

lemma 2.4 holds with A equal to

A := Ω
1/2
0θ

(
1

n
I +Ω

1/2
0θ K

∗Σ−1KΩ
1/2
0θ

)−1

(Σ−1KΩ
1/2
0θ )∗.

Proof. SinceKΩ
1
2
0θ = K|H(Ω0θ)Ω

1
2
0θ andK|H(Ω0θ) is injective by assumption then Σ− 1

2K|H(Ω0θ)

is well defined by lemma 2.3. By applying theorem 1 (iii) in Florens and Simoni (2012b)

we conclude.

�
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The trajectories of f generated by the conditional posterior distribution µr̂,θf verify

almost surely the moment conditions and integrate to 1. This can be proved by an argument

similar to the one used to prove Lemma 2.1. First, remark that the posterior covariance

operator satisfies the moment restrictions:

[Ω0θ −AKΩ0θ]
1/2(1, h′(θ, ·))′ = [I −AK]1/2Ω

1/2
0θ (1, h′(θ, ·))′ = 0

where we have factorized Ω
1
2
0θ on the left and used assumption (2.2). Moreover, a trajectory

f drawn from the posterior µθ,r̂f is such that (f − f0θ) ∈ H(Ω0θ −AKΩ0θ), µ
θ,r̂
f -a.s. Now,

for any φ ∈ H(Ω0θ − AKΩ0θ) we have < φ, h(θ, ·) >=< [Ω
1
2
0θ − AKΩ0θ]ψ,Ω

1
2
0θh(θ, ·) >= 0,

for some ψ ∈ E , and < φ, 1 >= 0 by a similar argument. This shows that

H(Ω0θ −AKΩ0θ) ⊂
{
φ ∈ E ;

∫
φ(x)h(θ, x)Π(dx) = 0 and

∫
φ(x)Π(dx) = 0

}
and since the set on the right of this inclusion is closed we have

H(Ω0θ −AKΩ0θ) ⊂
{
φ ∈ E ;

∫
φ(x)h(θ, x)Π(dx) = 0 and

∫
φ(x)Π(dx) = 0

}
.

Therefore, µθ,r̂f -a.s. a trajectory f drawn from µθ,r̂f is such
∫
(f − f0θ)(x)Π(dx) = 0 and∫

(f−f0θ)(x)h(θ, x)Π(dx) = 0 which implies:
∫
f(x)Π(dx) = 1 and

∫
f(x)h(θ, x)Π(dx) = 0.

Remark 2.5. The posterior distribution of f conditional on θ gives the revision of the

prior on f except in the direction of the constant and of the moment conditions that

remain unchanged. A possible strategy would be to estimate also θ by maximum likelihood

by using the density given by E(f |r̂, θ) as the probability density of the data. We could also

take an Empirical Bayes approach which consists in obtaining the posterior on θ by starting

from the marginal likelihood. We do not develop this approach but we use a completely

Bayesian approach by trying to recover a conditional distribution of θ conditional on r̂.

Remark 2.6. When neither the conditions of lemma 2.4 nor the conditions of lemma

2.5 are satisfied then we can not use the exact posterior distribution µθ,r̂f . Instead, we

use the regularized posterior distribution denoted by µθ,r̂f,τ , where τ > 0 is a regularization

parameter that must be suitable chosen and that converges to 0 with n. This distribution

has been proposed by Florens and Simoni (2012a) and we refer to this paper for a complete

description of it. Here, we only give its expression: µθ,r̂f,τ is a Gaussian distribution with

mean function

E[f |r̂, τ ] = f0θ +Aτ (r̂ −Kf0θ) (2.13)
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and covariance operator

V ar[f |r̂, τ ] = Ω0θ −AτKΩ0θ : E → E (2.14)

where

Aτ := Ω0θK
∗
(
τI +

1

n
I +KΩ0θK

∗
)−1

: E → E . (2.15)

2.3.2 Posterior distribution of θ

We have stressed that the marginal posterior for θ, denoted by µr̂θ, can be obtained by

using the marginal sampling distribution P θn given in (2.9). In order to obtain a closed-

form expression for the marginal posterior µr̂θ or at least to simulate through an MCMC

procedure it is suitable to find a dominating measure, say P 0
n , for P

θ
n and to characterize the

likelihood of P θn with respect to P 0
n . The following theorem, which is a slight modification

of Theorem 3.4 in Kuo (1975, page 125), characterizes a probability measure P 0
n which is

equivalent to P θn and the corresponding likelihood of P θn with respect to P 0
n .

Theorem 2.1. Let f̃ ∈ E denote a probability density function (with respect to Π)and P 0
n be

a Gaussian measure with mean Kf̃ and covariance operator n−1Σ, i.e. P 0
n = N (Kf̃, n−1Σ).

If K|D is injective then P 0
n and P θn are equivalent. Moreover, assume that one of the

following conditions is satisfied

(i) R(KΩ
1
2
0θ) ⊂ D(Σ−1);

(ii) the operators Σ and Σ−1/2KΩ0θK
∗Σ−1/2 have the same eigenfunctions.

Then the Radon-Nikodym derivative is given by

dP θn
dP 0

n

=
∞∏
j=1

1√
nl2j + 1

e
1

2(l2
j
+n−1)

(nl2j z2j−A2
j+2zjAj)

, (2.16)

with zj =< r̂−Kf̃,Σ−1/2φj >, l
2
j and φj the eigenvalues and eigenfunctions of Σ−1/2KΩ0θK

∗Σ−1/2

and Aj the expectation of zj under P θn .

The random variable
√
nzj has a standard Gaussian distribution under P 0

n . If condi-

tion (i) holds then zj is well defined since l2jφj = Σ−1/2KΩ0θK
∗Σ−1/2φj and Σ−1/2φj =

l−1
j Σ−1KΩ0θK

∗Σ−1/2φj which is well-defined under the assumption R(KΩ
1
2
0θ) ⊂ D(Σ−1).

If condition (ii) holds then zj is well defined since φj is an eigenfunction of Σ as well as

of Σ−1/2 so that ∀j ∈ N, there exists λjΣ such that Σ−1/2φj = λ
−1/2
jΣ φj and, in this case,

zj =
<r̂−Kf̃,φj>√

λjΣ
. We also remark that we can use any density function for the mean func-

tion f̃ as long as it does not depend on θ. For instance, it could be f̃ = f∗ even if it is

unknown in practice.
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Proof of Theorem 2.1 In this proof we denote B = Σ−1/2KΩ
1/2
0θ . To prove that P θn and

P 0
n are equivalent we first rewrite the covariance operator of P θn as(

n−1Σ+KΩ0θK
∗
)

=
√
n−1Σ

1
2

[
I + nΣ− 1

2KΩ0θK
∗Σ− 1

2

]
Σ

1
2

√
n−1.

Then according to theorem 3.3 p.125 in Kuo (1975) we have to verify that K(f̃ − f0θ) ∈
R(Σ1/2) and that

[
I + nΣ− 1

2KΩ0θK
∗Σ− 1

2

]
is positive definite, bounded, invertible with

nΣ− 1
2KΩ0θK

∗Σ− 1
2 Hilbert Schmidt.

• Since (f̃ − f0θ) ∈ D and since K|D is injective then, by lemma 2.3, K(f̃ − f0θ) ∈
R(Σ1/2).

• Positive definiteness. It is trivial to show that the operator (I+nBB∗) is self-adjoint,

i.e. (I + nBB∗)∗ = (I + nBB∗). Moreover, ∀φ ∈ F , φ ̸= 0

< (I + nBB∗)φ,φ >=< φ,φ > +n < B∗φ,B∗φ >= ||φ||2 + n||B∗φ|| > 0.

• Boundedness. By lemma 2.3, if K|D is injective, the operators B and B∗ are bounded ;

the operator I is bounded by definition and a linear combination of bounded operators

is bounded, see Remark 2.7 in Kress (1999).

• Continuously invertible. The operator (I + nBB∗) is continuously invertible if its

inverse is bounded, i.e. there exists a positive number C such that ||(I+nBB∗)−1φ|| ≤
C||φ||, ∀φ ∈ F . We have ||(I + nBB∗)−1φ|| ≤ (supj

n−1

n−1+l2j
)||φ|| = ||φ||, ∀φ ∈ F .

• Hilbert-Schmidt. We consider the Hilbert-Schmidt norm ||nBB∗||HS = 1
α

√
tr((BB∗)2).

Now, tr((BB∗)2) = tr(Ω0B̃
∗B̃Ω0θB̃

∗B̃) ≤ tr(Ω0θ)||B̃∗B̃Ω0θB̃
∗B̃|| < ∞ since B̃ :=

Σ− 1
2K|H(Ω0θ) has a bounded norm by lemma 2.3.

This shows that P θn and P 0
n are equivalent.

Next we derive (2.16). Let zj =< r̂−Kf̃,Σ−1/2φj >. This variable is defined for every

j ∈ N if either (i) or (ii) is satisfied. By theorem 2.1 in Kuo (1975, page 116):

dP θn
dP 0

n

=

∞∏
j=1

dνj
dµj

where νj denotes the distribution of
√
nzj under P θn and µj denotes the distribution of

√
nzj under P

0
n . By writing down the likelihoods of νj and µj with respect to the Lebesgue

measure we obtain

dP θn
dP 0

n

=

∞∏
j=1

(
1 + l2jn

)−1/2
exp{−1

2(zj− < K(f0,θ − f̃),Σ−1/2φj >)
2n
(
1 + l2jn

)−1
}

exp{−1
2z

2
jn}

which, after simplifications, gives the result.
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Theorem 2.1 is stated for a fixed n. In section 3, where the asymptotic behavior of

the posterior distribution is analyzed, we need to replace the fixed prior for f with a scaled

one. This will be made by replacing, when necessary, Ω0θ by
1
αnΩ0θ where α > 0 and α→ 0.

The marginal posterior distribution of θ can be used to compute a point estimator of θ.

The maximum a posterior (MAP) estimator is particularly suitable and plays an important

role in the study of the asymptotic properties of µr̂θ. The MAP θn is defined as

θn = argmax
θ∈Θ

dµr̂θ (2.17)

= argmax
θ∈Θ

dP θn(r̂)µθ(dθ)∫
Θ dP

θ
n(r̂)µθ(dθ)

= argmax
θ∈Θ

dP θ
n

dP 0
n
(r̂)µθ(dθ)∫

Θ
dP θ

n
dP 0

n
(r̂)µθ(dθ)

.

Since the denominator of the posterior distribution does not depend on θ it plays no role

in the optimization.

In general, when the conditional prior distribution on f , given θ, is very precise the

MAP will essentially be equivalent to the maximum likelihood estimator (MLE) that we

would obtain if we use the prior mean function f0θ as the likelihood. On the contrary, with

a prior µθf almost uninformative the MAP will be close to the GMM estimator (up to a

prior on θ). The next example shows this argument in a rigorous way.

Example 2.2. Consider a function h(θ, x) that after normalization is of the form: h(θ, x) =

a(x)− b(θ) with a, b ∈ Rr and θ ∈ Rk, k ≤ r so that the model is in general over-identified

and V ar(h(θ, x)) = Ir, where Ir denotes the r-dimensional identity matrix. This implies

that the classical GMM estimator is solution of

min
θ

r∑
j=1

(
1

n

n∑
i=1

φj(xi)− bj(θ)

)2

with a(x) = (a1(x), . . . , ar(x))
′and b(θ) = (b1(θ), . . . , br(θ))

′.

Assume in this example that Π is the true distribution F∗ which implies that f∗ = 1.

Denote φj(x) ≡ φj(x; θ) = (aj(x)−bj(θ)) for j = 1, . . . , r and φ0 = 1. Under these assump-

tions the functions (1, φ1(x), . . . , φr(x)) form an orthonormal system in E and we can com-

plete this system to form an orthonormal basis {φj}j≥0. Since the span{1, φ1(x), . . . , φr(x)}
does not depend on θ then the same holds for its orthogonal and {φj}j>r are independent

of θ. As described in section 2.1, the prior distribution µθf on f is N (f0θ,Ω0) where f0θ

verifies
∫
a(x)f0θ(x)Π(x)dx = b(θ) and Ω0 verifies

Ω0u = λ1 < u, 1 > +
r∑
j=1

λj < u,φj > φj +
∞∑

j=r+1

λj < u,φj > φj , ∀u ∈ E
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where
∑

j λj <∞ and λj = 0, ∀j = 0, . . . , r. Therefore, Ω0 is independent of θ.

In order to construct the sampling model we choose an operator K (that is, a function

k(x, t)) with range in F , singular functions {φj}j≥0 and singular values {λjK}j≥0, where

{λjK}j≥0 must be a non-increasing sequence of positive elements. Therefore, we have

K∗Kφj = λ2jKφj

and if we define ψj ∈ F as Kφj = λjKψj , λjK ̸= 0, for every j ≥ 0, we also have

K∗ψj = λjKφj and KK∗ψj = λ2jKψj .

In practice, the operator K takes the form: ∀ϕ ∈ E , Kϕ =
∑∞

j=0 λjK < ϕ,φj > ψj , where

{ψj}j≥0 is an orthonormal basis in F . The first r + 1 basis functions {ψj}rj=0 might also

depend on θ. This construction of K will allow us to have a suitable spectrum of Σ. In

fact, under our assumptions we can verify that Σψj = λ2jKψj for j ≥ 1 and Σψ0 = 0. To

see this we write Σ in the form given in lemma 2.2: Σ = KMfK
∗ − KMf < Mf ,K

∗· >
and if f∗ = 1 we have

Σψj = KK∗ψj −K1 < 1, λjKφj >, for j ̸= 0

Σψ0 = λ20Kψ0 − (λ0Kψ0)λ0K < 1, φ0 > .

Since < 1, φj >= 0 for j ≥ 1 and < 1, φ0 >= 1 we get the result.

From the result of theorem 2.1 the marginal likelihood is proportional to

exp

{
−1

2
||r̂ −Kf0θ||2Σn+KΩ0K∗

}
where || · ||2Σn+KΩ0K∗ denotes the square of the norm in the reproducing kernel Hilbert

space associated with the operator (Σn + KΩ0K
∗). The eigenvalues of this operator are

the functions {ψj}j≥0 previously constructed and the eigenvalues are denoted {µ2nj}j≥0 and

given by

µ2n0 = 0

µ2nj =
1

n
λ2jK , for j = 1, . . . , r

µ2nj = λ2jK

(
1

n
+ λj

)
.
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Therefore, we can rewrite:

||r̂ −Kf0θ||2Σn+KΩ0K∗ =
∑

j; µnj ̸=0

< r̂ −Kf0θ, ψj >
2

µ2nj

=
∑

j; µnj ̸=0

µ−2
nj

(
1

n

n∑
i=1

∫
k(t, xi)ψj(t)ρ(t)dt−

∫ ∫
k(t, x)ψj(t)f0θ(x)Π(dx)ρ(t)dt

)2

=
∑

j; µnj ̸=0

µ−2
nj λ

2
jK

(
1

n

n∑
i=1

φj(xi)−
∫
φj(x)f0θ(x)Π(dx)

)2

=
r∑
j=1

n

(
1

n

n∑
i=1

aj(xi)− bj(θ)

)2

+
∑
j>r

1

n−1 + λj

(
1

n

n∑
i=1

φj(xi)−E0θ(φj)

)2

for every f0θ which satisfies
∫
h(θ, x)f0θ(x)Π(dx) = 0. We have used E0θ to denote the

expectation taken with respect to f0θ. Hence, the MAP verifies

θn = argmin
θ∈Θ

r∑
j=1

n

(
1

n

n∑
i=1

aj(xi)− bj(θ)

)2

+
∑
j>r

(
n−1

∑n
i=1 φj(xi)−E0θ(φj)

)2
n−1 + λj

=argmin
θ∈Θ

r∑
j=1

(
1

n

n∑
i=1

aj(xi)− bj(θ)

)2

+
1

n

∑
j>r

(
n−1

∑n
i=1 φj(xi)−E0θ(φj)

)2
n−1 + λj

. (2.18)

These formulas clearly show that the prior distribution µθf completes the moment condi-

tions and extends them to a continuum of moment conditions. In the case of an almost

noninformative prior we have: λj → ∞, ∀j > r so that (2.18) is exactly the expression of

the GMM. In the case of a perfectly informative prior (that is, f = f0θ a.s. and λj = 0 for

every j) the expression (2.18) becomes

θn = argmin ||r̂ −Kf0θ||2Σn
.

In this case the MAP is equivalent to the MLE obtained by using f0θ as the likelihood in

the sense that it possesses the same asymptotic distribution under very general conditions

on K, see Carrasco and Florens (2012). A sufficient condition for this is that the closure

of the vector space generated by the family {k(t, x)} in E be equal to E . Remark that this

is the case for k(t, x) = 1(x ≤ t) and k(t, x) = eitx with t, x ∈ R.

Remark 2.7. We have already discussed (see Remark 2.2) the possibility of using a dif-

ferent prior scheme when we are in the just-identified case and θ can be written as a linear

functional of f . In that case, given a Gaussian process prior on f , the prior of θ is recov-

ered through the transformation θ = B(f). The posterior distribution for θ is recovered

from the posterior distribution of f (which is obviously unconditional on θ) through the

transformation B(f).
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For clarity reasons, we summarize in tables 2 and 3 below the notation used for the sam-

pling distribution (the true and the approximated one) and for the posterior distributions

for both the overidentified and the just-identified cases.

Table 2: Sampling distribution

Sampling distribution: Conditional on f∗ Conditional on f Marginal

True P f∗
n,∗ P f

n,∗ –

Approximated P f∗
n P f

n P θ
n

Table 3: Posterior distribution

Case: over-identified just-identified: 1st possibility just-identified: 2nd possibility

Marginal of θ µr̂
θ(θ|r̂) µr̂

θ(θ|r̂) µr̂
θ(θ|r̂) through θ = B(f)

Conditional of f |θ µr̂,θ
f (f |r̂, θ) µr̂,θ

f (f |r̂, θ) –

Regularized Conditional of f |θ µr̂,θ
f,τ (f |r̂, θ, τ) µr̂,θ

f,τ (f |r̂, θ, τ) –

Marginal of f – – µr̂
f (f |r̂)

Regularized of f – – µr̂
f,τ (f |r̂, τ)

3 Asymptotic Analysis

In this section we focus on the asymptotic properties of our approach. Along all this section

we replace Ω0θ by 1
αnΩ0θ where α > 0 and α → 0. This expression is very general since

depending on the choice of α the prior µθf is: (i) shrinking (when αn→ ∞), (ii) spreading

out (when α = o(n−1)) and (iii) fixed (when α = n−1). In some cases a scaling prior is

necessary in order to obtain the minimax rates of convergence for the posterior distribution

µθ,r̂f (see Florens and Simoni (2012b)).

We analyze three issues: (i) convergence of the “misspecified” posterior µr̂θ towards the

true marginal posterior of θ for the just-identified case where θ is a linear functional of f

(section 3.1); (ii) posterior consistency of µr̂θ and (iii) convergence of µr̂θ towards a normal

distribution (section 3.2).

Along all this section we use the posterior distribution µθ,r̂f given either in lemma 2.4

or in lemma 2.5. Therefore, we implicitly assume that the conditions of these lemmas are

satisfied. When this is not the case, then our asymptotic results can be easily extended to

the case where the exact posterior µθ,r̂f is replaced by the regularized posterior distribution

µθ,r̂f,τ discussed in Remark 2.6.
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3.1 Asymptotic for linear functionals: the just-identified case

We first analyze asymptotic for the just-identified case where k = r and where θ = B(f)

writes as an explicit linear functional of f . Without loss of generality we can write θ =<

f, g > for any g ∈ Er. In fact, by the Riesz theorem there exists a unique g ∈ E such

that B(f) =< f, g >. We consider the situation described in Remark 2.2 where the prior

distribution of θ is specified through the prior distribution of f . The analysis for this case

is quite simple since we have a closed-form for the posterior distribution of θ.

The results of section 2.3.1 and Remark 2.7 imply that the posterior distribution of

θ is Gaussian with mean < E[f |r̂], g > and variance < V ar[f |r̂]g, g > where E[f |r̂] and
V ar[f |r̂] have been defined in lemma 2.4. We denote by µr̂θ this distribution and we stress

that this is the approximated posterior distribution of θ where the approximation is due

to the fact that the Gaussian sampling distribution P fn we have used is not the true one

(but only the weak limit in distribution of the true sampling distribution P fn,∗). Denote

θ̂ := n−1
∑n

i=1 g(xi) the method of moment estimator and σ2 =< f∗g, g > − < f∗, g >
2 the

true variance of g. The next theorem states that the total variation distance – denoted by

|| · ||TV – between µr̂θ and N (θ̂, σ
2

n ) converges to 0 in probability. For this result we need

the following assumptions:

TV-1. There exists a kernel function C such that ∀h > 0 small and ∀u:(
f0 −

1

h
C

(
x− u

h

)
1

π(x)

)
∈ R

(
Ω
1/2
0 (T ∗T )β/2

)
for some β > 0.

TV-2. There exists a kernel function C such that ∀h > 0 small and ∀u:∣∣∣∣∣∣∣∣g(xi)− ∫ g(x)
1

h
C

(
x− u

h

)
dx

∣∣∣∣∣∣∣∣ = O(h2).

TV-3. There exists a kernel function C such that ∀h > 0 small and ∀u:∣∣∣∣∣∣∣∣k(u, t)− ∫ k(u, t)
1

h
C

(
x− u

h

)
dx

∣∣∣∣∣∣∣∣ = O(h2.

Theorem 3.1. Let θ̂ = n−1
∑n

i=1 g(xi) and consider the Gaussian model 2.8 independent of

θ with the prior covariance operator Ω0 replaced by 1
αnΩ0 where α > 0, α→ 0 and nαβ∧2 →

0. Let the assumptions of lemma 2.5 and assumptions TV-1 - TV-3 hold true. Define ξi :=

h−1C
(
x−xi
h

)
1

π(x) , ∀i = 1, . . . , n, and assume that there exists a random element ∃ζi ∈ E

such that: (i) n−1
∑n

i=1 ||ζi|| = Op(1) and (ii) (ξi − f0) = Ω
1/2
0

(
Σ−1/2KΩ0K

∗Σ−1/2
)β/2

ζi

for some β > 0. Hence, :
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∣∣∣∣∣∣∣∣µr̂θ −N (θ̂,
σ2

n
)

∣∣∣∣∣∣∣∣
TV

→ 0

in P f∗n -probability.

Proof. Let f denote the density function of the posterior µr̂θ and

∣∣∣∣∣∣∣∣µr̂θ −N (θ̂,
σ2

n
)

∣∣∣∣∣∣∣∣
TV

≤
∣∣∣∣∣∣∣∣µr̂θ −N

(
< E[f |r̂], g >,

σ2

n

)∣∣∣∣∣∣∣∣
TV

+

∣∣∣∣∣∣∣∣N (
< E[f |r̂], g >,

σ2

n

)
−N

(
θ̂,
σ2

n

)∣∣∣∣∣∣∣∣
TV

. (3.1)

By trivial algebra it is possible to show that∣∣∣∣∣∣N (< E[f |r̂], g >, σ2/n)−N (θ̂, σ2/n)
∣∣∣∣∣∣
TV

= 4

[
Φ

(√
n| < E[f |r̂], g > −θ̂|

2σ

)
−

1

2

]

and∣∣∣∣∣∣∣∣µr̂θ −N
(
< E[f |r̂], g >,

σ2

n

)∣∣∣∣∣∣∣∣
TV

= 4

[
Φ

(√
log

(
nτ2

σ2

) √
nτ√

|σ2 − nτ2|

)
− Φ

(√
log

(
nτ2

σ2

)
σ√

|σ2 − nτ2|

)]

where Φ(·) denotes the cdf of a N (0, 1)-distribution and τ2 =< V ar[f |r̂]g, g >. We start

by computing the rate for
∣∣∣σ2

n − τ2
∣∣∣. Remark that under the conditions of lemma 2.5 we

can write the posterior variance either in the form given in the lemma or in the form given

in lemma 2.4. We use this second expression:

∣∣∣∣σ2

n
− τ2

∣∣∣∣ =

∣∣∣∣< V ar[f |r̂]g, g > −
σ2

n

∣∣∣∣ = ∣∣∣∣< V ar[f |r̂]g, g > −
< f∗(g −E∗g), g >

n

∣∣∣∣
=

1

n

∣∣< Ω0(αf∗ − αf∗ < f∗, · > +Ω0)
−1f∗(g −E∗g), g > − < f∗(g −E∗g), g >

∣∣
=

1

n

∣∣< [Ω0(αf∗ − αf∗ < f∗, · > +Ω0)
−1 − I

]
f∗(g −E∗g), g >

∣∣
=

1

n

∣∣< [αf∗ − αf∗ < f∗, · >] (αf∗ − αf∗ < f∗, · > +Ω0)
−1f∗(g −E∗g), g >

∣∣
=

α

n

∣∣∣ < f∗(αf∗ − αf∗ < f∗, · > +Ω0)
−1f∗(g −E∗g), g >

− < f∗ < f∗, · > (αf∗ − αf∗ < f∗, · > +Ω0)
−1f∗(g −E∗g), g >

∣∣∣
=

α

n

∣∣∣ < (αf∗ − αf∗ < f∗, · > +Ω0)
−1f∗(g −E∗g), f∗g >

− < f∗, (αf∗ − αf∗ < f∗, · > +Ω0)
−1f∗(g −E∗g) >< f∗, g >

∣∣∣.
Remark that f∗(g−E∗g) ∈ R(Ω

1/2
0 ) since R(Ω

1/2
0 ) = N (Ω

1/2
0 )

⊥
and

∫
f∗(g−E∗g)dΠ = 0.

Thus, there exists ν ∈ E such that f∗(g −E∗g) = Ω
1/2
0 ν and
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∣∣∣∣σ2

n
− τ2

∣∣∣∣ =
α

n

∣∣∣ < (αf∗ − αf∗ < f∗, · > +Ω0)
−1Ω

1/2
0 ν, f∗g >

− < f∗, (αf∗ − αf∗ < f∗, · > +Ω0)
−1Ω

1/2
0 ν >< f∗, g >

∣∣∣
=

α

n

∣∣∣ < (αI − αf
1/2
∗ < f

1/2
∗ , · > +f

−1/2
∗ Ω0f

−1/2
∗ )−1f

−1/2
∗ Ω

1/2
0 ν, f

1/2
∗ g >

− < f∗, (αf∗ − αf∗ < f∗, · > +Ω0)
−1Ω

1/2
0 ν >< f∗, g >

∣∣∣
=

α

n

∣∣∣ < (αI + f
−1/2
∗ Ω0f

−1/2
∗ )−1f

−1/2
∗ Ω

1/2
0 ν, f∗g >

− < (αI − αf
1/2
∗ < f

1/2
∗ , · > +f

−1/2
∗ Ω0f

−1/2
∗ )−1(αf

1/2
∗ < f

1/2
∗ , · >)×

(αI + f
−1/2
∗ Ω0f

−1/2
∗ )−1f

−1/2
∗ Ω

1/2
0 ν, f

1/2
∗ g >

− < f
1/2
∗ , (αI + f

−1/2
∗ Ω0f

−1/2
∗ )−1f

−1/2
∗ Ω

1/2
0 ν >

+ < f
1/2
∗ , (αI − αf

1/2
∗ < f

1/2
∗ , · > +f

−1/2
∗ Ω0f

−1/2
∗ )−1(αf

1/2
∗ < f

1/2
∗ , · >)×

(αI + f
−1/2
∗ Ω0f

−1/2
∗ )−1f

−1/2
∗ Ω

1/2
0 ν >< f∗, g >

∣∣∣
= O

(
2

√
α

n
||ν||

√
E∗g2 + 2

√
α

n
||ν||

)
= O

(√
α

n

)

if E∗g
2 <∞. Note that to obtain the bigO in the last line we have used the Cauchy-Schwarz

inequality. Next, we study the term | < E[f |r̂], g > −θ̂|. Define ξi := h−1C
(
x−xi
h

)
1

π(x) .

By using the expression of the posterior mean given in lemma 2.5 and denoting B =

Σ−1/2KΩ
1/2
0 we obtain:

| < E[f |r̂], g > −θ̂| =

∣∣∣∣∣< E[f |r̂], g > −n−1
n∑

i=1

g(xi)

∣∣∣∣∣
=

∣∣∣∣∣< f0 +Ω
1
2
0 (αI +B∗B)−1B∗Σ−1/2

[
n−1

n∑
i=1

k(xi, t)−Kf0

]
, g > −n−1

n∑
i=1

g(xi)

∣∣∣∣∣
=

∣∣∣ < f0 +Ω
1
2
0 (αI +B∗B)−1B∗Σ−1/2

[
n−1

n∑
i=1

Kξi +Op(h
2)−Kf0

]
, g >

−n−1
n∑

i=1

< ξi, g > +Op(h
2)
∣∣∣

since n−1
∑n

i=1 g(xi) = n−1
∑n

i=1 < ξi, g > +Op(h
2) and n−1

∑n
i=1 k(xi, t) = n−1

∑n
i=1Kξi+

Op(h
2) under assumption 2 and 3. Therefore,

| < E[f |r̂], g > −θ̂| = | < n−1
n∑

i=1

[
Ω

1
2
0 (αI +B∗B)−1B∗Σ−1/2K(ξi − f0)− (ξi − f0)

]
, g >

+ < Ω
1
2
0 (αI +B∗B)−1B∗Σ−1/2Op(h

2), g > +Op(h
2)| =: |A1 +A2 +A3|.

Since (ξi − f0) ∈ R(Ω
1/2
0 ) then there exists ηi ∈ E such that (ξi − f0) = Ω

1/2
0 ηi; moreover,

there exists ζi ∈ E (function of the data xi) such that ηi = (T ∗T )β/2ζi for some β > 0.

Hence,
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|A1| =

∣∣∣∣∣< n−1
n∑

i=1

[
Ω

1
2
0 (αI +B∗B)−1B∗Σ−1/2K(ξi − f0)− (ξi − f0)

]
, g >

∣∣∣∣∣
= α

∣∣∣∣∣< Ω
1
2
0 (αI +B∗B)−1n−1

n∑
i=1

ηi, g >

∣∣∣∣∣ = α

∣∣∣∣∣< Ω
1
2
0 (αI +B∗B)−1(B∗B)β/2n−1

n∑
i=1

ζi, g >

∣∣∣∣∣
= Op

(
α(β∧2)/2

)

if n−1
∑n

i ||ζi|| = Op(1). Since R(KΩ
1/2
0 ) ⊆ R(Σ) term |A2| is well-defined and |A2| =

Op(α
−1h2). Finally, we choose h that converges to 0 sufficiently fast to guarantee that

α−1h2 → 0. Under the condition that nαβ∧2 → 0 the first term of (3.1) converges to 0.

3.2 Posterior Consistency

In this section we study the consistency of the posterior distribution of θ. Posterior con-

sistency for µr̂,θf and µr̂,θf,τ has been shown respectively in Florens and Simoni (2012a) and

Florens and Simoni (2012b).

Let Θn = {θ ∈ Θ;
√
n||θ − θ∗|| ≤Mn} for every sequence Mn → ∞ and

F(θ) =

{
f ∈ EM ;

∫
h(x, θ)f(x)dΠ(x) = 0

}
.

We want to show that the posterior measure µr̂θ(Θn) converges to 1 in P f∗n,∗-probability.

Define P f∗n = N (Kf∗,
1
nΣ). By theorem 2.1, P f∗n dominates P θn so that we define pnθ =

dP θn/dP
f∗
n . For a covariance operator C : F → F and φ ∈ R(C1/2) denote ||φ||C the

norm in the reproducing kernel Hilbert space associated with C defined as ||φ||2C =<

C−1/2φ,C−1/2φ >. We introduce the following assumptions:

A-1. There exists a constant c > 0 such that for every θ ∈ Θc
n

c||θ − θ∗|| ≤ inf
f0θ∈F(θ)

||Σ−1/2K(f0θ − f∗)||αI+BB∗ .

A-2. For the constant c > 0 defined in A-1, the set

Θ̃n :=

{
θ; inf

f0θ∈F(θ)
||Σ−1/2K(f0θ − f∗)||αI+BB∗ ≤ cMn√

n2

}
⊂ Θn

is non empty.

A-3. The prior distribution µθ is continuous in θ and 0 < µθ(θ) <∞ for every θ ∈ Θ.

For a probability measure P and an integrable function g we use the notation Pg to

abbreviate
∫
gdP .
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Theorem 3.2. Under A-1, A-2 and A-3:

P f∗n,∗µ
r̂
θ (θ ∈ Θc

n|r̂) → 0.

Proof. Define the eventAn :=

{∑∞
j=1

αn
(l2j+α)

1
α l

2
j z

2
j < cαM2

n/2

}
where zj =< r̂−Kf∗,Σ−1/2φj >,

∀j. By the Markov’s inequality the probability of this event, under P f∗n,∗, converges to 1 if

αM2
n → ∞. In fact, we have

P f∗n,∗A
c
n ≤ 2

cαM2
n

E∗

∣∣∣∣∣∣
∞∑
j=1

αn

(l2j + α)

1

α
l2jz

2
j

∣∣∣∣∣∣ = 2

cαM2
n

∞∑
j=1

l2j
(l2j + α)

which converges to 0 if αM2
n → ∞ and

∑∞
j=1

l2j
(l2j+α)

<∞.

The quantity of interest P f∗n,∗µ
r̂
θ (θ ∈ Θc

n|r̂) may be rewritten as

P f∗n,∗µ
r̂
θ (θ ∈ Θc

n|r̂) = P f∗n,∗

∫
Θc

n
pnθ(r̂)µθ(dθ)∫

Θ pnθ(r̂)µθ(dθ)
IAn + P f∗n,∗

∫
Θc

n
pnθ(r̂)µθ(dθ)∫

Θ pnθ(r̂)µθ(dθ)
IAc

n
(3.2)

= P f∗n,∗

∫
Θc

n
pnθ(r̂)µθ(dθ)∫

Θ pnθ(r̂)µθ(dθ)
IAn + o(1) (3.3)

where IA denotes the indicator function of an event A. Now, in order to upper bound the

numerator and lower bound the denominator we use the explicit form for pnθ given in (2.16)

with f̃ replaced by f∗ and Ω0θ replaced by (αn)−1Ω0θ:

pnθ =

∞∏
j=1

√
α

l2j + α
e

αn

2(l2
j
+α)

(α−1l2j z
2
j−A2

j+2zjAj)

where Aj =< K(f0θ − f∗),Σ
−1/2φj > and zj =< r̂−Kf∗,Σ

−1/2φj >, ∀j. Therefore, since
α

l2j+α
≤ 1 and α

l2j+α
≥ α

l21+α
:

P f∗
n,∗

∫
Θc

n
pnθ(r̂)µθ(dθ)∫

Θ pnθ(r̂)µθ(dθ)
IAn ≤ P f∗

n,∗

∫
Θc

n
exp

{
1
2

∑∞
j=1

αn
(l2j+α)

(
α−1l2j z

2
j −A2

j + 2zjAj

)}
µθ(dθ)√

α
(l21+α)

∫
Θ exp{− 1

2

∑∞
j=1 z

2
j

αn
α+l2j

+ 1
2

∑∞
j=1 z

2
jn+

∑∞
j=1 zjAj

αn
α+l2j

− 1
2

∑∞
j=1 A

2
j

αn
α+l2j

}µθ(dθ)
IAn

≤ P f∗
n,∗

∫
Θc

n
exp

{
1
2

∑∞
j=1

αn
(l2j+α)

α−1l2j z
2
j − 1

2
||Σ−1/2K(f0θ − f∗)||2αI+BB∗ +Op

(√
αn||Σ−1/2K(f0θ − f∗)||αI+BB∗

)}
µθ(dθ)√

α
(l21+α)

∫
Θ exp{

∑∞
j=1 zjAj

αn
α+l2j

− 1
2

∑∞
j=1 A

2
j

αn
α+l2j

}µθ(dθ)
IAn

= P f∗
n,∗

∫
Θc

n
exp

{
1
2

∑∞
j=1

n
(l2j+α)

l2j z
2
j − 1

2
||Σ−1/2K(f0θ − f∗)||2αI+BB∗ +Op

(√
αn||Σ−1/2K(f0θ − f∗)||αI+BB∗

)}
µθ(dθ)√

α
(l21+α)

∫
Θ exp

{
− 1

2
αn||Σ−1/2K(f0θ − f∗)||2αI+BB∗ (1 +Op((αn)−1/2||Σ−1/2K(f0θ − f∗)||−1

αI+BB∗ ))
}
µθ(dθ)

IAn
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since
∑∞

j=1A
2
j

1
α+l2j

= ||Σ−1/2K(f0θ − f∗)||2αI+BB∗ and

∑
j

zjAjαn/(α+ l2j ) = Op

(√
αn||Σ−1/2K(f0θ − f∗)||αI+BB∗

)
.

Moreover, since on An
∑∞

j=1
αn

(l2j+α)
1
α l

2
jz

2
j < cαM2

n/2 we have:

P f∗
n,∗

∫
Θc

n
pnθ(r̂)µθ(dθ)∫

Θ pnθ(r̂)µθ(dθ)
IAn

≤ P f∗
n,∗

∫
Θc

n
exp

{
cαM2

n
4

− 1
2
||Σ−1/2K(f0θ − f∗)||2αI+BB∗ +Op

(√
αn||Σ−1/2K(f0θ − f∗)||αI+BB∗

)}
µθ(dθ)√

α
(l21+α)

∫
Θ̃n

exp
{
− 1

2
αn||Σ−1/2K(f0θ − f∗)||2αI+BB∗ (1 +Op((αn)−1/2||Σ−1/2K(f0θ − f∗)||−1

αI+BB∗ ))
}
µθ(dθ)

IAn

≤ P f∗
n,∗

∫
Θc

n
exp

{
cαM2

n
4

− 1
2
||Σ−1/2K(f0θ − f∗)||2αI+BB∗ +Op

(√
αn||Σ−1/2K(f0θ − f∗)||αI+BB∗

)}
µθ(dθ)√

α
(l21+α)

exp
{
−αn cM2

n
n8

(1 +Op((α)−1/2M−1
n ))

}∫
Θ̃n

µθ(dθ)
IAn

≤ P f∗
n,∗

∫
Θc

n
exp

{
cαM2

n
4

− αn
2
c2||θ − θ∗||2(1 +Op

(
1√
αn
c−1||θ − θ∗||−1

)
)

}
µθ(dθ)√

α
(l21+α)

exp
{
−αn cM2

n
n8

(1 +Op((α)−1/2M−1
n ))

}∫
Θ̃n

µθ(dθ)
IAn

≤ P f∗
n,∗

∫
Θc

n
exp

{
cαM2

n
4

− αn
2
c
M2

n
n

(1 +Op

(
1√
αn
c−1

√
n

Mn

)
)

}
µθ(dθ)√

α
(l21+α)

exp
{
−αn cM2

n
n8

(1 +Op((α)−1/2M−1
n ))

}∫
Θ̃n

µθ(dθ)
IAn

≤ P f∗
n,∗

∫
Θc

n
exp

{
− cαM2

n
4

(1 +Op

(
1√
αn
c−1

√
n

Mn

)
)

}
µθ(dθ)√

α
(l21+α)

exp
{
−αn cM2

n
n8

(1 +Op((α)−1/2M−1
n ))

}∫
Θ̃n

µθ(dθ)
IAn

where we have used assumptions A-1 and A-2 and 0 <
∫
Θ̃n
µθ(dθ) <∞ under assumptions

A-2 - A-3. We conclude that

P f∗n,∗µ
r̂
θ (θ ∈ Θc

n|r̂) ≤ exp

{
−cαM

2
n

4
+
cαM2

n

8

}
P f∗n,∗(An)const.+ P f∗n,∗(A

c
n) = o(1).

�

3.3 Asymptotic Normality

We show now that asymptotically the posterior distribution of θ behaves like a Normal dis-

tribution centered around the MAP estimator θn defined in (2.17) as θn = argmaxθ∈Θ µ
r̂
θ(dθ).

We can equivalently define θn as θn = argmaxθ∈Θ
dP θ

n

dP f∗
n
(r̂)µθ(dθ) = argmaxθ∈Θ pnθ(r̂)µθ(dθ).

In the following we abbreviate pnθµθ(dθ) = pnθ(r̂)µθ(dθ).

Let H(θn, δ) := {θ ∈ Θ; ||θ−θn|| < δ}. Remark that under the assumptions of theorem

3.2, for δn > 0 such that δn → 0 at a suitable rate the posterior distribution of H(θn, δn)

converges to 1. Denote Ln(θ) = log dP θ
n

dP f∗
n
(r̂)µθ(dθ). We make the following assumptions

B-1. θn is a strict local maximum of dµr̂θ and L′
n(θn) :=

∂Ln(θ)
∂θ

∣∣∣
θ=θn

= 0.
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B-2. ∆n = {−L′′
n(θn)}

−1 :=

{
− ∂2Ln(θ)

∂θ∂θ′

∣∣∣
θ=θn

}−1

exists and is positive definite.

B-3. d2 → 0 as n→ ∞ where d2 is the largest eigenvalue of ∆n.

B-4. For any ϵ > 0, there exists an integer N and δ > 0 such that, for any n > N and

θ ∈ H(θn, δ), L
′′
n(θ) exists and satisfies

I −G(ϵ) ≤ L′′
n(θ){L′′

n(θn)}−1 ≤ I +G(ϵ),

where I is a (k×k) identity matrix and G(ϵ) is a (k×k) positive semidefinite symmetric

matrix whose largest eigenvalue g(ϵ) converges to 0 as ϵ→ 0.

We provide later sufficient conditions for this assumptions. In particular, assumptions B-3

and B-4 are satisfied if the conditional prior µθf of f is shrinking, that is, Ω0θ is replaced

by τΩ0θ and τ = o(n−1).

Lemma 3.1 and theorem 3.3 below are slightly modifications of results in Kim (2002)

and Chen (1985).

Lemma 3.1. Under A-1, A-2, A-3, B-1, B-2, B-3 and B-4

lim
n→∞

µr̂θ(θn)|∆n|
1
2 ≤ (2π)−k/2. (3.4)

Moreover, limn→∞ µr̂θ(θn)|∆n|
1
2 = (2π)−k/2 in P f∗n,∗-probability if and only if for some δn >

0, δn → 0, µr̂θ(H(θn, δn)|r̂) → 1.

Proof. Denote Dr̂ the denominator of µr̂θ. For any ϵ > 0 let n and δn be such that B-4 is

verified. Under B-1 and B-2, for every θ ∈ H(θn, δn) a second order Taylor expansion of

Ln(θ) around θn gives

pnθµθ(θ) = pnθµθ(θn) exp(Ln(θ)− Ln(θn))

= pnθµθ(θn) exp

(
−1

2
(θ − θn)

′L′′
n(θ̃)(θ − θn)

)
= pnθµθ(θn) exp

(
−1

2
(θ − θn)

′[I +Ψn(θ̃)]∆
−1
n (θ − θn)

)

with Ψn(θ̃) = ∂2Ln(θ)
∂θ∂θ′

∣∣∣
θ=θ̃

[
∂2Ln(θ)
∂θ∂θ′

∣∣∣
θ=θn

]
− I, I a k × k identity matrix and θ̃ lies on the

segment joining θ and θn. Therefore, under B-4, the probability µr̂θ(H(θn, δn)|r̂) defined as

µr̂θ(H(θn, δn)|r̂) =
∫
H(θn,δn)

µr̂θ(θ|r̂)dθ

is bounded above by
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|I −G(ϵ)|−1/2|∆n|1/2D−1
r̂ pnθµθ(θn)

∫
H(θn,δn)

exp

(
−1

2
(θ − θn)

′[I +Ψn(θ̃)]∆
−1
n (θ − θn)

)
dθ

≤ |I −G(ϵ)|−1/2|∆n|1/2D−1
r̂ pnθµθ(θn)

∫
H(0,un)

e−z
′z/2dz

where un = δn(1+ gmax(ϵ))
1
2 /dmin, g

max(ϵ) is the largest eigenvalue of G(ϵ) and dmin is the

smallest eigenvalue of ∆n. The second inequality follows from the fact that, after a change

of variable, δn > (θ − θn)
′(θ − θn) > ||z||

(
inf d/(1 + eigenvalue(Ψn))

1/2
)
= ||z||un/δn so

that H(θn, δn) ⊂ H(0, un). In a similar way, under B-4, we can bound µr̂θ(H(θn, δn)|r̂) from
below by

|I +G(ϵ)|−1/2|∆n|1/2D−1
r̂ pnθµθ(θn)

∫
H(θn,δn)

exp

(
−1

2
(θ − θn)

′[I +Ψn(θ̃)]∆
−1
n (θ − θn)

)
dθ

≥ |I +G(ϵ)|−1/2|∆n|1/2D−1
r̂ pnθµθ(θn)

∫
H(0,ln)

e−z
′z/2dz

where ln = δn(1 − gmax(ϵ))
1
2 /dmax, dmax is the largest eigenvalue of ∆n and H(θn, δn) ⊃

H(0, ln). Under B-3, un, ln → ∞ as n→ ∞. Therefore,

|I −G(ϵ)|1/2 lim
n→∞

µr̂θ(H(θn, δn)|r̂) ≤ |2π|k/2|∆n|1/2D−1
r̂ lim

n→∞
pnθµθ(θn)

≤ |I +G(ϵ)|1/2 lim
n→∞

µr̂θ(H(θn, δn)|r̂)

and (3.4) is implied by the facts that under B-3, |I±G(ϵ)| → 1 as ϵ→ 0 and µr̂θ(H(θn, δn)|r̂) ≤
1 for every n. The equality holds if and only if limn→∞ µr̂θ(H(θn, δn)|r̂) = 1 in P f∗n,∗-

probability, which is assured under A-1, A-2 and A-3 by theorem 3.2.

�

Theorem 3.3. Assume that A-1, A-2, A-3, B-1, B-2, B-3 and B-4 hold. Then, for every

θ1, θ2 ∈ Θ, ∫
Jθ1,θ2

dµr̂θ(θ|r̂) →
∫ θ2

θ1

ϕ(u)du

in P f∗n,∗-probability, where ϕ(·) denotes the standard Normal pdf and Jθ1,θ2 := {θ; ∆−1/2
n (θ−

θn) ∈ (θ1, θ2)}.

Proof. Denote Dr̂ the denominator of µr̂θ. For any θ1, θ2 ∈ Θ we write θ2 ≥ θ1 (or θ2 ≤ θ1)

if every component of θ2 − θ1 is nonnegative. Let Z ∼ N (0, 1); as stated in the proof of
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Theorem 2.1 in Chen (1985) it is sufficient to show that for every θ1 ≤ 0 and θ2 ≥ 0, the

probability µr̂θ([θ1, θ2]|r̂) (≡ µr̂θ(θ1 ≤ θ ≤ θ2|r̂)) converges to Φ((θ1, θ2)) in P
f∗
n,∗-probability,

where Φ(·) denotes the cdf of a N (0, 1) distribution.

For sufficiently large n, Jθ1,θ2 ⊂ H(θn, δn) by B-3. Similarly as in the proof of lemma

3.1 the probability

µr̂θ(Jθ1,θ2 |r̂) ≡
∫
Jθ1,θ2

dµr̂θ(θ|r̂)

is upper bounded by

|I −G(ϵ)|−1/2|∆n|1/2D−1
r̂ pnθµθ(θn)

∫
H+

e−z
′z/2dz

with H+ := {z; [I +G(ϵ)]1/2θ1 ≤ z ≤ θ2[I +G(ϵ)]1/2} and lower bounded by

|I +G(ϵ)|−1/2|∆n|1/2D−1
r̂ pnθµθ(θn)

∫
H−

e−z
′z/2dz

with H− := {z; [I − G(ϵ)]1/2θ1 ≤ z ≤ θ2[I − G(ϵ)]1/2}. By letting ϵ → 0 we have that

|I ±G(ϵ)| → 1 and

lim
n→∞

µr̂θ(Jθ1,θ2 |r̂) = lim
n→∞

|∆n|1/2D−1
r̂ pnθµθ(θn)

∫ θ2

θ1

e−z
′z/2dz.

Finally, by the results of lemma 3.1 and theorem 3.2, limn→∞ |∆n|1/2D−1
r̂ pnθµθ(θn) =

|2π|−k/2 in P f∗n,∗-probability so that

lim
n→∞

µr̂θ(Jθ1,θ2 |r̂) = Φ((θ1, θ2))

in P f∗n,∗-probability.

�

4 Implementation

In this section we show, through the illustration of several examples, how our method can

be implemented in practice. We start with toy examples that can be treated also with non-

parametric priors different from the Gaussian prior. The interest in using Gaussian priors

will be made evident in the more complicated examples where there are overidentifying

restrictions which we show can be easily dealt with by using Gaussian priors.

4.1 Just identification and prior on θ through µf

Let the parameter θ of interest be the population mean with respect to f , that is, θ =∫
xf(x)dx and h(θ, x) = (θ− x). This example considers the just identified case where the

30



prior on θ is deduced from the prior distribution of f , denoted by µf . The prior µf is a

Gaussian measure which is unrestricted except for the fact that it must generate trajectories

that integrate to 1 almost surely. To guarantee that, the prior mean function f0 must be

a pdf and the prior covariance operator Ω0 must be such that Ω
1
2
0 1 = 0. Summarizing, the

Bayesian experiment is {
f ∼ µf ∼ N (f0,Ω0), Ω

1
2
0 1 = 0

r̂|f ∼ P f ∼ N (Kf,Σn).
(4.1)

This implies a prior and posterior distribution for θ as the following lemma states.

Lemma 4.1. The Bayesian experiment (4.1) implies that the prior distribution for θ =∫
xf(x)dx is Gaussian with mean < f0, x > and variance < Ω0x, x > and its posterior

distribution is

θ|r̂ ∼ N (< f0, x > + < Ω0K
∗C−1

n (r̂ −Kf0), x >,< [Ω0 − Ω0K
∗C−1

n KΩ0]x, x >)

where C−1
n = (n−1Σ+KΩ0K

∗)−1

This approach is appealing because it avoids the specification of two prior distributions

while keeping the specification of the sampling distribution completely nonparametric. The

prior is specified for the parameter with the highest dimension, that is f , and it implies a

prior on the parameter θ.

We illustrate now how to construct in practice the covariance operator Ω0 in (4.1).

Let us suppose that m = 1, S = [−1, 1] and Π be the Lebesgue measure. Then, the

Legendre polynomials {Pn}n≥0 are suitable to construct the eigenfunctions of Ω0. The

first few Legendre polynomials are {1, x, (3x2 − 1)/2, (5x3 − 3x)/2, . . .} and an important

property of these polynomials is that they are orthogonal with respect to the L2 inner

product on [−1, 1]:
∫ 1
−1 Pm(x)Pn(x)dx = 2/(2n + 1)δmn, where δmn is equal to 1 if m =

n and to 0 otherwise. Moreover, the Legendre polynomial obey the recurrence relation

(n+1)Pn+1(x) = (2n+1)xPn(x)− nPn−1(x) which is useful for computing Ω0 in practice.

The normalized Legendre polynomials form a basis for L2[−1, 1] so that we can construct

the operator Ω0 as

Ω0· = σ0

∞∑
n=0

λn
2n+ 1

2
< Pn, · > Pn

where λ0 = 0 and the {λn, n ≥ 1} can be chosen in an arbitrary way provided that∑
j≥1 λj < ∞. The constant σ0 can be set to an arbitrary value and has the purpose of

tuning the size of the prior covariance. This construction of Ω0 and the fact that f0 is a pdf

guarantee that the prior distribution generates functions that integrate to 1 almost surely.
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In our simulation exercise we generate n i.i.d. observations (x1, . . . , xn) from a N (0, 1)

distribution truncated to the interval [−1, 1] and construct the function r̂(t) = n−1
∑n

i=1 1{xi ≤
t} as the empirical cdf. Thus, the operators K and K∗ take the form

∀ϕ ∈ E , Kϕ =

∫ 1

−1
1{x ≤ t}f(x)dx and ∀ψ ∈ F , K∗ψ =

∫ 1

−1
1{x ≤ t}ψ(t)dt.

The eigenfunction of Ω0 are set equal to the normalized Legendre polynomials {
√
(2n+ 1)/2Pn}n≥0,

the eigenvalues are set equal to σ0λn = 5 ∗ n−a for n ≥ 1 and a > 1. The prior mean func-

tion f0 is set equal to a N (ϱ, 1) distribution truncated to the interval [−1, 1]. We show in

Figure 1 the prior and posterior distribution of θ approximated by using a kernel smooth-

ing and 100 drawings from the prior and posterior, respectively. The pictures are obtained

for different values of ϱ and α. We also show the prior mean (magenta asterisk) and the

posterior mean of θ (blue asterisk).
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(a) E(θ) = 0.276, E(θ|x(n)) = 0.0173, f0 =

N (0, 1,−1, 1), α = 0.01 and a = 1.1.
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(b) E(θ) = 0.276, E(θ|x(n)) = 0.0057, f0 =

N (0, 1,−1, 1), α = 0.3 and a = 1.1.
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(c) E(θ) = 0.4879, E(θ|x(n)) = 0.0129, f0 =

N (2, 1,−1, 1), α = 0.01 and a = 1.1.
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(d) E(θ) = 0.4879, E(θ|x(n)) = 0.0439, f0 =

N (2, 1,−1, 1), α = 0.3 and a = 1.1.

Figure 1: Prior and Posterior distribution and prior and posterior mean of θ. The true value of θ is 0.
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4.2 Just identification and prior on θ

We consider the same framework as in the previous example where the parameter θ of

interest is the population mean, that is, θ =
∫
xf(x)dx and h(θ, x) = (θ − x) but now

we are going to specify a joint proper prior distribution on (θ, f). We specify a marginal

prior µθ on θ and a conditional prior on f given θ. While the first one can be arbitrarily

chosen, the latter is specified as a Gaussian distribution constrained to generate functions

that integrate to 1 and that have mean equal to θ almost surely. In particular, the prior

mean function f0θ must be a pdf and
∫
xf0θ(x)dx = θ must hold. The prior covariance

operator Ω0 must be such that Ω
1
2
0 1 = 0 and Ω

1
2
0 x = 0. Together with the constraint on

f0θ, the first constraint on Ω0 guarantees that the trajectories of f generated by this prior

integrate to 1 a.s. while the second one guarantees that
∫
xf(x)dx = θ a.s. Summarizing,

the Bayesian experiment is


θ ∼ µθ

f |θ ∼ µθf ∼ N (f0θ,Ω0θ),
∫
xf0θ(x)dx = θ and Ω

1
2
0 (1, x)

′ = 0

r̂|f ∼ P f ∼ N (Kf,Σn).

(4.2)

Compared to the approach in section 4.1, this approach allows to incorporate easily

any prior information that an economist may have about θ. In fact, taking into account

the information on θ through the prior distribution of f is complicated while to incorporate

such an information directly in the prior distribution of θ results to be very simple.

Let us suppose that m = 1, S = [−1, 1] and Π be the Lebesgue measure. Then, the

covariance operator Ω0θ can be constructed in the same way as proposed in section 4.1 since

the second Legendre polynomial P1(x) = x allows to implement the constraint on θ. The

only difference concerns the number λ1 which has to be equal to 0 in this case. Therefore,

we construct the operator Ω0θ as:

Ω0θ· = σ0

∞∑
n=2

λn
2n+ 1

2
< Pn, · > Pn

where the λj , j ≥ 2 can be chosen in an arbitrary way provided that
∑

j≥2 λj < ∞. The

constant σ0 can be set to an arbitrary value and has the purpose of tuning the size of the

prior covariance.

Many orthogonal polynomials are suitable for the construction of Ω0θ and they may

be used to treat cases where S is different from [−1, 1]. Consider for instance the case

S = R, then, a suitable choice is the basis made of the Hermite polynomials. The Hermite

polynomials {Hen}n≥0 form an orthogonal basis of the Hilbert space L2(R,BS ,Π) where

dΠ(x) = e−x
2/2dx. It turns out that f will be the density of F with respect to Π and f0θ

the density of another probability measure with respect to Π instead of with respect to the
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Lebesgue measure. The first Hermite polynomials are {1, x, (x2 − 1), (x3 − 3x), (x4 − 6x2 +

3), . . .} so that we can construct an Ω0θ that satisfies the constraints by setting λ0 = λ1 = 0

in the following way

Ω0θ· =
∞∑
n=2

λn
1√
2πn!

< Hen, · > Hen.

We performed two simulations exercise: one uses the Legendre polynomial and one

makes use of Hermite polynomials. In both the simulations we use the empirical cumulative

distribution function to construct r̂: r̂(t) = n−1
∑n

i=1 1{xi ≤ t}. In the first simulation,

we generate n i.i.d. observations (x1, . . . , xn) from a N (0, 1) distribution truncated to the

interval [−1, 1] as in section 4.1. The prior distribution for θ is uniform over the interval

[−1, 1]. The prior mean function f0θ is fixed equal to the pdf of a N (θ, 1) distribution

truncated to the interval [−1, 1]. The covariance operator Ω0θ is constructed by using the

Legendre polynomials and λn = n−1.1.

We represent in Figure 2a draws from the conditional prior distributions of f given θ

(blue dashed-dotted line) together with the true f that has generated the data (black line)

and the prior mean (dashed red line). Figure 2b shows draws from the conditional posterior

distribution of f given θ (blue dashed-dotted line) together with the true f that generates

the data (black line) and the posterior mean (dashed red line). Lastly, Figure 2c shows the

posterior distribution of θ (marginalized with respect to f) approximated by using a kernel

smoothing and 1000 drawings from the posterior together with the posterior mean of θ. All

the pictures in Figure 2 are obtained for σ0 = 20 and α = 0.1. The posterior distribution

of θ is obtained by integrating out f from the sampling distribution in the following way{
θ ∼ U [−1, 1]

r̂|θ ∼ N (Kf0θ,Σn +KΩ0θK
∗).

The posterior distribution of θ cannot be computed in a closed-form but we can easily

simulate from it by using a Metropolis-Hastings algorithm, see for instance Robert (2002).

To implement this algorithm we selected, as auxiliary distribution, a uniform distribution

over [−1− θ, 1 + θ].

4.3 Overidentified case

Let us consider the case in which the one-dimensional parameter of interest θ is characterized

by the moment conditions EF (h(θ, x)) = 0 with h(θ, x) = (θ − x, θ2 − x2

2 )
′. For instance,

this arises when the true data generating process F is an exponential distribution with

parameter θ. We specify a prior distribution for (θ, f). The prior µθ is chosen arbitrarily

provided that the potential constraint on θ are satisfied. These are essentially constraint

on the support of θ. The moment conditions affect the conditional prior distribution of f
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(a) Draw from the conditional prior distribution

µθf , Prior mean and true f , α = 0.1 and a = 1.1.
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(b) Draw from the conditional posterior distri-

bution µθf , posterior mean and true f , α = 0.1

and a = 1.1.
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(c) Posterior distribution and mean of θ and a =

1.1.

Figure 2: Prior and posterior distribution of f and posterior distribution of θ. The true value of θ is 0.

conditionally on θ. This is a Gaussian distribution with mean function f0θ whatever pdf

with the same support as F that satisfies
∫
xf0θ(x)dΠ(x) = θ and

∫
x2f0θ(x)dΠ(x) = 2θ2.

The covariance operator Ω0θ of f must be such that

Ω
1
2
0θ

 1

x

x2

 = 0. (4.3)

In our simulation exercise we take S = R+ and dΠ(x) = e−xdx. We generate N = 1000

observations x1, . . . , xN independently from an exponential distribution with parameter

θ∗ = 2. Therefore, the true f associated with this DGP is f∗(x) = θ∗e
−(θ∗−1)x which

obviously satisfies the moment restrictions. The marginal prior distribution µθ for θ is a chi-

squared distribution with 1 degree of freedom and, for every value of θ drawn from this µθ,

the prior mean function f0θ is fixed equal to f0θ =
1
θe

−(1−θ)x/θ. We fix the eigenfunctions of

Ω0θ proportional to the Laguerre polynomials {Ln}n≥0. The first few Laguerre polynomials

are {1, (1 − x), 12(x
2 − 4x + 2), 16(−x

3 + 9x2 − 18x + 6), . . .} and they are orthogonal in

L2(R+, e
−x). Remark that x = L0 − L1 and x2

2 = L2 − 2L1 + L0. Therefore we construct
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the operator Ω0θ as:

Ω0θ· = σ0

∞∑
n=0

λn < Ln, · > Ln

with λ0 = λ1 = λ2 = 0 to guarantee that (4.3) holds. The constant σ0 and the λn, n ≥ 3

can be arbitrarily set provided that
∑

n≥3 λn < ∞. In our simulation exercise we take

σ0 = 1 and λn = n−1.1 for n ≥ 3.

We represent in Figure 3a draws from the conditional prior distributions of f given

θ (blue dashed-dotted line) together with the true f∗ that has generated the data (black

line) and the prior mean (dashed red line). Figure 3b shows draws from the conditional

posterior distribution of f given θ (blue dashed-dotted line) together with the true f∗ having

generated the data (black line) and the posterior mean (dashed red line). Lastly, Figure

3c shows the posterior distribution of θ (marginalized with respect to f) approximated

by using a kernel smoothing and 1000 drawings from the posterior distribution together

with the posterior mean of θ. All the pictures in Figure 3 are obtained for σ0 = 1 and

α = 0.1. The posterior distribution of θ is obtained by integrating out f from the sampling

distribution in the following way{
θ ∼ χ2

1

r̂|θ ∼ N (Kf0θ,Σn +KΩ0θK
∗).

As the posterior distribution of θ cannot be computed in a closed-form we have used a

Metropolis-Hastings algorithm to simulate from it. To implement this algorithm we selected,

as auxiliary distribution, a χ2
⌈θ⌉ distribution.

References

Bickel, P.J. and B.J.K., Kleijn (2012). The seminaprametric Bernstein-von Mises theorem.

Ann. Statist. 40, No.1, 206-237.

Carrasco, J.P. and M., Carrasco (2012). On the asymptotic efficiency of GMM, mimeo.

Castillo, I. (2012). A semiparametric Bernstein-von Mises theorem for Gaussian process

priors. Prob. Theory Rel. Fields 152, No.1, 53-99.
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