Consumer Theory

The Marginal Rate of Substitucion

The Marginal Rate of Substitution

The marginal rate of sustitution (MRS) is the value of a unit of good x measured in units of good y; that is, it is the maximum quantity of good y a consumer is willing to give up in order to get an additional unit of good x, or alternatively, it is the number of units of good y needed to compensate the consumer from losing one unit of good x.

The MRS is a function MRS: $\mathfrak{R}^{2}+\rightarrow \mathfrak{R}$. The value $M R S(x, y)$ is not generally constant, but depends on the relative scarcity of each good in the bundle (x, y).

The Marginal Rate of Substitution

The Marginal Rate of Substitution

In order to make the "MRS" a more useful concept, and facilitate its calculation, we define the $\operatorname{MRS}(x, y)$ as the quantity of good y needed to compensate the consumer from a loss of one infinitesimal unit of good x, so that the consumer maintains the level of welfare he has with the bundle (x, y).

That is, the $\operatorname{MRS}(x, y)$ is the value to the consumer of an infinitesimal unit of good x, given in units of good y, when the consumer's bundle is (x, y).

The Marginal Rate of Substitution

The $\operatorname{MRS}(x, y)$ is the absolute value of the slope of the line tangent to the indifference curve at (x, y).

The MRS: Examples

1. $u(x, y)=x y$

Denote by $u(x, y)=x y=u *$ the utility level at the consumption bundle (x, y). Then

$$
u^{*}=x y \rightarrow y=f(x)=u^{*} / x
$$

Therefore

$$
f^{\prime}(x)=-u^{*} / x^{2} .
$$

Substituting $u^{*}=x y$ we obtain

$$
\operatorname{MRS}(x, y)=\left|-x y / x^{2}\right|=y / x
$$

Evaluating the MRS at $(2,1)$ yields

$$
\operatorname{MRS}(2,1)=1 / 2 .
$$

The MRS: Examples

The MRS: Examples

$$
\text { 2. } u(x, y)=2 x+y
$$

Denote by $u^{*}=2 x+y=u^{*}$ the utility level at the consumption bunde (x, y). Then

$$
u^{*}=2 x+y \rightarrow y=f(x)=u^{*}-2 x
$$

Therefore

$$
\operatorname{MRS}(x, y)=\left|f^{\prime}(x)\right|=2
$$

In this case, the MRS is a constant and equal to 2.

The MRS: Examples

3. The goods x and y are perfect substitutes.

The MRS: Examples

3. $u(x, y)=\min \{x, 2 y\}$

This utility function is not differentiable at (x, y) when $x \leq 2 y$. For these points, the MRS is not defined.

At points (x, y) such that $x>2 y$, we have $\operatorname{MRS}(x, y)=0$.

The MRS: Examples

3. $\operatorname{MRS}(x, y)=0$ if $y<x / 2$, and $\operatorname{MRS}(x, y)$ is not defined if $y \geq x / 2$.

Calculating the MRS

We can find an expression for the $\operatorname{MRS}(x, y)$ without knowing the function $y=f(x)$ that defines the indifference curve.

In order to calculate the MRS($\mathrm{x} 0, \mathrm{y} 0$), we start from the equation that defines the indifference curve at point ($\mathrm{x} 0, \mathrm{y} 0$)

$$
\begin{equation*}
u(x, y)=u 0 \tag{*}
\end{equation*}
$$

where $u(x o, y o)=u 0$.

The Implicit Function Theorem establishes conditions that guarantee that this equation defines a function around the point ($\mathrm{x} 0, \mathrm{y}$) , and under these conditions ensures that the derivative of this function can be obtanined by total differentiation.

Calculating the MRS

Denoting the partial derivatives of $u(x, y)$ with respect to x and y as u_{x} and u_{y}, respectively, and taking the total derivative of the equation (*), we obtain

$$
d x u_{x}+d y u_{y}=0 .
$$

Hence the derivative of the function defined by equation (*) is

$$
|d y / d x|=\left|-u_{x} / u_{y}\right|=u_{x} / u_{y}
$$

Therefore $\operatorname{MRS}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ is obtained by evaluating this expression at (xo, yo):

$$
\operatorname{MRS}\left(x_{0}, y_{0}\right)=u_{x}\left(x_{0}, y_{0}\right) / u_{y}\left(x_{0}, y_{0}\right)
$$

Calculating the MRS

We apply this formula to examples 1 and 2 above.

1. $u(x, y)=x y$.

We have $u_{x}=\partial U / \partial x=y$, and $u_{y}=\partial U / \partial y=x$. Hence $\operatorname{MRS}(x, y)=u_{x} / u_{y}=y / x$.
2. $u(x, y)=2 x+y$

We have $u_{x}=\partial U / \partial x=2$, and $u_{y}=\partial U / \partial y=1$. Hence

$$
\operatorname{MRS}(x, y)=u_{x} / u_{y}=2 / 1=2
$$

The Marginal Rate of Substitution

The MRS defines completely the consumer's preferences:

- The MRS allows to reproduce the consumer's indifference map.
- La MRS is invariant to monotonic transformations of the utility function: If $f: R \rightarrow R$ satisfies $f^{\prime}>0$ and v and u are such that

$$
v(x, y)=f(u(x, y)),
$$

then

$$
R M S_{v}(x, y)=v_{x} / v_{y}=f^{\prime} u_{x} / f^{\prime} u_{y}=u_{x} / u_{y}=R M S_{u}(x, y) .
$$

