Endogenous Income

The consumption-leisure model

Modifying consumer's problem

- For the moment, assume there is no additional exogenous income
- Consumer's income is the market value of her initial endowment, (\bar{x}, \bar{y})
- Given market prices p_{x} and p_{y}, the consumer's budget constraint is

$$
x p_{x}+y p_{y} \leq \bar{x} p_{x}+\bar{y} p_{y}
$$

Budget constraint

Changes in prices

An increase in p_{x}

Changes in prices

An increase in p_{y}

Changes in prices

- The initial endowment vector is on the consumer's budget set whatever the prices - it is always feasible to not trade.
- The consumer's budget set does not shrink when the price of a good increases: the rotation of the budget line around the initial endowment vector implies that the consumer can afford new bundles with more of the now relative cheaper good.
- If the consumer's initial bundle contains a large amount of the good now relatively more expensive, then the consumer becomes richer.

Consumer Demand

- Assume $u(x, y)$ derivable and the system

$$
\begin{aligned}
& x p_{x}+y p_{y}=\bar{x} p_{x}+\bar{y} p_{y} \\
& \operatorname{MRS}(x, y)=\frac{p_{x}}{p_{y}}
\end{aligned}
$$

yields an interior solution to the consumer's problem $\tilde{x}\left(p_{x}, p_{y}\right), \tilde{y}\left(p_{x}, p_{y}\right)$

- That is,

$$
\begin{aligned}
& \widetilde{x}\left(p_{x}, p_{y}\right)=x^{*}\left(p_{x}, p_{y}, \bar{x} p_{x}+\bar{y} p_{y}\right) \\
& \widetilde{y}\left(p_{x}, p_{y}\right)=y^{*}\left(p_{x}, p_{y}, \bar{x} p_{x}+\bar{y} p_{y}\right)
\end{aligned}
$$

where the functions on the RHS are the ordinary demands.

Consumer Demand: example

$$
u(x, y)=x \sqrt{y} ; \quad(\bar{x}, \bar{y})=(2,1)
$$

Calculate ordinary demands:

$$
\begin{aligned}
& x *\left(p_{x}, p_{y}, I\right)=\frac{2 I}{3 p_{x}} \\
& y^{*}\left(p_{x}, p_{y}, I\right)=\frac{I}{3 p_{y}}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \widetilde{x}\left(p_{x}, p_{y}\right)=\frac{2\left(2 p_{x}+p_{y}\right)}{3 p_{x}}=\frac{4}{3}+\frac{2 p_{y}}{3 p_{x}} \\
& \widetilde{y}\left(p_{x}, p_{y}\right)=\frac{2 p_{x}+p_{y}}{3 p_{y}}=\frac{1}{3}+\frac{2 p_{x}}{3 p_{y}}
\end{aligned}
$$

Income and substitution effects

- Study the effect of an increase in p_{x} for utility function $u(x, y)$ and endowment (\bar{x}, \bar{y})

Income and substitution effects

- Substitution effect is negative

$$
S E=x_{B}-x_{A}<0
$$

- Income effect is positve

$$
I E=x_{C}-x_{B}>0
$$

- In this case, income effect is larger than substitution effect, so the total effect is positive: an increase in p_{x} leads the consumer to increase its consumption of both goods

$$
T E=S E+I E=x_{C}-x_{A}>0
$$

Income and substitution effects

Whether income is endogenous or exogenous, the substitution effect of an increase of the price of a good over its demand is negative.

However, when income is endogenous the income effect decomposes into two effects:
(1) Ordinary income effect, whose sign depends on whether the good is normal (N) or inferior (I).
(2) Endowment effect, whose sign depends on whether at the original prices the consumer was a net seller (S) or a net buyer (B) of the good.

The sign of the total income effect (TIE) is negative in the cases $\mathrm{N}-\mathrm{B}$ and $\mathrm{I}-\mathrm{S}$, whereas it is ambiguous in the cases $\mathrm{N}-\mathrm{S}$ and $\mathrm{I}-\mathrm{B}$.

Income and substitution effects

Total effect $=$ substitution effect (SE) + (ordinary income
effect + endowment effect)

$$
=S E+T I E
$$

Formally,

$$
\begin{aligned}
\frac{\partial \widetilde{x}}{\partial p_{x}} & =\left.\frac{\partial x^{*}}{\partial p_{x}}\right|_{u=c t e}-x \frac{\partial x^{*}}{\partial I}+\bar{x} \frac{\partial x^{*}}{\partial I} \\
& =\left.\frac{\partial x^{*}}{\partial p_{x}}\right|_{u=c t e}-\frac{\partial x^{*}}{\partial I}(x-\bar{x})
\end{aligned}
$$

Income and substitution effects

¿When is the TIE negative?

	Normal good $\left(\frac{\partial x^{*}}{\partial I}>0\right)$	Inferior good $\left(\frac{\partial x^{*}}{\partial I}<0\right)$
Net buyer $(x-\bar{x}>0)$	$T I E<0$	$T I E>0$
Net seller $(x-\bar{x}<0)$	$T I E>0$	$T I E<0$

- If TIE <0, then SE + TIE <0.
- If TIE >0, then the sign of SE + TIE is ambiguous.

Income and substitution effects

- When is the total income effect positive (the consumer is richer)?

If the good is normal and the consumer is a net seller of the good

$$
-\frac{\partial x^{*}}{\partial I}(x-\bar{x})>0 \quad \text { if } \quad \frac{\partial x^{*}}{\partial I}>0 \text { and } x-\bar{x}<0
$$

- In any case, notice that positive income effect ("richer consumer") does not mean more consumption: we have to take into account the substitution effect

Income and substitution effects

Exogenous income

Endogenous income

The consumption-leisure model. Labor supply

- Two goods: leisure (x-axis) and consumption (y-axis)
- Leisure, denoted by h and measured in hours. The wage per hour (or price of leisure) is denoted by w.
- Consumption, denoted by c and measured in euros. The price of c is therefore $p_{c}=1$).
- Initial endowment is (M, H), where:
- M : initial exogenous wealth (or non-labor income).
- H : number of hours available for leisure and work.

The consumption-leisure model. Labor supply

- Budget set (recall $p_{c}=1$)

$$
c+h w \leq w H+M
$$

$h w$: expenditure on leisure $w H+M$: monetary value of initial endowment

The consumption-leisure model. Labor supply

- Solve the problem as usual, but watch out for additional constraints

$$
\begin{array}{cl}
\operatorname{Max}_{c, h} & u(c, h) \\
\text { st } & c+h w \leq w H+M \\
& 0 \leq h \leq H \longleftarrow \\
& c \geq 0
\end{array}
$$

The consumption-leisure model. Labor supply. Example

$$
\begin{array}{cl}
\text { Max }_{c, h} & c+2 \ln h \\
\text { st } & c+w h=16 w+4 \\
& 0 \leq h \leq 16 \\
& c \geq 0
\end{array}
$$

Interior solution requires

And

$$
M R S(h, c)=w \Leftrightarrow \frac{2}{h}=w \Rightarrow h(w)=\frac{2}{w}
$$

$$
\begin{aligned}
& h(w)=\frac{2}{w} \geq 0 \Leftrightarrow \forall w>0 \\
& h(w)=\frac{2}{w} \leq 16 \Leftrightarrow w \geq \frac{1}{8}
\end{aligned}
$$

The consumption-leisure model. Labor supply. Example

Therefore,

$$
h(w)=\left\{\begin{array}{cc}
16 & \text { if } w<1 / 8 \\
\frac{2}{w} & \text { if } w \geq 1 / 8
\end{array}\right.
$$

$$
c(w)=\left\{\begin{array}{cc}
4 & \text { if } w<1 / 8 \\
2+16 w & \text { if } w \geq 1 / 8
\end{array}\right.
$$

The consumption-leisure model. Labor supply. Example

And labor supply

$$
l(w)=H-h(w)= \begin{cases}0 & \text { if } w<1 / 8 \\ 16-\frac{2}{w} & \text { if } w \geq 1 / 8\end{cases}
$$

The consumption-leisure model. Labor supply. Effect of changes in wages

- Assume $w^{\prime}<w$
- For interior solutions, the consumer is a net supplier of leisure
- Total income effect: if leisure is a normal good, $\partial h / \partial I>0$, TIE is positive, leading the consumer to demand less leisure (or supply more labor)

$$
-\underbrace{\frac{\partial h}{\partial I}}_{>0} \underbrace{l-H)}_{<0}>0
$$

- Substitution effect : is always non-positive. Since leisure is cheaper, this effect leads the consumer to demand more leisure (or supply less labor)
- Total effect is ambiguous (it depends on the shape of the utility function)

The consumption-leisure model. Labor supply. Effect of changes in wages

The consumption-leisure model. Labor supply. Effect of changes in wages

The consumption-leisure model. Labor supply. Effect of changes in wages

For $w \in(0,10), \mathrm{SE}$ dominates (leisure is more expensive and consumer offers more labor)

For $w \in(10,20)$, TIE dominates (consumer is richer and does not need

to work as much as before)

Application: a tax on labor income

- Impose $t \in[0,1]$
- The new budget constraint is

$$
c+(1-t) w h \leq(1-t) w H+M
$$

- The tax is equivalent to a reduction of wage: its impact on leisure consumption (or labor supply) is ambiguous
- Its impact on welfare is unambiguous. Of course, tax policies have other objectives we are not considering here.

Application: a tax on labor income

Application: a tax on labor income

- Alternative: a non-labor income tax T.
- The new budget constraint is

$$
c+w h \leq w H+(M-T)
$$

- If both goods are normal, then the introduction of T reduces their demands (increases labor supply, in particular)

Application: a tax on labor income

Application: a tax on labor income

- Exercise: what if $T=t w\left(H-h^{*}\right)$?
- Hint: is ($\mathrm{c}^{*}, \mathrm{~h}^{*}$) optimal for T ?

