
Vector Autoregressions (VAR and VEC)
The structural approach to simultaneous equations modeling uses economic theory to describe the 
relationships between several variables of interest. The resulting model is then estimated, and used 
to test the empirical relevance of the theory.
Unfortunately, economic theory is often not rich enough to provide a tight specification of the dynamic 
relationship among variables. Furthermore, estimation and inference are complicated by the fact that 
endogenous variables may appear on both the left and right sides of the equations.
These problems lead to alternative, non-structural, approaches to modeling the relationship between 
several variables. Here we describe the estimation and analysis of vector autoregression (VAR) and 
the vector error correction (VEC) models. We also describe tools for testing for the presence of 
cointegrating relationships among several variables. 

VAR Theory
The vector autoregression (VAR) is commonly used for forecasting systems of interrelated time 
series and for analyzing the dynamic impact of random disturbances on the system of variables.
The VAR approach sidesteps the need for structural modeling by modeling every endogenous 
variable in the system as a function of the lagged values of all of the endogenous variables in the 
system. 
The mathematical form of a VAR is

where  is a k vector of endogenous variables,  is a d vector of exogenous variables, ,...,  
and B are matrices of coefficients to be estimated, and  is a vector of innovations that may be 
contemporaneously correlated with each other but are uncorrelated with their own lagged values and 
uncorrelated with all of the right-hand side variables. 
Since only lagged values of the endogenous variables appear on the right-hand side of each 
equation, there is no issue of simultaneity, and OLS is the appropriate estimation technique. Note that 
the assumption that the disturbances are not serially correlated is not restrictive because any serial 
correlation could be absorbed by adding more lagged y’s.
As an example of a VAR, suppose that industrial production (IP) and money supply (M1) are jointly 
determined by a two variable VAR and let a constant be the only exogenous variable. With two 
lagged values of the endogenous variables, the VAR is

where a, b, c are the parameters to be estimated.

Estimating a VAR in EViews
To specify a vector autoregression, you must create a VAR object. Select Quick/Estimate VAR… or 
type var in the command window. Fill out the dialog that appears with the appropriate information:

• Enter the lag information in the first edit box. This information tells EViews which lags should be 
included on the right-hand side of each equation. This information is entered in pairs: each pair of 
numbers defines a range of lags. For example, the lag pair:

1 2

tells EViews to use the first and second lags of all of the variables in the system as right-hand side 
variables. 

You can add any number of lag intervals, all entered in pairs. The lag specification:
2 4 6 9 11 11

uses lags two through four, lags six through nine, and lag eleven.

• Enter the endogenous and exogenous variables in the appropriate edit boxes.

• Select the specification type: Unrestricted VAR or Vector Error Correction (VEC). What we 



Select the specification type: Unrestricted VAR or Vector Error Correction (VEC). What we 
have been calling a VAR is the unrestricted VAR. VECs will be explained in detail below in Vector 
Error Correction. 

• Check or uncheck the box to include or exclude the constant from the right-hand side of the 
equations.

The example dialog corresponds to the VAR example above: IP and M1 are the endogenous 
variables, the model uses lags 1 through 2, and the constant is the only exogenous variable. You will 
note that we have both entered C as an exogenous variable, and checked the box instructing EViews 
to include a constant in the VAR. This is redundant, but harmless, since EViews will only include a 
single constant.

VAR Estimation Output
Once you have specified the VAR, click OK. EViews will display the estimation results in the VAR 
window. Each column in the table corresponds to the equation for one endogenous variable in the 
VAR. For each right-hand side variable, EViews reports a coefficient point estimate, the estimated 
coefficient standard error, and the t-statistic.
Two types of regression statistics are reported at the bottom of the VAR estimation output.

 R-squared  0.999221  0.999915  0.968018
 Adj. R-squared  0.999195  0.999912  0.966937
 Sum sq. resids  113.8813  1232.453  98.39849
 S.E. equation  0.566385  1.863249  0.526478
 Log likelihood -306.3509 -744.5662 -279.4628
 Akaike AIC -1.102274  1.279331 -1.248405
 Schwarz SC -0.964217  1.417388 -1.110348
 Mean dependent  70.97919  339.7451  6.333891
 S.D. dependent  19.95932  198.6301  2.895381

 Determinant Residual Covariance  0.259637
 Log Likelihood -1318.390
 Akaike Information Criteria -1.136514
 Schwarz Criteria -0.722342

The first part of the output displays the standard regression statistics for each equation. The results 
are computed separately, using the residuals for each equation and arranged in the appropriate 
column. 
The numbers at the very bottom of the table are the regression statistics for the VAR system. The 
determinant of the residual covariance is computed as

where  is the k vector of residuals. The log-likelihood value is computed assuming a multivariate 
normal (Gaussian) distribution as:

 
and the two information criteria are computed as

where n = k(d+pk) is the total number of estimated parameters in the VAR. These information criteria 
can be used for model selection such as determining the lag length of the VAR; the smaller the value 
of the information criteria, the “better” the model. It is worth noting that by ignoring constant terms, 
some reference sources define the AIC for a multivariate normal system in a slightly different fashion, 
as:

.
See also Information Criteria for additional discussion.

Working with a VAR
Once you have estimated your VAR, EViews provides various views and procedures that allow you to 



use the estimated VAR for further analyses. In this section, we discuss views that are specific to 
VARs; for other views and procedures, see the discussion of System Estimation Views. 
In empirical applications, the main uses of the VAR are the impulse response analysis, variance 
decomposition, and Granger causality tests. 

Impulse Response Functions
An impulse response function traces the effect of a one standard deviation shock to one of the 
innovations on current and future values of the endogenous variables.
A shock to the i-th variable directly affects the i-th variable, and is also transmitted to all of the 
endogenous variables through the dynamic structure of the VAR. 
Consider a simple bivariate VAR(1):

A change in  will immediately change the value of current IP. It will also change all future values of 
IP and M1 since lagged IP appears in both equations. 

If the innovations,  and  in our example, are uncorrelated, interpretation of the impulse 
response is straightforward.  is the innovation for IP and  is the innovation for M1. The impulse 
response functions for  measures the effect of a one standard deviation monetary shock on 
current and future industrial production and money stock. 
The innovations are, however, usually correlated, so that they have a common component which 
cannot be associated with a specific variable. A somewhat arbitrary but common method of dealing 
with this issue is to attribute all of the effect of any common component to the variable that comes 
first in the VAR system. In our example, the common component of  and  is totally attributed to 

, because  precedes .  is then the IP innovation, and , the M1 innovation, is 
transformed to remove the common component. 
More technically, the errors are orthogonalized by a Cholesky decomposition so that the covariance 
matrix of the resulting innovations is diagonal—see the Technical Notes, Impulse Response for 
details. While the Cholesky decomposition is widely used, it is a rather arbitrary method of attributing 
common effects. You should be aware that changing the order of equations can dramatically change 
the impulse responses.
Generating Impulse Response Functions from VARs
To obtain the impulse response functions for your VAR, select Impulse on the VAR toolbar. You will 
see the VAR Impulse Responses dialog box. EViews will compute one impulse response function for 
each innovation and endogenous variable pair. For example, a four variable VAR has 16 potential 
impulse response functions. 

• In the top two edit boxes, you should enter the variables for which you wish to generate 
innovations, and the variables for which you wish to observe the impulse responses. The order in 
which you enter these variables only affects the display of results.

• In the bottom edit box, you should specify the ordering of the variables in the VAR—as explained 
above, there are significant implications of this choice. 

• In addition, you should specify the number of periods for which you wish to trace the response 
function. 

• On the right, specify the form of the output, either a table of numbers, separate graphs of each 
impulse response function, or graphs that compare the responses of each variable to each of the 
innovations. 

• You should also choose between impulse responses and variance decomposition (see Variance 
Decomposition below).

• Finally, you should make a choice about the standard errors of the response functions. You can 
choose not to calculate standard errors, to calculate them from the asymptotic analytical formula, or 
to calculate them by Monte Carlo methods; see the Technical Notes, Impulse Response for further 
information of these options. For the Monte Carlo option, you should also specify the number of 



repetitions. 

The Table option tabulates each value of the impulse responses. There is a separate table for each 
endogenous variable which tabulates the responses to all the innovations that you specify. The 
numbers in parentheses are the standard errors, computed according to your choice of the 
Response standard errors option. 
The Combined response graphs option displays these tabular results in a set of graphs, with one 
graph corresponding to each endogenous variable table.
The Multiple graphs option displays the impulse response functions with a separate graph for each 
endogenous variable and response pair: 
If you choose to compute the standard errors, EViews displays the plus/minus two standard deviation 
bands, alongside the impulse responses. The standard error bands will not be displayed if you select 
the Combined response graph option.

Variance Decomposition
Variance decomposition provides a different method of depicting the system dynamics. Impulse 
response functions trace the effects of a shock to an endogenous variable on the variables in the 
VAR. By contrast, variance decomposition decomposes variation in an endogenous variable into the 
component shocks to the endogenous variables in the VAR. The variance decomposition gives 
information about the relative importance of each random innovation to the variables in the VAR. 
See the Technical Notes, Variance Decomposition for additional details.
How to compute variance decomposition from VARs 
To obtain the variance decomposition of a VAR, click Impulse in the VAR toolbar and choose the 
Variance decomposition option. You should provide the same information as for impulse responses 
above, except that the choice of innovations is not needed. Note that there are no standard errors for 
variance decomposition. 
The Table option displays the variance decomposition in tabular form. EViews displays a separate 
variance decomposition for each endogenous variable. The column S.E. is the forecast error of the 
variable for each forecast horizon. The source of this forecast error is the variation in current and 
future values of the innovations to each endogenous variable in the VAR.
The remaining columns give the percentage of the variance due to each innovation; each row adds 
up to 100. For the variable that comes first in the VAR ordering, the only source of the one period 
ahead variation is its own innovation and the first number is always 100 percent. We reiterate that this 
decomposition of variance depends critically on the ordering of equations. 
The Combined response graphs option plots the decomposition of each forecast variance as line 
graphs. The variance decomposition is displayed as separate line graphs with the y-axis height 
measuring the relative importance of each innovation. You can also change the line graphs to 
stacked lines; double click in the white area of the graph and change the Graph Type to Stacked 
Lines. The stacked line graph shows the relative importance of each innovation as the height 
between each successive line. Note that the last line, corresponding to the innovation that comes last 
in the VAR ordering, is always flat at 100 because of the adding up constraint. 

Granger Causality Tests
You can test Granger causality by running a VAR on the system of equations and testing for zero 
restrictions on the VAR coefficients (see Group Views, Granger Causality for a discussion of 
Granger’s definition of causality). We recommend, however, that you not use a VAR to test for 
Granger Causality, since EViews provides alternative tools that are either easier to use, or more 
generally applicable than the standard VAR.
You should perform your Granger Causality test in EViews using a group or a system object. Your 
choice of approach should depend upon your particular testing situation: 

• Displaying the Granger test view of a group object is the easiest way to perform the test (see 
Group Views, Granger Causality). The primary limitation of this approach is that you are restricted, 
in constructing the test statistic, to using VARs with a constant as the only exogenous variable.

• The system object allows you to include additional exogenous variables in the test, and to impose 
cross-equation restrictions on the coefficients of the VAR. It is, however, more difficult to set up the 



test using this approach than using the group Granger test view.

Note that if you wish, you could perform the Granger test using single equation methods. For 
example, suppose you have a VAR(4) of M1, IP, TB3 with a constant and linear trend and you want to 
test whether the lagged M1’s are jointly significant in the IP equation. One way to test this hypothesis 
is to estimate the IP equation using single equation least squares:

ls ip m1(-1 to -4) ip(-1 to -4) tb3(-1 to -4) c @trend(50.1)

and from the equation window choose View/Coefficient Tests/Wald and type the restrictions in the 
Wald Test dialog as

c(1)=0, c(2)=0, c(3)=0, c(4)=0

Note that the estimated OLS equation should be identical to the equation estimated by estimating the 
VAR.

Obtaining the Coefficients of a VAR
Estimated coefficients of VARs can be accessed by reference to a two dimensional array C. To see 
the correspondence between each element of C and the estimated coefficients, select 
View/Representations from the VAR toolbar.
The first number in C refers to the equation number of the VAR, while the second number in C refers 
to the variable number in each equation. For example, C(2,3) is the coefficient of the third regressor 
in the second equation of the VAR. The C(2,3) coefficient of a VAR named VAR01 can then be 
accessed by the command

var01.c(2,3)

Vector Error Correction and Cointegration Theory 
The finding that many macro time series may contain a unit root has spurred the development of the 
theory of non-stationary time series analysis. Engle and Granger (1987) pointed out that a linear 
combination of two or more non-stationary series may be stationary. If such a stationary, or I(0), linear 
combination exists, the non-stationary (with a unit root), time series are said to be cointegrated. The 
stationary linear combination is called the cointegrating equation and may be interpreted as a 
long-run equilibrium relationship between the variables. For example, consumption and income are 
likely to be cointegrated. If they were not, then in the long-run consumption might drift above or below 
income, so that consumers were irrationally spending or piling up savings.
A vector error correction (VEC) model is a restricted VAR that has cointegration restrictions built into 
the specification, so that it is designed for use with nonstationary series that are known to be 
cointegrated. The VEC specification restricts the long-run behavior of the endogenous variables to 
converge to their cointegrating relationships while allowing a wide range of short-run dynamics. The 
cointegration term is known as the error correction term since the deviation from long-run equilibrium 
is corrected gradually through a series of partial short-run adjustments.
As a simple example, consider a two variable system with one cointegrating equation and no lagged 
difference terms. The cointegrating equation is

and the VEC is

In this simple model, the only right-hand side variable is the error correction term. In long run 
equilibrium, this term is zero. However, if  and  deviated from long run equilibrium last period, 
the error correction term is nonzero and each variable adjusts to partially restore the equilibrium 
relation. The coefficients  and  measure the speed of adjustment.

In this model, the two endogenous variables  and  will have nonzero means but the 
cointegrating equation will have a zero intercept. To keep the example simple, despite the fact that 
the use of lagged differences is common, we have included no lagged differences on the right-hand 
side.



If the two endogenous variables  and  have no trend and the cointegrating equations have an 
intercept, the VEC has the form

Another VEC specification assumes that there are linear trends in the series and a constant in the 
cointegrating equations, so that it has the form

Similarly, there may be a trend in the cointegrating equation, but no separate trends in the two VEC 
equations. Lastly, if there is a separate linear trend outside the parentheses in each VEC equation, 
then there is an implicit quadratic trend in the series.
For additional discussion of VAR and VEC models, see Davidson and MacKinnon (1993, pp. 
715–730), and Hamilton (1994a, Chapter 19, pp. 571–629).

Testing for Cointegration
Given a group of non-stationary series, we may be interested in determining whether the series are 
cointegrated, and if they are, in identifying the cointegrating (long-run equilibrium) relationships. 
EViews implements VAR-based cointegration tests using the methodology developed by Johansen (
1991, 1995). Johansen’s method is to test the restrictions imposed by cointegration on the 
unrestricted VAR involving the series.

Johansen’s Cointegration Test 
Consider a VAR of order p:

,

where  is a k-vector of non-stationary I(1) variables,  is a d vector of deterministic variables, and 
 is a vector of innovations. We can rewrite the VAR as:

,
where

.
Granger’s representation theorem asserts that if the coefficient matrix  has reduced rank r<k, then 
there exist k r matrices  and  each with rank r such that  and  is stationary. r is the 
number of cointegrating relations (the cointegrating rank) and each column of  is the cointegrating 
vector. The elements of  are known as the adjustment parameters in the vector error correction 
model. Johansen’s method is to estimate the  matrix in an unrestricted form, then test whether we 
can reject the restrictions implied by the reduced rank of . 
The number of cointegrating relations
If you have k endogenous variables, each of which has one unit root, there can be from zero to k-1 
linearly independent, cointegrating relations. If there are no cointegrating relations, standard time 
series analyses such as the (unrestricted) VAR may be applied to the first-differences of the data. 
Since there are k separate integrated elements driving the series, levels of the series do not appear 
in the VAR in this case. 
Conversely, if there is one cointegrating equation in the system, then a single linear combination of 
the levels of the endogenous series , should be added to each equation in the VAR. When 
multiplied by a coefficient for an equation, the resulting term , is referred to as an error 
correction term. If there are additional cointegrating equations, each will contribute an additional error 
correction term involving a different linear combination of the levels of the series.



If there are exactly k cointegrating relations, none of the series has a unit root, and the VAR may be 
specified in terms of the levels of all of the series. Note that in some cases, the individual unit root 
tests will show that some of the series are integrated, but the Johansen tests show that the 
cointegrating rank is k. This contradiction may be the result of specification error.
The Cointegrating Relations (Vector)
Each column of the  matrix gives an estimate of a cointegrating vector. The cointegrating vector is 
not identified unless we impose some arbitrary normalization. EViews adopts the normalization so 
that the r cointegrating relations are solved for the first r variables in the  vector as a function of the 
remaining k-r variables.
Note that one consequence of this normalization is that the normalized vectors which EViews 
provides will not, in general, be orthogonal, despite the orthogonality of the unnormalized coefficients.
Deterministic Trend Assumptions
Your series may have nonzero means and deterministic trends as well as stochastic trends. Similarly, 
the cointegrating equations may have intercepts and deterministic trends. The asymptotic distribution 
of the LR test statistic for the reduced rank test does not have the usual  distribution and depends 
on the assumptions made with respect to deterministic trends. EViews provides tests for the following 
five possibilities considered by Johansen (see Johansen, 1995, pp. 80–84 for details):

1. Series y have no deterministic trends and the cointegrating equations do not have intercepts:

2. Series y have no deterministic trends and the cointegrating equations have intercepts:

3. Series y have linear trends but the cointegrating equations have only intercepts:

4. Both series y and the cointegrating equations have linear trends:

5. Series y have quadratic trends and the cointegrating equations have linear trends:

where  is the (non-unique) k (k-r) matrix such that  and .
These five cases are nested from the most restrictive to the least restrictive, given any particular 
cointegrating rank r: 

For each case, EViews tabulates the critical values for the reduced rank test as given by 
Osterwald-Lenum (1992), not those tabulated in Johansen and Juselius (1990). Note that the critical 
values are available for up to 10 series and may not be appropriate for models that contain other 
deterministic regressors. For example, a shift dummy variable in the VAR implies a broken linear 
trend in the y series. 
If you include 0-1 seasonal dummy variables in the VAR, this will affect both the mean and the trend 
of the y series. Johansen (1995, page 84) suggests using centered (orthogonalized) seasonal dummy 
variables, which only shift the mean without contributing to the trend. Centered seasonal dummy 
variables for quarterly and monthly series can be generated by the commands

series d_q=@seas(q)-1/4

series d_m=@seas(m)-1/12

for quarter q and month m, respectively. 
There are two dimensions you can vary while performing tests within this framework. You can 
assume one of the five cases listed above, and carry out tests for the cointegrating rank. Alternatively, 



you can fix the rank, and test which of the five cases describes the data best. These tests are 
standard  tests and are described in the Technical Notes, Nested Tests of Deterministic Trends 
under Cointegration. EViews provides you with the option of summarizing all five cases, so you can 
look at all possible combinations of rank and intercept-trend.
Among the five intercept-trend cases, EViews uses (3) as the default. This choice is based on the 
assumption that long-run equilibrium conditions (such as the relation between income and 
consumption) probably do not have trends. In choosing your final model of the data, you should be 
guided by economic interpretations as well as the statistical criteria. You should look at the 
normalized cointegrating equations to see if they correspond to your beliefs about long-run relations 
among the variables. Sometimes it is helpful to rearrange the order of the variables; a reordering 
does not affect the substantive results.

How to Perform a Johansen Test
To carry out the Johansen test, select View/Cointegration Test… on the group or VAR toolbar. Note 
that since this is a test for cointegration, this test is only valid when you are working with series that 
are known to be nonstationary. You may wish first to apply unit root tests to each series in the VAR 
(see Unit Root Tests). 
The Cointegration Test dialog asks you to provide information about the test.
Specification
The first step is to choose one of the options specifying the type of deterministic trends that are 
present in the data. The first five options provide particular alternatives for whether an intercept or 
trend term should be included in the specification of the cointegrating equations.
The sixth option runs the Johansen procedure under all five sets of assumptions. Since this selection 
estimates a large number of specifications, only a summary table of results will be displayed. You 
must select one of the other options to see the full output of the test.
Exogenous Variables
The dialog also allows you to specify exogenous variables, such as seasonal dummies, to include in 
the test VARs. The constant and linear trend should not be listed in this dialog; these should be 
chosen from the specification options. If you do include exogenous variables, you should be aware 
that the critical values reported by EViews do not account for their inclusion.
Lag Intervals
You should specify the lags of the test VAR as pairs of intervals. Note that in contrast to some other 
statistical packages, the lags are specified as lags of the first differenced terms, not in terms of the 
levels. For example, if you type 1 4 in the field, the test VAR regresses  on , , ,

 and other exogenous variables that you have specified. Some other programs specify the lags 
in levels; if you type 1 4 in EViews, the highest lag in level is 5. To run a cointegration test with one 
lag in the levels, type 0 0 in the field.

Interpreting the Results of a Johansen Test
As an example, the output for a four-variable system used in Johansen and Juselius (1990) for the 
Danish data is shown below. The four variables are

LRM: log real money
LRY: log real income
IBO: long term interest rate (bond rate)
IDE: short term interest rate (deposit rate)

The test assumes no trend in the series with an intercept in the cointegration relation (second 
specification in the dialog), includes three orthogonalized seasonal dummy variables, and uses two 
lags in levels which is specified as 1 1 in the field box.
The number of cointegrating relations
The first part of the table performs the trace test for the number of cointegrating relations:

Date: 10/16/97   Time: 22:33
Sample: 1974:1 1987:3  
Included observations: 53



Test assumption: No deterministic trend in the data
Series: LRM LRY IBO IDE 
Exogenous series: D1 D2 D3 
Warning: Critical values were derived assuming no exogenous series
Lags interval: 1 to 1

  Likelihood 5 Percent 1 Percent Hypothesized
Eigenvalue Ratio Critical Value Critical Value No. of CE(s)
 0.433165  49.14436  53.12  60.16       None
 0.177584  19.05691  34.91  41.07    At most 1
 0.112791  8.694964  19.96  24.60    At most 2
 0.043411  2.352233   9.24  12.97    At most 3

 *(**) denotes rejection of the hypothesis at 5%(1%) significance level
 L.R. rejects any cointegration at 5% significance level

The eigenvalues are presented in the first column, while the second column (Likelihood Ratio) gives 
the LR test statistic: 

for r = 0,1,...,k-1 where  is the i-th largest eigenvalue.  is the so-called trace statistic and is the 
test of (r) against (k). 
To determine the number of cointegrating relations r, subject to the assumptions made about the 
trends in the series, we can proceed sequentially from r = 0 to r = k-1 until we fail to reject. The first 
row in the upper table tests the hypothesis of no cointegration, the second row tests the hypothesis of 
one cointegrating relation, the third row tests the hypothesis of two cointegrating relations, and so on, 
all against the alternative hypothesis of full rank, i.e. all series in the VAR are stationary. 
The trace statistic does not reject any of the hypotheses at the 5% level. Note that EViews displays 
the critical values for the trace statistic reported by Osterwald-Lenum (1992), not those tabulated in 
Johansen and Juselius (1990). Johansen also proposes an alternative LR test statistic, known as the 
maximum eigenvalue statistic, which tests (r) against (r+1). The maximum eigenvalue statistic 
can be computed from the trace statistic as

EViews does not provide critical values for the maximum eigenvalue statistic; critical values for this 
statistic are tabulated in Osterwald-Lenum (1992). 
The Cointegrating Equations
Below the results of the cointegration rank tests, EViews provides the estimates of the cointegrating 
vector or relations. Although EViews displays all possible k-1 cointegrating relations, you are most 
likely to be interested in the first r estimates, where r is determined by the LR tests.
The cointegrating vector is not identified unless we impose some arbitrary normalization. EViews 
adopts a normalization such that the first r series in the  vector are normalized to an identity matrix. 
The normalized cointegrating relation assuming one cointegrating relation r = 1 is given by

 Normalized Cointegrating Coefficients: 1 Cointegrating Equation(s)

LRM LRY IBO IDE C
 1.000000 -1.032949  5.206919 -4.215880 -6.059932

 (0.13366)  (0.66493)  (1.17916)  (0.83100)

 Log likelihood  669.1154    

which can be written as

The number in parentheses under the estimated coefficients are the asymptotic standard errors. 
Some of the normalized coefficients will be shown without standard errors. This will be the case for 



coefficients that are normalized to 1.0 and for coefficients that are not identified. In the latter case, the 
coefficient (usually 0) is the result of an arbitrary identifying assumption.
The appearance of the normalized cointegrating relations depends on how you order the series in the 
VAR. For example, if you want a relation with a unit coefficient on LRY, specify the LRY series as the 
first series in your VAR. Of course, nothing of substance is affected since any linear combination of 
the cointegrating relations is also a cointegrating relation. 
Summary of Five Tests
If you are not sure about the deterministic trends in the data, you may choose the summary of the 
cointegration tests under all five models. The output displays the log likelihood and the two 
information criteria under each model as a model selection guide. See Information Criteria for a 
discussion of the use of information criteria in model selection.
The results of the LR tests shown at the bottom of the table are at the 5% significance level.

Estimating a VEC in EViews
An unrestricted VAR does not assume the presence of cointegration. If you wish to impose 
cointegrating restrictions among the variables in the VAR, you should use a vector error correction 
(VEC) model.
As the VEC specification only applies to cointegrated series, you should run the Johansen 
cointegration test prior to VEC specification as described above. This allows you to confirm that the 
variables are cointegrated and to determine the number of cointegrating equations. 
To set up a VEC, click the Estimate button in the VAR toolbar and choose the Vector Error 
Correction specification. You should provide the same information as for an unrestricted VAR and 
you may optionally specify exogenous variables. However, the specification of the exogenous 
intercepts and trends should be chosen from the five models discussed above. This choice should be 
the same as in the cointegration test.
It is important to note that the lag specification that EViews prompts you to enter refers to lags of the 
first difference terms in the VEC. For example, 1 1 specifies a model involving a regression of the 
first differences on one lag of the first difference.
You must also specify the number of cointegrating equations in the VEC model. This number should 
be determined from the cointegration test. The maximum number of cointegrating equations is one 
less than the number of endogenous variables in the VAR.
To estimate the VEC, click OK. Estimation of a VEC model proceeds by first determining one or more 
cointegrating equations using the Johansen procedure. The first difference of each endogenous 
variable is then regressed on a one period lag of the cointegrating equation(s) and lagged first 
differences of all of the endogenous variables in the system.

Working with a VEC
Working with a VEC is analogous to working with a VAR, so we refer you to the discussion in 
Working with a VAR. Note that standard errors for the impulse response functions are not available 
for the VEC.

Obtaining the Coefficients of a VEC
As explained in the VAR section, estimated coefficients of VARs can be accessed by reference to a 
two dimensional array C. Similarly, estimated coefficients of the cointegrating vector and the 
adjustment parameters can be accessed by reference to the two dimensional arrays B and A, 
respectively. 
To see the correspondence between each element of A, B, C and the estimated coefficients, select 
View/Representations from the VAR toolbar.
The first index to A is the equation number of the VEC, while the second index to A is the number of 
the cointegrating equation. For example, A(2,1) is the adjustment coefficient of the first cointegrating 
equation in the second equation of the VEC.
The first index to B is the number of the cointegrating equation, while the second index to B is the 
variable number in the cointegrating equation. For example, B(2,1) is the coefficient of the first 
variable in the second cointegrating equation. 



The first index to C is the equation number of the VEC, while the second index to C is the variable 
number of the first-differenced regressor of the VEC. For example, C(2,1) is the coefficient of the first 
first-differenced regressor in the second equation of the VEC.
You can access each element of the coefficient by referring to the name of the VEC followed by a dot 
and coefficient element:

var01.a(2,1)

var01.b(2,1)

var01.c(2,1)

Forecasting from a VAR or VEC
To calculate a forecast from a VAR or Vector Error Correction model, click on Procs/Make Model on 
the VAR toolbar. You will see a model window with the VAR or VEC in it. You can make any changes 
you want, including modifying the ASSIGN statement, and then push the Solve button on the model's 
toolbar to calculate a forecast. See Model Solve for further discussion on how to forecast from 
models.

Illustration
As an illustration, we estimate a bivariate VAR of the log of personal consumption expenditure (CS) 
and the log of personal income (INC) using quarterly data over the period 60.1–96.4. The plot of the 
two series shows that the two series are drifting together, suggesting cointegration. To establish 
cointegration, we must first check whether each series is integrated and contains a unit root. The 
results of the augmented Dickey-Fuller test with four lags and a constant and linear trend in the test 
equation are presented below:

log(CS) Dlog(CS) log(INC) Dlog(INC)
ADF t-stat –0.52 –3.67 –0.92 –3.78

The 5% critical value is –3.44 and the tests indicate that both series contain a unit root. 

Choosing the Lag Order of a VAR
To estimate a VAR of log(CS) and log(INC), click Quick/Estimate VAR… or type var in the 
command window. Fill in the dailog to fit a fourth order VAR with a constant as the only exogenous 
regressor. Click OK to estimate the VAR. After estimation, you can select View/Residual Graphs to 
plot the residuals of each equation in the VAR. 
The lag order of the VAR is often selected somewhat arbitrarily, with standard recommendations 
suggesting that you set it long enough to ensure that the residuals are white noise. However, if you 
choose the lag length too large, the estimates become imprecise. You can use a likelihood ratio (LR) 
test to test the appropriate lag length. To carry out the LR test, estimate the VAR twice, each with 
different lags. The estimation results for lag orders 4 (top) and 2 (bottom) are displayed below:

Lags interval: 1 to 4          
 Determinant Residual Covariance  1.62E-09
 Log Likelihood  1077.958
 Akaike Information Criteria -19.99951
 Schwarz Criteria -19.63499

Lags interval: 1 to 2             
 Determinant Residual Covariance  1.90E-09
 Log Likelihood  1065.907
 Akaike Information Criteria -19.94476
 Schwarz Criteria -19.74225

The LR test statistic for the hypothesis of lag 2 against lag 4 can be computed as

where  is the log likelihood reported at the very bottom of the table. The LR test statistic is 



asymptotically distributed  with degrees of freedom equal to the number of restrictions under test. 
In this case, there are 8 zero restrictions to move from VAR(4) to VAR(2) so the LR test statistic is 
asymptotically distributed (8). To carry out the test, you can compare the test statistic with the 
critical values from the  table. Alternatively, you can compute the p-value in EViews by entering the 
commands:

scalar pval = 1-@cchisq(24.102,8)

show pval

The result 0.002 is displayed on the status line at the bottom of the EViews window and we reject the 
null hypothesis of 2 lags. The Akaike information criterion also selects VAR(4) in favor of VAR(2) but 
the Schwarz information criterion selects the parsimonious VAR(2). 
Note: to compute the LR test appropriately, you must estimate the two VARs using the same sample 
period. The VAR with the longer lag will have a shorter sample, so you should set the sample period 
to the sample estimated by the longer VAR.

Testing for Cointegration
Given that each series has a unit root, we now test whether CS and INC are cointegrated over the 
sample period and if so, what the cointegrating relation is. The estimated cointegrating relation will 
give us an estimate of the long run propensity to consume. 
To test cointegration, click View/Cointegration Test… and fill in the dialog. We use the VAR with lag 
4 and assume that the series contain linear trends but the cointegrating relation only includes a 
constant (the default third model). The results are:

Date: 10/16/97   Time: 23:19
Sample: 1960:1 1996:4  
Included observations: 147
Test assumption: Linear deterministic trend in the data
Series: LOG(CS) LOG(INC) 
Lags interval: 1 to 4

     Likelihood 5 Percent 1 Percent Hypothesized
Eigenvalue Ratio Critical Value Critical Value No. Of CE(s)
 0.145518  25.20440  15.41  20.04       None **
 0.014098  2.087119   3.76   6.65    At most 1

 *(**) denotes rejection of the hypothesis at 5%(1%) significance level
 L.R. test indicates 1 cointegrating equation(s) at 5% significance level

The LR test rejects the hypothesis of no cointegration but not the hypothesis of at most one 
cointegration relation. The estimated cointegrating relation is:

 Normalized Cointegrating Coefficients: 1 Cointegrating Equation(s)

LOG(CS) LOG(INC) C
 1.000000 -1.002850  0.257338
             (0.00320)            
                                      
 Log likelihood  1076.042               

As expected, the estimated long run marginal propensity to consume is not significantly different from 
one. You can plot the cointegrating relation by the command

plot log(cs)-1.002850*log(inc)+0.257338

You can draw the zero line by double clicking in the white area of the graph and choosing Graph 
Attributes: Zero line. 


