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1. Introduction

The construction and interpretation of economic forecasts is one of the most publicly
visible activities of professional economists. Over the past two decades, increased computer
power has made increasingly sophisticated forecasting methods routinely available and the role
of economic forecasting has expanded. Economic forecasts now enter into many aspects of
economic life, including business planning, state and local budgeting, financial management,
financial engineering, and monetary and fiscal policy. Yet, with this widening scope comes
greater opportunities for the production of poor forecasts and the misinterpretation of good
forecasts. Responsible production and interpretation of economic forecasts requires a clear
understanding of the associated econometric tools, their limits, and an awareness of common
pitfalls in their application.

This chapter provides an introduction to the main methods used for forecasting economic
time series. The field of economic forecasting is large, and, because of space limitations, this
chapter covers only the most salient topics. The focus here will be on point forecasts, that is,
forecasts of future values of the time series. It is assumed that the historical series is relatively
"clean," in the sense of having no omitted observations, being observed at a consistent sampling
frequency (e.g. monthly), and either having no seasonal component or having been seasonally
adjusted. It is assumed that the forecaster has quadratic (i.e., mean squared error) loss.
Finally, it is assumed that the time series is sufficiently long, relative to the forecast horizon,
that the history of the time series will be informative for making the forecast and for estimating
parametric models.

This chapter has four substantive sections. Section 2 provides a theoretical framework for

considering some of the tradeoffs in the construction of economic forecasts and for the



comparison of forecasting methods. Section 3 provides a glimpse at some of the relevant
empirical features of macroeconomic time series data. Section 4 discusses univariate forecasts,
that is, forecasts of a series made using only past values of that series. Section 5 provides an
overview of multivariate forecasting, in which forecasts are made using historical information
on multiple time series.

There are many interesting and important aspects of economic forecasting that are not
covered in this chapter. In some applications, it is of interest to estimate the entire distribution
of future values of the variable of interest, conditional on current information, or certain
functions of that conditional distribution. An example that arises in macroeconomics is
predicting the probability of a recession, an event often modeled as two consecutive declines in
real gross domestic product. Other functions of conditional distribuitons arise in finance; for
examples, see Diebold, Gunther and Tay (1998).

In some cases, time varying conditional densities might be adequately summarized by time
varying conditional first and second moments, that is, by modeling conditional
heteroskedasticity. For example, conditional estimates of future second moments of the returns
on an asset can be used to price options written on that asset. Although there are various
frameworks for estimating conditional heteroskedasticity, the premier tool for modeling
conditional heteroskedasticity is Engle’s (1982) so-called autoregressive conditional
heteroskedasticity (ARCH) framework and variants, as discussed in Bollerslev, Engle and Nelson
(1994) and in Kroner’s chapter in this volume.

Another topic not explored in this chapter is nonquadratic loss. Quadratic loss is a natural
starting point for many forecasting problems, both because of its tractability and because, in
many applications, it is plausible that loss is symmetric and that the marginal cost of a forecast
error increases linearly with its magnitude. However, in some circumstances other loss

functions are appropriate. For example, loss might be asymmetric (would you rather be held



responsible for a surprise government surplus or deficit?); see Granger and Newbold (1986, ch.
4.2) and West, Edison and Cho (1993) for examples. Handling nonquadratic loss can be
computationally challenging. The classic paper in this literature is Granger (1969), and a recent
contribution is Christoffersen and Diebold (1997).

Another important set of problems encountered in practice but not addressed here involve
data irregularities, such as missing or irregularly spaced observations. Methods for handling
these irregularities tend to be model-dependent. Within univariate linear models and low-
dimensional multivariate linear models, these are typically well handled using state space
representations and the Kalman filter, as is detailed by Harvey (1989). A somewhat different
set of issues arise with series that have large seasonal components. Issues of seasonal adjustment
and handling seasonal data are discussed in the chapter in this volume by Ghysels.

Different issues also arise if the forecast horizon is long relative to the sample size (say, at
least one-fifth the sample size) and the data exhibit strong serial correlation. Then the long run
forecast is dominated by estimates of the long run correlation structure. Inference about the
long run correlation structure is typically nonstandard and, in some formulations, is related to
the presence of large, possibly unit autoregressive roots and (in the multivariate setting) to
possible cointegration among the series. Unit roots and cointegration are respectively discussed
in the chapters in this volume by Bierens and Dolado. The construction of point forecasts and
forecast intervals at long horizons entails considerable difficulties because of the sensitivity to
the long run dependence parameters, and methods for doing so are examined in Stock (1996).

A final area not addressed here is the combination of competing forecasts. When a variable
is forecasted by two different methods that draw on different information sets and neither
model is true, typically a combination of the two forecasts is theoretically preferred to either
individual forecast (Bates and Granger [1969]). For an introduction to this literature, see

Granger (1989), Diebold and Lopez (1995), and Chan, Stock and Watson (1998).



This chapter makes use of concepts and methods associated with unit autoregressive roots,
cointegration, vector autoregressions (VARs), and structural breaks. These are all topics of
separate chapters in this volume, and the reader is referred to those chapters for background

details.

2. Economic Forecasting: A Theoretical Framework

2.1. Optimal forecasts, feasible forecasts, and forecast errors.

Let y, denote the scalar time series variable that the forecaster wishes to forecast, let h
denote the horizon of the forecast, and let Ft denote the set of data used at time t for making
the forecast (Ft is sometimes referred to as the information set available to the forecaster). If
the forecaster has squared error loss, her point forecast §’t +ht is the function of Ft that
minimizes the expected squared forecast error, that is, E[(y, +h'§’t +h|t)2|Ft]' This expected loss
is minimized when the forecast is the conditional expectation, E(y; | | Fy). In general, this
conditional expectation might be a time varying function of F;. However, in this chapter we
will assume that the data are drawn from a stationary distribution, that is, the distribution of
(ys,...,yS 4 1) does not depend on s (although some mention of structural breaks will be made
later); then E(yt +h | Ft) is a time invariant function of Ft‘

In practice, E(y; | F}) is unknown and is in general nonlinear. Forecasts are constructed by
approximating this unknown conditional expectation by a parametric function. This parametric
function, or model, is denoted ,u,h(Ft,O), where 6 is a parameter vector which is assumed to lie
in the parameter space ©. The "best" value of this parameter is the value that minimizes the
mean squared approximation error, E[,LLh(Ft,@)—E(yt +h | Ft)]2 .

Because 6, is unknown, it is typically estimated from historical data, and the estimate is
denoted 8. To be concrete, suppose that Ft consists of observations on Xs’ 1<s<T, where XS is
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a vector time series (which typically includes y¢). Further suppose that only the first p lags of

X are included in the forecast. Then 6 could be estimated by least squares, that is, by solving,

o minge oL { 2p+ 1+ Fpd)l’

There are alternative methods for estimation of §. The minimization problem (1) uses an h-
step ahead (nonlinear) least squares regression. Often an available alternative is to estimate a
one-step ahead model (h=1) by nonlinear least squares or maximum likelihood, and to iterate
that model forward. The formulation (1) has the advantage of computational simplicity,
especially for nonlinear models. Depending on the true model and the approximate model,
approximation bias can be reduced by estimating the h-step ahead model (1). On the other
hand, if the estimated model is correct, then iterating one-step ahead forecasts will be more
efficient in the statistical sense. In general the decision of whether to estimate parameters by
h-step ahead or 1-step ahead methods depends on the model being estimated and the type of
misspecification that might be present. See Clements and Hendry (1996) for references to this
literature and for simulation results comparing the two approaches.

It is useful to consider a decomposition of the forecast error, based on the various sources of

that error. Let ét + .t denote the forecast error from the h-step ahead forecast of y; |} using

Yt+h It Then,

@ ®+h,t T Yt+hVi+h|t
= Ve n EGap | Fl + B | F)-ppFpbp)] + [y Fpb0)-up, FpB)].

The first term in brackets is the deviation of y, . ; from its conditional expectation, a source of

forecast error that cannot be eliminated. The second term in brackets is the contribution of



model misspecification, and is the error arising from using the best parameter value for the
approximate conditional expectations function. The final term arises because this best
parameter value is unknown, and instead 6 is estimated from the data.

The decomposition (2) illustrates two facts. First, all forecasts, no matter how good, will
have forecast error because of future, unknowable random events. Second, the quality of a
forecasting method is therefore determined by its model approximation error and by its
estimation error. These two sources of error generally entail a tradeoff. Using a flexible
model with many parameters for p;, can reduce model approximation error, but because there
are many parameters estimation error increases.

2.2. Model selection using information criteria.

Because the object of point forecasting is to minimize expected loss out of sample, it is not
desirable to minimize approximation error (bias) when this entails adding considerable parameter
estimation uncertainty. Thus, for example, model selection based on minimizing the sum of
squared residuals, or maximizing the R2, can lead to small bias and good in-sample fit, but very
poor out of sample forecast performance.

A formal way to make this tradeoff between approximation error and estimation error is to
use information criteria to select among a few competing models. When h=1, information

criteria have the form,

3) IC(p) = In62(p) + pg(T)

where p is the dimension of 8, T is the sample size used for estimation, g(T) is a function of T
with g(T) >0 and Tg(T)—=o0 and g(T)—-0 as T—o0, and 32(p)=SSR/T, where SSR is the sum of
squared residuals from the (in-sample) estimation. Comparing two models using the

information criterion (3) is the same as comparing two models by their sum of squared



residuals, except that the model with more parameters receives a penalty. Under suitable
conditions on this penalty and on the class of models being considered, it can be shown that a
model selected by the information criterion is the best in the sense of the tradeoff between
approximation error and sampling uncertainty about . A precise statement of such conditions
in AR models, when only the maximum order is known, can be found in Geweke and Meese
(1981), and extensions to infinite order autoregressive models are discussed in Brockwell and
Davis (1987) and, in the context of unit root tests, Ng and Perron (1995). The two most
common information criteria are the Akaike information criterion (AIC), for which g(T)=2/T,
and Schwarz’s (1978) Bayes information criterion (BIC), for which g(T)=InT/T.

2.3. Prediction intervals.

In some cases, the object of forecasting is not to produce a point forecast but rather to
produce a range within which y, ,  has a prespecified probability of falling. Even if within the
context of point forecasting, it is useful to provide users of forecasts with a measure of the
uncertainty of the forecast. Both ends can be accomplished by reporting prediction intervals.

In general, the form of the prediction interval depends on the underlying distribution of the
data. The simplest prediction interval is obtained by assuming that the data are conditionally
homoskedastic and normal. Under these assumptions and regularity conditions, a prediction
interval with asymptotic 67 % coverage is given by §’t +h| ti&h’ where 8h=SSRh/(T—p), where
SSRy is the sum of squared residuals from the h-step ahead regression (1) and T-p are the
degrees of freedom of that regression.

If the series is conditionally normal but is conditionally heteroskedastic, this simple
prediction error formula must be modified and the conditional variance can be computed using,
for example, an ARCH model. If the series is conditionally nonnormally distributed, other
methods, such as the bootstrap, can be used to construct asymptotically valid prediction

intervals.



2.4. Forecast comparison and evaluation.

The most reliable way to evaluate a forecast or to compare forecasting methods is by
exmining out of sample performance. To evaluate the forecasting performance of a single
model or expert, one looks for signs of internal consistency. If the forecasts were made under
squared error loss, the forecast errors should have mean zero and should be uncorrelated with
any variable used to produce the forecast. For example, ét +hit should be uncorrelated with
et,t—h’ although ét thit will in general have a MA(h-1) correlation structure. Failure of out-
of-sample forecasts to have mean zero and to be uncorrelated with F; indicates a structural
break, a deficiency of the forecasting model, or both.

Additional insights are obtained by comparing the out of sample forcasts of competing
models or experts. Under mean squared error loss, the relative performance of two time series
of point forecasts of the same variable can be compared by computing their mean squared
forecast errors (MSFE). Of course, in a finite sample, a smaller MSFE might simply be an
artifact of sampling error, so formal tests of whether the MSFEs are statistically significantly
different are in order when comparing two forecasts. Such tests have been developed by
Diebold and Mariano (1995) and further refined by West (1996), who built on earlier work by
Nelson (1972), Fair (1980), and others.

Out of sample performance can be measured either by using true out of sample forecasts, or
by a simulated out of sample forecasting exercise. While both approaches have similar
objectives, the practical issues and interpretation of results is quite different. Because real-time
published forecasts usually involve expert opinion, a comparison of true out of sample forecasts
typically entails an evaluation of both models and the expertise of those who use the models.
Good examples of comparisons of real time forecasts, and of the lessons that can be drawn from
such comparisons, are McNees (1990) and Zarnowitz and Braun (1993).

Simulated real time forecasting can be done in the course of model development and
provides a useful check on the in-sample comparison measures discussed above. The essence of
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a simulated real time forecasting experiment is that all forecasts §’t +h|t t=Tg,....T, are
functions only of data up through date t, so that all parameter estimation, model selection, etc.,
is done only using data through date t. This is often referred to as a recursive methodology
(for linear models, the simulated out of sample forecasts can be computed using a recursion).
In general this entails many reestimations of the model, which for nonlinear models can be
computationally demanding. For an example of simulated out of sample forecast comparisons,

see Stock and Watson (1998).

3. Salient Features of U.S. Macroeconomic Time Series Data

The methods discussed in this chapter will be illustrated by application to five monthly
economic time series for the U.S. macroeconomy: inflation, as measured by the annual
percentage change in the consumer price index (CPI); output growth, as measured by the
growth rate of the index of industrial production; the unemployment rate; a short term
interest rate, as measured by the rate on 90 day U.S. Treasury bill; and total real
manufacturing and trade inventories, in logarithrns.1 Time series plots of these five series are
presented as the heavy solid lines in figures 1-5.

In addition to being of interest in their own right, these series reflect some of the main
statistical features present in many macroeconomic time series from developed economies. The
90-day Treasury bill rate, unemployment, inflation, and inventories all exhibit high persistence
in the form of smooth long-run trends. These trends are clearly nonlinear however and follow
no evident deterministic form, rather, the long run component of these series can be thought of
as a highly persistent stochastic trend. There has been much debate over whether this

persistence is well modeled as arising from an autoregressive unit root in these series, and the



issue of whether to impose a unit root (to first difference these data) is an important forecasting
decision discussed below.

Two other features are evident in these series. All five series exhibit comovements,
especially over the two to four year horizons. The twin recessions of the early 1980s, the long
expansions of the mid 1980s and the 1990s, and the recession in 1990 are reflected in each
series (although the IP growth rate series might require some smoothing to see this). Such
movements over the business cycle are typical for macroeconomic time series data; for further
discussion of business cycle properties of economic time series data, see Stock and Watson
(forthcoming). Finally, to varying degrees the series contain high frequency noise. This is
most evident in inflation and IP growth. This high frequency noise arises from short term,

essentially random fluctuations in economic activity and from measurement error.

4. Univariate Forecasts

Univariate forecasts are made solely using past observations on the series being forecast.
Even if economic theory suggests additional variables that should be useful in forecasting a
particular variable, univariate forecasts provide a simple and often reliable benchmark against
which to assess the performance of those multivariate methods. In this section, some linear and
nonlinear univariate forecasting methods are briefly presented. The performance of these
methods is then illustrated for the macroeconomic time series in figures 1-5.

4.1. Linear models.

One of the simplest forecasting methods is the exponential smoothing or exponentially

weighted moving average (EWMA) method. The EWMA forecast is,
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) Yt+h|t = Wit+h1[t-1 T 1-¥p

where « is a parameter chosen by the forecaster or estimated by nonlinear least squares from
historical data.
Autoregressive moving average (ARMA) models are a mainstay of univariate forecasting.

The ARMA(p,q) model is,
5) a(L)y, = p, + bL)e,

where € is a serially uncorrelated disturbance and a(L) and b(L) are lag polynomials of orders p
and q, respectively. For y, to be stationary, the roots of a(L) lie outside the unit circle, and for
b(L) to be invertible, the roots of b(L) also lie outside the unit circle. The term My summarizes
the deterministic component of the series. For example, if y, is a constant, the series is
stationary around a constant mean. If p,=pq+pqt, the series is stationary around a linear time
trend. If q>0, estimation of the unkown parameters of a(L) and b(L) entails nonlinear
maximization. Asymptotic Gaussian maximum likelihood estimates of these parameters are a
staple of time series forecasting computer packages. Multistep forecasts are computed by
iterating forward the one-step forecasts. A deficiency of ARMA models is estimator bias
introduced when the MA roots are large, the so-called unit MA root pileup problem (see Davis
and Dunsmuir [1996] and, for a general discussion and references, Stock [1994]).

An important special case of ARMA models are pure autoregressive models with lag order p
(AR(p)). Meese and Geweke (1984) performed a large simulated out of sample forecasting
comparison that examined a variety of linear forecasts, and found that long autoregressions and
autoregressions with lags selected by information criteria performed well, and on average

outperformed forecasts from ARMA models. The parameters can be estimated by ordinary
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least squares (OLS) and the order of the autoregression can be consistently estimated by, for
example, the BIC.

Harvey (1989) has proposed a different framework for univariate forecasting, based on a
decomposition of a series into various components: trend, cycle, seasonal, and irregular.
Conceptually, this framework draws on an old concept in economic time series analysis in which
the series is thought of as having different properties at different horizons, so that for example
one might talk about the cyclical properties of a time series separately from its trend properties;
he therefore calls these structural time series models. Harvey models these components as
statistically uncorrelated at all leads and lags, and he parameterizes the components to reflect
their role, for example, the trend can be modeled as a random walk with drift or a doubly
integrated random walk, possibly with drift. Estimation is by asymptotic Gaussian maximum
likelihood. The resulting forecasts are linear in historical data (although nonlinear in the
parameters of the model) so these too are linear forecasts. Harvey (1989) argues that this
formulation produces forecasts that avoid some of the undesirable properties of ARMA models.
As with ARMA models, user judgment is required to select the models. One interesting
application of these models is for trend estimation, see for example Stock and Watson (1998).

4.2. Nonlinear models.

Outside of the normal distribution, conditional expectations are typically nonlinear, and in
general one would imagine that these infeasible optimal forecasts would be nonlinear functions
of past data. The main difficulty that arises with nonlinear forecasts is choosing a feasible
forecasting method that performs well with the fairly short historical time series available for
macroeconomic forecasting. With many parameters, approximation error in (2) is reduced, but
estimation error can be increased. Many nonlinear forecasting methods also pose technical
problems, such as having objective functions with many local minima, having parameters that
are not globally identified, and difficulties with generating internally consistent h-step ahead
forecasts from one-step ahead models.
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Recognition of these issues has led to the development of a vast array of methods for
nonlinear forecasting, and a comprehensive survey of these methods is beyond the limited scope
of this chapter. Rather, here I provide a brief introduction to only two particular nonlinear
models, smooth transition autoregressions (STAR) and artificial neural networks (NN). These
models are interesting methodologically because they represent, respectively, parametric and
nonparametric approaches to nonlinear forecasting, and they are interesting from a practical
point of view because they have been fairly widely applied to economic data.

A third class of models that has received considerable attention in economics are the Markov
switching models, in which an unobserved discrete state switches stochastically between regimes
in which the process evolves in an otherwise linear fashion. Markov switching models were
introduced in econometrics by Hamilton (1989) and are also known as hidden Markov models.
However, space limitations preclude presenting these models here; for a textbook treatment, see
Hamilton (1994). Kim and Nelson (1998, 1999) recently have provided important extensions of
this framework to multivariate models with unobserved components. The reader interested in
further discussions of and additional references to other nonlinear time series forecasting
methods should see the recent surveys and/or textbook treatments of nonlinear models by
Granger and Terédsvirta (1993), Priestley (1989), and Samorodnistky and Taqqu (1994).

An artificial neural network (NN) model relates inputs (lagged values) to outputs (future
values) using an index model formulation with nonlinear transformations. There is considerable
terminology and interpretation of these formulations which we will not go into here but which
are addressed in a number of textbook treatments of these models; see in particular Swanson
and White (1995, 1997) for discussions and applications of NN models to economic data. Here,
we consider the simplest version, a feedforward NN with a single hidden layer and n hidden

units. This has the form,
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6) Yieh = Bo@y; + Lo 1%26;(Lyp + uyqy

where Bi(L), i=0,..,n are lag polynomials, y; are unknown coefficients, and g(z) is a function
that maps K—-[0,1]. Possible choices of g(z) include the indicator function, sigmoids, and the
logistic function. A variety of methods are available for the estimation of the unknown
parameters of NNs, some specially designed for this problem; a natural estimation method is
nonlinear least squares. NNs have a nonparametric interpretation when the number of hidden
units (n) is increased as the sample size tends to infinity.

Smooth transition autoregressions are piecewise linear models and have the form,

(7 Yt+h = Ol(L)yt + dtIB(L)yt + Uih

where the mean is suppressed, o(L) and 3(L) are lag polynomials, and dt is a nonlinear function
of past data that switches between the "regimes" (L) and B(L). Various functions are available
for dt' For example, if dt is the logistic function so dt = 1/(1 +eXp['YO+'Yi g‘t]), then the model
is referred to as the logistic smooth transition autoregression (LSTAR) model. The switching
variable dt determines the "threshold" at which the series switches, and depends on the data
through &. For example, {; might equal y, ;, where k is some lag for the switch. The
parameters of the model can be estimated by nonlinear least squares. Details about formulation,
estimation and forecasting for TAR and STAR models can be found in Granger and Terdsvirta
(1993) and in Granger, Terésvirta, and Anderson (1993). For an application of TAR (and other
models) to forecasting U.S. unemployment, see Montgomery, Zarnowitz, Tsay, and Tiao (1998).

4.3. Differencing the data.

A question that arises in practice is whether to difference the data prior to construction of a

forecasting model. This arises in all the models discussed above, but for simplicity it is
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discussed here in the context of a pure AR model. If one knows a-priori that there is in fact a
unit autoregressive root, then it is efficient to impose this information and to estimate the model
in first differences. Of course, in practice this is not known. If there is a unit autoregressive
root, then estimates of this root (or the coefficients associated with this root) are generally
biased towards zero, and conditionally biased forecasts can obtain. However, the order of this
bias is 1/T, so for short horizon forecasts (h fixed) and T sufficiently large, this bias is
negligible, so arguably the decision of whether to difference or not is unimportant to first order
asymptotically.

The issue of whether or not to difference the data, or more generally of how to treat the
long term dependence in the series, becomes important when the forecast horizon is long
relative to the sample size. Computations in Stock (1996) suggest that these issues can arise
even if the ratio, h/T, is small, .1 or greater. Conventional practice is to use a unit root pretest
to make the decision about whether to difference or not, and the asymptotic results in Stock
(1996) suggest that this approach has some merit when viewed from the perspective of
minimizing either the maximum or integrated asymptotic risk, in a sense made precise in that
paper. Although Dickey-Fuller (1979) unit root pretests are most common, other unit root tests
have greater power, and tests with greater power produce lower risk for the pretest estimator.
Unit root tests are surveyed in Stock (1994) and in the chapter in this volume by Bierens.

4.4. Empirical examples.

We now turn to applications of some of these forecasting methods to the five U.S.
macroeconomic time series in figures 1—5.2 In the previous notation, the series to be forecast,
¥ is the series plotted in those figures, for example, for industrial production y, =
2OOID(IPt/IPt—6)’ while for the interest rate 2 is the untransformed interest rate in levels (at an
annual rate). The exercise reported here is a simulated out of sample comparison of six

different forecasting models. All series are observed monthly with no missing observations.
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For each series, the initial observation date is 1959:1. Six-month ahead (h=6) recursive
forecasts of Yi+6 are computed for t=1971:3,...,1996:6; because a simulated out of sample
methodology was used, all models were reestimated at each such date t.

Six different forecasts are computed: (a) EWMA, where the parameter is estimated by
NLLS; (b) AR(4) with a constant; (c) AR(4) with a constant and a time trend; (d) AR
where the lag length is chosen by BIC (0 <p <12) and the decision to difference or not is made
using the Elliott-Rothenberg-Stock (1996) unit root pretest; (e) NN with a single hidden layer
and 2 hidden units; (f) NN with two hidden layers, 2 hidden units in the first layer, and one
hidden unit in the second layer; (g) LSTAR in levels with 3 lags and {;=y-y;_g; and (h)
LSTAR in differences with 3 lags and {;=y-y ¢.

For each series, the simulated out of sample forecasts (b) and (e) are plotted in figures 1-5.
The root MSFEs for the different methods, relative to method (b), are presented in table 1;
thus method (b) has a relative root MSFE of 1.00 for all series. The final row of table 1
presents the root mean squared forecast error in the native units of the series.

Several findings are evident. First, among the linear models, the AR(4) in levels with a
constant performs well. This model dominates the AR(4) in levels with a constant and time
trend, in the sense that for all series the AR(4) with a constant and time trend has a RMSFE
that is no less than the AR(4) with a constant. Evidently, fitting a linear time trend leads to
poor out of sample performance, a result that would be expected if the trend is stochastic rather
than deterministic. Using BIC lag length selection and a unit root pretest improves upon the
AR(4) with a constant for inflation, has essentially the same performance for industrial
production and inventories, and exhibits worse performance for the unemployment rate and the
interest rate; averaged across series, the RMSFE is 0.99, indicating a slight edge over the
AR(4) with a constant on average.

None of the nonlinear models uniformly improve upon the AR(4) with a constant. In fact,
two of the nonlinear models ((e) and (g)) are dominated by the AR(4) with a constant. The
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greatest improvement is by model (h) for inflation; however, this relative RMSFE is still
greater than the AR(BIC) forecast for inflation. Interestingly, the very simple EWMA forecast
is the best of all forecasts, linear and nonlinear, for the interest rate. For the other series,
however, it does not get the correct long run trend, and the EWMA forecasts are worse than the
AR(4).

The final row gives a sense of the performance of these forecasts in absolute terms. The
RMSFE of the unemployment rate, six months hence, is only 0.6 percentage points, and the
RMSFE for the 90-day Treasury bill rate is 1.7 percentage points. CPI inflation is harder to
predict, with a six-month ahead RMSFE of 2.4 percentage points. Inspection of the graph of
IP growth reveals that this series is highly volatile, and in absolute terms the forecast error is
large, with a six-month ahead RMSFE of 6.2 percentage points.

Some of these points can be verified by inspection of the forecasts plotted in figures 1-5.
Clearly these forecasts track well the low frequency movements in the unemployment rate, the
interest rate, and inflation (although the NN forecast does quite poorly in the 1990s for
inflation). Industrial production and inventory growth has a larger high frequency component,
which all these models have difficulty predicting (some of this high frequency component is
just unpredictable forecast error).

These findings are consistent with the conclusions of the larger forecasting model
comparison study in Stock and Watson (1998). They found that, on average across 215
macroeconomic time series, autoregressive models with BIC lag length determination and a unit
root pretest performed well, indeed, outperformed a range of NN and LSTAR models for six-
month ahead forecasts. The autoregressive model typically improved significantly on no-change
or EWMA models. Thus there is considerable ability to predict many U.S. macroeconomic time
series, but much of this predictability is captured by relatively simple linear models with data-

dependent determination of the specification.
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5. Multivariate forecasts

The motivation for multivariate forecasting is that there is information in multiple economic
time series that can be used to improve forecasts of the variable or variables of interest.
Economic theory, formal and informal, suggests a large number of such relations. Multivariate
forecasting methods in econometrics are usefully divided into four broad categories: structural
econometric models; small linear time series models; small nonlinear time series models; and
forecasts based on leading economic indicators.

Structural econometric models attempt to exploit parametric relationships suggested by
economic theory to provide a-priori restrictions. These models can be hundred-plus equation
simultaneous systems, or very simple relations such as an empirical Phillips curve relating
changes of inflation to the unemployment rate and supply shocks. Because simultaneous
equations are the topic of the chapter by Mariano in this volume, forecasts from simultaneous
equations systems will be discussed no further here. Neither will we discuss further nonlinear
multivariate models; although the intuitive motivation for these is sound, these typically have
many parameters to be estimated and as such often exhibit poor out of sample performance (for
a study of multivariate NNs, see Swanson and White (1995, 1997); for some positive results, see
Montgomery, Zarnowitz, Tsay, and Tiao (1998)). This chapter therefore briefly reviews
multivariate forecasting with small linear time series models, in particular, using VARs, and
forecasting with leading indicators. For additional background on VARs, see the chapter in this
volume by Lutkepohl.

5.1. Vector autoregressions.

Vector autoregressions, which were introduced to econometrics by Sims (1980), have the
form,
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(8) Y, = + ALY, + e,

where Y, is a nx1 vector time series, e, is a nX1 serially uncorrelated disturbance, A(L) is a p-
th order lag polynomial matrix, and ., is a nx1 vector of deterministic terms (for example, a
constant or a constant plus linear time trend). If there are no restrictions on the parameters,

the parameters can be estimated asymptotically efficiently (under Gaussianity) by OLS equation
by equation. Multistep forecasts can be made either by replacing the left hand side of (8) by

Y; 1 p» or by h-fold iteration of the one-step forecast.

Two important practical questions are the selection of the series to include in Y, (the choice
of n) and the choice of the lag order p in the VAR(p). Given the choice of series, the order p
is typically unknown. As in the univariate case, it can be estimated by information criteria.
This proceeds as discussed following (3), except that 32 is replaced by the determinant of )
(the MLE of the variance covariance matrix of et), and the relevant number of parameters is
the total free parameters of the VAR; thus, if there are no deterministic terms,

IC(p) =Indet() +n2pg(T). The choice of series is typically guided by economic theory, although
the predictive least squares (PLS) criterion (which is similar to an information criterion) can be
useful in guiding this choice, cf. Wei (1992).

The issue of whether to difference the series is further complicated in the multivariate
context by the possible presence of cointegration among two or more of the n variables. The
multiple time series Y, is said to be cointegrated if each element of Y, is integrated of order 1
(is I(1); that is, has an autoregressive unit root) but there are k=1 linear combination, a’Yt, that
are I1(0) (that is, which do not have a unit AR root) (Engle and Granger [1987]). It has been
conjectured that long run forecasts are improved by imposing cointegration when it is present.

However, even if cointegration is correctly imposed, it remains to estimate the parameters of the
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cointegrating vector, which are to first order estimated consistently (and at the same rate) if
cointegration is not imposed. If cointegration is imposed incorrectly, however, asymptotically
biased forecasts with large risks can be produced. At short horizons, these issues are
unimportant to first order asymptotically. By extension of the univariate results that are known
for long-horizon forecasting, one might suspect that pretesting for cointegration could improve
forecast performance, at least as measured by the asymptotic risk. However, tests for
cointegration have very poor finite sample performance (cf. Haug [1996]), so it is far from clear
that in practice pretesting for cointegration will improve forecast performance. Although much
of the theory in this area has been worked out, work remains on assessing the practical benefits
of imposing cointegration for forecasting. For additional discussions of cointegration, see
Watson (1994), Hatanaka (1996) and the chapter in this volume by Dolado.

It should be noted that there are numerous subtle issues involved in the interpretation of and
statitistical inference for VARs. Watson (1994) surveys these issues, and two excellent advanced
references on VARs and related small linear time series models are Lutkepohl (1993) and
Reinsel (1993). Also, VARs provide only one framework for multivariate forecasting; for a
different perspective to the construction of small linear forecasting models, see Hendry (1995).

5.2. Forecasting with leading economic indicators.

Forecasting with leading economic indicators entails drawing upon a large number of time
series variables that, by various means, have been ascertained to lead the variable of interest,
typically taken to be aggregate output (the business cycle). The first set of leading economic
indicators was developed as part of the business cycle research program at the National Bureau
of Economic Research, and was published by Mitchell and Burns (1938). More recent works
using this general approach include Stock and Watson (1989) and the papers in Moore and
Lahiri (1991).

The use of many variables and little theory has the exciting potential to exploit relations not
captured in small multivariate time series models. It is, however, particularly susceptible to
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overfitting within sample. For example, Diebold and Rudebusch (1991) found that although
historical values of the Index of Leading Economic Indicators (then maintained by the U.S.
Department of Commerce) fits the growth in economic activity well, the real-time, unrevised
index has limited predictive content for economic activity. This seeming contradiction arises
primarily from periodic redefinitions of the index. Their sobering finding underscores the
importance of properly understanding the statistical properties of each stage of a model selection
exercise. The development of methods for exploiting large sets of leading indicators without
overfitting is an exciting area of ongoing research.

5.3. Empirical Examples.

We now turn to an illustration of the performance of VARs as forecasting models. Like the
experiment reported in table 1, this experiment is simulated out of sample. Three families of
VARs were specified. Using the numbering in table (2), model (i) is a three-variable VAR
with the unemployment rate, the interest rate, and the growth rate of industrial production.
Model (j) is a three-variable VAR with the unemployment rate, CPI inflation, and the interest
rate. Model (k) is a VAR with all five variables. The lags in all three models were kept the
same in each equation of the VAR and were chosen recursively (at each forecast date, using
only data through that date) by BIC, where 1 <p <6 for models (i) and (j), and 1 <p <2 for model
(k). The VARs were estimated by OLS, equation by equation, with a one-step ahead
specification, and six-month ahead forecasts were computed by iterating the one-month ahead
forecasts.

The results are summarized in table 2. In some cases, the VAR forecasts improve upon the
AR forecasts. For example, for output growth, the VAR forecasts in (i) and (k) are
respectively best and second-best of all the output growth forecasts in both tables. In contrast,
for the interest rate, the VAR forecast is worse than the AR(4), and indeed the best forecast for

the interest rate remains the EWMA forecast. However, the most notable feature of these
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forecasts is that eight of the eleven VAR forecasts in table 2 have RMSFEs within 5% of the
RMSFE of the AR(4), and all eleven have RMSFEs within 10% of the AR(4). For these
specifications and these series, using additional information via a VAR results in forecasts that
are essentially the same as those from an AR(4).

This finding, that forecasts from multivariate models often provide only modest
improvements (or no improvement at all) over univariate forecasts, is not new.> One way to
interpret this result is that additional macroeconomic series have little relationship to one
another. This interpretation would, however, be incorrect, indeed, among the relationships in
these VARSs is the relation between the unemployment rate and inflation (the Phillips curve) and
between interest rates and output (a channel of monetary policy), two links that have been
studied in great detail and which are robust over the postwar period (cf. Stock and Watson
[forthcoming]). An interpretation more in keeping with this latter evidence is that while these
variables are related, there are sufficiently many parameters, which might not be stable over
time, that these relations are not particularly useful for multivariate forecasting.

These negative results require some caveats. Supporters of VARs might suggest that the
comparison in table 2 is unfair because no attempt has been made to fine tune the VAR, to use
additional variables, or to impose prior restrictions or prior information on the lag structure.
This criticism has some merit, and methods which impose such structure, in particular Bayesian
VARs, have a better track record than the unconstrained VARSs reported here; see McNees
(1990) and Sims (1993). Alternatively, others would argue that time series models developed
specifically for some variables, such as an empirical Phillips curve (as in Gordon [1998]), would
be expected to work better than unfocused application of a VAR. This too might be valid, but
in evaluating such claims one must take great care to distinguish between in-sample fit and the
much more difficult task of fitting well out of sample, either in real time or in a simulated out

of sample experiment. Finally, it should be emphasized that these conclusions are for
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macroeconomic time series. For example, in industry applications one can find series with

more pronounced nonlinearities.

6. Discussion and Conclusion

One of the few truly safe predictions is that economic forecasters will remain the target of
jokes in public discourse. In part this arises from a misunderstanding that all forecasts must in
the end be wrong, and that forecast error is inevitable. Economic forecasters can, however,
bolster their credibility by providing information about the possible range of forecast errors.
Some consumers are uncomfortable with forecast uncertainty: when his advisors presented a
forecast interval for economic growth, President Lyndon Johnson is said to have replied, "ranges

are for cattle.”" Yet communication of forecast uncertainty to those who rely on forecasts helps
them to create better, more flexible plans and supports the credibility of forecasters more
generally.

A theme of this chapter has been the tradeoff between complex models, which either use
more information to forecast or allow subtle nonlinear formulations of the conditional mean,
and simple models, which require fitting a small number of parameters and which thereby
reduce parameter estimation uncertainty. The empirical results in tables 1 and 2 provide a clear
illustration of this tradeoff. The short-term interest rate is influenced by expected inflation,
monetary policy, and the general supply and demand for funds, and, because the nominal rate
must be positive, the "true" model for the interest rate must be nonlinear. Yet, of the
autoregressions, neural nets, LSTAR models, and VARs considered in tables 1 and 2, the best

forecast was generated by a simple exponentially weighted moving average of past values of the

interest rate. No attempt has been made to uncover the source of the relatively poor
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performance of the more sophisticated forecasts of the interest rate, but presumably it arises
from a combination of parameter estimation error and temporal instability in the more
complicated models.

An important practical question is how to resolve this tradeoff in practice. Two methods
have been discussed here. At a formal level, this tradeoff is captured by the use of information
criteria. Information criteria can be misleading, however, when many models are being
compared and/or when the forecasting environment changes over time. The other method is to
perform a simulated out of sample forecast comparison of a small number of models. This is in
fact closely related to information criteria (Wei [1992]) and shares some of their disadvantages.
When applied to at most a few candidate models, however, this has the advantage of providing
evidence on recent forecasting performance and how the forecasting performance of a model
has evolved over the simulated forecast period. These observations, along with those above
about reporting forecast uncertainty, suggest a simple rule: even if your main interest is in
more complicated models, it pays to maintain benchmark forecasts using a simple model with
honest forecast standard errors evaluated using a simulated real time experiment, and to convey
the forecast uncertainty to the consumer of the forecast.

Finally, an important topic not addressed in this chapter is model instability. All
forecasting models, no matter how sophisticated, are stylized and simplified ways to capture the
complex and rich relations among economic time series variables. There is no particular reason
to believe that these underlying relations are stable -- technology, global trade, and
macroeconomic policy have all evolved greatly over the past three decades -- and even if they
were, the implied parameters of the forecasting relations need not be stable. One therefore
would expect estimated forecasting models to have parameters that vary over time, and indeed
this appears to be the case empirically (Stock and Watson [1996]). Indeed, Clements and Hendry

(1998) argue that most if not all major economic forecast failures arise because of unforeseen
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events that lead to a breakdown of the forecasting model; they survey existing methods, and
suggest some new techniques, for detecting and adjusting to such structural shifts. The
question of how best to forecast in a time-varying environment remains an important area of

econometric research.
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Footnotes

1. All series were obtained from the Basic Economics Database maintained by DRI/McGraw
Hill. The series memnonics are: PUNEW (the CPI); IP (industrial production); LHUR (the
unemployment rate); FYGM3 (the 90 day U.S. Treasury bill rate); and IVMTQ (real

manufacturing and trade inventories).

2. These results are drawn from the much larger model comparison exercise in Stock and
Watson (1998), to which the reader is referred for additional details on estimation method,

model definitions, data sources, etc.

3. In influential work, Cooper (1972) and Nelson (1972) showed this in a particularly dramatic
way. They found that simple ARMA models typically produced better forecasts of the major
macroeconomic aggregates than did the main large structural macroeconomic models of the
time. For a discussion of these papers and the ensuing literature, see Granger and Newbold
(1986, ch. 9.4).
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Figure |
LS, unemployment rate (heavy solid line),
recursive AR(BIC)/unit root pretest forecast (light solid line),
and neural network forecast (dots)
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Figure 2
Six-month U.8S. CPI inflation at an annual rate theavy solid line),
recursive AR(BIC Y unit root pretest forecast (light solid line),
and neural network forecast (dots)
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Figure 3
90-day U.S, Treasury bill rate at an annual rate (heavy solid line),
recursive AR(BIC Y unit root pretest forecast {light solid line},
and neural network forecast (dors)
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Figure 4
Six-month growth of U.S. Industrial Production at an annual rate (heavy solid line),
recursive AR{BIC)/unit root pretest forceast (light solid line),
and neural network lorecast (dots)
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Figure 5

Six-month growth of total real U.S. manufacturing and
trade inventories at an annual rale (heavy solid line)
recursive AR(BIC)/unit root pretest forecast (light solid line),
and neural network forecast (dots)



