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Abstract

We propose new tests for the correct specification of functional models
in terms of transformed residual sample autocorrelations. The methodology
of transformation of empirical residual autocorrelations has been recently
used for parametric multivariate time series models and in the special case
of VARMA with closed form solutions. This paper is looking to expand it to
the functional setting for autoregressive models. We propose the method of
eliminating the asymptotic estimation error in the sample autocorrelations
in the framework of functional (Hilbertian) autoregressive model. The most
promising approach to this setup is based on Karhunen-Loéve expansions,
which are approximations of objects in L2(0, 1) in the finitely dimensional
Rp space. We show that a functional model where the stochastic process is
driven by a Hilbert-Schmidt integral operator may be approximated with
multivatiate VAR model without asymptotic estimation error. Our method
does not require specific estimators of eigenfunctions and parameters of the
estimated operator. We present Monte Carlo experiments performed for
the classical Box-Pierce test of lack of correlation and our transformation
of Box-Pierce statistic. The application is presented concerning the high
frequency financial data.

Keywords: Functional data, Goodness-of-fit test, model checking, port-
manteau Ljung-Box and Box-Pierce, recursive residuals, residual autocorre-
lation.
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1 Introduction

Functional data analysis has emerged as a significant tool for modeling large

dimension data in the last decade. From the practical standpoint it started as a

method of utilizing large data sets that have become available characterized by a

large record frequency and a limited number of periods when the data has been

obtained. On one hand it was natural to assume that such datasets represent the

functions discretized on a minutely/daily/weekly time frame while on the other

hand the theoretical analysis has been at first omitted. It may be assumed that

the functions under study are of some level of regularity, however only recently the

subject has been studied from the strict statistical perspective.

From a functional point of view the set of data is represented by the sequence of

functions {Xn(t)} that are elements of some Hilbert space. Functional time series

arises when a long record {X(t), t ∈ [0, T ]} in which t is, a continuous index, can

be naturally split into segments of equal length. Then it is possible to set

Xn(t) = X ({n− 1}T + t) , t ∈ [0, T ], n = 1, 2, . . . , N,

where X(t) is a raw time series data record. The transformed series Xn(t) consists

of curves treated as observables for n = 1, 2, . . . , N .

The subject has become very broad recently. As comprehensible introductory

expositions we may note Ramsay & Silverman (2002), Ramsay & Silverman (2005),

and Ramsay et al. (2009), and more theoretical works by Bosq (2000), Ferraty &

Vieu (2006), Bosq & Blanke (2007) and Ferraty & Romain (2011). The functional

autoregressive model that we are interested in has been theoretically studied by

Bosq (2000) and extensively used in practical and theoretical framework (see e.g.

Besse & Cardot (1996), Antoniadis & Sapatinas (2003), Horváth et al. (2010),

Hörmann & Kokoszka (2010). Applications of functional data in economics are

focused on financial data analysis which comes from the typical high frequency data

sets available. One could note analysis of periodicity and volatility persistence in

financial markets (see Fengler et al., 2003).

The simplest time series model in a functional setting is the FAR(1) model of
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Bosq, which extends to the functional setting the usual multivariate VAR model.

The model is given by the equation

Xn+1 = Ψ(Xn) + εn+1, (1)

where errors εn and observations Xn are curves and Ψ is a linear operator trans-

forming one curve to another curve. Despite its conceptual simplicity, it is a very

flexible modeling and predictive tool because the autoregressive operator acts on

a Hilbert space whose elements can exhibit any degree of nonlinearity. Thus, even

though FAR(1) is a linear model in a function space, it is in fact nonlinear in the

sense of finite dimensional spaces.

The problem we are going to adress is testing for correlation of residuals in a func-

tional model formulated as (1). The main idea is based on the observation that

it is possible to represent the functional process with a finite dimensional VAR

using Karhunen-Loéve expansions. In a similar manner we may ask if it is possible

to use developed methods of model checking in a functional setup. In a general

parametric time series framework functions of residuals are a key tool for model

checking. In case of testing lack of correlation, the standard method is based

on using statistics of empirical residuals autocorrelations. Usually portmanteau

tests like Ljung-Box (1976) and Box-Pierce (1970) are being utilized. The same

applies for vector autoregressive (VAR) and vector autoregressive moving average

models (VARMA) that are a standard econometric tool used for macroeconomic

data. This class of models is a natural expansion of univariate ARMA models

and thus they were extensively studied during the 90’s (see e.g. Lütkepohl, 1993).

In functional time series the modification of Box-Pierce test has been proposed

in Gabrys, Hörmann & Kokoszka (2010). However, this test behaves poorly for

functional autoregressive model because of asymptotic estimation error of Ψ̂ and

may be applied only in case of standard functional regression given by

Yn = Ψ(Xn) + εn, (2)
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for curves Yn, Xn and functional errors εn with Xn independent of εn.

The main problem in proposing an feasible test for correlation of errors is due

to the assymptotic effect of estimation error. The most recent solution has been

proposed in Delgado & Velasco (2011) for general class of paremetric models. The

method is based on a transformation of the residual autocorrelation vector to

account for possible serial dependence in order to obtain an asymptotically mul-

tivariate standard normal distribution and then a pivotal asymptotic transform

of empirical autocorrelations that would orthogonalise the system of m residual

serial autocorrelations eliminating parameter estimation effect. However, in the

functional setup the linear transformations of processes in functional spaces may

show behaviour that does not have its analog in a multivariate setting. In or-

der to propose the test of lack of correlation of residuals we need to construct

a computable test statistic of finite dimensional objects that would describe the

behaviour of residual functions εn(t). In multivariate setting the basis is implicitly

given while in the functional framework we must choose and estimate the most

suitable one. Then in order to obtain finite dimensional objects we have to trun-

cate the observables Xn(t) and thus residuals εn(t) and these projections are going

to produce additional approximation error. This is one of the differences with

multivariate VARMA case because even in ideal setting where the errors are iid

the error approximations in Karhunen-Loéve basis vould be weakly dependent.

The article is organized as follows: in Section 2 we are going to introduce the

basic method of estimating the Karhunen-Loéve expansion and assumptions of

autoregressive functional model and goodness-of-fit portmanteau test being the

benchmark given by Gabrys et al. (2011). Section 3 will present the algorithm

of pivotal asymptotic orthogonalisation of vectorized autocorrelations vector that

would asymptotically eliminate the estimation error. In Section 4 we consider

the asymptotic effect of estimation of eigenfunction basis of Karhunen-Loéve ex-

pansion. Section 5 is devoted to Monte Carlo simulation experiment that would

compare this method to the available alternatives. It also contains the applica-

tion for financial data. All the technical proofs and mathematical notes are being

relegated to Appendix.
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2 Diagnostic checking in case of FAR(1) model

The model we analize is the FAR(1) of the following form

Xn+1(t) =

∫ 1

0

ϕ(s, t)Xn(s)ds+ εn(t), t ∈ [0, 1],

{εn(t)} i.i.d. for n ∈ Z,
(3)

where Xn(t), εn(t) are functions and imposing assumptions ϕ(s, t) that would grant

stationarity of Xn(t). Note that according to (3) the series Xn(t) will be driven

by Hilbert-Schmidt integral operator. Theoretical background has been moved to

Appendix. The assumptions needed to consistently estimate the FAR(1) model

(3) and to formulate the ”null” hypothesis on functional errors εn are as follows:

A1: εn(t) are iid with and ||εn(t)||2 <∞ for −∞ ≤ n ≤ N . Eεn(t) = 0.

A2: ϕ ∈ Φ is measurable and satisfies

||ϕ||∞ < 1 for ϕ ∈ Φ, (4)

which implies ∫ 1

0

∫ 1

0

|ϕ(s, t)|2dsdt <∞ (Hilbert-Schmidt) . (5)

The assumption A1 has to be imposed in order to make Xn stationary without

estimating the intercept µ. As in the multivariate case independence of curves

implies lack of correlation. Condition (4) gives the characterization of Xn. Note

that if we define M as σ-algebra generated by sequence {εn(t), εn−1(t), . . . } then

the sequence Xn{ω} is going to be stationary for ω ∈ M. Note that we do not

have to impose assumptions on the continuity of ϕ. Model (3) defines a member of

a class of Hilbert-Schmidt operators which are bounded and continuous. Finally

Φ is a class of functions that define Ψ given in (1) to be a Hilbert-Schmidt operator.
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In order to propose the test for error serial correlation we define the residuals

with respect to model (3) as

εn[ϕ] = Xn+1 −
∫ 1

0

ϕ(Xn), (6)

for ϕ ∈ Φ, while simplifying the notation. Clearly we are treating the residuals

as functions of ϕ. In a general hilbertian setup we say that εn and εn+i are

uncorrelated if and only if

E
(〈
εn, f

〉〈
εn+i, g

〉)
= E

∫ 1

0

εn(s)f(s)ds

∫ 1

0

εn+i(s)g(s)ds = 0

for any f, g ∈ L2(0, 1) with the standard inner product defined in L2(0, 1) as〈
εn, f

〉
=
∫ 1

0
εn(s)f(s)ds. In order to test the lack of correlation of curves εn[ϕ̂]

we need to reduce the dimension of the estimated kernel ϕ. Usually the Karhunen-

Loéve expansion is utilized but in fact we have that for any Xn ∈ L2(0, 1) we may

perform the orthogonal projection of respectively Xn(t) and implicitly εn(t) on

p-dimensional subspace of L2(0, 1) spanned by orthonormal basis v1, . . . , vp. The

choice of Karhunen-Loéve basis, based on the decomposition of the covariance op-

erator of a series Xn is motivated by the optimal convergence to the true series.

The idea is based on transforming the model (3) to its approximation in Rp where

the vectors would represent the coefficients of each function Xn in the given basis.

So the first step is approximating the ϕ(·, ·) ∈ Φ in the finite v1, . . . , vp basis. Then

the estimated kernel ϕ̂p(·, ·) ∈ Φ may be represented by the matrix ϕ̂(p) transform-

ing coefficients of past observed curves Xn−1(t) into coefficients of Xn(t) in the KL

basis B0 = [v1, . . . , vp]. Let us assume that {vk} forms the orthonormal KL basis

of L2(0, 1). Thus each observation Xn admits the representation

Xn =
∞∑
i=1

〈
vi, Xn

〉
vi.
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Now if {vk} is a basis of L2(0, 1) then {vi(t)vj(s)} is a basis of L2([0, 1] × [0, 1])

because ϕ is Hilbert-Schmidt kernel. It follows that ϕ(t, s) may be decomposed as

ϕ(t, s) =
∞∑

i,j=1

ϕj,ivi(t)vj(s), (7)

for any ϕ(t, s) ∈ Φ, where ϕj,i with 0 ≤ j, i ≤ p are coefficients of ϕ
(p)
0 matrix

satisfying

ϕj,i =
〈
ϕ(t, s), vi(t)vj(s)

〉
=

∫ 1

0

ϕ(t, s)vi(t)vj(s)dtds. (8)

The immediate advantage of Karhunen-Loéve expansion is that we may derive

ϕj,i = λ−1
i E

〈
Xn−1, vi

〉〈
Xn, vj

〉
where λi is an eigenvalue associated to vi. This

equation is the immediate analog of OLS estimation of ϕ(p) that has been presented

in the Appendix. Note that having the estimator of ϕ
(p)
0 = [ϕj,i]i,j<p we can write

the kernel estimator by (7) as

ϕ̂p(t, s) =

p∑
i,j=1

ϕ̂j,ivi(t)vj(s). (9)

being an exact multivariate OLS analog (see Appendix). Clearly ϕ̂p(·, ·) ∈ Φ is

not feasible kernel estimator because true basis v1, . . . , vp is not known and has to

be estimated. The feasible estimator would have the form

ϕ̃p(t, s) =

p∑
i,j=1

ϕ̂j,iv̂i(t)v̂j(s), (10)

with distribution of ϕ̃(p) ∈ Φ possibly depending on the error of basis B0 estima-

tion. Note that Φ(p) is the space of p× p matrices and is isometric with previously

defined Φ as far as the v1, . . . , vp base functions are taken into consideration. Thus

there is one to one relationship between any ϕ ∈ Φ and its p × p dimensional

counterpart ϕ(p) ∈ Φ(p).
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In order to define the residuals for any kernel ϕp ∈ Φ we may rewrite model

(3) using (7) as

Xn+1(t) =

p∑
i=1

p∑
j=1

ϕj,i

〈
Xn, vj

〉
vi(t) + γ

(p)
n+1[ϕ](t) + εn+1[ϕ](t), (11)

for any ϕ ∈ Φ, where

γ
(p)
n+1[ϕ](t) =

∞∑
i=p+1

∞∑
j=p+1

ϕj,i

〈
Xn, vj

〉
vi(t),

so γ
(p)
n+1[ϕ] is an approximation error. Now we may define the residuals ε̂n[ϕ]

according to equation (11)

εn+1[ϕ] = Xn+1 −
[
v1 . . . v2

]
ϕ11 . . . ϕ1p

...
. . .

ϕp1 . . . ϕpp


′

〈
Xn, v1

〉
...〈

Xn, vp

〉
+ γ

(p)
n+1[ϕ] (12)

for ϕ ∈ Φ, with its projection given as

ϕ(p) =


ϕ11 . . . ϕ1p

...
. . .

ϕp1 . . . ϕpp

 ∈ Φ(p),

Now γ
(p)
n [ϕ](t) represents distortion curve caused by truncation of higher than p

order KL expansions factors of Xn(t) (and εn+1[ϕ](t) with respect to grid t∗ due to

quadrature error if this error is going to be discussed). Note that it is impossible

to compute γ
(p)
n [ϕ] for any ϕ ∈ Φ. Thus εn[ϕ](t) may not be obtained. However,

the truncated residuals εn[ϕ(p)](t) = εn[ϕ] − γ(p)
n [ϕ] may be computed for ϕ ∈ Φ

with respect to p most important eigenfunctions.

In order to decrease the dimension of the problem we have to transform resid-

uals defined as in (12) to the representation dependent on the coefficients in the
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v1, v2, . . . , vp basis. We are going to denote X
(p)
n (t) as a Karhunen - Loéve expan-

sion of Xn(t) and xni =
〈
Xn, vi

〉
as KL coefficients of Xn(t). Note that xni does

not depend on the p-length of the KL expansion for specific n ≤ N , i = 1, . . . , p so

that each element of this vector is unique. We will use the notation t∗ for the grid

where various functions may be observed with t∗ ⊂ (0, 1). Now we may rewrite

(12) as

[
v1(t∗) . . . vp(t

∗)
]

ε(n+1)1

...

ε(n+1)p

 =

[
v1(t∗) . . . vp(t

∗)
]

x(n+1)1

...

x(n+1)p

−

ϕ11 . . . ϕ1p

...
. . .

ϕp1 . . . ϕpp



xn1

...

xnp


 ,

(13)

where ε(n+1)i is a KL expansion coefficient of εn[ϕ](t) with respect to vi and t∗

grid. Note that distortion curve γ
(p)
n [ϕ] from equation (12) is disappears because

it does not have a representation in B = {v1, . . . , vp} basis.

Now under assumptions A1-A2 we have that for length of KL expansion of Xn(t),

p sufficiently large, the γ
(p)
n [ϕ] error for each n ≤ N may be arbitrary small. The

distortion coming from estimating the B0 basis and the eigenvalues Λ0 will affect

the finite sample distribution of autocorrelations of coefficients vectors Xni for

n ≤ N, i ≤ p. However, it will not have the assymptotic effect on the distribution

of empirical autocovariances. Let us rewrite the model (13) compactly as

en+1[ϕ(p)] = A
(p)
n+1 − ϕ(p)A(p)

n , (14)
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in general for any ϕ(p) ∈ Φ(p) where

en[ϕ(p)] =


εn1

...

εnp


[ϕ(p)]

=


〈
εn, v1

〉
...〈

εn, vp

〉


[ϕ(p)]

,

A(p)
n =


xn1

...

xnp

 =


〈
Xn, v1

〉
...〈

Xn, vp

〉
 ,

so en[ϕ(p)] and An for n ≤ N are coefficient vectors of respectively residuals εn[ϕ]

and observed series Xn. Equation (14) provides the approximation of a FAR(1)

defined in (3) and is the equation we are going to refer in further discussion. This

approach has been proposed in Gabrys et al. (2010) in a similar functional model

with exogenous regressors. Note that equation (14) does not take into account

that the basis B = {v1, . . . , vp} is unknown and we may use only the estimate B̂.

According to the formulation of empirical residuals (14) we may define empirical

residual covariances

Γ̂(p)
ϕ (j) =

1

N − j

N−j∑
i=1

(
ei[ϕ

(p)]− ē[ϕ(p)]
) (
ei+j[ϕ

(p)]− ē[ϕ(p)]
)′

(15)

for ϕ(p) ∈ Φ(p) defined before as a class of linear transforms isometric with space of

linear transforms in vector space Rp. We also define ē[ϕ(p)] as the average across

the 1, . . . , N − j residuals in equation (14). We are denoting Γ̂
(p)
ϕ (j) for any j ≥ 1

as an estimator of Γ̂
(p)
ϕ0 (j).

The ”null” hypothesis may be stated as

H0: The residuals coefficients en[ϕ
(p)
0 ] following (14) are not correlated.

against the alternative
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H1 : H0 is not true.

Clearly in a more general sense we are aiming to test the H0 hypothesis that pro-

cess {Xn(t)}N−∞ is generated by functional model (3) with the kernel ϕ0(s, t) ∈ Φ

satisfying A2 and the residuals {εn[ϕ0]} satisfy assumptions A1-A2. The test we

use is a goodness-of-fit test for univariate strong VAR model introduced by Box

and Pierce (1970). The modification of Box-Pierce statistic which has better finite

properties is a Ljung-Box portmanteau test proposed by Box and Ljung (1978).

Using the BP (LB) test we are are aiming at testing the lack of correlation of

coefficients of Karhunen - Loéve expansion of the series up to arbitrary lag H for

Xn(t) and εn[ϕp] using up to p most important factors. Thus note that the serial

correltions of the form E
〈

(εn, vi)
〉〈

(εn−h, vj)
〉

may not be detected for i, j > p

or h > H.

The test statistic that is going to be used is a modification of the multivariate

version of Box-Pierce statistic, (16) was given by Chitturi (1974)

Q̂H(ϕ̂(p)) = N
H∑
h=1

tr{Γ̂(p)
ϕ̂ (h)′Γ̂

(p)
ϕ̂ (0)−1Γ̂

(p)
ϕ̂ (h)Γ̂

(p)
ϕ̂ (0)−1} (16)

or equivalently by Hosking (1981)

Q̂H(ϕ̂(p)) = N
H∑
h=1

{vec(Γ̂
(p)
ϕ̂ (h)′[Γ̂

(p)
ϕ̂ (0)⊗ Γ̂

(p)
ϕ̂ (0)]−1vec(Γ̂

(p)
ϕ̂ (h))} (17)

with Q̂H(ϕ
(p)
0 ) being the statistic Q̂H evaluated in ϕ

(p)
0 ∈ Φ(p). By testing lack of

autocorrelation of functional residuals using Box-Pierce statistics, (16) and (17)

we are testing the specification of a FAR(1) model (3) with the arbitrarily chosen

level p of Karhunen-Loéve coefficients.
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3 Removing the estimation effect of Portmanteau

statistics in FAR(1) setting

The aim of this section is presenting a method of eliminating the estimation

error from the distribution of Q̂H(ϕ̂(p)). The model we are using in this section

follows (14) and assumptions A1-A2. We assume that the eigenfunctions of KH

expansion B0 are known with the discussion on this problem moved to next sec-

tion. The number of KL coefficients p is fixed and to simplify notation we will

be writing ϕ ∈ Φ(p) instead of ϕ(p) ∈ Φ(p). It is known that in general multivari-

ate autoregressive VARMA(a, b) under H0 the asymptotic distribution of Q̂H(ϕ̂(p))

statistic does not follow a χ2
p2H asymptotic distribution due to estimation error.

It has been shown by Hosking (1980) that finite sample distribution of Q̂H(ϕ̂(p))

may be appoximated by a χ2
p2(H−a−b) distribution which is closer to the asymptotic

distribution of Q̂H(ϕ
(p)
0 ).

Let us define the autocovariance vector by (15)

γ̂(m)
ϕ =

[
vec(Γ̂(p)

ϕ (1))′, vec(Γ̂(p)
ϕ (2))′, . . . , vec(Γ̂(p)

ϕ (m))′
]′

(18)

and autocorrelation vector

ρ̂(m)
ϕ =

[
vec(Γ̂(p)

ϕ (1)Γ̂(p)
ϕ (0)−1)′, , . . . , vec(Γ̂(p)

ϕ (m)Γ̂(p)
ϕ (0)−1)′

]′
(19)

for ϕ ∈ Φ(p). It is clear that under H0 the elements of γ̂
(m)
ϕ̂ are going to be corre-

lated owing to estimation error (ϕ̂(p)−ϕ(p)
0 ). This implies that the true distribution

of Q̂H(ϕ̂(p)) is going to be different from χ2
(p2H) for arbitrary 0 ≤ H ≤ m (see Box,

Pierce, 1970 and Durbin, 1970 for VARMA).
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Let us define the matrix of empirical derivatives of γ̂
(m)
ϕ̂ ,

ζ̂(m)
ϕ =


∇vecΓ̂

(p)
ϕ (1)

∇vecΓ̂
(p)
ϕ (2)

...

∇vecΓ̂
(p)
ϕ (m)

 (20)

where

∇vecΓ̂(p)
ϕ (i) =

∂

∂ (vecϕ(p))
′vecΓ̂(p)

ϕ , i = 1, . . . ,m.

The derivatives with repect to VAR(1) specification of a functional model (3) are

going to have a pivotal role in transforming the γ̂
(m)
ϕ vector for ϕ ∈ Φ(p). Our

solution of the problem of residual dependence in γ̂
(m)
ϕ̂ follows Delgado & Velasco

(2011). We are not going to derive the true asymptotic distribution of Q̂H(ϕ̂(p))

under the H0 (see Francq and Räıssi, 2007 for VAR, Francq, Roy and Zaköıan,

2005 for ARMA, Li, 1992 for nonlinear models with iid innovations and Hwang,

Basawa and Reeves, 1994) but perform the linear transformation of estimated co-

variance vector γ̂
(m)
ϕ̂ , defined as (18). The reasoning is based on the fact that we

do not directly estimate γ̂
(m)
ϕ0 , which is impossible but perform the transform using

orthogonal projection operator.

The fundamental result that allows for transformation of γ̂
(m)
ϕ̂ is the following

Proposition 1. Under H0, A1-A2 and

ϕ̂(p) = ϕ
(p)
0 +Op(N

− 1
2 ), (21)

the following holds

γ̂
(m)
ϕ̂ = γ̂(m)

ϕ0
+ ζ̂(m)

ϕ0
(ϕ

(p)
0 − ϕ̂(p)) + op

(
N−

1
2

)
(22)

where ζ̂
(m)
ϕ0 is a derivative of γ̂

(m)
ϕ evaluated in true parameter ϕ

(p)
0 without the
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associated noise coming from estimation of basis B0.

Note that assumption (21) requires the
√
N consistent estimator of ϕ

(p)
0 . In

fact OLS estimator is available and satisfies this condition, however the following

reasoning is going to be true for any estimator that satisfies (21). We have pre-

sented further discussion in the Appendix.

It is clear that Proposition 1 may be followed by its analogue concerning residual

autocorrelations γ̂
(m)
ϕ̂ defined in (19) under the same assumptions. It is easy to

show that

ρ̂
(m)
ϕ̂ = ρ̂(m)

ϕ0
+ η̂(m)

ϕ0
(ϕ

(p)
0 − ϕ̂(p)) + op

(
N−

1
2

)
, (23)

with derivative of m autocorrelations η̂
(m)
ϕ0 satisfying

η̂(m)
ϕ0

= Ĝ
− 1

2
ϕ ζ̂(m)

ϕ0
, (24)

Ĝϕ = diag
(

vec(Γ̂(p)
ϕ (1))vec(Γ̂(p)

ϕ (1))′, . . . , vec(Γ̂(p)
ϕ (m))vec(Γ̂(p)

ϕ (m))′
)
, (25)

for ϕ ∈ Φ(p).

Now following equation (14) and disregarding the distortion errors γ(p)[ϕ](t) the

expected relationship

√
Nρ̂(m)

ϕ0

d−→ N (0, Imp2).

holds and above relationship is the basis of Box-Pierce test. Note that if we con-

sider the asymptotic distribution of ρ̂
(m)
ϕ̂ instead the above relationship will not

hold according to Proposition 1. We are proposing the pivotal transform of ρ̂
(m)
ϕ̂ (j)

for j ≤ m, based on recursive projections on the space of orthogonalised sample

autocorrelations {ρ̂(m)
ϕ̂ (i)}j+ri=j+1 of residual coefficients. This transformation due to

Proposition 1 is asymptotically distribution free (see Delgado & Velasco, 2011).

It is widely known that it is not possible to estimate the set of true autocorrelation

vectors {ρ̂(m)
ϕ0 (i)}mi=1 because it depends on distribution of estimation error. The

idea of martingale transform was introduced by Brown, Durbin & Evans (1975) for

cusum tests for linear models. The theoretical part in case of Gaussian processes
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follows Khmaladze (1981). We show that our recursive projection operator esti-

mated using the estimated derivatives is going to transform the vector ρ̂
(m)
ϕ̂ into

random variable that has the same asymptotic distribution as ρ̂
(m)
ϕ0 .

Let us consider the sequence of vectors {ρ̂(m)
ϕ̂ (i)}mi=1. Now according to drift equa-

tion (23) {ρ̂(m)
ϕ̂ (i)}mi=1 distribution will depend asymptotically only on the estima-

tion error and the distribution of ρ̂
(m)
ϕ0 . Let us consider recursive LS estimation of

β parameter in following set of equations
ρ̂

(m)
ϕ̂ (j) = η̂

(m)
ϕ̂ (j)× β + µj,j,

ρ̂
(m)
ϕ̂ (j + 1) = η̂

(m)
ϕ̂ (j + 1)× β + µj,j+1,

...

ρ̂
(m)
ϕ̂ (m) = η̂

(m)
ϕ̂ (m)× β + µj,m,


for j = 1, . . . ,m− 1.

(26)

Note that the condition j ≤ m− 1 allows the above system of equations to consist

of at least two equations.

According to (23) we have that β̂j is the estimate of vec(ϕ
(m)
0 −ϕ̂(p)) estimation error

using the information from the sequence {ρ̂(m)
ϕ̂ (j), . . . , ρ̂

(m)
ϕ̂ (m)} for j = 1, . . . ,m−1

and µj,i are errors centered in zero for each j’th iteration of LS. Now the solution

to (26) for βj+1 is a feasible recursive LS estimator given by

β̂j+1 =

(
m∑

i=j+1

η̂
(m)
ϕ̂ (i)′η̂

(m)
ϕ̂ (i)

)−1 m∑
i=j+1

η̂
(m)
ϕ̂ (i)′ρ̂

(m)
ϕ̂ (i),

which may be interpreted as block by block estimation. Now, we may define

operator =(m)
ϕ

=(m)
ϕ {(ρ̂

(m)
θ (j))} = ρ̂

(m)
θ (j)− η̂(m)

ϕ (j)

(
m∑

i=j+1

η̂(m)
ϕ (i)′η̂(m)

ϕ (i)

)−1 m∑
i=j+1

η̂(m)
ϕ (i)′ρ̂θ

(m)(i)

(27)

15



for ϕ, θ ∈ Φ(p). Note that according to (27) the feasible estimator of =(m)
ϕ0 would

be =(m)
ϕ̂ . The motivation for (27) is that by Proposition 1 we have

Lemma. Under A1-A2 and H0 we have asymptotically

=(m)
ϕ0

(ρ̂
(m)
ϕ̂ (j)) = =(m)

ϕ0
(ρ̂(m)
ϕ0

(j)) + oP (1), j = 1, . . . ,m (28)

and for N going to infinity we are going to have

=(m)
ϕ̂ (ρ̂

(m)
ϕ̂ (j))

p−→ =(m)
ϕ0

(ρ̂(m)
ϕ0

(j)), j = 1, . . . ,m, (29)

The proof of the Lemma has been moved to Appendix. The main problem is

consistent estimation of the derivatives by its empirical counterparts. If =(m)
ϕ0 (·)

may be consistently estimated it implies by (28) that =(m)
ϕ̂ (ρ̂

(m)
ϕ̂ (j)) is going to

converge in probability to =(m)
ϕ̂ (ρ̂

(m)
ϕ0 (j)). Note that =(m)

ϕ (·) is a linear transform

of ρ̂
(m)
ϕ (j + 1), . . . , ρ̂

(m)
ϕ (m) whose coefficients have to be estimated and these co-

efficients are unique by satisfying the conditions given by the Lemma. Now the

covariance of =(m)
ϕ̂ has has to be taken into account in calculating Box-Pierce statis-

tic (17). In general we have that
√
Nρ̃

(m)
ϕ0 (j) are distributed as iid standard normals

for j ≥ 1. Note that its martingale transform
√
N=(m)

ϕ̂ (ρ
(m)
ϕ0 (j)) will asymptoti-

cally converge to mean zero normals. By Lemma we have that
√
N=(m)

ϕ̂ (ρ̂
(m)
ϕ̂ (j))

are asymptotically distributed as
√
N=(m)

ϕ̂ (ρ
(m)
ϕ0 (j)) with variance

Âvar
(
=(m)
ϕ̂ (ρ̂

(m)
ϕ̂ (j))

)
=
[
Id2 + η̂

(m)
ϕ̂ (j)

( m∑
i=j+1

η̂
(m)
ϕ̂ (i)′η̂

(m)
ϕ̂ (i)

)−1
η̂

(m)
ϕ̂ (j)′

]
(30)

for j ≥ 1.

Now note that in transformed FAR(1) model by (14) we have according to =(m)
ϕ

defined as in (27) that the first autocorrelation ρ̂
(m)
ϕ̂ (1) is transformed by m − 1

autocorrelations, ρ̂
(m)
ϕ̂ (2) is transformed by m− 2 autocorrelations and so forth. If

we are using explicitly m autocorrelations in this way, then the condition that has

16



to be met is

rank

(
m∑

i=j+1

η̃
(m)
ϕ̂ (i)′η̃

(m)
ϕ̂ (i)

)
= p2 (31)

The implication of the above is that first covariances of order less that m could not

be corrected because of singularity problems. The simplest solution to this problem

is to use constant number of derivatives to transform a subset of m empirical

autocorrelations. The number of autocorrelations used in correction algorithm is

not bounded. Thus let us assume that we are going to use arbitrary number r of

past autocorrelations in each of the equations. This modification of (27) would

produce following projection operator

=(m,r)
ϕ̂ (ρ̂

(m)
ϕ̂ (j)) = ρ̂

(m)
ϕ̂ (j)− η̂(m)

ϕ̂ (j)

(
j+r∑
i=j+1

η̂
(m)
ϕ̂ (i)′η̂

(m)
ϕ̂ (i)

)−1 j+r∑
i=j+1

η̂
(m)
ϕ̂ (i)′ρ̂

(m)
ϕ̂ (i)

j = 1, . . . ,m− r, H ≤ m− r, r < m.

(32)

The rationale for fixing the number of derivatives used for recursive LS algorithm

has numerical rather than statistical character. If we assume that m is large then

using excessive number of derivatives of autocorrelations is going to decrease the

goodness of fit of the =(m)
ϕ̂ operator. Note that given a VAR(1) specification, the

autocorrelations and derivatives of autocorrelations of order j + 1, j + 2, . . . for

any j ≤ m are going to converge to zero in expotential way. Thus the estimates of

inverses of matrices of the form (31) are not asymptotically bounded. This prob-

lem may be treated as a property of resursive projection technique. Thus there is

a tredeoff between the precision of the estimate and the number of lags considered

r, given the number of observations N .

Now accounting for (30) and lack of estimation effect in ρ̂
(m)
ϕ̂ (0), we have according
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to (17)

Q̂=H(ϕ̂(p)) = N

H∑
j=1

{
=(m,r)
ϕ̂ (ρ̂

(m)
ϕ̂ (j))′

[
Âvar

(
=(m,r)
ϕ̂ (ρ̂

(m)
ϕ̂ (j))

) ]−1

=(m,r)
ϕ̂ (ρ̂

(m)
ϕ̂ (j))

}
(33)

where Q̂=H(ϕ̂) is BP statistic transformed by =(m,r)
ϕ̂ defined in (32) and estimated

by empirical residuals dependent on ϕ̂ ∈ Φ(p).

Now we may claim the theorem that is the implication of Lemma

Theorem 1. Under assumptions A1-A2 and Proposition 2 and 3 we have the

following

Q̂=H(ϕ̂) = Q̂=H(ϕ0) + oP (1), (34)

Q̂=H(ϕ̂)
D−→ χ2

(Hp2), with N →∞ (35)

under H0 for H = 1, 2, . . . , H ≤ m− r, r < m.

The above result is the main reason that justifies our approach and allows for

eliminating the estimation error in asymptotic distribution of Box-Pierce statistic.

The crucial point is that we do not estimate the ρ̂
(m)
ϕ0 vector, because it would

be impossible without estimating the asymptotic distribution of estimation error.

It is clear that Q̂=H(ϕ̂) is a martingale transform of BP statistic defined in (17)

and the othogonalisation procedure leading to elimination of serial correlation due

to estimation error should lead asymptotically to χ2
(Hp2) distribution. Interesting

point is that in multivariate setup it would be much harder to rewrite the =(m,r)
ϕ

operator to fit the definition (16).

In the end we have to state a technical proposition concerning the consistency

of estimation of =(m,r)
ϕ0 . In order to assure it we have to propose the consistent

estimators of empirical derivatives for ϕ ∈ Φ(p). Note that ∇vecΓ̂
(p)
ϕ (j), j =

1, . . . ,m for ϕ ∈ Φ(p) are obtained using the derivatives of ên[ϕ] for n = 1, . . . , N

with respect to ϕ′. In the following proposition we are claiming that under H0

in general strong VAR(1) framework we will obtain the oP (1) convergence of ζ̂
(m)
ϕ̂

18



with the proof moved to the appendix.

Proposition 2. Under H0 and A1-A2 we have that derivatives matrix defined in

(20) will satisfy

∇vecΓ̂
(p)
ϕ̂ (i)

p−→ ∇vecΓ̂(p)
ϕ0

(i), for i = 1, . . . ,m

ζ̂
(m)
ϕ̂ = ζ̂(m)

ϕ0
+ oP (1)

(36)

where the matrix ζ̂
(m)
ϕ for ϕ ∈ Φ(p) satisfies the following equation

ζ̂(m)
ϕ =


∇vecΓ̂

(p)
ϕ (1)

...

∇vecΓ̂
(p)
ϕ (m)

 = − 1

N

N−m+1∑
n=1




A

(p)
n

′

A
(p)
n+1

′

...

A
(p)
n+m−1

′

⊗ Id ⊗ en[ϕ]

 . (37)

The above result proposes well defined estimator of derivatives of autocorrela-

tions evaluated at unknown ϕ0 ∈ Φ(p). Note that the stationarity of the process

Xn(t) following A1- A2 would imply stationarity of the derivatives of residual au-

tocorrelations following equation (14). We would also like to know the probability

limit of ζ̂
(m)
ϕ0 . In order to continue we need to state the following

Proposition 3. Assuming A1-A2 and H0 it is true that

ζ̄(m)
ϕ0

p−→ −E




A

(p)
n

′

A
(p)
n+1

′

...

A
(p)
n+m−1

′

⊗ Id ⊗ en[ϕ0]

 = Op(1).

Proposition 3 is one of the ways to suggest the asymptotic effect of estimation

error. If the derivatives of empirical autocovariances were converging to zero then

by Proposition 1 the asymptotic effect could not be corrected.
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4 Asymptotic effect of eigenfunction basis B̂ and

eigenvalue Λ̂ decomposition

In the previous section we presented the method of estimation of orthogonal

projection operator =(m,r)
ϕ0 and the convergence of Q̂=H(ϕ̂(p)) to the desired χ2

p2H

distribution under ”null” hypothesis. The problem however is the distortion error

that comes from distribution of B0 basis consisting of v1, . . . , vp functions. The

assumption we are using is that the Op(N
− 1

2 ) estimator of the basis is available.

The estimated eigenfunctions will be denoted as B̂ = [v̂1, . . . , v̂p]. Now in reality

we estimate the multivariate representation of FAR(1) according to (14)

en+1[ϕ(p)] = A
(p)
n+1 − ϕ(p)A(p)

n + ξ
(p)
n+1(p, ϕ(p)), (38)

where ξn is unobserved distortion error of the empirical residual coefficients for

observedXn(t). In an obvious way ξ
(p)
n affects the coefficients ofXn(t), A

(p)
n because

we evaluate the coefficients of Xn(t) in the estimated basis B̂. In addition we have

that it affects also the estimator ϕ̂(p) during the OLS estimation. In general the

distribution of ξ
(p)
n could have an asymptotic effect on distribution of Q̂H [ϕ̂(p)] and

subsequently Q̂=H [ϕ̂(p)]. Let us denote ẽn(ϕ(p)) as the empirical residual coefficients

affected by the distribution of ξ
(p)
n errors for ϕ(p) ∈ Φ(p).

In order to show the lack of asymptotic effect of ξ
(p)
n we need to refer to Proposition

1. The drift equation (22) defines the asymptotic effect of estimated ϕ
(p)
0 and at

the same time is a basis of correction algorithm based on recursive LS. Thus we

need to state the following

Theorem 2. Under H0, A1-A2 and

B̂ = B0 +Op(N
− 1

2 ), (39)

the following holds

γ̃(m)
ϕ = γ̂(m)

ϕ + op

(
N−

1
2

)
(40)
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for ϕ(p) ∈ Φ(p), where γ̃
(m)
ϕ is residual autovovariance vector of m autocovariances

evaluated in ẽn+1[ϕ(p)] and γ̂
(m)
ϕ is evaluated in undistorted residual coefficients

en[ϕ(p)].

Note that Theorem 2 implies that basis estimation errors ξ
(p)
n would not matter

in the probability limit in distribution of Box-Pierce statistic ie. there would be no

asymptotic effect. Assumption (39) may be formulated by the means of relation

between true eigenfunctions B0 = [v1, . . . , vp] and estimated base B̂ = [v̂1, . . . , v̂p].

The distortion errors ξ
(p)
n come from the fact that we may write v̂i =

∑∞
n=1 αijvj

with αij not being Kronecker deltas. Thus basis vectors v̂i are incorrectly specified

and the coefficients αij have some distribution around the true values with Eαii = 1

and Eαij = 0 for i 6= j. Now in order to show the analog of Proposition 1 we may

use the Fourrier decomposition of functions in base B̂ in B̂0 and in some sense use

the first Fourrier coefficients as a measure of deviation of B̂ from the true basis

B0. We may show that

Proposition 4. Defining the matrix ∆̂ of coefficients αi being a Fourrier expansion

of order two of functions {v̂1, . . . , v̂p} in the {v1, . . . , vp} basis as

∆̂ =


α11 α12 . . . α1p

α21
. . .

...

αp1 . . . αpp

 ,∆0 = Ip (41)

the following conditions hold for any Xn(t) series under assumptions A1-A2

Â(p)
n = ∆̂A(p)

n , (42)

for any n ≤ N where Â
(p)
n are coefficients of Xn(t) in distorted basis. In addition

for any ϕ ∈ Φ(p) we have

ẽn[ϕ(p)] = ∆̂A(p)
n − ϕ(p)∆̂A

(p)
n−1, (43)

for any n ≤ N .
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Note that in order to obtain equations (42) we have to use the linearity of

scalar product and the fact that L2(0, 1) is a Hilbert space. The main asymptotic

result concerning eigenfunction estimation has been formulated in Hall & Hosseini-

Nassab (2005). By means of generalized Fourrier decomposition it has been shown

that the trace coefficients αii deviations δii satisfy

δii = −1

2
N−1

∑
k:k 6=i

(λi − λk)−2

(∫ 1

0

∫ 1

0

Zvi(s)vk(t)dsdt

)2

+Op(N
− 3

2 )

with αii = 1+δii. Now, Z is defined as covariance kernel error satisfying Z = K−K̂
with

K(s, t) = E{Xn(t)− EXn(t)}{Xn(s)− EXn(s)}, (44)

K(s, t) =
∞∑
i=1

λivi(s)vi(t). (45)

and subsequent estimated K̂. In practice we may obtain the K operator as K =

EXn ⊗ Xn according to a grid of Xn observations while Λ̂ matrix of eigenvalues

is the diagonalised counterpart of K̂ (see Appendix). Thus Z in equation (41) is

an error of covariance operator estimation which would affect eigenvalues matrix

estimator diag Λ̂ = [λ̂1, . . . , λ̂p] and eigenfunction estimator B̂ = [v̂1, . . . , v̂p].

Now using the intermediate result in Proposition 4 we may prove Theorem 2. In

order to show lack of asymptotic effect of ∆̂ we need to show the negative analog of

Proposition 1. The proof would consider using the derivatives of empirical residuals

ẽn[ϕ(p)] with respect to vec∆ evaluated in ∆̂.

Proposition 5. Under A1-A2 we have for ϕ0 ∈ Φ(p),

∂

vec∆′
Γ̃(p)
ϕ (i) = oP (1), (46)

for i ≤ m.
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5 Numerical ilustrations

In this section we are investigating size and power properties of our modification

of BP test. The procedure that can be used as a comparison was developed

in Gabrys et al. (2010) for exogenous regressors, with p-values obtained using

χ2(p2H) distribution. In order to account for estimation error we will be also

using χ2(p2(H − 1)) distribution. The characteristical feature of functional data

is relatively small number of observed functions N that rarely reach 200 and the

grid, ie. the number of observed values of each curve on (0, 1) that tends to be

large and surely larger than N . Our modification of BP statistic will be denoted

as DV transform. The models for Monte Carlo experiments have been proposed

in Gabrys et al. (2010), we follow this design in order to get the clear comparison

of methods. The motivation for assuming general Brownian Bridge errors is clear.

In reality the errors may be any independent series of processes εn(t). However,

we do not want the errors to be dominating the entire model. Brownian Motion

is more variable than Brownian Bridge under the same specification but we do

not know where the Brownian Motion is going to end. Independently simulated

Brownian Bridges are the closest counterpart of the iid errors found in the standart

multivariate setup because it starts and ends always at zero.

5.1 Empirical size.

Data generating process follows strong FAR(1) model

Xn+1(t∗) =

∫ 1

0

ϕ(s, t)Xn(s∗)ds+ εn+1(t∗),

ϕ(s, t) = 1.2e−
(s2+t2)

2 ,

εn(t∗) = BBn(t∗).

(47)

We simulated k = 1000 independent trajectories of autoregressive process follow-

ing (47) of lenght N with respect to t∗ grid. Note that the trace norm of ϕ has been

estimated to be ||ϕ||tr = 0.85. For each replication we estimated matrix coefficients

of FAR(1) approximation ϕ(p) where p is the number of eigenfunctions considered
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Table 1: Empirical size (in %) of the modified DV of 5% nominal level in the case
of the (47) autoregressive model, N = 50, #t∗ = .05, p = 2, Brownian Bridge
residuals

H 1 2 3 4 5 6 7 8
DV transform, number of derivatives used, k

χ2(Hp2) k=1 4.5 4.7 4.4 5.1 6.9 11.2 19.8 37.0
k=2 4.5 4.4 5.8 7.7 10.6 18.2 33.3 54.6
k=3 3.6 4.6 6.6 11.2 16.5 31.2 50.7 74.8

Standart Box Pierce test, Gabrys et al., 2011
χ2(Hp2) 0.6 1.4 0.8 0.8 0.7 0.8 1.2 0.9
χ2((H − 1)p2) n.a 10.8 6.2 5.1 3.4 3.8 3.0 2.7

and then applied portmanteau test to the residuals. The nominal level of the test

is α = 5%. The number of covariances used in computing Q̃=ϕ̂(H) BP statistic is

H = 1, . . . , 8. In the functoinal data setup usually BP statistic may be derived

for small number of lags due to relatively small number of observed functions.

For DV modification of BP test, the H0 is rejected when Q̃=ϕ̂(H) > χ2
0.95(p2H).

For the standard BP test we are presenting both results so H0 is rejected when

Q̃ϕ̂(H) > χ2
0.95(p2(H − 1)) or Q̃ϕ̂(H) > χ2

0.95(p2H).

In Table 1 we summarized the results of empirical size simulations for the

model (47) with N = 50 and grid #t∗ = .05. Number of eigenfunctions estimated

is p = 2, which is the reasonable approach for short series. The results for DV

modification of Box-Pierce statistic are unsatisfactory for H > 4 due to small

number of observed curves N = 50. In this case the most important factor are

numerical errors of estimating the residuals rather than finite sample distributions.

For low number of observations quality of eigenfunctions B̂ estimators matter. In

the range of low lag number H taken into consideration our test outperforms

available BP tests proposed by Gabrys et al.

In Table 2 we increased the number of grid points to more realistic case of
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Table 2: Empirical size (in %) of the modified DV of 5% nominal level in the case
of the (47) autoregressive model, N = 100, #t∗ = .01, p = 2, Brownian Bridge
residuals

H 1 2 3 4 5 6 7 8
Projection method, number of derivatives used, k

χ2(Hp2) k=1 6.6 5.3 3.2 2.9 3.2 2.8 3.0 2.4
k=2 4.3 3.4 4.9 3.8 2.7 3.3 3.6 2.7
k=3 2.8 3.4 3.0 2.7 3.0 2.8 3.5 3.8

Standart Box Pierce test, Gabrys et al., 2011
χ2(Hp2) 0.7 1.2 0.6 1.1 1.3 0.9 1.0 1.8
χ2((H − 1)p2) n.a 11.8 6.6 6.3 5.4 3.3 4.3 4.0

#t∗ = .01 and increrased the number of observations. In this case the results of

approximating 5% quantile of Q̂ϕ0 improved for larger values of H. For the most

important low values of H DV modification of BP test will outperform standart

approach because there the estimation error would affect Q̃ϕ̂(H) the most.

In Table 3 we presented the result for the case where the grid has been de-

creased ten times compared to example in Table 2. We have shown that grid does

not have asymptotical impact on distribution of Q̃=ϕ̂(H) because sequential OLS

is performed after estimation of eigenfunctions. Thus for resonable number of N

observations results did not change significantly both for our out transform of BP

statistic and the standart approach.

The impact of increasing the number of eigenfunctions p taken into considera-

tion is depicted in Table 4. The results for DV transform of BP statistic start to

become unreliable for H > 5 due to the fact that the number of parameters to be

estimated including the derivatives and asymptotic variance increase more than

two times compared with the case with p = 2.
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Table 3: Empirical size (in %) of the modified DV of 5% nominal level in the case
of the (47) autoregressive model, N = 100, #t∗ = .1, p = 2, Brownian Bridge
residuals

H 1 2 3 4 5 6 7 8
Projection method, number of derivatives used, k

χ2(Hp2) k=1 6.1 4.3 4.7 4.2 2.9 3.0 2.4 2.2
k=2 4.7 4.1 3.3 3.6 3.5 3.0 2.2 3.3
k=3 3.3 4.2 3.4 3.8 2.9 2.5 3.1 3.8

Standart Box Pierce test, Gabrys et al., 2011
χ2(Hp2) 0.7 1.1 1.6 0.8 1.6 1.2 1.1 0.6
χ2((H − 1)p2) n.a 11.3 7.8 5.7 6.5 5.1 3.7 3.7

Table 4: Empirical size (in %) of the modified DV of 5% nominal level in the case
of the (47) autoregressive model, N = 100, #t∗ = .01, p = 3, Brownian Bridge
residuals

H 1 2 3 4 5 6 7 8
Projection method, number of derivatives used, k

χ2(Hp2) k=1 4.2 4.6 3.8 2.9 3.7 5.7 12.2 24.2
k=2 2.6 2.4 3.2 3.6 5.8 13.0 21.7 51.1
k=3 1.6 2.7 2.1 5.2 9.1 21.9 47.7 99.6

Standart Box Pierce test, Gabrys et al., 2011
χ2(Hp2) 0.1 0.1 0.2 0.3 1.0 0.3 0.4 0.4
χ2((H − 1)p2) n.a 11.6 7.3 4.5 5.2 4.0 2.8 2.7
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Table 5: Empirical size (in %) of the modified DV of 5% nominal level in the case
of the (47) autoregressive model, N = 200, #t∗ = .01, p = 3, Brownian Bridge
residuals

H 1 2 3 4 5 6 7 8
Projection method, number of derivatives used, k

χ2(Hp2) k=1 4.7 3.5 2.6 3.4 2.8 2.3 2.4 1.8
k=2 3.0 3.0 3.8 3.5 2.8 2.5 2.2 2.2
k=3 3.7 2.4 3.4 3.3 2.5 1.9 2.5 1.8

Standart Box Pierce test, Gabrys et al., 2011
χ2(Hp2) 0.0 0.1 0.0 0.3 0.6 0.7 0.6 0.6
χ2((H − 1)p2) n.a 10.8 7.6 6.5 5.5 3.9 4.6 4.2

In Table 5 we increased the number of observed curves two times from N = 100

to N = 200 while keeping the same grid and p = 3. The results went back to the

situation from Table 2 with N = 100, #t∗ = .01 and p = 2.

In order to see Monte Carlo simulated size characteristics for DV modification

of BP statistic Q̃ϕ̂(H) we introduce weakly dependent FAR(1) model

Xn+1(t∗) =

∫ 1

0

ϕ(s, t)Xn(s∗)ds+ εn+1(t∗),

ϕ(s, t) = 1.2e−
(s2+t2)

2 ,

εn(t∗) = BBn(t∗)× .BBn−1(t∗)

(48)

Clearly model (48) is a FAR(1) but in this case functional errors εn(t) follow the

weakly dependent process. In Table 6 we summarized the results in the interme-

diate case of N = 100 observations and p = 2. The results are comparable to the

similar case of strong FAR(1) model presented in Table 2. Note that in both cases

we were estimating the asymptotic variance matrix ie. we were acting agnostically

without knowing the true model.
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Table 6: Empirical size (in %) of the modified DV of 5% nominal level in the case
of the (48) autoregressive model, N = 100, #t∗ = .05, p = 2, Brownian Bridge
residuals

H 1 2 3 4 5 6 7 8
Projection method, number of derivatives used, k

χ2(Hp2) k=1 4.1 3.7 3.9 4.9 4.1 5.5 6.2 8.9
k=2 4.7 3.7 3.3 4.6 4.6 5.8 8.6 10.4
k=3 3.4 4.5 4.6 6.1 4.8 7.0 8.7 9.4

Standart Box Pierce test, Gabrys et al., 2011
χ2(Hp2) 2.1 3.9 2.2 3.3 3.3 3.2 2.9 2.2
χ2((H − 1)p2) n.a 19.9 12.3 12.1 9.1 8.1 6.8 6.1

5.2 Empirical power

We are simulating the following FAR(1) model with autocorrelated functional

errors

Xn+1(t∗) =

∫ 1

0

φ(s, t)Xn(s∗)ds+ εn+1(t∗), (49)

φ(s, t) = 1.2e−
(s2+t2)

2 , (50)

εn(t∗) =

∫ 1

0

θ(s, t)Xn(s∗)ds+ υn(t∗), (51)

θ(s, t) = 0.9e−
(s2+t2)

2 , (52)

υn = BBn(t∗). (53)

As in the size Monte Carlo experiment the number of simulated trajectiories is

k = 1000 of lenght N with respect to t∗ grid. Note that the trace norm of ϕ is the

same as in previous experiments ||ϕ||tr = .85 and the norm of operator θ driving

the FAR(1) process εn(t) is ||θ||tr = .66. For each replication we estimated matrix

coefficients of FAR(1) approximation ϕ(p) where p is the number of eigenfunctions

considered and then applied portmanteau test to the residuals. The nominal level

of the test is α = 5%. The number of covariances used in computing Q̃=ϕ̂(H) BP

28



Table 7: Empirical power (in %) of the modified DV of 5% nominal level in the
case of the (48) autoregressive model, N = 80, #t∗ = .05, p = 2, FAR(1) errors
εn(t), Brownian Bridge distortions υn(t)

H 1 2 3 4 5 6 7 8
Projection method, number of derivatives used, k

χ2(Hp2) k=1 83.3 84.9 76.4 63.2 54.9 45.0 35.2 31.2
k=2 91.1 87.6 80.6 65.2 52.2 43.7 36.8 29.6
k=3 91.9 88.4 80.3 66.2 58.0 44.8 38.8 35.0

Standart Box Pierce test, Gabrys et al., 2011
χ2(Hp2) 96.7 96.8 95.2 92.0 89.7 89.6 84.6 81.7
χ2((H − 1)p2) n.a 99.5 99.2 97.4 95.8 95.8 93.2 89.2

statistic is H = 1, . . . , 8. For DV modification of BP test, the H0 is rejected when

Q̃=ϕ̂(H) > χ2
0.95(p2H). For the standard BP test we are presenting both results so

H0 is rejected when Q̃ϕ̂(H) > χ2
0.95(p2(H − 1)) or Q̃ϕ̂(H) > χ2

0.95(p2H). Clearly

model (49) does not satisfy H0 because εn(t) are serially correlated.

The realistic example with N = 80, p = 2 and #t∗ = .05 has been sumarized in

Table 7. The rejection rates are comparable to standart method following Gabrys

et al. (2011) for low values of evaluated lags of Q̃=ϕ̂(H). This characteristic will be

more evident with lower values of observations N as shown in Table 8. In general

DV modification of BP statistic shows better size than power characteristics. How-

ever, usually in functional data only the low number of lags of autocorrelations H

may be taken into consideration.

In Table 9 we are presenting results for extreme case with N = 30 and improved

grid #t∗ = .01. Evidently better results for larger values of DV modification of BP

statistic are coming from numerical errors of estimation of derivatives. Another

aspect is that better grid does not help much as far as results are concerned. On

the other hand our results are not worse than estimates given by Gabrys et al.

(2011).

In Table 10 we increased the number of observations from N = 30 to N = 100.

In this case results of our method are comparable to the alternative approaches up
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Table 8: Empirical power (in %) of the modified DV of 5% nominal level in the
case of the (48) autoregressive model, N = 30, #t∗ = .01, p = 2, FAR(1) errors
εn(t), Brownian Bridge distortions υn(t)

H 1 2 3 4 5 6 7 8
Projection method, number of derivatives used, k

χ2(Hp2) k=1 25.6 21.3 25.1 37.0 58.7 99.5 100 100
k=2 29.9 31.5 39.2 58.3 99.9 100 100 100
k=3 33.3 39.5 59.2 99.8 100 100 100 100

Standart Box Pierce test, Gabrys et al., 2011
χ2(Hp2) 34.8 36.1 29.6 21.6 21.5 18.2 15.0 12.3
χ2((H − 1)p2) n.a 74.0 57.2 44.4 42.2 33.2 28.7 24.7

Table 9: Empirical power (in %) of the modified DV of 5% nominal level in the
case of the (48) autoregressive model, N = 100, #t∗ = .01, p = 2, FAR(1) errors
εn(t), Brownian Bridge distortions υn(t)

H 1 2 3 4 5 6 7 8
Projection method, number of derivatives used, k

χ2(Hp2) k=1 95.0 94.5 91.7 87.5 76.5 65.6 58.6 50.0
k=2 97.6 96.4 93.0 87.3 78.2 66.3 58.3 48.7
k=3 98.2 96.2 93.0 88.7 77.8 66.9 60.4 50.6

Standart Box Pierce test, Gabrys et al., 2011
χ2(Hp2) 99.5 99.5 98.9 98.3 96.3 96.6 97.0 94.5
χ2((H − 1)p2) n.a 99.9 99.8 99.5 99.0 98.8 98.8 98.0
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to H = 4. With increasing number of observations both methods tend to reject

surely, however the treshold N will be higher for DV modification. (I will do also

10% and 20% - it will be probably better and will look nicer... )

5.3 Application to financial markets for minute data

We are going to apply the methods developed in the paper for intradaily data

of noted prices of IMB corporation in NASDAQ index in the period 6/05/2006−
6/23/2006. There are several approaches available because the data contains

Open/High/Low/Close prices (Figure 1 ). The following analysis will be using

Open prices, however the alternative data does not differ greatly because the dif-

ferences are contained in intraminute periods. The minute data allows for very

precise estimation of the eigenfunctions of the process so the estimation error of

B̂ estimation is relatively low. The grid t∗ is every minute from 9.31 to 16.00

which gives #t∗ = 390. The number of observartions is N = 15, however this

number seems sufficient to estimate the FAR(1) operator and test the specifica-

tion of the model. The eigenvalues matrix of diagonalized covariance operator Λ̂

Figure 1: IBM opening prices on NASDAQ with minute frequency 6/05/2006-
6/23/2006.
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was estimated as

Λ̂ =


.6921, 0, 0, 0

0, .0421, 0, 0

0, 0, .0182, 0

0, 0, 0, .0063

 ,

which means that there is one dominating signal with the second one ten times

weaker and the rest decreasing in significance approximately three times mono-

tonically. Thus for such low number of observations we estimate ϕ
(p)
0 with p = 2

number of eigenfunctions p. We are setting the hypothesis that the prices of IMB

follow the model

IBMn+1(t) =

∫ 16.00

9.30

ϕ(s, t)IBMn(s)ds+ εn+1(t),

εn(t) are uncorrelated,

(54)

where {IBMn(t)}15
n=1 are the prices of IBM on the considered dates divided into

daily curves on a minute grid. Now estimating ϕ
(p)
0 gives the estimate

ϕ̂(p) =

[
0.51, 0.87

−0.13,−0.01

]
,

which produces the estimate ϕ̃(s, t) shown in Figure 2. The kernel shown in Fig-

ure 2 is typical representation of the gaussian kernel estimated for low number

of observations. If trace norm of Ψ Hilbert-Schmidt operator defined by ϕ(s, t) is

also low then the estimation error of ϕ(p), concentrates close to the beginning of

the grid. We may note the rising convex surface around (0, 0) instead of convex

surface decreasing expotentially to (1, 1).

In order to test the specification of the model we are testing the lack of corre-

lation of the residuals ẽ[ϕ̂(p)] using DV modification of BP statistic Q̃=ϕ̂(H) using

the χ2(4H) treshold and unmodified BP statistics Q̃ϕ̂(H) following χ2(4H) and

χ2(4(H − 1)) tresholds. The Type I Error α = 5%.
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Figure 2: Estimated ϕ kernel of FAR(1) model (54).

The results of testing H0 hypothesis were summarized in Table 10. Evaluat-

ing BP test by both DV modification of Q̃ϕ̂(H) statistic and using the standart

approach does not suggests rejecting H0 hypothesis. Now for only N = 15 obser-

vations taking into account more than H = 2 lags could lead to wrong conclusions

because number of observation used in computing the BP statistics is equal to

N − H. The reason we did not compute the values of modified values of Q̃=ϕ̂(H)

is the inability to diagonalize asymptotic covariance matrix Ĝϕ̂ and subsequently

autocovariance of projection operator =ϕ̂. Such cases may happen for small num-

ber of observations and are a numerical rather than statistical problem.

It may be surprising that eliminating the first day would drastically change the

results of estimation. Estimating the noncorrelated functional series leads to sim-

ilar results as in multivariate case. Firstly the approximated operator ϕ̂(p) is close

to unity. Secondly the values of BP statistic tend to be low due to overfitting. In

the described case we obtained the estimated kernel shown in Figure 3.
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Table 10: Evaluation of DV modification of BP statistic and Standart BP statistic
for estimated residuals in model (54)

H 1 2 3
Projection method BP statistic, number of derivatives used, k

Q̃=ϕ̂(H) k=1 4.5268 9.1763 not computed
k=2 2.4644 not computed not computed

Standart Box Pierce statistic, Gabrys et al., 2011

Q̃ϕ̂(H) 3.8336 8.4087 10.0941
p-values for asymptotic χ2 distributions

χ2
0.95(Hp2) 9.4877 15.5073 21.0261
χ2

0.95((H − 1)p2) n.a 9.4877 15. 5073

Figure 3: Estimated ϕ kernel of FAR(1) model (54) in the 6/06/2006-6/23/2006
range.

The interpretation of such a kernel is straightforward. Given that the sequence

{IBMn(t)}15
n=2 is serially noncorrelated the kernel ϕ(s, t) defined in model (54)

will satisfy the continuity condition of the observed data, thus only the beginning

and the end of the grid of the observed minute period would matter. All the

information contained in the observed values of the functions would not matter

at all and would be estimated as depending on the noncorrelated errors εn(t). It

should be noted that for such a short sequence of observations we cannot draw
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final conclusions, however the functional approach could possibly lead to different

interpretation of the data compared to multivariate approach.
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Appendix

• Specification of functional FAR(1) model

Note that formulation (3) may look specific but in fact it is quite general in infinite

dimensional approach. In multivariate framework it is possible to rewrite VAR(a)

for any a ∈ N and a ≥ 1 as VAR(1), however by the cost of increasing the dimension

of the data. In infinite dimension space FAR(a) may be directly represented as

FAR(1) using the Hilbert Hotel argument (see Bosq, 2000).

We are treating each element of a sequenceXn as an element of a suitable hilbertian

space. Here we are assuming that Xn(t) are elements of the space of square

integrable functions L2([0, 1]) with the standard product of the form
〈
Xn, f

〉
=∫ 1

0
Xn(s)f(s)ds, that also implies the euclidean norm ||Xn||2 =

√∫ 1

0
|Xn(s)|2ds.

The direct parameter of the model is an operator Ψ : L2([0, 1])→ L2([0, 1]) defined

as

Ψ(Xn)(t) =

∫ 1

0

ϕ(s, t)Xn(s)dsdt, (55)

with the the assumption that Ψ ∈ C, where C is a set of all compact, bounded

integral operators defined on L2(0, 1). Such class of operators are known as Hilbert-

Schmidt integral operators with ϕ : [0, 1] × [0, 1] → R being called the Hilbert-

Schmidt kernel with the assumption that∫ 1

0

∫ 1

0

|ϕ(s, t)|2dsdt <∞. (56)

which implies that we may choose the parameter space ϕ ∈ Φ, where Φ is a space of

functions that satisfy (56). In general any operator kernel ϕ defines operator Ψ but

there exist such compact operators that do not have their kernel representation.

Thus by (55) we are assuming that kernel ϕ fully parametrizes FAR(1) model.

The reason for formulation of a FAR(1) model using Hilbert-Schmidt operators is

twofold. On one hand we would expect the linear operator to be bounded. Then

by Banach theorem if it is bounded then it is continuous. Compactness of a linear
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operator between Hilbert spaces is sufficient for both continuity and boundedness.

Now in general each compact linear operator T : H → H in Hilbert space H may

be represented as

T =
∞∑
n=1

λn

〈
fn, ·

〉
gn, (57)

where f1, f2, . . . , and g1, g2, . . . , are orthonormal sets and the sequence λn may

have the focal point only at 0. Thus choosing Hilbert-Schmidt operator allows for

truncation of estimated parameter ϕ in a finite basis.

In a general functional data setup we have to choose the most suitable base to

represent Xn(t) and ϕ as an infinite sum of time dependent processes. In this

sense each function Xn(t) may be represented by infinite series of coefficients in

this base thus it is essential that Hilbert-Schmidt operators behave similar to linear

transformations in finite dimensional spaces as far as eigenvalue decomposition is

concerned. The second argument applies to Ψ which may be represented in the

same base implicitly through ϕ(s, t) decomposition. If we would be able to choose

the basis of L2(0, 1), then the same would apply to ϕ which is an element of

L2((0, 1)× (0, 1)) by (56). Also it is worth noting that if condition ϕ(s, t) = ϕ(s, t)

is satisfied than spectral theorem applies so we may choose the base with respect

to spectral decomposition of Ψ using Karhunen-Loéve decomposition.

• Estimation of a basis in functional FAR(1) model

Principal components concept comes from multivariate analysis. The idea is to

convert the set of given variables in such a way to get the set of uncorrelated

variables. The problem may be described as reducing the dimensionality of data

by means of approximation(see Gorban, Zinovyev (2009)). Principal components

under mild conditions define the best finite orthonormal basis for the set of observ-

able functions. The problem of finding principal components may be equivalently

defined as a problem of finding the modes of highest variation. The method is

based on diagonalisation of covariance operator of observed series of curves Xn(t)
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defined as

C(X, g) = E
〈
Xn, g

〉
Xn

given that EXn = 0 and Xn is stationary. Now the key point is that operator C

may be directly observed in the data and has the following empirical analogue

Ĉ(X, g) =
1

N

N∑
n=1

〈
Xn, g

〉
Xn, (58)

for each g, which follows from assumption of Xn, g ∈ H and stationarity. Now

the following condition holds in general strictly for variance operator (see Ferraty,

Vieu (2006))

E
〈
Xn, Xn

〉
= E (Xn ⊗X ′n) .

Taking the analogue

Ĉ(X,Xn) =

(
1

N

N∑
i=1

(Xi ⊗X ′i)

)
Xn = D̂Xn

we obtain the t∗ × t∗ matrix D̂ where t∗ is the grid of the observed curves Xn.

The effect of diagonalisation of D̂ is the set of eigenvalues λ̂1, λ̂2, . . . , λ̂p and the

eigenfunctions observed with respect to t∗-spaced grid v̂1, v̂2, . . . , v̂p. We may write

D̂ = B̂−1Λ̂B̂

where B̂ was defined in (??) as matrix of eigenfunctions on {t∗}, while Λ̂ is an

estimator of eigenvalues matrix. Now, in general Λ does not have to be a diagonal

but may have an alternative Jacobi form, but in practice it would mean that a

process would be comprised of at least two equally strong signals which in practice
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could happen in very specific applications. The values

diag(Λ̂) =
[
λ̂1, . . . , λr

]
represent estimated expected deviations of corresponding eigenfunctions. This

algorithm is called Karhunen-Loéve decomposition of a Xn(t) series. The stan-

dard procedure of decomposition of stationary process Xn(t) involves choosing the

number of functions in KH expansion p ≤ t∗ which is large enough to approximate

{Xn(t)} up to 90% of total variation.

It is worth noting that this procedure does not involve assumptions on regre-

sors and is always feasible. The important implication is the simple application of

eigenvalue decomposition. We may note that by construction

Ĉ(X, v̂i) = λ̂iv̂i,

C(X, vi) = λivi

and by Karhunen-Loéve theorem we have

Xn(t) =
∞∑
i=0

〈
vi, Xn

〉
vi(t)

Now based on the same assumptions we may write for independent stationary

series {Xn(t)}

Xn(t) ∼
∞∑
i=1

λiSivi

where Si are independent random variables and vi are orthonormal. This gives

the interpretation of double orthogonalisation of a process, in terms of probability

space and orthogonality of eigenfunctions. In the Gaussian case Si are standard

39



normal with the following statement holding

lim
n→∞

p∑
i=1

C(Xn, vi) = Xn a.s.

• OLS estimation of ϕ(p)

Following (13) we have
x̂(n+1)1

...

x̂(n+1)p

 =


ϕ̂11 . . . ϕ̂1p

...
. . .

ϕ̂p1 . . . ϕ̂pp



x̂n1

...

x̂np

+


ε̂(n+1)1

...

ε̂(n+1)p

 , (59)

where eigenfunctions evaluated on the t∗ grid and
[
v̂1(t) . . . v̂p(t)

]
are estimates

already obtained by eigenvalue decomposition. Thus it is possible to compute the

Karhunen-Loéve approximations of Xn(t∗) by taking

x̂ni =

∫
{t∗}

Xn(t∗)v̂i(t
∗)dt∗,

for n ≤ N , where
∫
{t∗} is any consistent quadrature approximation algorithm on

{t∗} grid. Numerical integration methods may differ depending on the assumptions

imposed on Xn(t). Now we may write

Ân+1 = ϕ̂(p)Ân + ên+1

where ϕ̂(p) and ên+1 which is followed by

Ân+1Â
′
n = ϕ̂(p)ÂnÂ

′
n + ên+1Â

′
n, (60)

E
(
Ân+1Â

′
n

)
E
(
ÂnÂ

′
n

)−1

= Eϕ̂(p), (61)

using that Eên+1Â
′
n = 0. In order to obtain the estimator we may use empirical
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analogue of the form

ϕ̂(p) =
N−1∑
i=1

1

N − 1

(
Âi+1Â

′
i

)(
ÂiÂ

′
i

)−1

.

(Consistency)

Note that instead of using direct inverses we may consider element by element

estimates following (60). We have that


ϕ̂11 . . . ϕ̂1p

...
. . .

ϕ̂p1 . . . ϕ̂pp

 =
N−1∑
i=1

1

N − 1


x̂(i+1)1x̂i1 . . . x̂(i+1)1x̂ip

...
. . .

x̂(i+1)px̂i1 . . . x̂(i+1)px̂ip

× 1

N − 1

N−1∑
i=1


x̂2
i1 . . . x̂i1x̂ip
...

. . .

x̂ipx̂i1 . . . x̂2
ip


−1

,

(62)

with

E


x̂2
n1 . . . x̂n1x̂np
...

. . .

x̂npx̂n1 . . . x̂2
np

 =


Ex̂2

n1

. . .

Ex̂2
np


using the fact that Ex̂nix̂nj = 0 for i 6= j from the Karhunen-Loéve theorem and

Assumptions [][]. Thus we may write by (62)

ϕ̂j,i =
N−1∑
i=1

1

N − 1
x̂nix̂nj(x̂

2
ni)
−1, (63)

which is the analogue of the equation

ϕj,i = λ−1
i E

〈
Xn−1, vi

〉〈
Xn, vj

〉
,

where λi is an eigenvalue associated to vi. In most cases (63) is the most numeri-

cally stable method of estimating ϕ(p). In functional setup the number of observed

curves N may be much lower than in the multivariate setup so it is reasonable
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to avoid inverting covariance matrices during estimation. Clearly estimator based

on (62) would require inverting p × p matrix. The alternative way to solve this

problem is a rout taken in Gabrys, Horváth & Kokoszka (2010). Let us vectorize

equation (59) 
x̂(n+1)1

...

x̂(n+1)p

 =



x̂n1

...

x̂np


′

⊗ Ip

 vecϕ(p) +


ε̂(n+1)1

...

ε̂(n+1)p

 , (64)

where estimated parameter vecϕ(p) is the p2×1 vector. Note that a closed solution

of above equation would require inverting large p2 × p2 matrix, however it would

be always invertible by construction following (64) (see Gabrys et al., 2011).

• Proof of Proposition 1

Proposition 1 is the statement of asymptotic effect of estimation error on the

empirical autocovariances. At the same time it allows for algorithm of correction.

This approach to the proof has been proposed in Delgado & Velasco (2011) in

univariate case. The multivariate version has been proposed in Opuchlik (2012).

In order to lessen the notation load we will write ϕ ∈ Φ(p) instead of ϕ(p) ∈ Φ(p).

We need to show that for each j = 1, . . . ,m

vec
(

Γ̂
(p)
ϕ̂ (j)

)
− vec

(
Γ̂(p)
ϕ0

(j)
)

= ∇Γ̂(p)
ϕ0

(j)(vecϕ̂− vecϕ0) +DN(j)

with DN(j) = oP (N−
1
2 ). Now we could use the following approximation

DN(j) = (vecϕ̂− vecϕ0)′

{
∂2vec(Γ

(p)
ϕ (j))

∂vecϕ∂vecϕ′
(ϕ∗)

}
(vecϕ̂− vecϕ0)

with ϕ∗ satisfying ||ϕ∗−ϕ0||2 ≤ ||ϕ̂−ϕ0||2 but
{
∂2vec(Γ

(p)
ϕ (j))

∂vecϕ∂vecϕ′
(ϕ∗)

}
is a second order

tensor which is cumbersome to handle. In order to stay in he standard linear setup

we may write the following[
vec
(

Γ̂
(p)
ϕ̂ (j)

)]
(i)
−
[
vec
(

Γ̂(p)
ϕ0

(j)
)]

(i)
=
[
∇Γ̂(p)

ϕ0
(j)
]
i′th row

(vecϕ̂− vecϕ0) +DN(j)(i)
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where (i) denotes position in vector and i = 1, 2, . . . , p2, with DN(j)(i) = oP (N−
1
2 ).

Now we show that

DN(j)(i) = (vecϕ̂− vecϕ0)′
∂2vec(Γ̂ϕ(j))(i)

∂vecϕ∂vecϕ′
(ϕ∗)(vecϕ̂− vecϕ0) (65)

Now in order to prove that (65) holds it is enough to argument that
∂2vec(Γ̂ϕ(j))(i)
∂vecϕ∂vecϕ′

(ϕ∗) =

OP (1). Let us evaluate the expression (65) in ϕ∗ ∈ Φ(p) using Proposition 2 and

A1-A2

∂2vec(Γ̂ϕ(j))(i)

∂vecϕ∂vecϕ′

∣∣∣∣∣
ϕ
(p)
∗

=
1

N − j

N−j∑
n=1

∂

∂vecϕ




A

(p)
n+j

A
(p)
n+j−1

...

A
(p)
n+j−p


′

⊗ Id ⊗ en[ϕ(p)
∗ ]



′

i′th row

=

=
1

N − j

N−j∑
n=1

∂

∂vecϕ




A

(p)
n+j

A
(p)
n+j−1

...

A
(p)
n+j−p


′

⊗ Ip ⊗
(
A(p)
n − ϕ(p)

∗ A
(p)
n−1

)
i′th row



′

.

Now note that for each n = 1, . . . , N

∂

∂vecϕ




A

(p)
n+j

A
(p)
n+j−1

...

A
(p)
n+j−p


′

⊗ Ip ⊗
(
A(p)
n − ϕ(p)

∗ A
(p)
n−1

)
i′th row



′

= f({A(p)
n }) = Op(1),

by A1-A2 because it would be linear with respect to residuals en[ϕ(p)] and non-

linear with respect to regressors A
(p)
n which implies by LLN and Proposition 2

that

∂2vec(Γ̂ϕ(j))(i)

∂vecϕ∂vecϕ′

∣∣∣∣∣
ϕ
(p)
∗

=
∂2vec(Γ̂ϕ(j))(i)

∂vecϕ∂vecϕ′

∣∣∣∣∣
ϕ
(p)
0

+ oP (1). (66)
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So from (66) and (65) we get that

DN(j)(i) = (vecϕ̂− vecϕ0)′

{
∂2vec(Γ̂ϕ(j))(i)

∂vecϕ∂vecϕ′
(ϕ(p)
∗ ) + oP (1)

}
(vecϕ̂− vecϕ0)

with

DN(j)(i) = Op(N−1),

assuming that ϕ̂(p) is a root N estimator.

QED

Note that in this case which is in fact a standart VAR we could use the lin-

earity of the second derivative of the empirical residuals with respect to ϕ. The

result also applies in the nonlinear setup in VARMA case. However, in this case

the proof needs more general motivation.

• Proof of Proposition 2

In order to show (36) it is convenient to present the form of derivatives ζ̂
(m)
ϕ

according to (37) in general for ϕ ∈ Φ(p). From (14) we may write the system of

equations

∇ϕe
(p)
n+j[ϕ] =

∂e(p)[ϕ]

∂vecϕ′
(ϕ) = −A(p)

n−1

′
⊗ Id, (67)

for n = 2, . . . , N . We are interested in obtaining the derivatives of residual auto-

covariances ∇ϕΓ̂ϕ(i) for i = 1, . . . ,m. We may write the following

∇vecΓ̂(p)
ϕ,n(j) =

∂vec(e
(p)
n+j[ϕ]e

(p)
n [ϕ]′)

∂ϕ′
=

=
∂e

(p)
n+j[ϕ]

∂ϕ′
⊗ e(p)

n [ϕ] + e
(p)
n+j[ϕ]⊗ ∂e

(p)
n [ϕ]

∂ϕ′
=

=∇ϕe
(p)
n+j[ϕ]⊗ e(p)

n [ϕ] + e
(p)
n+j[ϕ]⊗∇ϕe

(p)
n [ϕ],

(68)
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with the second factor converging in probability to the limit Ee
(p)
n+j[ϕ]⊗∇ϕe

(p)
n [ϕ] =

0 under H0, so it may be omitted. Now we are proposing an estimator

ζ̂(m)
ϕ0

=


∇vecΓ̂

(m)
ϕ (1)

...

∇vecΓ̂
(m)
ϕ (m)


(ϕ0)

=
1

N

N−m+1∑
n=1

(
ζ̂(m)
ϕ0

)
n

(69)

with

(
ζ̂(m)
ϕ0

)
n

=


∇vecΓ̂

(p)
ϕ,n(1)

...

∇vecΓ̂
(p)
ϕ,n(m)


(ϕ0)

.

Using (68) and (69) gives us (37).

In order to show (36) we need to prove that ∇vecΓ̂
(m)
ϕ0 (h) is estimated consistently

for h = 1, . . . ,m. The sufficient condition that would imply the (36) statement is

1

N

N∑
n=i+h

(A
(p)
n−i
′
⊗ Ip)⊗ (e

(p)
n−h[ϕ̂]− e(p)

n−h[ϕ0]) = oP (1) (70)

for any i = 1, . . . , p after using A1⊗B1−A2⊗B2 = A1⊗(B1−B2)+(A1−A2)⊗B2.

Note that we may write

sup
0≤n≤N

||e(p)
n−h[ϕ̂]− e(p)

n−h[ϕ0]|| = OP (N−
1
2 ), (71)

which comes from the observation that estimation error (vecϕ̂ − vecϕ̂) is asymp-

totically normal and at the same time by A1-A2 and model FAR(1) formulation

under the ”null” we have that the operator

ϕ ∈ Φ(p) : ϕ→ {e(p)
n [ϕ]}Nn=1

is is linear. Thus the distance between e
(p)
n [ϕ̂] and e

(p)
n−h[ϕ0] is going to be bounded
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uniformly by the distance between ϕ̂ ∈ Φ(p) and ϕ̂ ∈ Φ(p) multiplied by some

constant. This result will hold also in nonlinear setting but we would need the

assumptions on the higher order derivatives. Now by (71) we have

|| 1
N

N∑
n=i+h

(A
(p)
n−i
′
⊗ Ip)⊗ (e

(p)
n−h[ϕ̂]− e(p)

n−h[ϕ0]))|| ≤

≤ sup
0≤n≤N

||A(p)
n−i
′
⊗ Ip|| sup

0≤n≤N
||e(p)

n−h[ϕ̂]− e(p)
n−h[ϕ0]|| = oP (1)

because sup0≤n≤N ||A
(p)
n−i
′
⊗ Ip|| = OP (1).

QED

• Proof of Proposition 3

The Proposition has been proven in Opuchlik (2012) for general VARMA(a, b)

setup.

• Proof of Lemma

In order to show (28) it is enough to observe that =(m)
ϕ0 is continuous and bounded

under A1-A2 and ”null” hypothesis with ρ̂
(m)
ϕ̂ = ρ̂

(m)
ϕ0 + oP (1). Boundedness

in probability of =(m)
ϕ0 comes from boundedness of η̂ϕ0 and η̂ϕ0(i) = OP (1) for

i = 1, . . . ,m. The same arguments apply to =(m,r)
ϕ0 .

In order to show (29) it is sufficient to note that =ϕ0(·)
p−→ =ϕ0(·) because from

Proposition 2 and 3 we have that

η̂ϕ̂(j) = η̂ϕ0(j) +Op(N
− 1

2 ), j = 1, . . . ,m

and =ϕ0(·) is a finite sum of derivatives and identity operators. Now ρ̂
(m)
ϕ̂

p−→ ρ̂
(m)
ϕ0

so also Avar
(
ρ̂

(=,m)
ϕ0 (j)

)
with ρ̂

(=,m)
ϕ0 (j) = =(m,r)

ϕ0 (ρ̂
(m)
ϕ0 (j)) is estimated consistently

for j = 1, . . . ,m.

QED

• Proof of Theorem 1
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Condition (34) follows directly from the Lemma. To prove (34) let us derive

the asymptotic distribution of Q̂=H(ϕ0), using the asymptotic limit of projection

operator, =(m,r)
θ0

. Thus from (32) we have

ρ̂(=,m)
ϕ0

(j) = =(m,r)
ϕ0

(ρ̂(m)
ϕ0

(j)) = ρ̂(m)
ϕ0

(j)− η̂(m)
ϕ0

(j)

(
j+r∑
i=j+1

η̂(m)
ϕ0

(i)′η̂(m)
ϕ0

(i)

)−1 j+r∑
i=j+1

η̂(m)
ϕ0

(i)′ρ̂ϕ0(i)

j = 1, . . . ,m− r, H ≤ m− r, r < m.

where ρ̂
(m)
ϕ0 (i) ∼ N (0, Id2) iid for i = 1, . . . ,m. However, note that ρ̂

(=,m)
ϕ0 (i) does

not have asymptotically normal distribution because of the coefficients of the form

η̂(m)
ϕ0

(j)

(
j+r∑
i=j+1

η̂(m)
ϕ0

(i)′η̂(m)
ϕ0

(i)

)−1 j+r∑
i=j+1

η̂(m)
ϕ0

(i)′,

which are not identity matrices. Now in order to standarize the vector ρ̂
(=,m)
ϕ0 (i)

we may write

ρ̌(m)
ϕ0

(j) = ρ̂(=,m)
ϕ0

(j)× Avar
(
ρ̂(=,m)
ϕ0

(j)
)−1/2

,

ρ̌(m)
ϕ0

(j) ∼ N (0, Ip2),

for j=1,. . . ,m. Thus, we get that Q̂=H(ϕ0)→ χ2
(Hd2).

QED

• Proof of Proposition 4

The proof is simply the use of bilinearity of a scalar product. We have in general

univariate case

〈∑p
j=1 αijvj, Xn

〉
=

p∑
j=1

αij

〈
vj, Xn

〉
,

for any i ≤ p. This proves (42). (43) follows from (42) used in quasi autoregreesive

equation for en[ϕ(p)] residuals (14) for ϕ(p) ∈ Φ(p).

• Proof of Proposition 5
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[TO BE WRITTEN]

• Proof of Theorem 2

[TO BE WRITTEN]
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