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Abstract

We propose a method for deriving a distribution free-transform of empiri-
cal autocorrelations of residuals in case of VARMA models. Statistics being
functions of residuals are basic tools for testing for lack of correlation of
model errors. The problem being adressed is that asymptotically the resid-
uals obtained after estimating a model are dependent also on the estimation
error which affect each covariance of lag h in a different, yet significant man-
ner. We are also weakening the H0 hypothesis from iid innovations to lack
of correlation of the innovations. It is presented how the vectorized auto-
covariance matrix of lags 1, . . . ,H may be standarized by its asymptotic
covariance matrix such that proposed pivotal transform causes the resulting
vector of autocorrelations to be asymptotically a vector of standard normals.
Our method does not specify the number of covariances being transformed
and how many of them are going to be applied in Box-Pierce test, it does not
require a specific estimator of parameters of VARMA model and the esti-
mation of covariance matrix of parameters estimators is not necessary. The
finite sample results are being examined by a Monte Carlo experiment per-
formed for classical Box-Pierce test of lack of correlation for iid and weakly
dependent innovations in case of VAR and VARMA generated data. The
method proposed is compared to the alternative methods that are currently
available to solve the problem of asymptotically significant estimation error
in residual autocorrelations.

Keywords: Goodness-of-fit test, higher order serial dependence, model
checking, portmanteau Ljung-Box and Box-Pierce, recursive residuals, re-
cursive derivatives of residuals, residual autocorrelation, weak VARMA mod-
els.
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1 Introduction

In a general parametric time series framework functions of residuals are a key

tool for model checking. In case of testing lack of correlation, the standard method

is based on using statistics of empirical residuals autocorrelations. Usually port-

manteau tests like Ljung-Box (1976) and Box-Pierce (1970) are being utilized. The

same applies for vector autoregressive (VAR) and vector autoregressive moving

average models (VARMA) that are a standard econometric tool used for macroe-

conomic data. This class of models is a natural expansion of univariate ARMA

models and thus they were extensively studied during the 90’s (see e.g. Lütkepohl,

1993).

The motivation of VARMA models is based on the fact that they are able to ef-

fectively represent multivariate economic data by allowing for empirically evident

autocorrelation structures, that can not be achieved by using finite order VAR

models. VARMA models may be usually found in financial models, because auto-

correlation of shocks have a natural interpretation. As far as macroeconomic data

is concerned VAR models are less parsimonious than VARMA models and are not

closed to simple subvector transforms like marginalization and aggregation which

lead may from VAR to VARMA model (see e.g Dufour, Palletier, 2008). Among

other fields, vector autoregressive model checking tools, especially goodness-of-fit

testing of empirical residuals, may also be used in the functional time series using

the Principal Component decomposition of arbitrary functional time series (see

e.g. Kokoszka, 2011).

VARMA(p, q) in Rd has a very simple model formulation, however still the number

of estimated parameters is growing with the square of the dimension considered

which may cause statistical problems in estimation even if the order (p, q) is cor-

rect. The problem is that usually the orders of the VARMA(p, q) are not known.

While estimating the model for too small p or q will lead to inconsistent estima-

tion, estimating it for p or q too large will lead to overfitting that increases the

variance of estimated set of parameters, given the number of observations N .

Nevertheless the solution of the problem of order choice of vector autoregres-

sive models leads to validation techniques that are naturally based on assesing
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goodness-of-fit of the estimated model to the observed multivariate time series.

This idea leads exactly to testing if the obtained residuals which depend on

the set of parameters θ ∈ Θ for given (p, q) are satisfying the ”null” hypothe-

sis: ”Innovations are uncorrelated”, under which the parameters of VARMA(p, q)

were estimated. Thus from the problem of determining the correct order of

VARMA(p, q), that has been usually approached with BIC-AIC criterions we may

move to more general setup better fitting to weakly dependent innovations formu-

lating the ”null”: ”There exists the VARMA model, given the dataset, that would

produce uncorrelated residuals”.

It is widely known that given the iid innovations of ARMA generated data, the

autocorrelations of lags 1, . . . , H are asymptotically distributed as standard nor-

mals. This leads to Ljung-Box (Box-Pierce) family of tests that are using this fact

for testing the independence of residuals of estimated ARMA(p,q) which is easily

expanded to a multivariate set up. This idea in the multivariate set up has been

formulated by Chitturi (1974) and Hosking (1981). However as early as in Box &

Pierce (1970) and Durbin (1970) it has been shown that residuals for estimated

ARMA models are going to be neither independent nor identically distributed even

if the parameters are consistently estimated and the true innovations are iid. The

source of this problem is the estimation error of the parameters which affects the

asymptotic distributions of the autocorrelations in a differing manner depending

on the lags considered. As a result the Ljung-Box (Box-Pierce) test will asymp-

totically underreject the ”null” hypothesis as well as it will have decreased power

against natural alternative hypothesis i.e. against sufficiently close VAR represen-

tations, unless the number of lags in QH is very large.

Another problem connected to using Ljung-Box (Box-Pierce) statistic for goodness-

of-fit testing is allowing for non-independence of the true innovations for data

generating VARMA process. In this case asymptotic distribution of even serial

autocorrelations will not be standard normal and surely they will not be indepen-

dent. Notable examples of weakly dependent innovations include allowing for serial

dependence of innovations modeled as GARCH dependent volatility processes. In

this case vectorized autocorrelations even for true innovations will be far from iid
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normally distributed (see e.g. Franq, Roy, Zaköıan, 2005).

As far as statistical analysis of VARMA models is concerned, the innovations errors

εn are generally assumed to be iid (see e.g. Lüthepohl, New Introduction to Time

Series Analysis, Definition 11.3.1, 2005). To understand that it is a restrictive

assumption it is sufficient to note that if we allow for non-independence of innova-

tions, for example conditional heteroscedasticity, then linear VARMA is going to

be merely the best linear predictor of fundamentally more complicated structure

(see e.g Dufour, Palletier, 2005 for weak VARMA modelling). Estimation of weak

VARMA models has been studied in Francq & Boubacar Mainassara (2009).

Both noted problems have been usually studied separately. Recently Francq, Roy

& Zaköıan (2005) have derived the distribution of Box-Pierce statistic for weakly

dependent innovations in case of VAR model. The asymptotic distribution in case

of VARMA innovations has been derived by Boubacar Mainassara (2009). Both

papers proposed a correction of the multivariate Box-Pierce statistic asymptotic

distribution due to estimation error and non-independent innovations, using Imhof

algorithm for obtaining p-values.

A different approach was presented by Delgado & Velasco (2011) in which both

problems are being adressed at the same time. The method is based on trans-

formation of residual autocorrelation vector due to possible serial dependence in

order to obtain asymptotically multivariate normal distribution and then a piv-

otal asymptotic transform of empirical autocorrelations that would orthogonalize

the system of m residual serial autocorrelations. The second step rationale is to

eliminate the asymptotic effect of estimation error. We are going to concentrate

on this approach for VARMA in improving the effectiveness of Box-Pierce test and

compare it with other results available (see e.g. Francq, Roy, Zaköıan, 2005 and

Boubacar Mainassara, 2009).

The article is going to be organized as follows: in Section 2 we are going to in-

troduce the standard goodness-of-fit portmanteau test and estimation of VARMA

models under the assumption that innovations are independent and identically

distributed. Section 3 will present the algorithm of pivotal asymptotic orthogonal-

ization of vectorized autocorrelations vector that would asymptotically eliminate
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the estimation error. In Section 4 we introduce the method of estimation of long

run serial dependence covariance that will allow to weight the vector of autocovari-

ances such that they will be asymptotically i.i.d multivariate normal. Section 5 is

devoted to Monte Carlo simulation experiment that would compare this method

to the available alternatives. All the technical proofs are being relegated to math-

ematical appendix.

2 Diagnostic checking in VAR(p) and VARMA(p,q)

models

Let us consider the d-dimensional VARMA(p, q) model

Xn =

p∑
i=1

AiXn−i +

q∑
j=1

Bjεn−j + εn,

{εn}∞−∞ are iid N (0,Σε) for all n ∈ Z

(1)

with the assumptions imposed on matrices Ai and Bi that would grant stationarity

and invertibility of Xn. We define parameters θ ⊂ Θ as the function

θ ∈ Θ : Rs → R(p+q)d2

θ → vec[A1, . . . , Ap, B1, . . . , Bq]
(2)

so that we have A1 = A1(θ), A2 = A2(θ), . . . , Ap = Ap(θ) and B1 = B1(θ), B2 =

B2(θ), . . . , Bq = Bq(θ). Now, residuals {εn(θ)} are defined as

εn(θ) = Xn+1 −
p∑
i=1

Ai(θ)Xn−i −
q∑
j=1

Bj(θ)εn−j(θ) (3)

for n = max(p, q) + 1, . . . , N . Because εn(θ) are treated as functions of θ ∈ Θ we

may write that εn = εn(θ0).

It is convenient to define the VAR(p) as a separate case despite the fact that the
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assumptions will be presented for general VARMA(p, q). In a similar manner we

have that for any θ ∈ Θ let A1 = A1(θ), A2 = A2(θ), . . . , Ap(θ) = Ap(θ) and

Xn =

p∑
i=1

AiXn−i + εn for all n ∈ Z (4)

with det(Id −
∑p

i=1 Aiz
i) 6= 0 for any |z| ≤ 1 with z ∈ C. This condition is

necessary for equation (4) to generate stationary series {Xn}∞n=−∞. The residuals

{εn(θ)} are given as

εn(θ) = Xn+1 −
p∑
i=1

Ai(θ)Xn−i for n = p+ 1, . . . , N. (5)

For the time being, we assumed in (1) that innovations εn are independent identi-

cally distributed, which make a processes generated by (4) and (1) so called strong

VAR(p) and VARMA(p, q). Now, E(εn) = 0 implies that E(Xn) = 0 and allows

for omitting the intercept estimation which was not included in (1) and (4). Our

setup is general in the sense that if we considered VARMA model with intercept

Xn = µ+

p∑
i=1

AiXn−i +

q∑
j=1

Bjεn−j + εn,

assuming that {Xn}∞n=−∞ is stationary it is possible to adjust the above VARMA(p, q)

model to (1) form using the estimate of EXn (see e.g. Lüthepohl, Chapter 11.3.1,

2005).

The assumptions needed to consistently estimate the strong VARMA model using

quasi-maximum log likelihood (QML) were given by Boubacar Mainassara and

Francq (2009) and are as follows:

A1: {εn} is a sequence of independent and identically distributed random vec-

tors with E(εn) = 0 and Var(εn) = Σε.
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A2: For all θ ∈ Θ ⊂ Rs we have

det

(
I −

p∑
i=1

Ai(θ)z
i

)
6= 0 for any |z| ≤ 1 (6a)

det

(
I −

q∑
j=1

Bi(θ)z
i

)
6= 0 for any |z| ≤ 1 (6b)

It is clear that condition (6a) considers the stability of {Xn} series given that

{εn} series is stationary. Condition (6b) assures the invertibility condition ie.

it allows the model (1) to be represented as a purely innovation based series

Xn =
∑∞

i=1 φiεn−i + εn (see e.g. Lüthepohl, Chapter 11.3, 2005).

A3: θ0 ∈ int(Θ), the true parameter θ0 exists in the interior of Θ ⊂ Rs. The

mappings

θ → vec(Ai) for i = 1, 2, . . . , p

θ → vec(Bj) for j = 1, 2, . . . , q

θ → vec(Σε)

admit continuous third order derivatives for θ ∈ Θ ⊂ Rs.

Now, according to formulation of empirical residuals (3) we may define the matrices

of empirical residual covariances

Γ̂θ(j) =
1

N

N∑
i=1

(εi(θ)− ε̄(θ))(εi+j(θ)− ε̄(θ))′ (7)

for θ ∈ Θ where ε̄(θ) is the average across the 1, . . . , N residuals. Note that Γ̂θ̂(j)

for any j may be interpteted as an estimator of Γ̂θ0(j). For the sake of completeness

let us define the residual autocovariance matrices evaluated in θ0 as

Γ̂θ0(j) =
1

N

N∑
i=1

(εi − ε̄)(εi+j − ε̄)′.
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The ”concept” of goodness-of-fit test for univariate strong VARMA models was in-

troduced by Box and Pierce (1970). Modification of Box-Pierce statistic, so called

Ljung-Box portmanteau test has been proposed by Box and Ljung (1978).

These two portmanteau statistics are used to test the null hypothesis

H0 : {Xn}∞−∞ admits the presumed representation i.e in our case a VAR(p)

or VARMA(p, q) representation and the residuals {εn} satisfy assumption A1.

against the alternative

H1 : H0 is not true.

Now, in the univariate setting the testing procedure using (7) is based on the

following Box-Pierce statistic

Q̂H(θ) = N
H∑
i=1

Γ̂θ(i)Γ̂
−1
θ (0),

θ ∈ Θ, which is going to converge asymptotically under the null to χ2(d2H) given

that we would evaluate Q̂H in θ0. The reason why χ2(·) is a natural benchmark

for Box-Pierce statistic is straightforward. Note that under H0 we have that

ρ̂θ0(h) =
N−h∑
i=1

εn(θ0)εn+h(θ0)

Γ̂θ0(0)

D−→ N (0,
1

N
)

which comes from independence of innovations εn. This implies that

QH(θ0) = N
H∑
i=1

Γ̂θ0(i)Γ̂
−1
θ0

(0)
D−→

H∑
i=1

Z2
i ∼ χ2(H)

because Zi ∼ N (0, 1). The same rule applies in multivariate setting, the only

difference comes from the more elaborate form of statistic Q̂H . The multivariate
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version of Box-Pierce statistic, (8) was given by Chitturi (1974)

Q̂H(θ̂) = N

H∑
h=1

tr{Γ̂′
θ̂
(h)Γ̂−1

θ̂
(0)Γ̂θ̂(h)Γ̂−1

θ̂
(0)} (8)

or equivalently by Hosking (1981)

Q̂H(θ̂) = N
H∑
h=1

{vec(Γ̂θ̂(h))′[Γ̂θ̂(0)⊗ Γ̂θ̂(0)]−1vec(Γ̂θ̂(h))} (9)

with Q̂H(θ0) being the statistic Q̂H evaluated in θ0 ∈ Θ.

It is widely known that under H0 the asymptotic distribution of Q̂H(θ̂) statistic

does not follow χ2
d2H due to estimation error. Hosking (1980) has shown that

finite sample distribution of Q̂H(θ̂) is closer to χ2
d2(H−p−q) than to the asymptotic

distribution of Q̂H(θ0).

It is clear that the (8) and (9) statistics are testing the lack of serial correlation

of residuals εn(θ̂) in order to indirectly test the specification of a model that was

chosen for an estimation. These statistics are the standard method of checking

statistical significance of residual autocorelations.

3 Removing the estimation effect on Portmanteau

statistics in VARMA(p, q) setting

The asymptotic effect of estimation error θ̂−θ0 on Q̂H(θ̂) under H0 is straight-

forward in nature. The sequence {vecΓ̂θ0(i)}mi=1 is iid while {vecΓ̂θ̂(i)}mi=1 is going to

be autocorrelated. This implies that the asymptotic distribution of vecΓ̂θ̂(i) is not

going to be the same as the asymptotic distribution of vecΓ̂θ0(i) for i = 1, . . . ,m

(see Box, Pierce, 1970 and Durbin, 1970 for VARMA). In addition estimation error

is going to affect estimated residual autocorrelations in the finite sample stronger

for small lag number i.
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Let us define the autocovariance vectors

γ̂
(m)
θ =

[
vec(Γ̂θ(1))′, vec(Γ̂θ(2))′, . . . , vec(Γ̂θ(m))′

]′
(10)

and autocorrelation vectors

ρ̂θ(i) = vec
(

Γ̂θ(1)Γ̂−1
θ (0)

)
, i = 1, . . . ,m, (11)

for any θ ∈ Θ.

Now let us assume that the model under consideration follows strong VARMA(p, q)

defined by (1) and assumptions A1-A3. The available method for taking into

account the estimation error in asymptotic distribution of Q̂m(θ̂) is based on es-

timation of covariance matrix of joint vector
√
N(γ̂′

(m)

θ0
, (θ̂−θ0)′), (see e.g Boubacar

Mainassara, 2009 for VARMA, Francq, Räıssi, 2007 for VAR, Francq, Roy, Zaköıan,

2005 for ARMA). The same method for nonlinear models with iid innovations was

analised in Li (1992) and Hwang, Basawa & Reeves (1994). We should note that

our solution to the problem of error dependence that we are going to present in

this section assuming iid innovations will be applicable for nonlinear dependence

assumptions on innovations as well. We are going to consider this case in the

following sections.

Our solution of the problem of error dependence in γ̂
(m)

θ̂
follows the route in-

troduced in Delgado & Velasco (2011). Instead of deriving the true asymptotic

distribution of Q̂H(θ̂) under the H0 the idea is to perform the linear transforma-

tion of covariance vector γ̂
(m)

θ̂
, defined in (10). The key element of the reasoning

is based on the fact that we are not going to directly estimate γ̂
(m)
θ0

, but perform

the transform using orthogonal projection operator. In practice we are going to

use autocorrelation vectors ρ̂
(m)

θ̂
.
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Let us define the matrix of derivatives of Γ̂θ

ζ
(m)
θ =


∇vecΓ̂θ(1)

∇vecΓ̂θ(2)
...

∇vecΓ̂θ(m)


(θ)

(12)

where

∇vecΓ̂θ(i) =
∂

∂θ′
vecΓ̂θ(i), i = 1, . . . ,m.

The derivatives ∇vecΓ̂θ(i) evaluated in θ̂ are going to play the crucial role in our

method. According to (17) they may be used in the pivotal transform of γ̂
(m)

θ̂
or

ρ̂
(m)

θ̂
given that they may be consistently estimated.

The transform of sample autocorrelations is based on recursive projections on the

space spanned by orthogonal sample autocorrelations of residuals that are asymp-

totically standard normals. Thus, this transformation is asymptotically distribu-

tion free (see Delgado, Velasco, 2011). In theory it is not possible to estimate

the sets of orthogonal autocorrelation vectors {γ̂θ0(i)}ki=1, k = 2, . . . ,m without

estimating the estimation error distribution. However, we show that our recursive

projection operator estimated using the derivatives ζ
(m)

θ̂
is going to transform the

vector γ̂
(m)

θ̂
into γ̃

(m)

θ̂
that is undistinguishable from γ̃

(m)
θ0

as far as the estimated op-

erator is concerned. The idea of this sort of martingale transform was introduced

by Brown, Durbin & Evans (1975) for CUSUM tests in the linear framework. The

theoretical part reminds Khmaladze (1981) who obtained similar result for mar-

tingale part of a Gaussian process.

In order to provide the standarization of autocovariance vector γ̂
(m)
θ for θ ∈ Θ

under H0 and strong VAR(p) assumptions we may use may either use the estimate

Σ̂ε(θ) = Γ̂θ̂(0) given by (62) or note that under A1-A3 we have

ρ̂
(m)
θ = Ĝ

− 1
2

θ γ̂
(m)
θ (13)
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with Ĝθ = diag
(

vec(Γ̂θ(1))vec(Γ̂θ(1))′, . . . , vec(Γ̂θ(m))vec(Γ̂θ(m))′
)

. Clearly un-

der A1 and H0 we have Σ̂ε = Σε +OP (N−
1
2 ) and

√
Nρ̂

(m)
θ0

d−→ N (0, Imd2)

Now, the consistent estimation of derivatives of empirical autocovariances is needed

to claim the following proposition

Proposition 1 Under H0 and A1-A3 we have

θ̂ = θ0 +OP (N−
1
2 ), (14)

Ĝθ̂

p−→ Gθ0 , (15)

Gθ0 = diag (vec(Γθ0(1))vec(Γθ0(1))′, . . . , vec(Γθ0(m))vec(Γθ0(m))′) (16)

and the following holds

γ̂
(m)

θ̂
= γ̂

(m)
θ0

+ ζ̄
(m)
θ0

(θ0 − θ̂) + oP

(
N−

1
2

)
(17)

assuming that ζ̄
(m)
θ0

is a probability limit of ζ
(m)
θ evaluated in a true parameter vector

θ0 ∈ Θ.

It should be noted that in Proposition 2 and 3 we show that ζ̄
(m)
θ0

may be estimated

consistently with ζ
(m)

θ̂
. Referring to (17), before the procedure of eliminating the

estimation error from the autocovariances vector γ̂θ̂ it is necessary to obtain the

md2 ×md2 estimate Ĝ(θ̂) that would allow to perform following standarization

Ĝ
− 1

2
θ0
γ̂

(m)

θ̂
= Ĝ

− 1
2

θ0
γ̂

(m)
θ0

+ Ĝ
− 1

2
θ0
ζ̄

(m)
θ0

(θ0 − θ̂) + oP (N−
1
2 ) (18)

with following holding by Proposition 2

ξ
(m)

θ̂
(j) = G

− 1
2

θ0
∇vecΓ̂θ̂(j)

p−→ ξ̄
(m)
θ0

(j) for j = 1 . . . ,m. (19)

Thus Taylor expansion for autocovariances γ̂θ̂ implies the expansion for autocor-

relations vector ρ̂
(m)

θ̂
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ρ̂
(m)

θ̂
= ρ̂

(m)
θ0

+ ξ̄
(m)
θ0

(θ0 − θ̂) + oP (N−
1
2 ) (20)

Now, following (17) we are proposing the distribution free transformation of a

vector of residual autocovariances γ̂
(m)

θ̂
using the least squares projections removing

the ζ̄
(m)
θ0

(θ0 − θ̂) elements from the elements of each autocovariance vecΓ̂θ̂(i), i =

1, . . . ,m in a recursive manner.

Let us take the sequence of vectors {ρ̂θ̂(i)}mi=1. According to (20) we have that

the drift in equation for autocorrelations ρ̂
(m)

θ̂
is asymptotically dependent only on

estimation error. The term asymptotically refers to the fact that derivatives ξ
(m)
θ0

need to be evaluated in θ0 and we are going to use the estimated θ̂ instead.

Our method is based on estimating the parameter vector β given the following set

of equations using the recursive LS
ρ̂θ̂(j) = ξ

(m)

θ̂
(j)× β + µj,j

ρ̂θ̂(j + 1) = ξ
(m)

θ̂
(j + 1)× β + µj,j+1

...

ρ̂θ̂(m) = ξ
(m)

θ̂
(m)× β + µj,m


for j = 1, . . . ,m− 1.

(21)

Clearly β̂j is going to be the estimate of vec(θ0−θ̂) error using the information from

the sequence {ρ̂θ̂(j), . . . , ρ̂θ̂(m)} for j = 1, . . . ,m − 1 and µj,i are errors centered

in zero for each j’th iteration of LS. The feasible recursive LS estimator of βj+1 is

determined to be

β̂j+1 =

(
m∑

i=j+1

ξ
(m)

θ̂
(i)′ξ

(m)

θ̂
(i)

)−1 m∑
i=j+1

ξ
(m)

θ̂
(i)′ρ̂θ̂(i)

Our method is based on doing projections block by block, which is more natural

than estimating recursive LS on each element of ρ̂θ̂(i), i = j, . . . ,m− 1.
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Now, from (20) we would get that asymptotically

ρ̃θ̂(j) = =(m)

θ̂
(ρ̂θ̂(j)) = ρ̂θ̂(j)− ξ

(m)

θ̂
(j)

(
m∑

i=j+1

ξ
(m)

θ̂
(i)′ξ

(m)

θ̂
(i)

)−1 m∑
i=j+1

ξ
(m)

θ̂
(i)′ρ̂θ̂(i)

(22)

is going to approximate ρ̃θ0(j), the trtansformed vectorized autocorelation of em-

pirical residuals at lag j, evaluated at θ0.

The main motivation is based on following observation

=(m)
θ0

(ρ̂θ̂(j)) = =(m)
θ0

(ρ̂θ0(j)), j = 1, . . . ,m (23)

and the fact that for N sufficiently large we are going to have

=(m)

θ̂
(ρ̂θ(j))

p−→ =(m)
θ0

(ρ̂θ(j)), j = 1, . . . ,m,

for θ ∈ θ. Thus having that =(m)
θ0

(·) may be consistently estimated it implies by

(23) that =(m)

θ̂
(ρ̂θ̂(j)) is going to converge in probability to =(m)

θ̂
(ρ̂θ0(j)). In the

light of above discussion, it is interesting to note that if we treat the derivatives

ξ
(m)

θ̂
(i), i = j + 1, . . . ,m as coefficients then =(m)

θ̂
(ρ̂θ̂(j)) is a linear combination of

vectors ρ̂θ̂(j + 1), ρ̂θ̂(j + 2), . . . , ρ̂θ̂(m).

The last step is concerned with covariance of =(m)(ρ̂θ̂(i)) which should have been

taken into account in calculating Box-Pierce statistic (9). In general we have that
√
Nρ̂θ0(j) are distributed as iid standard normals for j ≥ 1. This implies that

=(m)(ρ̂θ̂(j)) are asymptotically distributed as independent normals with variance

Âvar
(
=(m)(ρ̂θ̂(j))

)
=
[
Id2 + ξ

(m)

θ̂
(j)
( m∑
i=j+1

ξ
(m)

θ̂
(i)′ξ

(m)

θ̂
(i)
)−1

ξ
(m)

θ̂
(j)′
]

(24)
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for j ≥ 1. Now the key observation is that in VAR(p) case, if we used explicitly

only m autocovariances, then the condition that has to be met is

rank(
m∑

i=j+1

ζ
(m)

θ̂
(i)′ζ

(m)

θ̂
(i)) = pd2 (25)

with

rank(
m∑

i=j+1

ζ
(m)

θ̂
(i)′ζ

(m)

θ̂
(i)) = (p+ q)d2 (26)

in VARMA(p, q) case. The implication of the above is that certain number of

covariances of order less that m could not be corrected because of singularity

problems.

The simplest solution to this problem is to use constant number of derivatives

to transform a subset of m empirical autocorrelations. The number of autocor-

relations used in correction algorithm is not bounded. Thus let us assume that

we are going to use arbitrary number r of past autocorrelations in each of the

equations. This modification of (22) would produce following projection operator

=(m,r)

θ̂
(ρ̂θ̂(j)) = ρ̂θ̂(j)− ξ

(m)

θ̂
(j)

(
j+r∑
i=j+1

ξ
(m)

θ̂
(i)′ξ

(m)

θ̂
(i)

)−1 j+r∑
i=j+1

ξ
(m)

θ̂
(i)′ρ̂θ̂(i)

j = 1, . . . ,m− r, H ≤ m− r, r < m.

(27)

The argument for fixing the number of derivatives used in adjusting the vec-

torized autocorrelations of order j = 1, . . . ,m is that the excessive number of

derivatives of autocorrelations used is going to decrease the goodness of fit. Note

that given VARMA(p, q) specification, the autocorrelations and derivatives of au-

tocorrelations of order p+ 1, p+ 2, . . . are going to converge to zero for increasing

lags. So it is clear that the estimates of inverces of matrices of the form (25) and

(26) are not asymptotically bounded. On the other hand this problem may be

15



treated as a property of resursive projection technique. Note that the projection

operator =(m,r)

θ̂
is an estimate of =(m,r)

θ0
and there is a tredeoff between the pre-

cision of the estimate and the number of lags considered r, given the number of

observations N .

Now accounting for (24), γ̂θ0(0) which is equal to vec(Id) and lack of estimation

effect in ρ̂θ̂(0), we have according to (9)

Q̌H(θ̂) = N

H∑
j=1

{
=(m,r)

θ̂
(ρ̂θ̂(j))

′
[
Âvar

(
=(m,r)

θ̂
(ρ̂θ̂(j))

) ]−1

=(m,r)

θ̂
(ρ̂θ̂(j))

}
(28)

We are claiming the following

Theorem 1 Under assumptions A1-A3 and Proposition 2 and 3 we have the

following

Q̌H(θ̂) = Q̌H(θ0) + oP (1), (29)

Q̌H(θ̂)
D−→ χ2(Hd2), with N →∞ (30)

under H0 for H = 1, 2, . . . , H ≤ m− r, r < m.

Above result is a main reason that justifies our approach and allows for eliminating

the estimation error in asymptotic distribution of Box-Pierce(Ljung-Box) statistic.

The crucial point is that we do not estimate the ρ̂mθ0 vector, because it would be im-

possible without estimating the asymptotic distribution of estimation error. In the

proof we are using the features of =(m,r)
θ0

operator as it is presented in the appendix.

This way we have constructed the procedure of obtaining an analogue of BP statis-

tic (9). It is interesting to note that approach of Francq & Raissi (2005) is based on

the statistic (8) while our statistic (28) may not be trivially presented in this form.

As opposed to the standard LB statistic the treshold distribution is not going to

be χ2((H − p − q)d2) but χ2(Hd2). It should be noted that projection operator

=(m,r)

θ̂
(·) does not asymptotically depend on asymptotical distribution of estima-

tion error, so that we do not need to estimate it. It is the main difference between

16



our method and the alternative method proposed in Francq & Räıssi (2007) which

is going to be compared in the next section.

Now in order to assure consistent estimation of =(m,r)
θ0

(·) we need to show that

derivatives of vectorized residual autocovariances with respect to θ, evaluated in

θ0 may be consistently estimated. ∇vecΓ̂θ(j), j = 1, . . . ,m for θ ∈ Θ are obtained

using the derivatives of εn(θ) for n = 1, . . . , N with respect to θ′. In the following

proposition we are claiming that under H0 in general strong VARMA framework

we will obtain the oP (1) convergence of ζ
(m)

θ̂
with the proof moved to the appendix.

Proposition 2 Let us assume canonical parametrization of VARMA(p, q)

θ = vec[A1, A2, . . . , Ap, B1, B2, . . . , Bq] (31)

Under H0 and A1-A3 we have that derivatives matrix defined in (12) will admit

∇vecΓ̂θ̂(i)
p−→ ∇vecΓ̂θ0(i), for i = 1, . . . ,m

ζ̌
(m)

θ̂
= ζ̌

(m)
θ0

+ oP (1)
(32)

where matrix ζ̌
(m)
θ0

for θ0 ∈ Θ satisfies the following equation

ζ̌
(m)
θ0

=


∇vecΓ̂θ0(m)

...

∇vecΓ̂θ0(1)

 = − 1

N

N∑
n=m

(
∞∑
i=0

Bi
(m)Ψ

(m)
n−i ⊗ εn−m(θ0)

)
(33)
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with

B(m)(θ0) =

m×m blocks︷ ︸︸ ︷

−B1(θ0) −B2(θ0) . . . −Bq(θ0) 0 . . . 0

Id 0 . . . 0 . . . . . . 0

0 Id . . . 0 . . . . . . 0
...

0 0 . . . Id . . . . . . 0
...

0 0 . . . 0 . . . Id 0


,

Ψ
(m)
k (θ0) =

m×1 blocks︷ ︸︸ ︷

X ′k−1 ⊗ Id . . . X ′k−p ⊗ Id εk−1(θ0)′ ⊗ Id . . . εk−q(θ0)′ ⊗ Id
0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0
...

...
...

...
...

...

0 . . . 0 0 . . . 0


with the constraint m ≥ q.

It should be noted that condition m ≥ q is purely technical, the form of matrices

B(m)(θ0) and Ψ
(m)
k (θ0) in the unrealistic case when m < q was presented in the

appendix. The standard (canonical) parametrization of VARMA(p, q) assumed in

Proposition 2 may be easily changed to general parametrization (2). It is enough

to see that if we defined arbitary mapping ν in parameter space Θ

ν : θ ∈ Θ ⊂ Rs −→ vec[A1, . . . Ap, B1, . . . , Bq]

then we may write, using the chain rule

∇vecΓ̂θ(i) = ∇vecΓ̂[A,B](i)∇ν(θ)

18



for any i = 1, . . . ,m where vecΓ̂[A,B] is the residual covariance with respect to

canonical parametrization (31). Note that Proposition 2 would still hold because

∇θν is merely a linear function of θ ∈ Θ.

Clearly from Proposition 2 and A2 we have that derivatives of VARMA(p, q)

residuals will be well defined for all θ ∈ Θ, not only for θ0. It follows from station-

arity of residuals εn(θ) and stationarity of the series Xn. Note that derivatives of

residuals with respect to parameter vector θ ∈ Θ are defined even if the residuals

εn(θ) are not stationary. However without the stationarity the estimators ζ̌
(m)
θ de-

fined as averages would not make any sense and would not converge to any limit.

In general Proposition 2 states that using equation (33) as the asymptotic limit,

under H0 empirical covariances derivatives ζ̌
(m)

θ̂
are going to converge to ζ̌

(m)
θ0

at

least with oP (1) rate. In order to continue we need to state the following

Proposition 3 Assuming A1-A3 and (31) it is true that

ζ̌
(m)
θ0

p−→ −E

(
n∑
i=0

Bi
(m)(θ0)Ψ

(m)
n−i(θ0)⊗ εn−m(θ0)

)

We are going to show estimation of ζ̌
(m)
θ0

in the simplest case of VAR(p) with

A = [A1, A2, . . . , Ap] matrix. According to Proposition 2 we may simplify the
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Bi
(m)(θ0) matrix because B1, . . . , Bq are equal to zero and

B0
(m) =

m×m blocks︷ ︸︸ ︷
Id 0

0
. . . 0

0 Id

,B1
(m) =

m×m blocks︷ ︸︸ ︷
0

Id 0

. . .
. . .

Id 0

,

B2
(m) =

m×m blocks︷ ︸︸ ︷

0

0 0

Id 0 0

0
. . .

. . .
. . .

Id 0 0


, . . . ,Bp

(m) = 0md

Thus we are going to obtain that

ζ̌
(m)

θ̂
=

1

N

N∑
n=m

(
m−1∑
i=0

Bi
(m)Ψ

(m)
n−i ⊗ εn−m(θ̂)

)
(34)

with

Ψ(m)
n =



X ′n−1 ⊗ Id . . . X ′n−p ⊗ Id
0 . . . 0

0 . . . 0
...

...
...

0 . . . 0


=



Fn

0

0
...

0


and Fn = [X ′n−1, . . . , X

′
n−p]⊗ Id.
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Clearly Bi
(m) i = 0, 1, . . . ,m − 1 are simply row switching linear operators so we

are going to get according to (34)

ζ̌
(m)

θ̂
=

1

N

N∑
n=m


Fn

Fn−1

...

Fn−m+1

⊗ εn−m(θ̂) =

=
1

N

N∑
n=m


X ′n−1 ⊗ Id . . . X ′n−p ⊗ Id
X ′n−2 ⊗ Id . . . X ′n−p−1 ⊗ Id

...
...

...

X ′n−m ⊗ Id . . . X ′n−m−p+1 ⊗ Id

⊗ εn−m(θ̂) =

=
1

N

N∑
n=m


X ′n−1 ⊗ εn−m(θ̂) . . . X ′n−p ⊗ εn−m(θ̂)

X ′n−2 ⊗ εn−m(θ̂) . . . X ′n−p−1 ⊗ εn−m(θ̂)
...

...
...

X ′n−m ⊗ εn−m(θ̂) . . . X ′n−m−p+1 ⊗ εn−m(θ̂)

⊗ Id.

(35)

In general there is not one way to write the derivatives ζ̌
(m)
θ because Kronecker

product ⊗ is not commutative. It is easy to show that (35) is going to be asymptot-

ically equivalent to (43) for VAR(p), however (35) is consistent with VARMA(p, q)

representation of ζ̌
(m)
θ . As far as probability limit is concerned under the strong

VAR(p) specification we are going to obtain under LLN

ζ̌
(m)

θ̂

p−→



σ⊗ε (m− 1) . . . σ⊗ε (m− p+ 1) σ⊗ε (m− p)
...

...
...

...
...

...
... σ⊗ε (1)

...
... . .

.
σ⊗ε (0)

... σ⊗ε (1) . .
.

0

σ⊗ε (1) σ⊗ε (0) . . . 0

σ⊗ε (0) 0 . . . 0


⊗ Id
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where σ⊗ε (f) satisfies

σ⊗ε (f) =

f∑
s=1

∑
k1+···+ks=f

[
ε′n

(
s∏
i=1

Aki

)′
⊗ εn

]
,

f = 0, . . . ,m− 1,

0 < (k1)si=1 ≤ p :
s∑
i=1

ki = f for any s > 0,

Convergence rates of derivatives of general VARMA(p, q) are needed to write the

empirical covariances as a sum of uncorrelated covariances γ̂θ and a stochastic drift

dependent on the estimation error under H0. Proposition 3 gives the probability

limit of ζ̌
(m)
θ0

. From Proposition 2, however we know that ζ̌
(m)

θ̂
will be converging

in probanility to ζ̌
(m)
θ0

hence the above result gives the probability limit of ζ̌
(m)

θ̂

under assumptions of Proposition 2.

4.Comparison of our method of removing estima-

tion error with the alternative solution in case of

strong VAR(p) models

Now we are going to review our method on the example of strong VAR(p)

model ie. taking assumptions A1-A3. It means that we are only going to deal with

estimation error (θ̂−θ0) but the true empirical residuals εn(θ0) will be independent

and uncorrelated. The point is to show the asymptotic equivalence of projection

method and the alternative procedures based on the joint analysis of the vector

ωθ0 = (
√
Nγ̂′

(m)

θ0
,
√
N(θ̂ − θ0)′)′
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The representative review of this method in case of weakly dependent VAR(p)

model was introduced in Francq & Räıssi (2007), recently it was used in Escan-

ciano, Lobato and Zhu (2010). As far as estimation is concerned, VAR(p) in Rd

under A1-A3 may be estimated using the standard OLS method assuming the

canonical parametrisation of V AR(p), (31), following Francq & Räıssi (2007).

Let us define

X̃n = [X ′n, X
′
n−1, . . . , X

′
n−p+1]′

and let us use the convention that Xn = 0, εn(θ) = 0 for any n < 1, n > N . We

have that

ĈovX(p) =
1

N

N∑
n=1

XnX̃
′
n

and under the assumption that

V̂arX =
1

N

N∑
n=1

X̃nX̃
′
n

is invertible (see e.g. Lütkepohl, 1993) and A1 we have the LS estimator of θ0 is

θ̂ = vec

(
ĈovX(p)(V̂arX)

−1
)

(36)

consistent and asymptotically normally distributed. Note that if we defined the

residuals as in (5) then equation (36) gives the closed form solution for minimiza-

tion of QML estimator (61).

The main contribution in solving the poblem of eliminating the asymptotic estima-

tion error from Ljung-Box statistic has been proposed in Francq & Räıssi (2007).

In order to relate it to our result we are going to give the brief decription of their

solution. In Francq & Räıssi (2007) it is shown that for weakly dependent VAR(p)
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model under H0 vector ωθ0 = (γ̂′
(m)

θ0
, (θ̂ − θ0)′)′ satisfies

√
Nωθ0

d−→ N (0,ΞF ).

Now, covariance matrix ΞF has the following structure

ΞF =

(
Σγ̂(θ0) Σ(γ̂(θ0),θ̂)

Σ′
(γ̂(θ0),θ̂)

Σθ̂

)
=

∞∑
h=−∞

EΥnΥ′n−h, (37)

with Υn =

(
wn

vn

)
where

wn =


εn−1(θ0)

...

εn−m(θ0)

⊗ εn(θ0),

vn = VarX
−1


Xn−1

Xn−2

...

Xn−p

⊗ εn(θ0).

(38)

where VarX = plimV̂arX. Now following Theorem 1 (Francq, Räıssi, 2007) it has

been shown that

√
Nγ̂

(m)

θ̂

d−→ N (0,Σγθ̂(θ̂)) (39)

with

Σγθ̂(θ̂) = Σγθ̂(θ0) + ΦmΣθ̂Φ
′
m + Σ(γ̂(θ0),θ̂)Φ

′
m + ΦmΣ′

(γ̂(θ0),θ̂)
(40)
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where

Φm = −E


εn−1(θ0)

...

εn−m(θ0)

⊗

Xn−1

...

Xn−p


′

⊗ Id (41)

In addition the following formula for correlation ρ̂
(m)

θ̂
is shown to hold

√
Nρ̂

(m)

θ̂

d−→ N (0,Σρ̂(θ̂))

where

Σρ̂(θ̂) = (Im ⊗ (Sε ⊗ Sε)−1)Σγθ̂(θ̂)(Im ⊗ (Sε ⊗ Sε)−1) (42)

where Sε is the variance of d coordinates of εn, estimated by

σ̂(i) =

√√√√ 1

N

N∑
j=1

ε2
ji(θ̂), i = 1, . . . , d

Ŝε̂ = diag(σ̂ε(1), σ̂ε(2), . . . , σ̂ε(d)).

We have that Ŝε does not have to be asymptotically equivalent to Σ̂ε because it

does allow only diagonal asymptotic covariance matrix of model errors.

It is clear that a main problem is concerned with estimation of Σγθ̂(θ̂). Equation

(40) gives the relation between Σρ̂(θ̂) and submatrices of ΞF . Let us assume for

the moment that variance matrix of ωθ0 , ΞF may be consistently estimated. We

are going to show how equation (40) is related to (17).

The first thing to be noted is that we have plim (ζ
(m)

θ̂
) = Eζ

(m)
θ0

= Φm. Clearly it
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is true for θ ∈ Θ that

∇vecΓ̂θ(j) = − 1

N

N∑
n=p

εn−j(θ)⊗


Xn−1

Xn−2

...

Xn−p


′

⊗ Id for j = 1, . . . ,m.

It follows that for ζ
(m)

θ̂
defined in (12) we have

ζ
(m)

θ̂
= − 1

N

N∑
n=p


εn−1(θ̂)

...

εn−m(θ̂)

⊗

Xn−1

...

Xn−p


′

⊗ Id (43)

with

plim ζ
(m)

θ̂
= −E


εn−1(θ0)

...

εn−m(θ0)

⊗

Xn−1

...

Xn−p


′

⊗ Id = Φm

with the first equality following from Propositions 2 and 3.

Now we have that underH0, taking assumptions from Proposition 1, drift equation

(17) holds which implies that

Avar(γ̂
(m)

θ̂
) =Avar(γ̂

(m)
θ0

)+

+ plim(ζ
(m)
θ0

)Avar(θ0 − θ̂)plimζ ′
(m)
θ0

+

+ Acov(γ̂
(m)
θ0

, (θ0 − θ̂))plim(ζ ′
(m)
θ0

)+

+ plim(ζ
(m)
θ0

)Acov(θ0 − θ̂, γ̂(m)
θ0

),

which leads in the notation used in (40) to

Σγθ̂(θ̂) = Σγθ̂(θ0) + plim(ζ
(m)
θ0

)Σθ̂plim(ζ ′
(m)
θ0

) + plim(ζ
(m)
θ0

)Σ(γ̂(θ0),θ̂) + Σ(γ̂(θ0),θ̂)plim(ζ ′
(m)
θ0

)

(44)
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Now, if plim(ζ
(m)
θ0

) = Φm then we have that (40) is equivalent to Francq & Räıssi

equation (51) holding for components of matrix ΞF . In principle (40) is an im-

plication of (17) which is also going to hold under weak VAR(p) assumptions.

However, (17) does not impose (θ̂ − θ0) or Σ̂θ̂ while (40) is specific for particular

estimator (see Den Haan, Levin, 1998).

We should note that in our procedure we are aiming at estimating the asymp-

totic distribution of a combination of past autocorrelations {ρ̂(m)

θ̂
(h)}i+rh=i for every

ρ̂
(m)

θ̂
(i), i = 1, . . . ,m which is going to approximate the =(m)

θ̂
(ρ̂

(m)
θ0

(i)). In Francq &

Räıssi (2007) the authors obtain asymptotic distribution of Box-Pierce statistic (8)

evaluated for ρ̂
(m)

θ̂
instead. Distribution of Q̂FR

m (θ̂) is obtained using the estimator

Σ̂ρ̂(θ̂) of Σρ̂(θ̂) defined in (42), using the feasible estimator of Sε

Σ̂ρ̂(θ̂) =
(
Im ⊗ Ŝ

− 1
2

ε ⊗ Ŝ−
1
2

ε

)
Σγθ̂(θ̂)

(
Im ⊗ Ŝ

− 1
2

ε ⊗ Ŝ−
1
2

ε

)
(45)

following (A⊗B)−1 = A−1 ⊗B−1. Now the distribution of Q̂FR
m (θ̂) is obtained as

asymptotically equal to the distribution of following random variable

Zm({ψi}md
2

i=1 ) =
md2∑
i=1

ψiZ
2
i (46)

where {ψi}md
2

i=1 is a set of md2 eigenvalues of matrix Σ̂ρ̂(θ̂) and the variables Zi,

i = 1, . . . ,md2 are independent N (0, 1). The p-values of a test under H0 are thus

obtained using (46). The origin of such a method goes back to 1951 and is called

an Imhof algorithm.

This step is necessary because, due to approach used, the statistic of interest has

an unknown distribution. Let us recall that (46) is a direct analogue of equation
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(8) using the known fact that

tr(A) = tr(V JV −1) =
md2∑
i=1

ψi, for any A

where J is a Jacobi representation matrix of A and ψi, i = 1, . . . ,md2 are its eigen-

values. The main issue is consistent estimation of eigenvalues ψi. This problem is

equivalent to consistent estimation of matrix ΞF which is going to be analized in

the next section. As far as our method is concerned the most evident difference

is that we do not need to estimate the covariance matrix Σ̂θ̂. Equivalently we do

not need to include vectorized correlation matrix vn in Υn.

5.Weak VAR(p) and VARMA(p, q) models

The strong formulation of VAR and VARMA models has been criticized as too

restrictive as far as the assumption on strong white noise innovation process εn

is concerned. The criticism comes from the fact that for a strong formulation of

VARMA, ’under null’ the true θ0 exists, which means that the linear function of

past observations and innovations is in fact the best predictor available. However,

it is more realistic to assume that ’under null’ the function of past observations

and past innovations is the best predictor available, but this function does not

neccesarily has to be linear. This observation leads to introducing a different

assumption on innovations process {εn}, instead of strong white noise ie. indepen-

dent, identically distributed vectors εn with homoskedastic covariance matrix Σε

it is assumed that {εn} are non correlated but not necessarily independent vectors.

This assumption together with formulations (4) and (1) define weak VAR(p) and

weak VARMA(p, q) models. In this setup, true parameter vectors θ0 do not exist

per se, and are defined as parameters that define the best linear predictor using

past observations available.

As noted before, there are two problems that might occur while performing Box-

Pierce (Ljung-Box). The first one is concerned with estimation error. The second
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one is caused by allowing for lack of independence of innovations εn. The prob-

lem may be described as follows. Assuming ergodicity, stationarity and lack of

correlation of {εn(θ)} we could write

√
Nρ̂

(m)
θ0

=
√
N


vec(ρ̂θ0(1))

vec(ρ̂θ0(2))
...

vec(ρ̂θ0(m))

 d−→ N(0,Σρ̂(m)) (47)

under some mixing conditions. Covariance matrix Σρ̂(m), however is not going to

be identity matrix under

H0: There exists the VARMA model, given the dataset, with uncorrelated in-

novations for some θ0 ∈ Θ.

with the alternative

H1: There exists no VARMA model, given the dataset, with uncorrelated in-

novations for some θ0 ∈ Θ.

as it would occur in iid {εn} case (see e.g. Francq, Räıssi, 2007). It follows that

statistics (8) will not have asymptotic χ2 distribution. Before we move further

in the discussion we have to analise the sufficient conditions for ergodicity in the

weak VAR(p) and VARMA(p, q) models.

As far as weak VAR model is concerned we define it according to Francq & Räıssi

(2007). Let us assume the model formulation (1) and (3) with the assumption that

{εn} is stationary and ergodic. In case of weak VAR(p) model this implies the er-

godicity of {Xn}. Almost sure convergence of OLS estimation of weak VAR(p) is

proven in Proposition 1 in Francq, Räıssi (2007). It has been proven that if we
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assume that Σε is nonsingular then we have for LS estimator (36)

θ̂
a.s−→ θ0,

Σ̂ε
a.s−→ Σε

VarX is invertible a.s.

for N →∞. In order to obtain asymptotic normality of LS estimator of θ0 we are

using Proposition 2 from Francq & Räıssi (2007) which states that under specific

mixing conditions θ̂ error is asymptotically normal. The necessary assumption

needed for this result is

∞∑
h=0

{αX(h)
ν

2+ν } <∞ (∗)

for some ν > 0, where ||·||· is an euclidean norm and αX(h) is a α-mixing coefficient

defined as

αX(h) = sup
A∈σ(Xu,u≤n),B∈σ(Xu,u≥n+h)

|P (A ∩B)− P (A)P (B)|

It follows that a sufficient assumption replacing A1 in case of weak VAR(p) is

A1’: The process {εn(θ)} is stationary and ergodic for θ ∈ Θ. We are also

assuming α-mixing condition on {Xn}, (∗). In addition we have to assume that

||Xn||4+2ν < ∞ which together with (∗) is sufficient for consistent estimation of

θ0 ∈ θ. Thus A1’ is clearly stronger than A1.

In case of weak VARMA model we are following Boubacar Mainassara & Francq

(2009). The sufficient assumption for consistency of QML estimator is the following

A1”: The process {εn(θ)} is stationary and ergodic for θ ∈ Θ. α-mixing con-

dition (∗) holds. We have also E||εn||4+2ν <∞ where || · || is euclidean norm.
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Estimation of weak VARMA(p, q) model has been described in the Appendix.

Asymptotic normality of θ̂ estimator comes from Boubacar Mainassara & Francq

(2009, Theorem 3). Given that Var(εn) = Σε is not dependent on structural pa-

rameters QML feasible estimator (63) is consistent and asymptotically normal.

However, the canonical parametrization (31) is imposed. It is interesting to note

that in Delgado & Velasco (2011) in order to obtain the asymototic result for weak

nonlinear models assumes A1”.

Compared to the previous section, the central role is going to be played by covari-

ance matrices of weakly dependent processes. Let us recall covariance matrix ΞF

and equation for asymptotic covariance coefficients (37). This kind of estimator

of covariance matrix of nonindependent processes has been analised in Hannan

& Heyde (1972) and more recently by Romano & Thombs (1996). In Francq &

Räıssi (2007) the authors are using Den Haan & Levin estimator we are going to

present further. The idea of deriving the pivotal transform of Box-Pierce statistic

in case of weak VAR(p) and VARMA(p, q) models is based in a simple observation.

If it would be possible to estimate the md2 × md2 matrix Gθ0 that would sat-

isfy under H0 hypothesis

√
Nγ̂

(m)
θ0

d−→ N (0, Gθ0), (48)

then the general method of asymptotic Taylor approximation depicted by the equa-

tion (17) could hold also in a weak case. In fact under A1’ or A1” with moment

condition ||Xn||4+2ν <∞ for some ν > 0 it is possible to estimate Gθ0 consistently

by its empirical analog (see eg. Romano, Thombs, 1996).
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We have that

Gθ0 =
(
gα,β

)
,

gα,β = E(εin(θ0)εjn+k(θ0)εan(θ0)εbn+h(θ0)),

1 ≤ k, h ≤ m,

1 ≤ i, j, a, b ≤ d,

α = (k − 1)d2 + (j − 1)d+ i,

β = (h− 1)d2 + (b− 1)d+ a,

where εjn(θ0) is the j’th element of εn(θ0) vector. Now, in order to get more

compact picture of estimator Ĝθ̂, note that k, h denote the block position in Ĝθ̂

matrix in a following way

Ĝθ̂ =



Ĉ11 Ĉ21 Ĉ31 . . . Ĉm1

Ĉ21 Ĉ22 . . . . . . Ĉm2

Ĉ31

...
. . . . . .

...
...

...
... Ĉkh

...

Ĉm1 Ĉm2 . . . . . . Ĉmm


(49)

Ĉkh =
1

N

N∑
n=1

vec(εn(θ̂)ε′n+k(θ̂))vec(εn(θ̂)ε′n+h(θ̂))
′ (50)

with Ĉkh being d2 × d2 matrix for each k, h = 1, 2, . . . ,m.

In general, above estimator of asymptotic covariance matrix Gθ0 for weak VARMA

model allows for nonlinear effects in data generated innovations εn and it is con-

sistent with estimator proposed in Proposition 2 for strong VARMA model. How-

ever, the problem is the number of coefficients that need to be estimated. For

Gθ0 = diag (vec(Γθ0(1))vec(Γθ0(1))′, . . . , vec(Γθ0(m))vec(Γθ0(m))′) the number of

parameters is only md2 while in the weak case we have a matrix to be estimated

with m2d4 entries. This number may be reduced by imposing additional assump-
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tions on the εn process. For example in GARCH setup only diagonal matrices

Ĉ11, . . . , Ĉmm would have to be estimated.

Our main result is based on following

Theorem 2 Under VARMA(p, q) specification, A2-A3 and weak condition for

innovations, A1” we have that under H0

θ̂ = θ0 +OP (T−
1
2 )

Ĝθ̂ = Ĝθ0 + oP (1)

and the following decomposition holds

γ̂
(m)

θ̂
= γ̂

(m)
θ0

+ ζ̄
(m)
θ0

(θ0 − θ̂) + oP
(
N−1/2

)
(51)

with

ζ
(m)

θ̂
(j) = ∇vecΓ̂θ̂(j)

p−→ ζ̄
(m)
θ0

(j) (52)

(53)

Above theorem states that all the key equations that hold for strong VARMA(p, q)

are going to hold also in weak case. The only difference is introducing asymptotic

covariance matrix Gθ0 with available estimator revised in the beginning of the sec-

tion. The detailed proof has been moved to the appendix.

Estimation of ΞF is based on autoregressive spectral estimator method derived

in Den Haan & Levin (1998). Their main result is based on the observation that

covariance of empirical resuduals, where εn are weakly dependent process, under

assumption (∗) has an AR(∞) representation. They have proposed the estimator

for general covariance matrices, specifically Γ̂θ0(0), however Francq & Räıssi are

using this result to construct the estimator of covariance matrix ΞF where

ΞF = Cov(
√
Nγ̂′

(m)

θ0
,
√
N(θ̂ − θ0)′) =

∞∑
h=−∞

EΥnΥ′n−h
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with Υn defined in (38). According to Den Haan & Levin (1998) in above specifi-

cation weakly dependent sequence {Υ̃n} may be approximated as VAR(∞) process

with oP (N−
1
2 ) order of convergence.

Υ̃n =
∞∑
i=1

AiΥ̃n−i + µn + op(T
− 1

2 ) (54)

where µn is a residual. Now it has been proven that asymptotically we have

ΞF =

(
Id2m −

r∑
i=1

Ai

)−1

E(µnµ
′
n)

(
Id2m −

r∑
i=1

Ai

)′−1

(55)

for r fixed and N →∞. It is important to note that our method does not require

any specific estimator of parameters or autocovariance matrices and only requires

any consistent, asymptotically normal estimator of parameters θ0 and consistent

estimator of asymptotic covariance matrix Gθ0 . In the previous section we have

shown that the reason for adding the vn component in Υn is allowing for concurrent

estimation of matrices Σ(γ̂(θ0),θ̂) which will be essential for building up matrix Σγ̂(θ̂)

in weak VAR(p) specification. The key point is that Υn is a vector of dimension

d2(m + p) that is already much higher then dimensions of derivatives that are

essential in our method. This is going to affect the finite performance of VAR(r)

spectral esimator of
∑∞

h=−∞EΥnΥ′n−h given the observation number N . We are

going to show that for finite sample Francq & Räıssi transformed LB test will

suffer from worse size characteristics than our method.

5.Numerical ilustrations

In this section we are going to investigate the properties of our modified BP test

and compare it with standard BP test and an alternative modification proposed

by Francq & Räıssi, (2007) for VAR(p) models. Our main motivation is to show

the advantage of our method (DV) over Francq & Räıssi (FR) at the lower range

of lenght of the estimated series.
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5.1. Empirical size.

Data generating process follows the empirical size experiment for weak VAR(1)

model in Francq & Räıssi (2007). The true series {Xn}Nn=1 is generated according

to

Xn+1 = A1Xn + εn+1,

A1 = 0.6I2,

εn =

(
η1
nη

1
n−1η

1
n−2

η2
nη

2
n−1η

2
n−2

)
,(

η1
n

η2
n

)
∼ N (0, I2), iid n = 1, 2, . . . , N

(56)

We simulated n = 2000 independent trajectories of lenght N = 500 of this weak

VAR(1) model. For each replication we estimated matrix coefficients of VAR(1)

model and then applied portmanteau tests to the residuals. We have chosen an

asymptotic nominal level of the test to be α = 5%. The number of covariances

used in computing Q̌ is H = 1, . . . , 12. For DV and FR modifications of LB

test the H0 is rejected when Q̌H > χ2
0.95(4H). For the standard LB test the

H0 is rejected when Q̌H > χ2
0.95(4H − 4). As far as FR test is concerned the

results have been presented for r = 1, . . . , 5 which represent the order of VAR(r)

spectral estimator in (55). In Francq & Räıssi (2007) the authors suggest using the

Levinson estimation algorithm. We have presented also results using the standard

Moore-Penrose inverse (pseudoinverse). For DV modification of BP test we have

presented the results for k = 1, . . . , 4 numbers of derivatives used in estimating

the transform of each ρ̂θ̂(j), j = 1, . . . , H, following operator (27).

Clearly FR modification of LB test looses its size properties dramatically with

increasing order of Q̌H statistic. DV modification is significantly more stable than

FR modification. In FR method there is no difference between Levinson algorithm

and applying Moore Penrose pseudoinverse. Order of the autoregressive spectral

estimator r does not play significant role.
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Table 1: Empirical size (in %) of the modified DV, modified FR and standard LB
test of 5% nominal level in the case of the weak AR(1) model (56), N=500

H 1 2 3 4 5 6 7 8 9 10 11 12
Projection method, number of derivatives used, k

k=1 4.25 2.60 2.45 2.85 2.25 2.00 1.70 2.45 1.60 1.75 2.35 1.60
k=2 3.85 3.40 3.60 2.70 1.85 2.25 2.10 2.55 1.80 2.55 1.95 1.55
k=3 3.35 2.25 3.05 2.45 2.30 2.55 2.30 2.85 1.60 2.40 1.60 1.50
k=4 2.50 3.45 2.90 2.40 2.40 1.95 2.40 2.15 1.95 1.85 1.95 2.10

Francq & Räıssi method, Moore Penrose pseudoinverse, VAR(r) routine
r=1 4.20 2.95 1.95 1.45 1.30 1.15 0.65 0.60 0.30 0.65 0.50 0.50
r=2 3.55 3.20 2.00 1.35 1.05 1.10 0.90 0.80 0.55 0.35 0.55 0.15
r=3 3.70 3.10 1.70 1.20 1.40 0.90 0.45 0.70 0.70 0.80 0.30 0.20
r=4 3.70 2.80 1.85 1.30 0.95 1.45 0.70 0.60 0.50 0.30 0.25 0.65
r=5 4.40 2.70 1.40 1.70 1.45 0.65 0.85 0.60 0.65 0.45 0.55 0.35

Francq & Räıssi method, Levinson algorithm, VAR(r) routine
r=1 4.05 2.75 2.45 1.35 1.30 0.90 0.50 0.30 0.75 0.55 0.55 0.35
r=2 3.35 1.90 2.30 1.60 0.75 1.10 1.00 0.80 0.45 0.30 0.40 0.35
r=3 3.60 3.05 1.70 1.65 1.10 0.75 0.85 0.50 0.45 0.45 0.30 0.40
r=4 4.50 2.95 2.05 1.35 1.05 0.90 0.90 0.70 0.35 0.75 0.55 0.30
r=5 3.85 2.65 1.90 2.50 1.15 0.95 0.45 0.65 0.80 0.45 0.45 0.45

Standart Box Pierce test
LB n.a 38.9 34.1 28.6 27.0 22.6 22.3 20.4 19.4 18.9 19.7 18.0

Next experiment is based on simulating n = 1000 VARMA(1, 1) model gener-

ated series of lenght N = 1000. In this case the model errors are generated as

GARCH(1).

Xn+1 = A1Xn +B1εn + εn+1,

A1 = 0.6I2, B1 = 0.3I2,

εn = N (0,Σε,n),Σε,n = diag(σn, σn)

σn =
√

1 + 0.4σ2
n−1.

(57)

The series is estimated as VARMA(1, 1) and theH0 hypothesis is being tested using

DV test with Q̌H transformed Box-Pierce statistic. The results for FR method

are not available because this method only applies for VAR(p) models. For DV
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modification of BP test we have presented the results for k = 1, . . . , 5 numbers of

derivatives used in estimating the transform of each ρ̂θ̂(j), j = 1, . . . , H.

Table 2: Empirical size (in %) of the modified DV of 5% nominal level in the case
of the weak VARMA(1, 1) model (57), N=1000

H 1 2 3 4 5 6 7 8 9 10 11 12
Projection method, number of derivatives used, k

k=1 74.5 88.4 80.4 78.6 76.8 71.7 70.5 69.1 67.5 68.1 69.4 70.6
k=2 5.1 5.1 3.6 6.1 6.1 6.2 7.2 7.5 8.7 10.3 8.4 11.7
k=3 5.4 4.4 6.3 6.1 7.2 5.2 9.7 8.7 10.3 8.6 11.9 11.8
k=4 5.2 5.8 5.9 6.7 8.3 8.0 7.7 9.2 11.0 11.3 13.2 13.3
k=5 6.3 5.6 6.7 9.5 10.0 7.5 8.2 9.0 13.0 12.3 14.5 13.1

Most notable characteristic of this experiment are very high size estimates

for k = 1. However, this result agrees with asymptotic theory. In general in

case of testing uncorrelation hypothesis using modified DV method the number of

derivatives used has to be larger than 1.

5.2. Empirical power.

Data generating process follows the power size Monte Carlo experiment for

weak VAR(2) model in Francq & Räıssi (2007). The true series {Xn}Nn=1 is gener-

ated according to

Xn+1 = A1Xn + A2Xn−1 + εn+1,

A1 =

(
0.2 0.1

0.1 0.2

)
, A2 =

(
0.1 0

0 0.1

)
,

εn =

(
η1
nη

1
n−1η

1
n−2

η2
nη

2
n−1η

2
n−2

)
,(

η1
n

η2
n

)
∼ N (0, I2), iid n = 1, 2, . . . , N

(58)

We simulated n = 2000 independent trajectories of lenght N = 1000 of this

weak VAR(2) model. For each replication we estimate matrix coefficient A1 of
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VAR(1) model and then apply portmanteau tests of H0 on the residuals. The

asymptotic level is α = 5%. For DV and FR modifications of LB test the H0 is

rejected when Q̌H > χ2
0.95(4H). For the standard LB test the H0 is rejected when

Q̌H > χ2
0.95(4H − 4). The power is not corrected by size. (seems to follow Francq

& Räıssi (2007)).

Table 3: Empirical power (in %) of the modified DV, modified FR and standard
LB test of 5% nominal level in the case of the weak AR(2) model (58), N=1000

H 1 2 3 4 5 6 7 8 9 10 11 12
Projection method, number of derivatives used, k

k=1 50.95 41.45 35.50 28.75 24.50 22.50 18.85 16.10 14.50 12.80 11.50 12.10
k=2 30.35 41.25 32.90 27.20 23.35 21.50 18.10 17.95 13.45 13.75 10.65 11.40
k=3 23.70 38.85 31.00 28.00 22.70 21.55 19.00 15.55 14.80 12.70 10.85 11.00
k=4 22.45 37.90 31.55 25.80 23.40 18.25 17.75 16.55 13.60 12.25 10.45 10.55

Francq & Räıssi method, Moore Penrose pseudoinverse, VAR(r) routine
r=1 43.35 51.65 40.50 32.65 28.95 23.30 22.20 18.70 15.35 11.10 9.90 8.75
r=2 45.30 48.90 42.55 33.60 29.25 24.20 20.65 19.55 17.00 11.95 9.50 8.55
r=3 43.75 47.95 41.80 34.90 27.75 22.85 21.70 19.10 16.10 13.50 9.75 8.65
r=4 44.70 49.45 41.10 34.30 27.00 24.25 20.40 19.45 16.45 13.50 9.65 7.85
r=5 43.50 50.85 43.20 32.60 28.65 24.30 21.60 18.85 14.55 12.75 10.55 7.90

Francq & Räıssi method, Levinson algorithm, VAR(r) routine
r=1 43.30 48.45 40.50 34.20 27.50 23.65 21.00 19.55 17.25 12.95 9.35 7.45
r=2 43.80 50.00 41.70 36.10 28.20 23.20 21.85 19.90 16.40 12.20 8.90 8.30
r=3 43.55 48.70 40.60 34.40 27.65 23.50 21.90 19.10 16.55 12.25 10.35 7.15
r=4 44.20 47.30 40.70 35.40 26.00 24.10 20.85 19.65 16.65 12.25 8.35 8.05
r=5 41.85 46.10 41.05 32.60 28.00 23.80 22.10 19.40 15.40 12.75 9.35 8.40

Standart Box Pierce test
LB n.a 84.15 79.90 74.05 68.70 66.15 61.70 59.50 58.50 54.45 55.25 51.90

Power of DV and FR modifications of LB test are comparable. Power of both

tests is decreasing with increasing order of Q̌H . The reason is the following. For

VAR(p) model vectorized residual autocovariances of increasing lags are expoten-

tially converging to zero. However, the error of estimation is not going to be

affected by lag number. The same applies to estimating residuals in DV method.

This may cause significant errors in the inverses that are necessary in both DV

and FR modifications of LB statistic.
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In (58) case finite sample performance of DV and FR modifications were com-

parable. However the lenght of the series {Xn} was N = 1000, which may be

treated as large in some applications. The following example is derived to show

the difference in DV and FR methods for small sample N = 100 nontrivial case.

The series {X}Nn=1 for N = 100 follows VARMA(1, 1) model

Xn+1 = A1Xn +B1εn + εn+1,

A1 =
1

3

(
2 0.5

0.7 1

)
, B1 =

1

6

(
2 −1.5

0 3

)
,

εn =

(
η1
nη

1
n−1η

1
n−2

η2
nη

2
n−1η

2
n−2

)
,(

η1
n

η2
n

)
∼ N (0, I2), iid n = 1, 2, . . . , N

(59)

We have simulated n = 2000 trajectiories and in each case estimated matrices

A1 of VAR(1) model. Then the DV and FR have tested the H0 hypothesis. In

general testing VARMA(1, 1) generating data with VAR(1) specification is one of

the simplest tests that may be performed with modified Box statistics. The reason

is straightforward, estimating VAR(1) model for VARMA(1, 1) has to produce

autocorrelated residuals and at the same time the series εn is generated as a MDS.

Nevertheless the FR modification of BP test is not going to detect the correlation

of residuals. This does not apply to our modification of BP test.
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Table 4: Empirical power (in %) of the modified DV, modified FR test of 5%
nominal level in the case of the weak VARMA(1, 1) model (59), N=100

H 1 2 3 4 5 6 7 8 9 10 11 12
Projection method, number of derivatives used, k

k=1 42.90 21.20 12.85 7.55 5.55 4.60 5.70 6.40 7.70 8.60 11.75 18.10
k=2 31.85 22.60 15.05 10.50 7.45 7.05 7.85 7.95 10.30 12.55 17.55 22.40
k=3 28.95 24.25 14.75 10.95 8.05 9.25 8.95 10.75 14.65 17.75 24.15 27.85
k=4 23.95 22.85 15.70 13.30 11.10 12.20 12.00 14.80 16.80 21.60 29.40 35.30

Francq & Räıssi method, Moore Penrose pseudoinverse, VAR(r) routine
r=1 18.50 20.80 11.80 6.05 3.95 2.45 1.75 1.50 1.40 1.10 0.75 0.50
r=2 19.25 22.10 12.40 6.30 4.20 2.05 2.05 1.60 1.30 0.90 0.85 1.00
r=3 20.55 22.05 13.20 6.85 4.20 3.05 2.25 1.35 1.25 0.80 1.25 0.70
r=4 20.50 21.40 13.65 7.30 3.90 2.45 2.20 1.15 1.25 0.80 0.45 0.80
r=5 19.00 21.70 13.95 6.30 4.25 2.95 2.50 1.25 1.70 1.65 1.10 0.75

Francq & Räıssi method, Levinson algorithm, VAR(r) routine
r=1 20.25 21.00 14.10 8.50 4.50 3.10 1.80 1.55 1.35 1.30 1.30 1.40
r=2 21.40 24.15 12.80 6.15 5.85 3.80 2.20 1.70 1.65 1.25 1.35 1.55
r=3 19.95 21.90 11.40 7.70 5.10 3.75 3.05 2.30 1.70 1.00 0.90 0.85
r=4 21.90 22.20 13.20 8.15 4.60 3.00 2.35 1.85 1.00 1.00 1.00 1.30
r=5 19.75 23.70 12.25 7.00 5.10 3.15 2.65 1.75 1.45 1.65 1.45 1.00

5.3. Economic example of application of our projection cor-

rection of BP statistic.

We have remade the example used in Lobato, Nankervis & Savin (2001). These

authors tested null hypothesis that ρ(1) = · · · = ρ(5) of daily currency returns for

the pound sterling for the data set 01.01.1993−31.12.1996. The dataset taken into

account is pressumed to be a random walk with weakly dependent errors. In order

to check our method in multivariate setting we have taken the data set vector of

Nominal Major Currencies Dollar Index and Nominal Other Important Trading

Partners Dollar Index in the period 01.01.1999 − 31.12.2001 with the lenght the

series N = 754. Then we have estimated VAR(1) and VAR(2) models of the
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demeaned vectors

Xt =

[
yt

zt

]
,

yt = NMDIt −
1

754

754∑
n=1

NMDIn,

zt = NODIt −
1

754

754∑
n=1

NODIn,

in order to test the uncorrelation of residuals using standart BP test and DV

modification of BP test. The results are presented in Table 5.

Table 5: Values of projection method Q̂DV
H statistic, standart BP statistic Q̂H and

their rejection tresholds for estimated VAR(1) and VAR(2) models on the dataset.

H 1 2 3 4 5 6 7 8 9 10

Values of projection method Q̂DV
H , number of derivatives used, k, VAR(1)

k=1 10.23 14.01 19.51 28.18 37.79 40.77 41.35 42.06 44.22 46.74
k=2 10.83 13.32 20.10 28.50 31.43 39.10 41.14 43.08 44.88 45.13
k=3 11.25 15.05 24.82 24.88 30.40 39.10 41.66 43.18 43.25 46.73

P-value treshold for Q̂DV
H

9.48 15.50 21.02 26.29 31.41 36.41 41.33 46.19 50.99 55.75

Standart Box Pierce statistic Q̂H value
BP 17.69 20.04 22.92 27.17 34.93 40.38 42.88 44.35 44.70 47.06

P-value treshold for Q̂H

n.a. 9.48 15.50 21.02 26.29 31.41 36.41 41.33 46.19 50.99

Values of projection method Q̂DV
H , number of derivatives used, k, VAR(2)

k=1 n.a. 4.47 9.45 19.05 22.36 25.90 27.87 28.11 30.86 33.79
k=2 4.04 9.95 19.05 22.36 25.90 27.87 28.11 30.86 33.79 38.88
k=3 3.92 13.13 19.24 23.44 21.81 27.80 30.01 32.86 34.50 43.13

P-value treshold for Q̂DV
H

9.48 15.50 21.02 26.29 31.41 36.41 41.33 46.19 50.99 55.75

Standart Box Pierce statistic Q̂H value
BP 0.08 4.48 7.27 11.85 19.96 25.08 28.03 29.60 29.87 32.28

P-value treshold for Q̂H

n.a. 9.48 15.50 21.02 26.29 31.41 36.41 41.33 46.19 50.99
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Clearly as in in Lobato, Nankervis & Savin (2001) projection method statistic

Q̂DV
H in VAR(1) case suggests the lack of autocorrelation of residuals in VAR(1)

case. We have that transition matrix of estimated VAR(1) is statistically signifi-

cantly equal to zero. However, standart BP statistic Q̂H is rejecting null hypothesis

suggesting wrong model specification. In this sense our modification of BP test

serves its purpose of accepting the hypothesis of two dimensional vector Xt fol-

lowing a random walk. Using the same rule we have estimated a VAR(2) model

and tested lack of autocorrelation of residuals. It may be treated as an extreme

case because if null hypothesis and random walk hypothesis are both true than we

are going to have overfitting of the model. Similarily as in VAR(1) the transition

matrices of VAR(2) are significantly equal to zero, but it is worth noting that

for H = 1 first derivative needed to obtain Q̂DV
1 is equal to zero - we may not

obtain the inverts. Also note that this exactly is responsible for the same values

of Q̂DV
H statistic diagonally between k = 1 and k = 2. However, our method still

outperforms the standart BP statistic for H ≥ 2.

6. Summary

TO BE WRITTEN

Appendix

• Estimation of weak VARMA model

In case of VARMA(p, q) the Least Squares procedure used in VAR(p) estimation

can not be used due to recursive nature of residuals εn(θ). Considering this, it is

possible to approximate, given observations {Xn}Nn=1, the θ0 as a minimum of the

gaussian quasi-likelihood

LN(θ0,Σε) =
N∏
n=1

1

(2π)d/2
√

detΣε

exp

{
−1

2
εn(θ)′Σ−1

ε εn(θ)

}
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Now QMLE of (θ0,Σε) is a measurable solution (θ̂, Σ̂ε)

(θ̂, Σ̂ε) = arg min
(θ,Σε)

{
log(detΣε) +

1

N

N∑
n=1

ε′n(θ)Σ−1
ε εn(θ)

}
. (60)

Note that if we are looking only for estimator of θ0 parameters than we may write

the following

θ̂ = arg min
θ∈Θ

{
log(detΣ̂ε(θ)) +

1

N

N∑
n=1

ε′n(θ)Σ̂−1
ε (θ)εn(θ)

}
(61)

where

Σ̂ε(θ) =
1

N

N∑
n=1

εn(θ)εn(θ)′ (62)

Procedures (60) and (61) constitute the QML estimator of (θ,Σε) for strong

VARMA model.

Asymptotic normality of θ̂ estimator comes from Boubacar Mainassara & Francq

(2009, Theorem 3) which states that under A1”-A3 the LSE estimator of θ0

θ̂LS = arg min
θ∈Θ

log det

(
N∑
n=1

εn(θ)εn(θ)′

)
(63)

coincides with QML estimators (60) and (61). This implies that under assumptions

A1”-A3 we have that θ̂ = θ0 +Op(N
− 1

2 ) for QML estimators (60) and (61).

• Proof of Proposition 1

In order to prove the claim it is sufficient to show that for each j = 1, . . . ,m

vec
(

Γ̂θ̂(j)
)
− vec

(
Γ̂θ0(j)

)
= plim∇Γ̂θ0(j)(θ̂ − θ0) +DN(j)
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where plim∇Γ̂θ0(j) = ∇Γθ0(j) by assumption and and DN(j) = oP (N−
1
2 ).

Now we can not use in this case the standard approximation

DN(j) = (θ̂ − θ0)′
{
∂2vec(Γθ(j))

∂θ∂θ′
(θ∗)

}
(θ̂ − θ0)

with θ∗ satisfying ||θ∗ − θ0||d ≤ ||θ̂ − θ0||d because ∂2vec(Γ(j))
∂θ∂θ′

(θ∗) is second order

tensor. However, we may show the following instead[
vec
(

Γ̂θ̂(j)
)]

(i)
−
[
vec
(

Γ̂θ0(j)
)]

(i)
= [∇Γθ0(j)]i′th row (θ̂ − θ0) +DN(j)(i)

where (i) denotes position in vector and i = 1, 2, . . . , d2, with DN(j)(i) = oP (N−
1
2 ).

We are going to show that

DN(j)(i) = (θ̂ − θ0)′
∂2vec(Γ(j))(i)

∂θ∂θ′
(θ∗)(θ̂ − θ0) (64)

Now in order to prove that (64) holds it is enough to show that
∂2vec(Γ(j))(i)

∂θ∂θ′
(θ∗) =

OP (1). The easiest way to show this condition is use the definition of derivative

of ∂vec(Γ(j))
∂θ′ (i)

with respect to θ evaluated in θ∗. First we need to show that in the

neighbourhood of θ0 we have

∂vec(Γ(j))

∂θ′ (i)
(θ∗) = OP (1), for j = 1, . . . ,m, i = 1, . . . , d2 (65)

The above condition follows from Proposition 2 and A3 because θ∗ is close to θ0

and Proposition 3 because plim∇Γ̂θ0(j) = E∇Γ̂θ0(j).

To show that a second derivative of i’th row of ∇Γθ∗(j) is bounded we may use

A3 ie. smoothness of θ function in Θ for the derivative of vec∇Γθ∗(j). Note that

∇Γθ∗(j)
p−→ E

∂εn+j(θ0)

∂θ′
⊗ εn(θ0) = E∇θ0εn+j ⊗ εn(θ0)
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Now we may write

∂vec(∇Γθ∗(j))

∂θ′
p−→ E

∂vec(∇θ0εn+j ⊗ εn(θ0))

∂ε′n
× ∂εn(θ0)

∂θ′

where ∂εn(θ0)
∂θ′

= OP (1) in general by A3 and it may be shown that

∂vec(∇θ0εn+j ⊗ εn(θ0))

∂ε′n
= vec(∇θ0εn+j)⊗ Id = OP (1)

QED

• Proof of Proposition 2

The proof of statement

Gθ0 = diag (vec(Γθ0(1))vec(Γθ0(1))′, . . . , vec(Γθ0(m))vec(Γθ0(m))′)

is straightforward. Note that following formulation of Gθ0 in (49) under iid εn we

would obtain that only submatrices C11, . . . , Cmm are nonzero and we have

vec(εnε
′
n+i)vec(εnε

′
n+i)

′ = vec(Γθ0(i))vec(Γθ0(i))
′.

Consistency follows from consistency of Γ̂θ̂(i), i = 1, . . . ,m.

Now in order to show the main claim we have to present the form of derivatives

in multivariate setting. From (1) we may write the system of equations

∂εn(θ)

∂vec(Ai)′
(θ) = −X ′n−i ⊗ Id −

q∑
j=1

Bj
∂ε(θ)n−j
∂vec(Ai)′

(θ) (66)

and

∂ε(θ)n
∂vec(Bj)′

(θ) = −∂Bjε(θ)n−j
∂vec(Bj)′

(θ)−
q∑
i 6=j

Bi
∂ε(θ)n−i
∂vec(Bj)′

(θ) (67)
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for i = 1, . . . , p and j = 1, . . . , q. Now, we may write the first expression on the

right side in (67) as

∂Bjεn−j(θ)

∂vec(Bj)′
(θ) = −εn−j(θ̂)′ ⊗ Id −Bj

∂εn−j(θ)

∂vec(Bj)′
(θ)

to get the final expression

∂εn(θ)

∂vec(Bj)′
(θ) = −εn−j(θ)′ ⊗ Id −

q∑
i=1

Bi
∂εn−i(θ)

∂vec(Bj)′
(θ) (68)

In order to write it compactly let us introduce the following notation for derivatives

evaluated in θ̂

∇Aiεn−i(θ̂) = X ′n−i ⊗ Id −
q∑
j=1

Bj(θ̂)∇Aiεn−j(θ̂) for i = 1, . . . , p

∇Biεn−i(θ̂) = εn−i(θ̂)
′ ⊗ Id −

q∑
j=1

Bj(θ̂)∇Biεn−j(θ̂) for i = 1, . . . , q

where the entire jacobian matrix may be written as

∇θεn(θ̂) = ∇[A,B]εn(θ̂) =[
∇A1εn(θ̂),∇A2εn(θ̂), . . . ,∇Apεn(θ̂), . . . ,∇B1εn(θ̂),∇B2εn(θ̂), . . . ,∇Bqεn(θ̂)

]
with

∇Aεn(θ̂) =
[
∇A1εn(θ̂),∇A2εn(θ̂), . . . ,∇Apεn(θ̂)

]
∇Bεn(θ̂) =

[
∇B1εn(θ̂),∇B2εn(θ̂), . . . ,∇Bqεn(θ̂)

]
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Now, it leads to the following

∇Aε(θ)n =−


Xn−1

Xn−2

...

Xn−p


′

⊗ Id − [B1, B2, . . . , Bq](θ̂)


∇A1εn−1(θ̂) ∇A2εn−1(θ̂) . . . ∇Apεn−1(θ̂)

∇A1εn−2(θ̂) ∇A2εn−2(θ̂) . . . ∇Apεn−2(θ̂)
...

...
...

...

∇A1εn−q(θ̂) ∇A2εn−q(θ̂) . . . ∇Apεn−q(θ̂)


which is equivalent to

∇Aεn(θ̂) =−


Xn−1

Xn−2

...

Xn−p


′

⊗ Id − [B1, B2, . . . , Bq](θ̂)


∇Aεn−1(θ̂)

∇Aεn−2(θ̂)
...

∇Aεn−q(θ̂)

 (69)

and in a similar manner

∇Bεn(θ̂) =−


εn−1(θ̂)

εn−2(θ̂)
...

εn−q(θ̂)


′

⊗ Id − [B1, B2, . . . , Bq](θ̂)


∇Bεn−1(θ̂)

∇Bεn−2(θ̂)
...

∇Bεn−q(θ̂)

 (70)

Finally according to (69) and (70) it is possible to write full derivative ∇θεn(θ̂) as

∇θεn(θ̂) = −




Xn−1

Xn−2

...

Xn−p


′

,


εn−1(θ̂)

εn−2(θ̂)
...

εn−q(θ̂)


′⊗ Id − [B1, B2, . . . , Bq](θ̂)


∇θεn−1(θ̂)

∇θεn−2(θ̂)
...

∇θεn−q(θ̂)


(71)

Now, going back to summation notation equation (71) may be written as

∇θεn(θ̂) = −Fn −
∑

q
i=1Bi∇θεn−i(θ̂) (72)
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where

Fn =

1×1 block︷ ︸︸ ︷


Xn−1 ⊗ I ′d
Xn−2 ⊗ I ′d

...

Xn−p ⊗ I ′d


′

,


εn−1(θ̂)⊗ I ′d
εn−2(θ̂)⊗ I ′d

...

εn−q(θ̂)⊗ I ′d


′

In order to give the explicit solution to ∇θεn(θ) for n = 1, . . . , N , θ ∈ Θ let us

define the following matrices

Dn =


∇θεn(θ)

∇θεn−1(θ)
...

∇θεn−q+1(θ)

 , (73)

Ψ(q)
n =

q×1 blocks︷ ︸︸ ︷
Fn

0
...

0

 , (74)

B(q) =

q×q blocks︷ ︸︸ ︷
−B1 . . . −Bq−1 −Bq

Id
. . .

Id 0


θ

(75)

Using the above we may write equation (72) as

Dn = B(q)Dn−1 −Ψ(q)
n , (76)
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which gives unique solution

Dn = −
∞∑
i=0

Bi
(q)Ψ

(q)
n−i (77)

It should be noted that for any 1 ≤ n ≤ N Dn is converging in probability to the

vectorDn(θ0) depending on values {X1, . . . , Xn−1} under weak and strong VARMA

specification. It follows immediately from the expressions (72) and (77). On the

other hand it is clear that the sequence {∇θεn(θ0)} is autocorrelated because it

admits the multivariate expotential expansion. It is easy to see that in a VAR(p, q)

formulation we have following (72), ∇θεn(θ̂) = −Fn. Note that in VARMA(p, q)

case the sequence {Dn − Dvar
n }∞n=1, where Dvar

n represents the covariance deriva-

tives matrix corresponding to VAR(p) part of a VARMA(p, q) model, is an MDS.

This gives an interesting result, while VARMA(p, q) and VAR(p) are structurally

entirely different, because VARMA(p, q) is nonlinear, the derivatives of residuals

with respect to parameters are different merely by the martingale difference pro-

cess.

We are mainly interested in obtaining the derivatives of residual autocovariances

∇θ̂Γ̂(i). In general VARMA(p, q) the object of the form ∇θ̂ε does not exist be-

cause ∇θ̂εn is dependent on {∇θ̂εi, Xi}n−1
i=1 . However we are going to show that it

is possible to obtain ∇θΓ̂(i) for arbitrary j = 1, . . . ,m and ay θ ∈ Θ. We may

write the following

∇θΓ̂n(j) =
∂vec(εn+j(θ)ε

′
n(θ))

∂θ′
=

=
∂εn+j(θ)

∂θ′
⊗ εn(θ) + εn+j(θ)⊗

∂εn(θ)

∂θ′
=

=∇θεn+j ⊗ εn(θ) + εn+j(θ)⊗∇θεn

(78)

Now, from equations (77) and (78) we may obtain
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Dn ⊗ εn−m(θ) = −
∞∑
i=0

Bi
(q)Ψ

(q)
n−i ⊗ εn−m(θ) =


∇θvecΓ̂n(m)

∇θvecΓ̂n(m− 1)
...

∇θvecΓ̂n(m− q)


(θ)

(79)

Note that in Proposition 3 implies that we would have

− 1

N

N∑
n=p+q

∞∑
i=0

Bi
(q)(θ0)Ψ

(q)
n−i(θ0)⊗ εn−m(θ0)

p−→ E


∇θvecΓ̂(m)

∇θvecΓ̂(m− 1)
...

∇θvecΓ̂(m− q)


(θ0)

(80)

which is also going to be satisfied for θ ∈ Θ by stationarity of εn(θ).

The way to obtain the form of matrices Ψ
(m)
k and Bi

(m) from Proposition 2 is a

straightforward application of (79) and (77) for matrix

D(m)
n (θ0) =



∇θεn(θ)

∇θεn−1(θ)
...

∇θεn−q(θ)
...

∇θεn−m+1(θ)


(θ0)

assuming that m ≥ q and proposing a natural estimator

ζ̌
(m)
θ0

=


∇θvecΓ̂(m)

...

∇θvecΓ̂(1)


(θ0)

=
1

N

N∑
n=p+q

(ζ̌
(m)
θ0

)n
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with

(ζ̌
(m)
θ0

)n =


∇θvecΓ̂n(m)

...

∇θvecΓ̂n(1)


(θ0)

Now repeating the same reasoning for matrix D
(m)
n as in (79) and (80) will yield

equation (33), expanded matrix B(m)(θ0) and matrix Ψ
(m)
k (θ0) that does not change

compared to (74).

In order to prove convergence in probability (32) we are going to use equations

(66) and (68). Let us use the convention that for all θ ∈ Θ we have εn(θ) = 0

given that n ≤ 0 or n ≥ N .

(This proof is not correct, the reasoning will break in the limit)

Now the sufficient condition that must hold for derivative of order h = 1, . . . ,m is

1

N

N∑
n=i+h

(X ′n−i ⊗ Id)⊗ (εn−h(θ̂)− εn−h(θ0))+

+
1

N

N∑
n=i+h

{
q∑
j=1

Bj(θ̂)
∂εn−j(θ̂)

∂vec(Ai)′

}
⊗ (εn−h(θ̂)− εn−h(θ0))+

+
1

N

N∑
n=i+h

{
q∑
j=1

Bj(θ̂)
∂εn−j(θ̂)

∂vec(Ai)′
−Bj(θ0)

∂εn−j(θ0)

∂vec(Ai)′

}
⊗ εn−h(θ0)

= oP (1)

(81)

for any i = 1, . . . , p after using A1⊗B1−A2⊗B2 = A1⊗(B1−B2)+(A1−A2)⊗B2.

Note that the bound

sup
0≤n≤N

||εn−h(θ̂)− εn−h(θ0)|| = OP (N−
1
2 ) (82)
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comes from the observation that estimation error (θ̂−θ0) is asymptotically normal

and at the same time by A3 we have that the function

θ → [vecA′1, . . . , vecA′p, vecB′1, . . . , vecB′q]
′

is at least three times differentiable. Thus by smoothness the distance between

εn(θ̂) and εn(θ0) is going to be bounded uniformly by the distance between θ̂ and

θ0 multiplied by some constant (intermediate value theorem). Now by (82) we

have

|| 1
N

N∑
n=i+h

(X ′n−i ⊗ Id)⊗ (εn−h(θ̂)− εn−h(θ0))|| ≤

≤ sup
0≤n≤N

||X ′n−i ⊗ Id|| sup
0≤n≤N

||εn(θ̂)− εn(θ0)|| = oP (1)

because sup0≤n≤N ||X ′n−i ⊗ Id|| = OP (1). In the second expression we may use

similar argument but we need the following bound

sup
0≤n≤N

q∑
j=1

Bj(θ̂)
∂εn−j(θ̂)

∂vec(Ai)′
= OP (1)

for any h = 1 . . . ,m which comes again from assumption A3. In the third expres-

sion due to convention and (68) we may write

sup
0≤n≤N

|| ∂εn(θ̂)

∂vec(Ai)′
− ∂εn(θ0)

∂vec(Ai)′
|| = f({Xj}n−1

k=1 , {Bi(θ0)}qi=1, {Bi(θ̂)}qi=1)

where f is a bounded linear, measurable and smooth function. Now we have

obviously that Bi(θ̂) = Bi(θ0) +OP (N−
1
2 ) so by this, A3 and continuous mapping

theorem we will get f(·) = OP (N−
1
2 ) and

sup
0≤n≤N

||Bj(θ̂)
∂εn(θ̂)

∂vec(Ai)′
−Bj(θ0)

∂εn(θ0)

∂vec(Ai)′
|| = OP (N−

1
2 )
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for each n = 1, . . . , N . So by rough approximation we will get oP (1) convergence

rate for the second expression in (81). Using the same arguments for equation (68)

we get

1

N

N∑
n=i+h

ε′n−i(θ̂)⊗ Id ⊗ (εn−h(θ̂)− εn−h(θ0))+

+
1

N

N∑
n=i+h

(ε′n−i(θ̂)− ε′n−i(θ0))⊗ Id ⊗ εn−h(θ0)+

+
1

N

N∑
n=i+h

{
q∑
j=1

Bj(θ̂)
∂εn−j(θ̂)

∂vec(Bi)′

}
⊗ (εn−h(θ̂)− εn−h(θ0))+

+
1

N

N∑
n=i+h

{
q∑
j=1

Bj(θ̂)
∂εn−j(θ̂)

∂vec(Bi)′
−Bj(θ0)

∂εn−j(θ0)

∂vec(Bi)′

}
⊗ εn−h(θ0)

= oP (1)

(83)

For the first, second and third expressions in (83) the reasoning is the same as for

previous case because we may use the uniform bound (82). Forth expression is an

analog of fourth expression in (81).

QED

• Proof of Proposition 3

From Proposition 2 for any 1 ≤ k, l ≤ N we have that under A1-A3 it is

possible to write following (33)

ζ̌
(m)
θ0

= − 1

N

N∑
n=p+q

(
∞∑
i=0

Bi
(m)Ψ

(m)
n−i ⊗ εn−m(θ0)

)
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where in general we have

Ψ(m)
n ⊗ εn′(θ0) =

X ′n−1 ⊗ Id ⊗ εn′ . . . X ′n−p ⊗ Id ⊗ εn′ ε′n−1 ⊗ Id ⊗ εn′ . . . ε′n−q ⊗ Id ⊗ εn′
0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0
...

...
...

...
...

...

0 . . . 0 0 . . . 0


(θ0)

It is easy to check that in this case kronecker product is partially commutative so

we may write

ε(θ)′k ⊗ Id ⊗ ε(θ)l = ε(θ)′k ⊗ ε(θ)l ⊗ Id

for 1 ≤ k, l ≤ N so we have

Ψ(m)
n ⊗ εn′(θ0) =



X ′n−1 ⊗ εn′ . . . X ′n−p ⊗ εn′ ε′n−1 ⊗ εn′ . . . ε′n−q ⊗ εn′
0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0
...

...
...

...
...

...

0 . . . 0 0 . . . 0


(θ0)

⊗ Id

(84)

Now let us divide each matrix [Ψ
(m)
n ⊗ εn′(θ0)] into blocks

[Ψ(q)
n ⊗ εn′(θ0)] =

(
[Ψ(m)

n ⊗ εn′(θ0)]1, [Ψ
(m)
n ⊗ εn′(θ0)]2

)
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where

[Ψ(m)
n ⊗ εn′(θ0)]1 =



X ′n−1 ⊗ εn′ . . . X ′n−p ⊗ εn′
0 . . . 0

0 . . . 0
...

...
...

0 . . . 0


(θ0)

⊗ Id (85)

and

[Ψ(m)
n ⊗ εn′(θ0)]2 =



ε′n−1 ⊗ εn′ . . . ε′n−q ⊗ εn′
0 . . . 0

0 . . . 0
...

...
...

0 . . . 0


(θ0)

⊗ Id (86)

Now considering (33) we have that matrices of the form (85) and (86) are responsi-

ble respectively for derivatives of residual covariances with respect to vec[A1, . . . , Ap]

and vec[B1, . . . , Bq]. Taking the assumption that m ≥ q we have for (85) by LLN

55



− 1

N

N∑
n=m

(
∞∑
i=0

Bi
(m)[Ψ

(m)
n−i ⊗ εn−m(θ0)]1

)
p−→

−Bm−p+1
(m)

[
0 . . . 0 Σ⊗ε

0(m−1)×1 . . . 0(m−1)×1 0(m−1)×1

]
+

−Bm−p+2
(m)

[
0 . . . Σ⊗ε 0

0(m−1)×1 . . . 0(m−1)×1 0(m−1)×1

]
+ . . .

−Bm
(m)

[
Σ⊗ε . . . 0 0

0(m−1)×1 . . . 0(m−1)×1 0(m−1)×1

]

where Σ⊗ε = E[εn(θ0)′ ⊗ εn(θ0)] ⊗ Id. In a similar manner we are going to obtain

for (86)

− 1

N

N∑
n=m

(
∞∑
i=0

Bi
(m)[Ψ

(m)
n−i ⊗ εn−m(θ0)]2

)
p−→

−Bm−q+1
(m)

[
0 . . . 0 Σ⊗ε

0(m−1)×1 . . . 0(m−1)×1 0(m−1)×1

]
+

−Bm−q+2
(m)

[
0 . . . Σ⊗ε 0

0(m−1)×1 . . . 0(m−1)×1 0(m−1)×1

]
+ . . .

−Bm
(m)

[
Σ⊗ε . . . 0 0

0(m−1)×1 . . . 0(m−1)×1 0(m−1)×1

]

QED

• Proof of Theorem 1
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Note that (30) is implied immediately by (30). Let us derive the asymptotic

distribution of Q̌(θ0), using the asymptotic limit of projection operator, =(m,r)
θ0

.

Thus from (27) we have

ρ̃θ0(j) = =(m,r)
θ0

(ρθ0(j)) = ρθ0(j)− ξ̄
(m)
θ0

(j)

(
j+r∑
i=j+1

ξ̄
(m)
θ0

(i)′ξ̄
(m)
θ0

(i)

)−1 j+r∑
i=j+1

ξ̄
(m)
θ0

(i)′ρθ0(i)

j = 1, . . . ,m− r, H ≤ m− r, r < m.

where ρθ0(i) ∼ N (0, Id2) iid for i = 1, . . . ,m. However, ρ̃θ0(j) is not going have

an asymptotically normal distribution because of weighting by coefficients of the

form

ξ
(m)
θ0

(j)

(
j+r∑
i=j+1

ξ
(m)
θ0

(i)′ξ
(m)
θ0

(i)

)−1 j+r∑
i=j+1

ξ
(m)
θ0

(i)′,

which are not identity matrices. Now in order to standarize the vector ρ̃
(m)
θ0

we

may write

ρ̄θ0(j) = ρ̃θ0(j)× Avar (ρ̃θ0(j))
−1/2 ,

ρ̄θ0(j) ∼ N (0, Id2), iid for j = 1, . . . ,m.

Thus we get that Q̌(θ0)→ χ2(Hd2).

In order to show (29) it is sufficient to note that =(m,r)

θ̂
(·) → =(m,r)

θ0
(·) because

from Proposition 2 and 3 we have that

ξθ0(j) = ξ̄θ0(j) +Op(N
− 1

2 ), j = 1, . . . ,m

and =(m,r)
θ0

(·) is a finite sum of derivatives and identity operators. Now ρ̂
(m)

θ̂

p−→ ρ̄
(m)
θ0

so also Avar (ρ̃θ0(j)) is estimated consistently.

QED
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versitè de Montrèal.
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