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1 The Structural VAR Model for Stationary Data

1.1 VAR Representations

Consider the simple covariance stationary bivariate dynamic simultaneous equations
model

y1t = γ10 − b12y2t + γ11y1t−1 + γ12y2t−1 + ε1t (1)

y2t = γ20 − b21y1t + γ21y1t−1 + γ22y2t−1 + ε2t
where Ã

ε1t
ε2t

!
∼ i.i.d.

ÃÃ
0
0

!
,

Ã
σ21 0
0 σ22

!!
. (2)

The sample consists of observations from t = 1, . . . , T with a &xed initial value
y0 = (y10, y20)

0. The model (1) is called a structural VAR (SVAR) since it is assumed
to be derived by some underlying economic theory. The exogenous error terms ε1t and
ε2t are independent and are interpreted as structural innovations. For example, let
y1t denote the log of detrended real GDP and y2t denote the log of detrended nominal
money supply. Then realizations of ε1t are interpreted as capturing unexpected shocks
to output that are uncorrelated with ε2t, the unexpected shocks to the money supply.
In (1), the endogeneity of y1t and y2t is determined by the values of b12 and b21.
In matrix form, the model (1) becomes"

1 b12
b21 1

# "
y1t
y2t

#
=

"
γ10
γ20

#
+

"
γ11 γ12
γ21 γ22

# "
y1t−1
y2t−1

#
+

"
ε1t
ε2t

#

or
Byt= γ0+Γ1yt−1+εt (3)
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where
E[εtε

0
t] = D

and D is a diagonal matrix with elements σ21 and σ
2
2. In lag operator notation, the

SVAR (1) becomes

B(L)yt = γ0+εt,

B(L) = B− Γ1L.
The reduced form of the SVAR, a standard VAR model, is found by multiplying

(3) by B−1, assuming it exists, and solving for yt in terms of yt−1 and εt :

yt = B−1γ0+B
−1Γ1yt−1+B−1εt (4)

= a0+A1yt−1+ut.

or

A(L)yt = a0+ut,

A(L) = I2−A1L.

Given that

B−1 =
1

∆

"
1 −b12
−b21 1

#
, ∆ = det(B) = 1− b12b21

we have

a0 = B−1γ0 =
1

∆

"
γ10 − b12γ20
γ20 − b21γ10

#
=

"
a10
a20

#
,

A1 = B−1Γ1 =
1

∆

"
γ11 − b12γ21 γ12 − b12γ22
γ21 − b21γ11 γ22 − b21γ12

#
=

"
a11 a12
a22 a21

#
,

ut = B−1εt =
1

∆

"
ε1t − b12ε2t
ε2t − b21ε1t

#
=

"
u1t
u2t

#
.

The reduced form errors ut are linear combinations of the structural errors εt and
have covariance matrix

E[utu
0
t] = B−1E[εtε0t]B

−10

= B−1DB−10

= Ω.

Speci&cally, the elements in Ω are"
ω21 ω12
ω12 ω22

#
=
1

∆2

"
σ21 + b

2
12σ

2
2 −(b21σ21 + b12σ22)

−(b21σ21 + b12σ22) σ22 + b
2
21σ

2
1

#
.

Note that Ω is diagonal only if b12 = b21 = 0.
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1.1.1 Stationarity Conditions

The reduced form VAR (4) is covariance stationary provided the eigenvalues of A1

have modulus less than 1. The eigenvalues of A1 satisfy the equation

det (I2λ−A1) = 0

and are equal to the inverses of the roots to the characteristic equation

det(I2 −A1z) = 0. (5)

Hence, the reduced form VAR is stationary provided the roots of (5) lie outside the
complex unit circle. Evaluating the determinant in (5) gives

(1− a11z)(1− a22z)− a12a21z2 = 0
and the roots can be determined using the quadratic formula.

1.1.2 Identi&cation Issues

Without some restrictions, the parameters in the SVAR are not identi&ed. That
is, given values of the reduced form parameters a0,A1 and Ω, it is not possible to
uniquely solve for the structural parameters B,γ0,Γ1 and D. There are ten struc-
tural parameters (eight coefficients and two covariance elements) and only nine re-
duced form parameters (six coefficients and three covariance elements). Clearly, at
least 1 restriction on the parameters of SVAR is required in order to identify all
of the structural parameters. Sims (1980) argued that economic theory is not rich
enough to suggest proper identi&cation restrictions on the SVAR. Therefore, the best
we can do is to estimate the reduced form VAR (4). This bleak view is not gen-
erally accepted but there is considerable debate about what constitutes appropriate
identifying restrictions. Typical identifying restrictions include

• Zero (exclusion) restrictions on the elements of B; e.g., b12 = 0.
• Linear restrictions on the elements of B; e.g., b12 + b21 = 1.

1.2 MA Representations

The moving average (MA) or Wold representation of the reduced form VAR (4) is
found by multiplying both sides of (4) by A(L)−1 = (I2 −A1L)

−1 to give

yt= µ+Ψ(L)ut, (6)

where

Ψ(L) = (I2 −A1L)
−1

=
∞X
k=0

ΨkL
k, Ψ0 = I2,Ψk = A

k
1,

µ = (I2 −A1)
−1a0
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In the Wold representation for yt, the &rst matrix in the moving average polynomial
Ψ(L) is Ψ0 = I2. In addition, the error terms ut are generally contemporaneously
correlated and have covariance matrix Ω.
The structural moving average (SMA) representation of yt is based on an in&nite

moving average of the structural innovations εt. Substituting ut= B−1εt into (6) gives

yt = µ+Ψ(L)B−1εt (7)

= µ+Θ(L)εt

where

Θ(L) =
∞X
k=0

ΘkL
k

= Ψ(L)B−1

= B−1 +Ψ1B
−1L+ · · ·

That is, Θk = ΨkB
−1 for k = 0, 1, . . . . In particular, notice that Θ0 = B−1 6= I2.

Note that Θ(L) = B(L)−1 = Ψ(L)B−1 = (I2 −A1L)
−1B−1.

It is instructive to look at the SMA representation for the bivariate system"
y1t
y2t

#
=

"
µ1
µ2

#
=

"
θ
(0)
11 θ

(0)
12

θ
(0)
21 θ

(0)
22

# "
ε1t
ε2t

#
+

"
θ
(1)
11 θ

(1)
12

θ
(1)
21 θ

(1)
22

# "
ε1t−1
ε2t−1

#
+ · · ·

which illustrates that the elements of the Θk matrices, θ
(k)
ij , give the dynamic multi-

pliers or impulse responses of y1t and y2t to changes in ε1t and ε2t.

1.3 Impulse Response Functions

Consider the SMA representation (7) at time t+ s"
y1t+s
y2t+s

#
=

"
µ1
µ2

#
=

"
θ
(0)
11 θ

(0)
12

θ(0)21 θ(0)22

# "
ε1t+s
ε2t+s

#
+ · · ·+

"
θ
(s)
11 θ

(s)
12

θ(s)21 θ(s)22

# "
ε1t
ε2t

#
+ · · · .

The structural dynamic multipliers are

∂y1t+s
∂ε1t

= θ
(s)
11 ,
∂y1t+s
∂ε2t

= θ
(s)
12 (8)

∂y2t+s
∂ε1t

= θ
(s)
21 ,
∂y2t+s
∂ε2t

= θ
(s)
22

The structural impulse response functions (IRFs) are the plots of θ(s)ij vs. s for i, j =
1, 2. These plots summarize how unit impulses of the structural shocks at time t
impact the level of y at time t+ s for different values of s.
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Since yt is assumed to be covariance stationary we know that

lim
s→∞ θ

(s)
ij = 0, i, j = 1, 2 (9)

so that no structural shock has a long-run impact on the level of y. The long-run
cumulative impact of the structural shocks is captured by the long-run impact matrix

Θ(1) =

"
θ11(1) θ12(1)
θ21(1) θ22(1)

#
=

" P∞
s=0 θ

(s)
11

P∞
s=0 θ

(s)
12P∞

s=0 θ
(s)
21

P∞
s=0 θ

(s)
22

#
where

Θ(L) =

"
θ11(L) θ12(L)
θ21(L) θ22(L)

#
=

" P∞
s=0 θ

(s)
11 L

s P∞
s=0 θ

(s)
12 L

sP∞
s=0 θ

(s)
21 L

s P∞
s=0 θ

(s)
22 L

s

#
.

1.3.1 Identi&cation issues

In some applications, identi&cation of the parameters of the SVAR is achieved through
restrictions on the parameters of the SMA representation (7). For example, suppose
that ε1t has no contemporaneous impact on y2t. Then θ

(0)
12 = 0 and so Θ0 becomes

triangular

Θ0 =

"
θ
(0)
11 0

θ
(0)
21 θ

(0)
22

#
.

Since Θ0 = B
−1 we then have"

θ
(0)
11 0

θ
(0)
21 θ

(0)
22

#
=
1

∆

"
1 −b12
−b21 1

#

which implies that b12 = 0. Hence, assuming θ
(0)
12 = 0 in the SMA representation (7)

is equivalent to assuming b12 = 0 in the SVAR representation (1).
As another example, suppose ε1t has no long-run cumulative impact on y2t. Then

θ12(1) =
P∞
s=0 θ

(s)
12 = 0 and the long-run impact matrix Θ(1) becomes triangular:

Θ(1) =

"
θ11(1) 0
θ21(1) θ22(1)

#
.

This type of long-run restriction places restrictions on the coefficients of the SVAR
(1) since

Θ(1) = Ψ(1)B−1 = (I2−A1)
−1B−1

1.3.2 Estimation Issues

In order to compute the structural IRFs, the parameters of the SMA representation
(7) need to be estimated. Since Θ(L) = Ψ(L)B−1 and Ψ(L) = A(L)−1 = (I2 −
A1L)

−1 the estimation of the elements in Θ(L) can often be broken down into two
steps. First, A1 is estimated from the reduced form VAR (4). Given cA1, the matrices
in Ψ(L) can be estimated using cΨk = cAk

1. Second, B is estimated from the SVAR
(1). Given B̂ and Ψ̂k the estimates of Θk, k = 0, 1, . . . , are given by Θ̂k = cΨkB̂

−1.
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1.4 Forecast Error Variance Decompositions

The idea behind constructing forecast error variance decompositions is to determine
the proportion of the variability of the errors in forecasting y1 and y2 at time t + s
based on information available at time t that is due to variability in the structural
shocks ε1 and ε2 between times t and t + s. To accomplish this decomposition, we
start with the Wold representation for yt+s

yt+s= µ+ ut+s+Ψ1ut+s−1+ · · ·+Ψs−1ut+1+Ψsut+Ψs+1ut−1 + · · · .
The best linear forecast of yt+s based on information available at time t is

ŷt+s|t= µ+Ψsut+Ψs+1ut−1+ · · ·
and the forecast error is

yt+s−ŷt+s|t= ut+s+Ψ1ut+s−1+ · · ·+Ψs−1ut+1.

Next, using εt= B−1ut we may write the forecast error in terms of the structural
shocks

yt+s−ŷt+s|t = B−1εt+s+Ψ1B
−1εt+s−1+ · · ·+Ψs−1B−1εt+1

= Θ0εt+s+Θ1εt+s−1+ · · ·+Θs−1εt+1

The forecast errors equation by equation are given by"
y1t+s − ŷ1t+s|t
y2t+s − ŷ2t+s|t

#
=

"
θ
(0)
11 θ

(0)
12

θ
(0)
21 θ

(0)
22

# "
ε1t+s
ε2t+s

#
+ · · ·+

"
θ
(s−1)
11 θ

(s−1)
12

θ
(s−1)
21 θ

(s−1)
22

# "
ε1t+1
ε2t+1

#

Focusing on the &rst equation, we have

y1t+s − ŷ1t+s|t = θ
(0)
11 ε1t+s + · · ·+ θ(s−1)11 ε1t+1 (10)

+θ
(0)
12 ε2t+s + · · ·+ θ(s−1)12 ε2t+1

Since it is assumed that εt ∼ i.i.d. (0,D) where D is diagonal, the variance of the
forecast error in (10) may be decomposed as

var(y1t+s − ŷ1t+s|t) = σ21(s)

= σ21

µ³
θ
(0)
11

´2
+ · · ·+

³
θ
(s−1)
11

´2¶
+ σ22

µ³
θ
(0)
12

´2
+ · · ·+

³
θ
(s−1)
12

´2¶
.

The proportion of σ21(s) due to shocks in ε1 is then

ρ1,1(s) =
σ21

µ³
θ
(0)
11

´2
+ · · ·+

³
θ
(s−1)
11

´2¶
σ21(s)
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and the proportion of σ21(s) due to shocks in ε2 is

ρ1,2(s) =
σ22

µ³
θ
(0)
12

´2
+ · · ·+

³
θ
(s−1)
12

´2¶
σ21(s)

.

Using similar computations, the forecast error variance decompositions (FEVDs)
for y2t+s are

ρ2,1(s) =
σ21

µ³
θ
(0)
21

´2
+ · · ·+

³
θ
(s−1)
21

´2¶
σ22(s)

,

ρ2,2(s) =
σ22

µ³
θ
(0)
22

´2
+ · · ·+

³
θ
(s−1)
22

´2¶
σ22(s)

,

where

var(y2t+s − ŷ2t+s|t) = σ22(s)

= σ21

µ³
θ
(0)
21

´2
+ · · ·+

³
θ
(s−1)
21

´2¶
+ σ22

µ³
θ
(0)
22

´2
+ · · ·+

³
θ
(s−1)
22

´2¶
.

1.5 Identi&cation Using Recursive Causal Orderings

Consider the bivariate SVAR (1). From the previous discussion of identi&cation, we
know that we need at least one restriction on the parameters of (1) for identi&cation.
Suppose b12 = 0 so that B is lower triangular. That is,

B =

"
1 0
b21 1

#

and

B−1 = Θ0 =

"
1 0
−b21 1

#
.

This assumptions imposes the restriction that the value y2t does not have a contem-
poraneous effect on y1t. Since b21 6= 0 a priori we allow for the possibility that y1t has
a contemporaneous effect on y2t. Further, under this assumption the reduced form
VAR errors ut= B−1εt become

ut =

"
u1t
u2t

#
=

"
1 0
−b21 1

# "
ε1t
ε2t

#
=

"
ε1t

ε2t − b21ε1t

#
.

The restriction b12 = 0 is sufficient to just identify b21 and, hence, just identify
B. To establish this result, we show how b21 can be uniquely identi&ed from the
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elements of the reduced form covariance matrix Ω. Since Ω = B−1DB−10 and B is
lower triangular, we have"

ω21 ω12
ω12 ω22

#
=

"
1 0
−b21 1

# "
σ21 0
0 σ22

# "
1 −b21
0 1

#

=

"
σ21 −b21σ21

−b21σ21 σ22 + b
2
21σ

2
1

#
.

Then, we can solve for b21 via

b21 = −ω12
ω21

= ρ
ω2
ω1
,

where ρ = ω12/ω1ω2 is the correlation between u1 and u2. Notice that b21 6= 0 provided
ρ 6= 0.

1.5.1 Estimation Procedure

The SMA representation of the SVAR based on a recursive causal ordering may be
estimated using the following procedure:

• Estimate the reduced form VAR by OLS equation by equation:

yt = ba0+cA1yt−1+but
bΩ =

1

T

TX
t=1

butbu0t
• Estimate b21 and B from bΩ :

bb21 = − bω12bω21 ,bB =

"
1 0bb21 1

#
.

• Estimate SMA from estimates of a0,A1 and B:

yt = bµ+cΘ(L)bεtbµ = ba0(I2−cA1)
−1

cΘk = cAk
1
bB−1, k = 0, 1, . . .cD = bB bΩ bB0.
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1.5.2 Recovering the SMA representation using the Choleski Factoriza-
tion of Ω.

The SVAR representation based on a recursive causal ordering may be computed
using the Choleski factorization of the reduced form covariance matrix Ω. Recall, the
Choleski factorization of the positive semi-de&nite matrix Ω is given by

Ω = PP0

where

P =

"
p11 0
p21 p22

#
is a lower triangular matrix with pii ≥ 0, i = 1, 2. A closely related factorization
obtained from the Choleski factorization is the triangular factorization

Ω = TΛT0 (11)

where T is a lower triangular matrix with 10s along the diagonal and Λ is a diagonal
matrix with non-negative elements:

T =

"
1 0
t21 1

#
,Λ =

"
λ1 0
0 λ2

#
,λi ≥ 0, i = 1, 2.

Consider the reduced form VAR

yt = a0+A1yt−1+ut, (12)

Ω = E[utu
0
t],

and perform the triangular factorization (11) on the covariance matrix Ω. Now con-
struct a pseudo SVAR model by premultiplying (12) by T−1 :

T−1yt= T−1a0+T−1A1yt−1+T−1ut

or
Byt= γ0+Γ1yt−1+εt (13)

where
B = T−1,γ0= T

−1a0,Γ1= T
−1A1, εt= T

−1ut.

Notice that the pseudo structural errors εt have a diagonal covariance matrix Λ since

E[εtε
0
t] = T−1E[utu0t]T

−10

= T−1ΩT−10

= T−1TΛT0T−10

= Λ.

9



In the pseudo SVAR (13),

B =

"
1 0
b21 0

#
= T−1 =

"
1 0
−t21 1

#

so that b12 = 0 and b21 = −t211.
The identi&cation of the SVAR using the triangular factorization depends on

the ordering of the variables in yt. In the above analysis, it is assumed that yt =
(y1t, y2t)

0 so that y1t comes &rst in the ordering of the variables. When the triangular
factorization is conducted and the pseudo SVAR (13) is computed the structural B
matrix has the form

B = T−1 =

"
1 0
b21 1

#
where b12 = 0. If the ordering of the variables is reversed, yt = (y2t, y1t)

0, then the
recursive causal ordering of the SVAR is reversed and the structuralBmatrix becomes

B = T−1 =

"
1 0
b12 1

#
where b21 = 0.

1.5.3 Sensitivity Analysis

Since the ordering of the variables in yt determines the recursive causal structure
of the SVAR, and since this identi&cation assumption is not testable a sensitivity
analysis is often performed to determine how the structural analysis based on the
IRFs and FEVDs are in! uenced by the assumed causal ordering. This sensitivity
analysis is based on estimating the SVAR for different orderings of the variables. If
the IRFs and FEVDs change considerably for different orderings of the variables in
yt then it is clear that the assumed recursive causal structure heavily in! uences the
structural inference.
Another way to determine if the assumed causal ordering in! uences the structural

inferences is to look at the residual covariance matrix Ω̂ from the estimated reduced
form VAR (4). If this covariance matrix is close to being diagonal then the estimated
value of B will be close to diagonal and so the ordering of the variables will not
in! uence the structural inference. Of course, eye-balling the elements of Ω̂ is not a
rigorous test. A formal test of the null hypothesis that Ω is diagonal can be easily
computed using the LM statistic (see Greene (2000), pg. 601)

LM = T · bρ2,
where bρ2 = ω̂212/ω̂

2
1ω̂

2
2 is the square of the estimated residual correlation between

u1t and u2t. Under the null that Ω is diagonal, LM has an asymptotic chi-square
distribution with 1 degree of freedom.

1It is straightforward to show that −t21 = −ω12/ω11.
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2 Structural VAR Modeling for I(1) Data that is
Not Cointegrated

Let yt = (y1t, y2t)
0 be I(1) and not cointegrated. That is, y1t and y2t are both

I(1) and there is no linear combination of y1t and y2t that is I(0). In this case,
∆yt = (∆y1t,∆y2t)

0 is I(0) and is assumed to have the SVAR representation

B∆yt= γ0+Γ1∆yt+εt (14)

or
B(L)∆yt = γ0+εt

where εt ∼ i.i.d. (0,D), D is diagonal, and B(L) = B− Γ1L. Notice that the SVAR
model for ∆yt is of the same form as the SVAR for yt when we assumed yt is I(0).
The reduced form VAR for ∆yt is

∆yt = a0+A1∆yt−1+ut (15)

or
A(L)∆yt= a0+ut

whereα0= B−1γ0,A1= B
−1Γ1,ut= B

−1εt, E[utu0t] = B
−1DB−10 andA(L) = I2−A1L.

In (15), it is assumed that the roots of det(I2−A1z) = 0 lie outside the complex unit
circle.
The Wold MA representation of (15) is

∆yt= µ+Ψ(L)ut, (16)

where µ = A(1)−1a0 and Ψ(L) = A(L)−1, and the SMA representation is

∆yt= µ+Θ(L)εt, (17)

where Θ(L) = Ψ(L)B−1.

2.1 Impulse Response Functions

Consider the SMA representation (17) at time t+ s"
∆y1t+s
∆y2t+s

#
=

"
µ1
µ2

#
=

"
θ
(0)
11 θ

(0)
12

θ
(0)
21 θ

(0)
22

# "
ε1t+s
ε2t+s

#
+ · · ·+

"
θ
(s)
11 θ

(s)
12

θ
(s)
21 θ

(s)
22

# "
ε1t
ε2t

#
+ · · · .

The structural dynamic multipliers are

∂∆y1t+s
∂ε1t

= θ(s)11 ,
∂∆y1t+s
∂ε2t

= θ(s)12 (18)

∂∆y2t+s
∂ε1t

= θ
(s)
21 ,
∂∆y2t+s
∂ε2t

= θ
(s)
22
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which give the impact of the structural shocks on the &rst difference of y at horizon
t+ s. Often we are more interested in the impact of the structural shocks on the level
of y. Using the fact that

yit+s = yit−1 +∆yit +∆yit+1 + · · ·+∆yit+s, i = 1, 2
we have

∂yit+s
∂εjt

=
∂∆yit
∂εjt

+
∂∆yit+1
∂εjt

+ · · ·+ ∂∆yit+s
∂εjt

= θ
(0)
ij + θ

(1)
ij + · · ·+ θ(s)ij

=
sX
k=0

θ
(k)
ij , i, j = 1, 2.

Hence, the impact of εjt on yit+s is equal to the cumulative impact of εjt on ∆yi
through horizon s. The long-run impact of a shock to εit on the level of yj is then

lim
s→∞

∂yit+s
∂εjt

= θij(1), i, j = 1, 2. (19)

For stationary y this long-run impact is always zero but for nonstationary y this
impact may or may not be zero for some combination of i and j.

2.2 Beveridge-Nelson Decomposition

Using the Wold MA representation for ∆yt, the multivariate BN decomposition of yt
is

yt = y0+µt+Ψ(1)
tX

k=1

uk+ũt−ũ0,

ũt = Ψ̃(L)ut,

where

Ψ(1) =
∞X
k=0

Ψk = (I2−A1)
−1

Ψ̃(L) =
∞X
k=0

Ψ̃kL
k, Ψ̃k = −

∞X
j=k+1

Ψj

The BN decomposition gives the multivariate stochastic trends in yt in terms of the
reduced form error terms ut

TSt = Ψ(1)
tX

k=1

uk.

Using ut = B−1εt and Θ(1) = Ψ(1)B−1 the multivariate stochastic trends in yt may
also be represented in terms of the structural errors εt

TSt = Θ(1)
tX

k=1

εk.
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2.3 Testing Long-run Neutrality2

King and Watson (1997), hereafter KW, survey the use of bivariate SVAR models
to test some simple long-run neutrality propositions in macroeconomics. The key
feature of long-run neutrality propositions is that changes in nominal variables have
no effect on real economic variables in the long-run. Some examples are long-run
neutrality propositions are: (1) A permanent change in the nominal money stock has
no long-run effect on the level of real output; (2) A permanent change in the rate
of in! ation has no long-run effect on unemployment (a vertical Phillips curve); (3)
A permanent change in the rate of in! ation has no long-run effect on real interest
rates (the long-run Fisher relationship). For the analysis in this section, we focus on
testing the proposition that money is neutral in the long-run.
Let yt = (y1t, y2t)0 where y1t denotes the natural logarithm of real output and y2t

denotes the logarithm of nominal money. KW show that testing long-run neutrality
within a SVAR framework requires the data to be I(1). They characterize long-run
neutrality of money using the SMA representation for ∆yt written as

∆y1t = µ1 + θ11(L)ε1t + θ12(L)ε2t

∆y2t = µ2 + θ21(L)ε1t + θ22(L)ε2t

where ε1t represents exogenous shocks to output that are uncorrelated with exogenous
shocks to nominal money, ε2t, and θij(L) =

P∞
k=0 θ

(k)
ij L

k for i, j = 1, 2.
Long-run neutrality of money involves the answer to the question: does an unex-

pected and exogenous permanent change in the level of money (y2) lead to a perma-
nent change in the level of output (y1)? If the answer is no, then money is long-run
neutral towards output. In terms of the SMA representation, ε2t represents exoge-
nous unexpected changes in money. The permanent effect of ε2t on future values
of the level of money is, by (19), θ22(1)ε2t. Similarly, the permanent effect of ε2t on
future values of the level of output is θ12(1)ε2t. Since the data are in logs, the long-run
elasticity of output with respect to permanent changes in money is

η12 =
θ12(1)

θ22(1)
.

Hence, money is neutral in the long-run when θ12(1) = 0, or equivalently, when
η12 = 0. That is, money is neutral in the long-run when the exogenous shocks that
permanently alter money, ε2t, have no permanent effect on output.
The above characterization of long-run neutrality clearly shows why the data need

to be I(1) in order to be able to test long-run neutrality. If the data are I(0) then the
long-run impacts of shocks to the levels of the series are always zero (see (9) above).
The restriction that money is long-run neutral for output imposes the restriction

that the long-run impact matrix Θ(1) is lower triangular. The lower triangularity of

2This section is based on King and Watson (1997).

13



Θ(1) implies that the multivariate stochastic trend for yt has the form"
TS1t
TS2t

#
=

"
θ11(1) 0
θ21(1) θ22(1)

# " Pt
k=1 ε1kPt
k=1 ε2k

#
.

Hence, the stochastic trend in y1t, TS1t, only involves shocks to ε1.
To test the long-run neutrality proposition, the SVAR model for ∆yt must be

identi&ed and estimated and then the long-run impact coefficients θ12(1) and θ22(1)
can be estimated from the derived SMA model. To illustrate, assume that ∆yt has
the SVAR representation (14). From the previous discussion of identi&cation, at least
one restriction on the parameters of (14) is need for identi&cation. KW consider the
following identifying assumptions:

• the impact elasticity of y1 (output) with respect to y2 (money), b12, is known,
• the impact elasticity of y2 (money) with respect to y1 (output) , b21, is known,
• the long-run elasticity of y1 (output) with respect to y2 (money), η12, is known,
• the long-run elasticity of y2 (money) with respect to y1 (output), η21, is known.
Instead of reporting results based on a single indentifying restriction, KW summa-

rize results for a wide range of observationally equivalent estimated models based on
the (just) identifying assumptions listed above3. This approach allows the reader to
gauge the robustness of conclusions about long-run neutrality to speci&c assumptions
about the values of b12, b21, η12 and η22.

2.3.1 Estimating the SVAR assuming b12 or b21 is known

Consider the estimating the SVAR (14) under the restriction that b12 is known. Given
that b12 is known the SVAR (14) may be rewritten as

∆y1t + b12∆y2t = γ10 + γ11∆y1t−1 + γ12∆y2t−1 + ε1t
∆y2t = β20 − b21∆y1t + γ21∆y1t−1 + γ22∆y2t−1 + ε2t

The &rst equation () may be estimated by OLS since only lagged values of ∆y1 and
∆y2 are on the right-hand-side. However, the second equation () cannot be estimated
by OLS because ∆y1t will be correlated with ε2t unless b12 = 0. If b12 6= 0, the second
equation may be estimated by instrumental variables (IV) using the residual from
the estimated &rst equation, ε̂1t, together with ∆y1t−1 and ∆y2t−1 as instruments
The residual ε̂1t is a valid instrument because

p lim
T→∞

1

T

TX
t=1

ε̂1t∆y1t 6= 0

3Since each of the identifying assumptions just identi&es the SVAR, each SVAR has the same
reduced form VAR and hence each SVAR model is observationally equivalent.
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since E[ε1t∆y1t] 6= 0 and
p lim
T→∞

1

T

TX
t=1

ε̂1tε2t = 0

since E[ε1tε2t] = 0. Hausman, Newey and Taylor (1987) show that this procedure
produces the maximum likelihood estimates of the parameters of the SVAR.

3 Structural VARs with Combinations of I(1) and

I(0) Data
Consider two observed series y1t and y2t such that y1t is I(1) and y2t is I(0). For
example, in the analysis in Blanchard and Quah (1989), hereafter BQ, y1 is the log
of real GDP and y2 is the unemployment rate. De&ne yt = (∆y1t, y2t)0 so that yt is
I(0). Suppose yt has the structural representations

Byt = γ0+Γ1yt−1+εt,
yt = µ+Θ(L)εt,

and reduced form representations

yt = a0+A1yt−1+ut,
= µ+Ψ(L)ut,

where E[εtε0t] = D,D is diagonal, E[utu0t] = Ω = B−1DB−1
0
,Ψ(L) = (I2−A1L)

−1

and Θ(L) =.Ψ(L)B−1. Regarding the structural innovations, BQ loosely interpret
ε1t as a (permanent) supply shock since it is the innovation to the I(1) real output
series y1t and interpret ε2t as a (transitory) demand shock since it is the innovation
to the I(0) unemployment series.
The IRFs are given by

∂∆y1t+s
∂ε1t

= θ
(s)
11 ,
∂∆y1t+s
∂ε2t

= θ
(s)
12 (20)

∂y2t+s
∂ε1t

= θ
(s)
21 ,
∂y2t+s
∂ε2t

= θ
(s)
22

Since y1t is I(1), the long-run impacts on the level of y1 of shocks to ε1 and ε2 are

lim
s→∞

∂y1t+s
∂ε1t

= θ11(1) =
∞X
s=0

θ
(s)
11 , (21)

lim
s→∞

∂y1t+s
∂ε2t

= θ12(1) =
∞X
s=0

θ(s)12 .
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Since y2t is I(0), the long-run impacts on the level of y2 of shocks to ε1 and ε2 are
zero:

lim
s→∞

∂y2t+s
∂εjt

= lim
s→∞ θ

(s)
ij = 0. (22)

For y2, θ21(1) =
P∞
s=0 θ

(s)
21 and θ22(1) =

P∞
s=0 θ

(s)
22 represent the cumulative impact of

shocks to ε1 and ε2 on the level of y2.

3.1 Identifying the SVAR Using Long-Run Restrictions

BQ achieve identi&cation of the SVAR/SMA by assuming that demand shocks (shocks
to ε2) have no long-run impact on the level of output or unemployment. They allow
supply shocks (shocks to ε1) to have a long-run impact on the level of output but
not on the level of unemployment. In terms of the long-run impacts discussed in the
previous section, BQ long-run restriction may be represented as follows. Using (21),
the restriction that shocks to ε2 have no long-run impact on the level out y1 implies
that

θ12(1) =
∞X
s=0

θ
(s)
12 = 0. (23)

The restriction that shocks to ε1 and ε2 have no long-run effect on the level of y2 is
just a restatement of the result in (22) which holds because y2 is I(0).
The long-run restriction (23) makes the long-run impact matrix Θ(1) lower tri-

angular

Θ(1) =

"
θ11(1) 0
θ21(1) θ22(1)

#
To see how the lower triangularity of Θ(1) can be used to identify B in the SVAR,
consider the long-run covariance matrix4 of yt de&ned from the Wold MA represen-
tation

Λ = Ψ(1)Ω(1)0 (24)

= (I2−A1)
−1Ω(I2−A1)

−10.

SinceΩ = B−1DB−10 andΘ(1) = Ψ(1)B−1 = (I2−A1)
−1B−1 the long-run covariance

matrix Λ may be re-expressed as

Λ = (I2−A1)
−1B−1DB−10(I2−A1)

−10 (25)

= Θ(1)DΘ(1)0.

In order to identify B, BQ make the additional assumption

D = I2 (26)

4Recall, the long-run covariance of yt is the asymptotic covariance of
√
T (ȳ− µ).
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so that the structural shocks ε1t and ε2t have unit variances. Inserting (26) into (25),
the long-run variance becomes

Λ = Θ(1)Θ(1)0. (27)

Notice that since Θ(1) is lower triangular, the factorization in (27) can be obtained
using the Choleski factorization; that is,Θ(1) can be computed as the lower triangular
Choleski factor of Λ. Given that Θ(1) can be computed, B can then be computed
using Θ(1) = Ψ(1)B−1 = (I2−A1)

−1B−1 so that

B = [(I2−A1)Θ(1)]
−1 .

3.2 Estimating the SVAR in the Presence of Long-Run Re-
strictions

The estimation of B and Θ(L) using the BQ identi&cation scheme can be accom-
plished in two steps.

• Estimate the reduced form VAR by OLS equation by equation:

yt = ba0+cA1yt−1+but
bΩ =

1

T

TX
t=1

butbu0t
• Compute a parametric estimate of the long-run covariance matrix:

Λ̂ = (I2−Â1)
−1Ω̂(I2−Â1)

−10

• Compute the Choleski factorization of Λ̂ :
Λ̂ = bP bP0

• De&ne the estimate of Θ(1) as the lower triangular Choleski factor of Λ̂ :
Θ̂(1) = P̂

• Estimate B using
B̂ =

h
(I2−Â1)Θ̂(1)

i−1
• Estimate Θk using

Θ̂k = Ψ̂kB̂
−1

= Âk
1B̂

−1.
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