
Forecasting Using Eviews 2.0: An Overview

Some Preliminaries

In what follows it will be useful to distinguish between ex post and ex ante forecasting.  In terms
of time series modeling, both predict values of a dependent variable beyond the time period in
which the model is estimated.  However, in an ex post forecast observations on both endogenous
variables and the exogeneous explanatory variables are known with certainty during the forecast
period.  Thus, ex post forecasts can be checked against existing data and provide a means of
evaluating a forecasting model.  An ex ante forecast predicts values of the dependent variable
beyond the estimation period, using explanatory variables that may or may not be known with
certainty.  
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Univariate Forecasting Methods

The following will illustrate various forecasting techniques using the GA caseload data in the
workfile caseload.wf1. I will explain various Eviews commands and statistical output.

Example: GA caseload data

Load the data in the Eviews workfile caseload.wf1:

File/Open
Filename: caseload.wf1
Drives: a:
Directories: a:\
Check the Update Default Directory box
OK



Notice that the workfile range is 1973:07 2002:12.  I have added several variables and equations
to the workfile that will be used in the examples to follow.

Modeling trend behavior correctly is most important for good long-run forecasts whereas
modeling the deviations around the trend correctly is most important for good short-run forecasts. 
I will illustrate both of these points in the examples to follow

Trend extrapolation

Trend extrapolation is a very simple forecasting method that is useful if it is believed that the
historic trend in the data is smooth and will continue on its present course into the near future. 
Trend extrapolation is best computed in Eviews using ordinary least squares regression
techniques.

Commands to generate a deterministic time trend variable and the natural log of uxcase:

genr trend = @trend(1973.07)+1
genr luxcase = log(uxcase)

Ordinary least squares (OLS) estimation (see Help/How do I?/Estimate Equations)

Example: Estimate the trend model for uxcase over the period 1973:07 1996:07 by least
squares regression

Select Quick/Estimate Equation, which brings up the equation estimation dialogue box.

Upper box: uxcase c trend
Estimation method: Least squares
Sample: 1973:07 1996:06
OK

You should see the following estimation results in an Equation Window:

LS // Dependent Variable is UXCASE
Date: 09/16/97   Time: 15:58
Sample: 1973:07 1996:06
Included observations: 276

Variable Coefficient Std. Error t-Statistic Prob.  

C  4931.804  190.4492  25.89564  0.0000
TREND  47.38451  1.191934  39.75429  0.0000

R-squared   0.852244     Mean dependent var  11494.56
Adjusted R-squared  0.851704     S.D. dependent var  4096.928
S.E. of regression  1577.693     Akaike info criterion  14.73466
Sum squared resid  6.82E+08     Schwarz criterion  14.76089



Log likelihood -2423.010     F-statistic  1580.404
Durbin-Watson stat  0.045668     Prob(F-statistic)  0.000000

Explanation of Standard Regression Output

Regression Coefficients

Each coefficient multiplies the corresponding variable in forming the best prediction of the
dependent variable. The coefficient measures the contribution of its independent variable to the
prediction. The coefficient of the series called C is the constant or intercept in the regression--it is
the base level of the prediction when all of the other independent variables are zero. The other
coefficients are interpreted as the slope of the relation between the corresponding independent
variable and the dependent variable. 

Standard Errors

These measure the statistical reliability of the regression coefficients--the larger the standard error,
the more statistical noise infects the coefficient. According to regression theory, there are about 2
chances in 3 that the true regression coefficient lies within one standard error of the reported
coefficient, and 95 chances out of 100 that it lies within two standard errors. 

t-Statistic

This is a test statistic for the hypothesis that a coefficient has a particular value. The t-statistic to
test if a coefficient is zero (that is, if the variable does not belong in the regression) is the ratio of
the coefficient to its standard error and this is the t-statistic reported by Eviews. If the t-statistic
exceeds one in magnitude it is at least two-thirds likely that the true value of the coefficient is not
zero, and if the t
-statistic exceeds two in magnitude it is at least 95 percent likely that the coefficient is not zero. 

Probability

The last column shows the probability of drawing a t-statistic of the magnitude of the one just to
the left from a t distribution. With this information, you can tell at a glance if you reject or accept
the hypothesis that the true coefficient is zero. Normally, a probability lower than .05 is taken as
strong evidence of rejection of that hypothesis.

R-squared 

This measures the success of the regression in predicting the values of the dependent variable
within the sample. R2 is one if the regression fits perfectly, and zero if it fits no better than the
simple mean of the dependent variable. R2 is the fraction of the variance of the dependent variable
explained by the independent variables. It can be negative if the regression does not have an



intercept or constant, or if two-stage least squares is used. 

R2 adjusted for degrees of freedom

This is a close relative of R2 in which slightly different measures of the variances are used. It is
less than R2 (provided there is more than one independent variable) and can be negative. 

S.E. of regression

This is a summary measure of the size of the prediction errors. It has the same units as the
dependent variable. About two-thirds of all the errors have magnitudes of less than one standard
error. The standard error of the regression is a measure of the magnitude of the residuals. About
two-thirds of the residuals will lie in a range from minus one standard error to plus one standard
error, and 95 percent of the residuals will lie in a range from minus two to plus two standard
errors. 

Sum of Squared Residuals

This is just what it says. You may want to use this number as an input to certain types of tests.

Log Likelihood

This is the value of the log likelihood function evaluated at the estimated values of the
coefficients. Likelihood ratio tests may be conducted by looking at the difference between the log
likelihoods of restricted and unrestricted versions of an equation.

Durbin-Watson Statistic

This is a test statistic for serial correlation. If it is less than 2, there is evidence of positive serial
correlation.

Akaike Information Criterion

The Akaike Information Criterion, or AIC, is a guide to the selection of the number of terms in an
equation. It is based on the sum of  squared residuals but places a penalty on extra coefficients.
Under certain conditions, you can choose the length of a lag distribution, for example, by
choosing the specification with the lowest value of the AIC. 

Schwarz Criterion

The Schwarz criterion is an alternative to the AIC with basically the same interpretation but a
larger penalty for extra coefficients. 

F-Statistic



This is a test of the hypothesis that all of the coefficients in a regression are zero (except the
intercept or constant). If the F-statistic exceeds a critical level, at least one of the coefficients is
probably non-zero. For example, if there are three independent variables and 100 observations, an
F-statistic above 2.7 indicates that the probability is at least 95 percent that one or more of the
three coefficients is non-zero. The probability given just below the F-statistic enables you to carry
out this test at a glance.

Equation Object

After you estimate an equation, Eviews creates an Equation Object and displays the estimation
results in an Equation Window.  Initially the equation window is untitled (hence it is a temporary
object that will disappear when you close the window).  You can make the equation a permanent
object in the workfile by clicking [Name] on the equation toolbar and supplying a name.

Equation Window buttons

[View] gives you a wide variety of other views of the equation - explained below
[Procs] gives you a submenu whose first two items are the same as the [Estimate] button

and the [Forecast] button. The third choice is Make Regressor Group, which
creates a group comprising all of the right-hand variables in the equation.

[Objects] gives you the standard menu of operations on objects, including Store, which
saves the equation on disk under its name, with the extension .DBE, if you have
given the equation a name. If you have not given it a name (it is still called
Untitled), EViews opens a SaveAs box. You can supply a file name and your
estimated equation will be saved on disk as a .DBE file.

[Print] prints what is currently in the window.
[Name] gives the estimated equation a name and keeps it in the workfile. The icon in the

workfile directory is a little = sign.
[Freeze] copies the view into a table or graph suitable for further editing.
[Estimate] opens the estimation box so you can change the equation or sample of

observations and re-estimate.
[Forecast] calculates a forecast from the equation.
[Stats] brings back the table of standard regression results.
[Resids] shows the graph of residuals and actual and fitted values.

Views of the equation object (menu of choices when [View] is clicked)

· View/Representations shows the equation in three forms: as a list of series, as an
algebraic equation with symbolic coefficients, and as an equation with the estimated values
of the coefficients.

· View/Estimation Output is the view shown above, with standard estimation results.
· View/Actual, Fitted, Residual/Table shows the actual values of the dependent variable,

fitted values, and residuals in a table with a plot of the residuals down the right side.
· View/Actual, Fitted, Residual/Graph shows a standard EViews graph of the actual

values, fitted values, and residuals.



· View/Covariance Matrix shows the covariance matrix of the coefficient estimates as a
spreadsheet view.

· View/Coefficient Tests, Residual Tests, and Stability Tests lead to additional menus
for specification and diagnostic tests .

Analysis of Residuals (see Help/How do I?/Use Specification and Diagnostic Tests)

The simple deterministic trend model is appropriate provided the residuals are “well behaved” -
i.e., provided our assumptions regarding the random error term in the trend model are satisfied. 
We can check these assumptions by running diagnostic tests on the residuals.  Eviews has many
such diagnostics built-in and these are available from the [View] menu on the equation toolbar.
The basic diagnostics available for an estimated equation are:

[View]/Actual,Fitted,Residual/Graph

The Actual Values are the values of the dependent variable used in a regression, from the original
data. The Fitted Values are the predicted values from a regression computed by applying the
regression coefficients to the independent variables. The Residuals are the differences between
the actual and fitted values of the dependent variable. They give an indication of the likely errors
that the regression would make in a forecasting application. 

Example: residuals from simple trend model

[View]/Residual Tests/Correlogram

The correlogram view of the residuals (forecast errors) shows the autocorrelations of the
residuals.  These are the correlation coefficients of values of the residuals k periods apart.
Nonzero values of these autocorrelations indicate omitted predictability in the dependent variable. 
If they die off more or less geometrically with increasing lag, k, it is a sign that the series obeys a
low-order autoregressive process. For example,

et = Det-1 + ut

where ut is white noise. If, on the other hand,  they drop to close to zero after a small number of
lags, it is a sign that the series obeys a low-order moving-average process. For example,

et = ut + 2ut-1 

where ut is white noise.  Often these simple models for the correlation in the forecast errors can be
used to greatly improve the forecasting model.  This is the intuition behind the Box-Jenkins
ARIMA modeling techniques.  See Help/Serial Correlation for further explanation of these
processes.

The partial autocorrelation at lag k is the regression coefficient on et-1 when et  is regressed on 



et-1. It shows if the pattern of autocorrelation is one that can be captured by an autoregression of
order less than k, in which case the partial autocorrelation will be small, or if not, in which case
the partial autocorrelation will be large in absolute value.

In the correlogram view, the Ljung-Box Q-statistic can be used to test the hypothesis that all of
the autocorrelations are zero; that is, that the series is white noise (unpredictable). Under the null
hypothesis, Q is distributed as Chi-square, with degrees of freedom equal to the number of
autocorrelations, p, if the series has not previously been subject to ARIMA analysis. If the series
is the residuals from ARIMA estimation, the number of degrees of freedom is the number of
autocorrelations less the number of autoregressive and moving average terms previously
estimated.  ARIMA models will be explained later.

Example: residuals from simple trend model

[View]/Residual Tests/Histogram Normality

The histogram displays the frequency distribution of the residuals. It divides the series range
(distance between its maximum and minimum values) into a number of equal length intervals or
bins and displays a count of the number of observations that fall into each bin. 

Skewness is a measure of symmetry of the histogram. The skewness of a symmetrical distribution,
such as the normal distribution, is zero. If the upper tail of the distribution is thicker than the
lower tail, skewness will be positive.  

The Kurtosis is a measure of the tail shape of a histogram. The kurtosis of a normal distribution
is 3. If the distribution has thicker tails than does the normal distribution, its kurtosis will exceed
three.

The Jarque-Bera (See Help/Search/Jarque-Bera) statistic tests whether a series is normally
distributed. Under the null hypothesis of normality, the Jarque-Bera statistic is distributed Chi-
square with 2 degrees of freedom. 

Nonnormal residuals suggest outliers or general lack of fit of the model.

Example: residuals from simple trend model

[View]/Residual Tests/White Heteroskedasticity

This is a very general test for nonconstancy of the variance of the residuals.  If the residuals have
nonconstant variance then ordinary least squares is not the best estimation technique - weighted
least squares should be used instead.

Example: residuals from simple trend model

Forecasts (See Help/How do I?/Make Forecasts)



Once you have estimated an equation, forecasting is a snap.  Simply click the [Forecast] button
on the equation toolbar.

The [Forecast] button on the equation toolbar opens a dialog. You should fill in the blank for the
name to be given to the forecast. The name should usually be different from the name of the
dependent variable in the equation, so that you will not confuse actual and forecasted values. For
your convenience in reports and other subsequent uses of the forecast, EViews moves all the
available data from the actual dependent variable into the forecasted dependent variable for all the
observations before the first observation in the current sample.

Optionally, you may give a name to the standard errors of the forecast; if you do, they will be
placed in the workfile as a series with the name you specify.

You must also specify the sample for the forecast. Normally this will be a period in the future, if
you are doing true forecasting. But you can also make a forecast for a historical period - which is
useful for evaluating a model.
.
You have a choice of two forecasting methods. 

· Dynamic calculates forecasts for periods after the first period in the sample by using the
previously forecasted values of the lagged left-hand variable. These are also called n-step
ahead forecasts.

· Static uses actual rather than forecasted values (it can only be used when actual data are
available). These are also called 1-step ahead or rolling forecasts.

Both of these methods forecast the value of the disturbance, if your equation has an
autoregressive or moving-average error specification. The two methods will always give
identical results in the first period of a multiperiod forecast. They will give identical results
in the second and subsequent periods when there are no lagged dependent variables or
ARMA terms. 

You can instruct EViews to ignore any ARMA terms in the equation by choosing the Structural
option. Structural omits the error specification; it forecasts future errors to be zero even if there is
an ARMA specification.  More on this later.

You can choose to see the forecast output as a graph or a numerical forecast evaluation, or both.

You are responsible for supplying the values for the independent variables used in forecasting, as
well as any lagged dependent variables if you are using static forecasting. You may want to make
forecasts based on projections or guesses about the independent variables. In that case, you
should use a group window to insert those projections or guesses into the appropriate
observations in the independent variables before forecasting.

Example:  Generate forecasts over the horizon 1996:07 - 1997:07:



[Forecast]
Forecast name: uxcasef
S.E. (Optional): se
Sample range for forecast: 1996:07 1997:07
Method: Dynamic
Output: Forecast evaluation
OK

Note: the dynamic forecasts will be the same as the static forecasts in this case because there are
no lagged dependent variables or ARMA terms.

You will see the following forecast evaluation statistics

Actual: UXCASE     Forecast: UXCASEF
Sample: 1996:07 1997:07
Include observations: 13

Root Mean Squared Error  1596.253
Mean Absolute Error  1559.850
Mean Absolute Percentage Error 9.317731
Theil Inequality Coefficient  0.045444
      Bias Proportion  0.954909
      Variance Proportion  0.000085
      Covariance Proportion  0.045006

Eviews creates two new series: uxcasef (the forecast values of uxcase) and se (the standard errors
of the forecast). By default, Eviews sets uxcasef equal to uxcase prior to the forecast horizon
which can be seen by doubling clicking on the two series and viewing the group spreadsheet.

Forecast Error Variances

Forecasts are made from regressions or other statistical equations. In the case of a regression,
given the vector of data on the x-variables, the corresponding forecast of the left-hand variable, y,
is computed by applying the regression coefficients b to the x-variables.

Forecasts are made with error. With a properly specified equation there are two sources of
forecast error. The first arises because the residuals in the equation are unknown for the forecast
period. The best you can do is to set these residuals equal to their expected value of zero. In
reality, residuals only average out to zero and residual uncertainty is usually the largest source of
forecast error. The equation standard error (called "S.E. of regression" in the output) is a measure
of the random variation of the residuals. 

In dynamic forecasts, innovation uncertainty is compounded by the fact that lagged dependent
variables and ARMA terms depend on lagged innovations. EViews also sets these equal to their
expected values, which differ randomly from realized values. This additional source of forecast
uncertainty tends to rise over the forecast horizon, leading to a pattern of increasing forecast
errors.
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The second source of forecast error is coefficient uncertainty. The estimated coefficients of the
equation deviate from the true coefficients in a random fashion. The standard error of the
coefficient, given in the regression output, is a measure of the precision with which the estimated
coefficients measure the true coefficients. Since the estimated coefficients are multiplied by the
exogenous variables in the computation of forecasts, the more the exogenous variables deviate
from their mean values, the greater forecast uncertainty.

In a properly specified model, the realized values of the endogenous variable will differ from the
forecasts by less than plus or minus two standard errors 95 percent of the time. A plot of this 95
percent confidence interval is produced when you make forecasts in EViews. 

EViews computes a series of forecast standard errors when you supply a series name in the
standard error box in the forecast dialog box. 

Normally the forecast standard errors computed by EViews account for both innovation and
coefficient uncertainty. One exception is in equations estimated by nonlinear least squares and
equations that include PDL (polynomial distributed lag) terms. For forecasts made from these
equations the standard errors measure only innovation uncertainty. 

Evaluation of forecasts

Once forecasts are made they can be evaluated if the actual values of the series to be forecast are
observed.  Since we computed ex post forecasts we can compute forecast errors and these errors
can tell us a lot about the quality of our forecasting model.

Example: Generate forecast errors:

smpl 1996.07 1997.07
genr error = uxcase - uxcasef
genr abserror = @ABS(error)
genr pcterror = error/uxcase
genr abspcterror = abserror/uxcase

Highlight the series uxcase, uxcasef error abserror pcterror and abspcterror, double click and
open a group.

Let Yt = actual values, ft = forecast values, et = Yt - ft = forecast errors and n = number of
forecasts.. Eviews reports the following evaluation statistics if forecasts are computed ex post.

Root Mean Square Error
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Mean Absolute Error

Mean Absolute Percentage Error

Theil Inequality Coefficient

The scaling of U is such that it will always lie between 0 and 1.  If U = 0, Yt = ft for all forecasts
and there is a perfect fit; if U = 1 the predictive performance is as bad as it possibly could be.  

Theil’s U statistic can be rescaled and decomposed into 3 proportions of inequality - bias,
variance and covariance - such that bias + variance + covariance = 1.  The interpretation of these
three proportions is as follows:

Bias Indication of systematic error.  Whatever the value of U, we would hope
that bias is close to 0.  A large bias suggests a systematic over or under
prediction.

Variance Indication of the ability of the forecasts to replication degree of variability
in the variable to be forecast.  If the variance proportion is large then the
actual series has fluctuated considerably whereas the forecast has not.

Covariance This proportion measures unsystematic error.  Ideally, this should have the
highest proportion of inequality.



such that these proportions sum to 1.

Plotting the forecasts and confidence intervals

Example: plotting the trend forecasts

To plot the forecast vs. the actual values with standard error bands do the following.  First
compute the standard error bands:

[Genr]
Upper box: lower = uxcasef - 2*se
Lower box: 1996:07 1997:07
[Genr]
Upper box: upper = uxcase + 2*se
Lower box: 1996:07 1997:07

Next, highlight the four series uxcase, uxcasef, lower and upper and then double click to open a
group.  Then click [View]/Graph to produce a graph of the data.  Click [Sample] and change the
sample to 1996:07 1997:07.

Revising the estimated model

Based on the residual diagnostics and the evaluation of the forecasts the simple trend model does
not look very good.  What follows is an illustration of revising the simple trend model so that the
statistical assumptions appear satisfied and the forecasts look reasonable.

Example: Estimate the model excluding the observations prior to 1988

[Estimate]
Upper box: uxcase c trend
Estimation method: Least squares
Sample: 1988:01 1996:06
OK

You should see the following estimation results:

LS // Dependent Variable is UXCASE
Date: 09/16/97   Time: 16:32
Sample: 1988:01 1996:06
Included observations: 102

Variable Coefficient Std. Error t-Statistic Prob.  

C  3663.266  316.4566  11.57589  0.0000
TREND  50.61940  1.391544  36.37644  0.0000

R-squared   0.929738     Mean dependent var  15077.94



Adjusted R-squared  0.929035     S.D. dependent var  1553.334
S.E. of regression  413.7953     Akaike info criterion  12.07016
Sum squared resid  17122658     Schwarz criterion  12.12163
Log likelihood -758.3097     F-statistic   1323.245
Durbin-Watson stat  0.281048     Prob(F-statistic)  0.000000

[Name] the equation EQ2.

Do residual diagnostics

Notice the serial correlation in the residuals.

Generate forecasts over the horizon 1996:07 - 1997:07:

[Forecast]
Forecast name: uxcasef
S.E. (Optional): se
Sample range for forecast: 1996:07 1997:07
Method: Dynamic
Output: Forecast evaluation
OK

You will see the following forecast evaluation statistics

Actual: UXCASE     Forecast: UXCASEF
Sample: 1996:07 1997:07
Include observations: 13

Root Mean Squared Error 1256.522
Mean Absolute Error  1206.788
Mean Absolute Percentage Error 7.214177
Theil Inequality Coefficient 0.036136
      Bias Proportion  0.922404
      Variance Proportion  0.000004
      Covariance Proportion  0.077591

Plot the forecast vs. the actual values with standard error bands

[Genr]
Upper box: lower = uxcasef - 2*se
Lower box: 1996:07 1997:07
[Genr]
Upper box: upper = uxcase + 2*se
Lower box: 1996:07 1997:07

Highlight the four series uxcase, uxcasef, lower and upper and then double click to open a
group.  Then click [View]/Graph to produce a graph of the data.  Click [Sample] and change the
sample to 1996:07 1997:07.



Example:  Correcting for error autocorrelation using Cochrane-Orcutt

Since the residuals are highly autocorrelated and the partial autocorrelation function cuts at lag 1,
the forecast error can be modeled using a first order autoregression or AR(1).  Modeling the
residual using an AR(1) is also called the Cochrane-Orcutt correction for serial correlation.

[Estimate]
Upper box: uxcase c trend AR(1)
Estimation method: Least squares
Sample: 1988:01 1996:06
OK

You should see the following estimation results:

LS // Dependent Variable is UXCASE
Date: 09/16/97   Time: 16:42
Sample: 1988:01 1996:06
Included observations: 102
Convergence achieved after 3 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C  3233.859  1056.078  3.062140  0.0028
TREND  52.19044  4.524451  11.53520  0.0000
AR(1)  0.838200  0.051141  16.38992  0.0000

R-squared   0.981079     Mean dependent var  15077.94
Adjusted R-squared  0.980697     S.D. dependent var  1553.334
S.E. of regression  215.8144     Akaike info criterion  10.77781
Sum squared resid  4611011.     Schwarz criterion  10.85501
Log likelihood -691.4000     F-statistic   2566.634
Durbin-Watson stat  1.948854     Prob(F-statistic)  0.000000

Inverted AR Roots        .84

Static vs. Dynamic Forecasts

Given that there is an autoregressive (AR) term in the forecast, there will now be differences
between static (one-step ahead or rolling) and dynamic (n-step ahead) forecasts.  Compute static
forecasts if interest is in the performance of rolling one-step ahead forecasts.  Otherwise compute
dynamic forecasts.  

Also, you have the choice of Ignoring ARMA terms in the computation of the forecasts. This
option is useful if you want to compare forecasts that use ARMA corrections versus forecasts that
do not use such corrections.

Example: Comparison of static and dynamic forecasts



Example:  Allowing for a break in the trend

Since it looks like there is a break in the trend around the beginning of 1995 (using the eyeball
metric), let’s modify the model to allow the trend to drop after the beginning of 1995.  First,
generate a new trend variable to pick up the fall in trend after the beginning of 1995:

[Genr]
Upper window: trend2 = 0
Lower window: 1988:01 1997:07
[Genr]
Upper window: trend2 = trend-259
Lower window: 1995:01 1997:07

Now, re-estimate the model assuming a broken trend using Cochrane-Orcutt:

[Estimate]
Upper box: uxcase c trend trend2 AR(1)
Estimation method: Least squares
Sample: 1988:01 1996:06
OK

You should see the following estimation results:

LS // Dependent Variable is UXCASE
Date: 09/16/97   Time: 17:04
Sample(adjusted): 1988:02 1996:06
Included observations: 101 after adjusting endpoints
Convergence achieved after 4 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C  2093.445  973.5779  2.150259  0.0340
TREND  57.90439  4.348501  13.31594  0.0000
TREND2 -63.70321  24.64620 -2.584708  0.0112
AR(1)  0.789057  0.061619  12.80547  0.0000

R-squared   0.982218     Mean dependent var  15099.39
Adjusted R-squared  0.981668     S.D. dependent var  1545.832
S.E. of regression  209.2987     Akaike info criterion  10.72632
Sum squared resid  4249179.     Schwarz criterion  10.82989
Log likelihood -680.9921     F-statistic   1785.986
Durbin-Watson stat  1.974058     Prob(F-statistic)  0.000000

Inverted AR Roots        .79

Note: The difference between the trend and trend2 coefficients gives the slope of the trend after
1995.01.

[Name] the equation EQ3.



Forecast evaluation

[Forecast]
Forecast name: uxcasef
S.E. (Optional): se
Sample range for forecast: 1996:07 1997:07
Method: Dynamic
Output: Forecast evaluation
OK

Actual: UXCASE     Forecast: UXCASEF
Sample: 1996:07 1997:07
Include observations: 13

Root Mean Squared Error  283.6561
Mean Absolute Error  238.8897
Mean Absolute Percentage Error 1.433460
Theil Inequality Coefficient  0.008391
      Bias Proportion  0.709269
      Variance Proportion  0.162318
      Covariance Proportion  0.128413

Example:  Adding Deterministic Seasonal Dummy Variables to the broken trend model

The caseload data appear to exhibit some seasonality.  A simple way to model this is to use
deterministic seasonal dummy variables.

Generate the seasonal dummies using the @Seas function:

smpl 1973.07 2002.12
genr feb = @seas(2)
genr march = @seas(3)
genr April = @seas(4)
genr may = @seas(5)
genr June = @seas(6)
genr July = @seas(7)
genr Aug = @seas(8)
genr sept = @seas(9)
genr oct = @seas(10)
genr nov = @seas(11)
genr dec = @seas(12)

Note: The omitted season, January, is the control season.  The coefficient on the C variable picks
up the effect on the omitted seasonal.  



Create the group variable called seasons by highlighting all of the series, double clicking, choosing
group variable, clicking [Name] and typing the name seasons.  The group object seasons
containing the eleven seasonal dummy variables is now part of the workfile.

Example:  Re-estimating the model with seasonal dummy variables added

[Estimate]
Upper box: uxcase c seasons trend trend2 AR(1)
Estimation method: Least squares
Sample: 1988:01 1996:06
OK

You should see the following estimation results

LS // Dependent Variable is UXCASE
Date: 09/17/97   Time: 13:16
Sample(adjusted): 1988:02 1996:06
Included observations: 101 after adjusting endpoints
Convergence achieved after 4 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C  1710.137  784.1761  2.180807  0.0319
FEB  175.2242  71.20292  2.460913  0.0159
MARCH  356.1129  94.34259  3.774679  0.0003
APRIL  387.6474  108.0614  3.587287  0.0006
MAY  448.2834  116.5315  3.846887  0.0002
JUNE  409.6114  121.4306  3.373214  0.0011
JULY  264.9249  123.8598  2.138909  0.0353
AUG  193.7078  123.0769  1.573877  0.1192
SEPT  96.21790  119.0508  0.808209  0.4212
OCT  23.33588  111.1483  0.209953  0.8342
NOV  3.816040  97.73644  0.039044  0.9689
DEC  52.16161  74.45884  0.700543  0.4855
TREND  59.00916  3.482863  16.94272  0.0000
TREND2 -77.60918  20.63200 -3.761593  0.0003
AR(1)  0.748731  0.067005  11.17433  0.0000

R-squared   0.985894     Mean dependent var  15099.39
Adjusted R-squared  0.983598     S.D. dependent var  1545.832
S.E. of regression  197.9757     Akaike info criterion  10.71254
Sum squared resid  3370716.     Schwarz criterion  11.10093
Log likelihood -669.2963     F-statistic   429.3418
Durbin-Watson stat  2.177351     Prob(F-statistic)  0.000000

Inverted AR Roots        .75

Forecast evaluation

[Forecast]
Forecast name: uxcasef



S.E. (Optional): se
Sample range for forecast: 1996:07 1997:07
Method: Dynamic
Output: Forecast evaluation
OK

Actual: UXCASE     Forecast: UXCASEF
Sample: 1996:07 1997:07
Include observations: 13

Root Mean Squared Error  184.8134
Mean Absolute Error  147.0950
Mean Absolute Percentage Error 0.879516
Theil Inequality Coefficient  0.005513
      Bias Proportion  0.045557
      Variance Proportion  0.070801
      Covariance Proportion  0.883642

Ex Ante Forecasting

Having chosen the forecasting model, it should be re-estimated over the entire available sample
and the full sample model should be used for ex ante forecasts.

Example: Ex ante forecasts of uxcase

[Estimate]
Upper box: uxcase c seasons trend trend2 AR(1)
Estimation method: Least squares
Sample: 1988:01 1997:07
OK

You should see the following estimation results

LS // Dependent Variable is UXCASE
Date: 09/17/97   Time: 13:24
Sample(adjusted): 1988:02 1997:07
Included observations: 114 after adjusting endpoints
Convergence achieved after 4 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C  1643.227  757.6141  2.168950  0.0325
FEB  166.3855  65.21835  2.551207  0.0123
MARCH  349.7923  86.24490  4.055803  0.0001
APRIL  353.7506  98.64415  3.586128  0.0005
MAY  425.0117  106.2347  4.000688  0.0001
JUNE  383.3416  110.5326  3.468133  0.0008
JULY  214.7922  112.2271  1.913906  0.0585
AUG  154.2950  112.1279  1.376062  0.1719



SEPT  69.54968  108.7271  0.639672  0.5239
OCT  33.97228  101.6013  0.334368  0.7388
NOV -10.31782  89.34644 -0.115481  0.9083
DEC  32.88135  68.03769  0.483281  0.6300
TREND 59.43654  3.351398  17.73485  0.0000
TREND2 -81.24704  11.82829 -6.868873  0.0000
AR(1)  0.752334  0.062499  12.03761  0.0000

R-squared  0.986563     Mean dependent var  15291.24
Adjusted R-squared  0.984663     S.D. dependent var  1551.586
S.E. of regression  192.1501     Akaike info criterion  10.63863
Sum squared resid  3655246.     Schwarz criterion  10.99866
Log likelihood -753.1611     F-statistic  519.2131
Durbin-Watson stat  2.180060     Prob(F-statistic)  0.000000

Inverted AR Roots        .75

Check out residuals 

[View]/Actual,Fitted,Residuals/Graph
[View]/Residual Tests/Histogram-Normality Test
[View]/Residual Tests/Correlogarm-Q-stat

Generate out-of-sample forecasts from 1997:08 to 2002:12

[Forecast]
Forecast name: uxcasef
S.E. (Optional): se
Sample range for forecast: 1997:08 2002:12
Method: Dynamic
Output: Graph
OK

Save the graph if you like by clicking [Name].

Generate upper and lower confidence limits and export data to excel file:

[Genr]
Upper box: lower = uxcasef - 2*se
Lower box: 1997:08 2002:12
[Genr]
Upper box: upper = uxcase + 2*se
Lower box: 1997:08 2002:12

[Sample] 1997.08 2002.12
[Procs]/Export Data
File type: Excel
Filename: forecast.xls



OK
Series to write: by observation (in columns)
List series by name: lower uxcasef upper
OK

Exponential Smoothing (see Help/What is?/Exponential Smoothing)

Exponential smoothing is a method of forecasting based on a simple statistical model of a time
series. Unlike regression models, it does not make use of information from series other than the
one being forecast. In addition, the exponential smoothing models are special cases of the more
general Box-Jenkins ARIMA models described below.

The simplest technique of this type, single exponential smoothing, is appropriate for a series that
moves randomly above and below a constant mean. It has no trend and no seasonal pattern. The
single exponential smoothing forecast  of a series  is calculated recursively as

ft = "yt-1 + (1 - ")ft-1

where ft is the forecast at time t and yt-1 is the actual series at time t-1. The damping coefficient, ",
is usually a fairly small number, such as 0.05. The forecast adapts slowly to the actual value of the
series.

In typical use, you will include all of the historical data available for the series you are interested
in forecasting. After calculating the smoothed forecast for the entire period, your forecast will be
in the next observation in the output series.

You can ask EViews to estimate the damping parameter " for you by finding the value that
minimizes the sum of squared forecast errors. Don't be surprised, however, if the result is a very
large value of the damping parameter. That is a sign that your series is close to a random walk, in
which case the best forecast gives high weight to the most recent value and little weight to a
longer-run average.

If your series has a trend, then you may want to use double exponential smoothing, which
includes a trend in the forecast. That is, single smoothing makes a forecast which is the same for
every future observation, whereas double smoothing makes a forecast that grows along a trend.
You can also carry out the Holt-Winters forecasting procedure, which is related to exponential
smoothing. The basic idea of the Holt-Winters method is to forecast with an explicit linear trend
model with seasonal effects. The method computes recursive estimates of the intercept or
permanent component, the trend coefficient, and the seasonal effects.

You are not required to estimate seasonal effects. If your series does not have seasonal variation,
you should use the simplest form of the Holt-Winters command. In this case, there are two
damping parameters, one for the permanent component and one for the trend coefficient. You
may specify the values of either or both of these parameters. If you do not specify values for



them, EViews will estimate them, again by finding the values that minimize the sum of squared
forecasting errors. 

If your series has seasonal effects, and the magnitudes of the effects do not grow along with the
series, then you should use the Holt-Winters method with additive seasonals. In this case, there
are three damping parameters, which you may specify or estimate, in any combination. 
If your series has seasonal effects that grow along with the series, then you should use the
Holt-Winters method with multiplicative seasonals. Again, there are three damping parameters
which can be specified or estimated. 

A good reference for more information about exponential smoothing is: Bowerman, B. and
O'Connell, R. Forecasting and Time Series, Third Edition, Duxbury Press, North Scituate,
Massachusetts, 1993.

How to Use Exponential Smoothing

To calculate a forecast using exponential smoothing, click Procs/Exponential Smoothing on the
toolbar of the window for the series you want to forecast. You will see a dialog box. Your first
choice is the smoothing method:

Single calculates the smoothed series as a damping coefficient times the actual
series plus 1 minus the damping coefficient times the lagged value of the
smoothed series. The extrapolated smoothed series is a constant, equal to
the last value of the smoothed series during the period when actual data on
the underlying series are available.

Double applies the process described above twice. The extrapolated series has a
constant growth rate, equal to the growth of the smoothed series at the end
of the data period.

Holt-Winters
No seasonal uses a method with an explicit linear trend. The method computes recursive

estimates of permanent and trend components, each with its own damping
parameter.

Holt-Winters
Additive uses the same method with additive seasonal effects.

Holt-Winters
Multiplicative uses the same method with multiplicative seasonal effects.

The next step is to specify whether you want to estimate or prescribe the values of the smoothing
parameters. If you request estimation, EViews will calculate and use the least squares estimates.
Don't be surprised if the estimated damping parameters are close to one--that is a sign that your
series is close to a random walk, where the most recent value is the best estimate of future values.
If you don't want to estimate any of the parameters, type in the value you wish to prescribe in the
fields in the dialog box.



Next you should enter the name you want to give the smoothed series. You can leave it
unchanged if you like the default, which is the series name with SM appended.

You can change the sample of observations for estimation if you do not want the default, which is
the current workfile sample.

Finally, you can change the number of seasons per year from its default of 12 for monthly or 4 for
quarterly. Thus you can work with unusual data with an undated workfile and enter the
appropriate number in this field.

After you click OK, you will see a window with the results of the smoothing procedure. You will
see the estimated parameter values, the sum of squared residuals, the root mean squared error of
the forecast, and the mean and trend at the end of the sample that describes the post-sample
smoothed forecast. In addition, the smoothed series will be in the workfile. It will run from the
beginning of the data period to the last date in the workfile range. All of its values after the data
period are forecasts.

Example: Double Exponential Smoothing forecasts of uxcase

! Highlight uxcase and double click to open the series window
! [Procs]/Exponential Smoothing
! Smoothing Method: Double
! Smoothing Parameters: Enter E for all
! Smoothed Series: UXCASESM
! Estimation Sample: 1988.01 1996.06
! Cycle for seasonal: 12
! OK

You should see the following output displayed in the series window:

Date: 09/18/97   Time: 20:35
Sample: 1988:01 1996:06
Included observations: 102
Method: Double Exponential
Original Series: UXCASE
Forecast Series: UXCASESM

Parameters: Alpha   0.5320
Sum of Squared Residuals  6017742.
Root Mean Squared Error  242.8940

End of Period Levels: Mean  17264.19
Trend  88.50120

and the series UXCASESM has been added to the workfile. Highlight uxcase and uxcasesm and
double click to open a group.  Plot the two series and change the sample to 1988.01 1997.07.

Note: The double exponential smoothing model is equivalent to the Box-Jenkins ARIMA(0,1,1)



model.  That is, it is equivalent to a MA(1) model for the first difference of a series.

Example: Holt-Winters (no seasonal) forecasts of uxcase

! Highlight uxcase and double click to open the series window
! [Procs]/Exponential Smoothing
! Smoothing Method:Holt-Winters- No Seasonal
! Smoothing Parameters: Enter E for all
! Smoothed Series: UXCASESM
! Estimation Sample: 1988.01 1996.06
! Cycle for seasonal: 12
! OK

You should see the following output displayed in the series window:

Date: 09/18/97   Time: 20:32
Sample: 1988:01 1996:06
Included observations: 102
Method: Holt-Winters No Seasonal
Original Series: UXCASE
Forecast Series: UXCASESM

Parameters: Alpha  0.9400
Beta  0.0000

Sum of Squared Residuals  4821891.
Root Mean Squared Error  217.4246

End of Period Levels: Mean  17245.80
Trend  61.13725

Example: Holt-Winters(Additive seasonal) forecasts of uxcase

! Highlight uxcase and double click to open the series window
! [Procs]/Exponential Smoothing
! Smoothing Method:Holt-Winters-Additive Seasonal
! Smoothing Parameters: Enter E for all
! Smoothed Series: UXCASESM
! Estimation Sample: 1988.01 1996.06
! Cycle for seasonal: 12
! OK

You should see the following output displayed in the series window:

Date: 09/18/97   Time: 20:46
Sample: 1988:01 1996:06
Included observations: 102
Method: Holt-Winters Additive Seasonal
Original Series: UXCASE



Forecast Series: UXCASESM

Parameters: Alpha  0.8100
Beta  0.0000
Gamma  0.0000

Sum of Squared Residuals  4144597.
Root Mean Squared Error  201.5771

End of Period Levels: Mean  17057.38
Trend  47.69841

Seasonals: 1995:07  36.31746
1995:08 -33.38095
1995:09 -129.3294
1995:10 -200.6528
1995:11 -218.6012
1995:12 -168.6746
1996:01 -121.6171
1996:02  29.68452
1996:03  203.8611
1996:04  185.9127
1996:05  236.9643
1996:06  179.5159

Box-Jenkins ARIMA models

Stationary Time Series

The Box-Jenkins methodology only applies to what are called stationary time series.  Stationary
time series have constant means and variances that do not vary over time.  Stationary time series
can be correlated, however, and it is this autocorrelation that the Box-Jenkins methods try to
capture. Consequently, any time series that trends up or down is not stationary since the mean of
the series depend on time.  Two techniques are generally used to transform a trending series to
stationary form: linear detrending (regressing on a time trend) and differencing.  Box and Jenkins
recommend differencing a time series, rather than detrending by regressing on a time trend, to
remove the trend and achieve stationarity.  This approach views the trend in a series as erratic and
not very predictable.

Unit root tests

Unit root tests are used to test the null hypothesis that an observed trend in a time series is erratic
and not predictable versus the alternative that the trend is smooth and deterministic.  They can be
viewed as a statistical test to see if a series should be differenced or linearly detrended to achieve
stationarity.

ARIMA Models

An ARIMA model uses three tools for modeling the disturbance. The first is AR--autoregressive
terms. An autoregressive model of order p has the form



yt = N1yt-1 + N2yt-2 + ... + Npyt-p + et  

The second tool is the integrated term. When a forecasting model contains an integrated term, it
can handle a series that tends to drift over time. A pure first-order integrated process is called a
random walk:

yt = yt-1 + et

It is a good model for stock prices and some other financial variables. Notice that the first
difference of the random walk is white noise. Each integrated term corresponds to differencing the
series being forecast. A first-order integrated component means that the forecasting model is built
for the first difference of the original series. A second-order component is for second differences,
and so on.  First differencing removes a linear trend from the data and second differencing
removes a quadratic trend from the data and so on.  Seasonal differencing (e.g., annually
differencing monthly data) removes seasonal trends

The third tool is the moving average term. A moving average forecasting model uses lagged
values of the forecast error to improve the current forecast. A first-order moving average term
uses the most recent forecast error, a second-order term uses the forecast error from two periods
ago, and so on. The algebraic statement of an MA(q) model is

yt = et + 21et-1 + 22et-2 + ... + 2qet-q   

Some authors and software use the opposite sign convention for the q coefficients. The only time
this might become a factor is in comparing EViews’ results to results obtained with other
software. The other results should be the same except for the signs of the moving-average
coefficients. 

Although econometricians typically use ARIMA as a model of the residuals from a regression
model, the specification can also be applied directly to a series.

Box-Jenkins ARIMA modeling consists of several steps: identification, estimation, diagnostic
checking and forecasting.

Identification

In this step, the tentative form of the ARIMA model is determined.  The order of differencing is
determined and the next step in building an ARIMA model for a series is to look at its
autocorrelation properties. The way that current values of the residuals are correlated with past
values is a guide to the type of ARIMA model you should estimate. For this purpose, you can use
the correlogram view of a series which shows the autocorrelations and partial autocorrelations
of the series.

The autocorrelations are easy to explain--each one is the correlation coefficient of the current
value of the series with the series lagged a certain number of periods. The partial autocorrelations



are a little more complicated. They measure the correlation of the current and lagged series after
taking account of the predictive power of all the values of the series with smaller lags.
.
The next step is to decide what kind of ARIMA model to use. If the autocorrelation function dies
off smoothly at a geometric rate, and the partial autocorrelations were zero after one lag, then a
first-order autoregressive model would be suggested. Alternatively, if the autocorrelations were
zero after one lag and the partial autocorrelations declined geometrically, a first-order moving
average process would come to mind.

Estimation

Eviews estimates ARIMA models using conditional maximum likelihood estimation. EViews
gives you complete control over the ARMA error process in your regression equation. In your
estimation specification, you may include as many MA and AR terms as you want in the equation.
For example, to estimate a second-order autoregressive and first-order moving average error
process, you would use AR(1) AR(2), and MA(1).

You need not use the terms consecutively. For example, if you want to fit a fourth-order
autoregressive model to take account of seasonal movements, you could use AR(4) by itself.

For a pure moving average specification, just use the MA terms.

The standard Box-Jenkins or ARMA model does not have any right-hand variables except for the
constant. In this case, your specification would just contain a C in addition to the AR and MA
terms, for example, C AR(1) AR(2) MA(1) MA(2).

Diagnostic Checking

The goal of ARIMA analysis is a parsimonious representation of the process governing the
residual. You should use only enough AR and MA terms to fit the properties of the residuals.
After fitting a candidate ARIMA specification, you should check that there are no remaining
autocorrelations that your model has not accounted for. Examine the autocorrelations and the
partial autocorrelations of the innovations (the residuals from the ARIMA model) to see if any
important forecasting power has been overlooked.

Forecasting

After you have estimated an equation with an ARMA error process, you can make forecasts from
the model. EViews automatically makes use of the ARMA error model to improve the forecast.

A Digression on the Use of the Difference Operator in Eviews

The D operator is handy for differencing. To specify first differencing, simply include the series
name in parentheses after D. For example D(UXCASE) specifies the first difference of UXCASE
or UXCASE-UXCASE(-1).



More complicated forms of differencing may be specified with two optional parameters, n and s.
D(X,n) specifies n-th order difference of the series X. For example, D(UXCASE,2) specifies the
second order difference of UXCASE, or D(UXCASE)-D(UXCASE(-1)), or UXCASE -
2*UXCASE(-1) + UXCASE(-2).

D(X,n,s) specifies n-th order ordinary differencing of X with a seasonal difference at lag s. For
example, D(UXCASE,0,4) specifies zero ordinary differencing with a seasonal difference at lag 4,
or UXCASE - UXCASE(-4).

There are two ways to estimate models with differenced data. First, you may generate a new
differenced series and then estimate using the new data. For example, to incorporate a first-order
integrated component into a model for UXCASE, that is to model UXCASE as an ARIMA(1,1,1)
process, first use Genr to compute

DUXCASE=D(UXCASE)

and then fit an ARMA model to DUXCASE, for example in the equation window type

DUXCASE C AR(1) MA(1)

Alternatively, you may include the difference operator directly in the estimation specification. For
example, in the equation window type

D(UXCASE) C AR(1) MA(1)

There is an important reason to prefer this latter method. If you define a new variable, such as
DUXCASE above, and use it for estimation, then the forecasting procedure will make forecasts of
DUXCASE. That is, you will get a forecast of the differenced series. If you are really interested in
forecasts of the level variable, in this case UXCASE, you will have to manually undifference.
However, if you estimate by including the difference operator in the estimation command, the
forecasting procedure will automatically forecast the level variable, in this case UXCASE. 

The difference operator may also be used in specifying exogenous variables and can be used in
equations without ARMA terms. Simply include them after the endogenous variables as you
would any simple series names. For example,

D(UXCASE,2) C D(INCOME,2) D(UXCASE(-1),2) D(UXCASE(-2),2) TIME 

Example: ARIMA modeling of uxcase

Determining the order of differencing

First plot uxcase.  Notice the trending behavior.  Clearly, uxcase is not stationary.  Next, take the
first (monthly) difference of uxcase:



smpl 1973.07 2002.12
genr duxcase = d(uxcase)

Plot the first difference.  The trend has been eliminated so there is no need to difference again.
However, the mean of the first differences appears to have fallen after 1995.

Identification of ARMA model for first difference of uxcase

Plot the autocorrelations and partial autocorrelations:

[View]/Correlogram
Correlogram of: Level
Lags to include: 36
OK

Notice that there is not a lot of obvious short-run correlations in the data.  There are some non-
zero correlations at what look like seasonal frequencies.  It is not clear what kind of ARMA
model should be fit to this data.

Capturing Seasonality with seasonal dummy variables.

Try regressing the first difference of uxcase on a constant and seasonal dummies:

Quick/Estimate Equation
Upper box: d(uxcase) c seasons
Estimation method: Least squares
Sample: 1988:01 1996:06
OK

Notice that I used d(uxcase) instead of duxcase.  This allows me to forecast uxcase from the
estimated model instead of forecasting duxcase.

You should see the following estimation results

LS // Dependent Variable is D(UXCASE)
Date: 09/18/97   Time: 21:09
Sample: 1988:01 1996:06
Included observations: 102

Variable Coefficient Std. Error t-Statistic Prob.  

C -56.77778  72.11312 -0.787343  0.4331
FEB  247.6667  101.9834  2.428501  0.0172
MARCH  259.8889  101.9834  2.548346  0.0125
APRIL  115.4444  101.9834  1.131993  0.2606
MAY  148.2222  101.9834  1.453396  0.1496
JUNE  51.66667  101.9834  0.506619  0.6137
JULY -38.72222  105.1220 -0.368355  0.7135



AUG  34.77778  105.1220  0.330832  0.7415
SEPT  8.527778  105.1220  0.081123  0.9355
OCT  33.15278  105.1220  0.315374  0.7532
NOV  86.52778  105.1220  0.823117  0.4126
DEC  154.4028  105.1220  1.468795  0.1454

R-squared   0.171690     Mean dependent var  37.68627
Adjusted R-squared  0.070452     S.D. dependent var  224.3880
S.E. of regression  216.3394     Akaike info criterion  10.86383
Sum squared resid  4212245.     Schwarz criterion  11.17265
Log likelihood -686.7869     F-statistic   1.695901
Durbin-Watson stat  2.268005     Prob(F-statistic)  0.086885

Note: The fit is not very good.  Also, the constant in the regression for d(uxcase) will turn into the
slope of the trend in the forecast for uxcase.

The residual correlogram does not show much significant correlation.  The tentative ARIMA thus
has no AR or MA terms in it!

Generating forecasts from the model:

[Forecast]
Forecast name: uxcasef
S.E. (Optional): se
Sample range for forecast: 1996:07 1997:07
Method: Dynamic
Output: Graph
OK

Actual: UXCASE     Forecast: UXCASEF
Sample: 1996:07 1997:07
Include observations: 13

Root Mean Squared Error  645.6601
Mean Absolute Error  534.7671
Mean Absolute Percentage Error 3.207238
Theil Inequality Coefficient  0.018934
      Bias Proportion  0.685996
      Variance Proportion  0.004394
      Covariance Proportion  0.309610

Notice that the forecast variable is UXCASE and not DUXCASE.  Plotting the forecast shows
that the ARIMA forecast does not pick up the drop in trend after 1995.  Further notice that the
forecast looks a lot like the Holt-Winters forecast with the additive seasonals.

Example: A Seasonal differenced model (see Help/Search/Seasonal Terms in ARMA)

Box and Jenkins suggest modeling seasonality by seasonally differencing a model.  Therefore, let’s
take the annual (12th) difference of the duxcase (note: it does not matter what order you difference



- you can 12th difference first and then 1st difference to get the same result):

smpl 1973.07 2002.12
Genr d112uxcase = d(uxcase,1,12)

Now plot d112uxcase and compute the correlogram.  Notice that plot of the series is greatly
affected by the periods when uxcase increased unusually.  It is not clear at all what to do with this
series.


