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is exactly given everywhere by a non-linear function of Y., Y. computed
at a single point s.)

Modeling and Ergodicity

A common physical situation is one for which there is only a single time
record of some. physical phenomenon. For instance, f(z) might be a
record of tidal heights as a function of time over a particular 20 years, or
of seismic activity during some chosen period in White Plains, New York,
or perhaps of atmospheric turbulence over a certain week at a given
location. Of course, there is no possibility of repeating these experiments
under the same conditions. How does one restart the earth’s tides or
geological activity? Yet, even with only a single time track f(¢) of the
phenomenon available, it is often useful and illuminating to model the
phenomenon as a stationary process. How can this be done? What is
the conceptual justification or rationale behind this kind of modeling?

Here is the reasoning: We have a function f(1), recorded over some
time period that is long compared to the “scale” of the phenomenon.
Look at it. Is it “homogeneous™ in time? What this means is, can you
detect any systematic changes in f(¢) over the time period? For instance,
does f(¢) tend to be larger on the average as time increases, or docs it
tend to oscillate more rapidly at the beginning of the period? If the
acerage properties of f(¢) remain roughly the same during the recorded
interval, then call it a time-homogeneous record.

Thus, by definition, a time-homogencous record has statistical prop-
ertics that are the same for all parts of the recorded interval. By sta-
tistical properties, I mean the various long-run time averages associated
with the record, such as
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Obviously, there is an infinite number of similar time averages that we
could write out. The totality of these averages we refer to as the staristical
properties of the record f(r).

The transition to a probabilistic model occurs when we decide to
consider all time records having the same statistical properties as the given
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record f(1). Thus, we construct an artificial infinity of different time
records, all of which have the same statistical properties. This new uni-
verse is sometimes called the ensemble. The reasons for passing to the
ensemble rather than looking at (1) alone are simple:

a It is generally impossible to predict future values of a phenomenon
exactly over any future time interval. But for many phenomena one
can assume with some confidence that a future time record will have
the same statistical properties as the observed time record. Hence it
will be a member of the ensemble.

b If we are interested only in the statistical properties of the record,

. then we may as well work with the ensemble. In fact, working with the
ensemble allows the theory to be more clearly formulated.

Take all the time records in the ensemble as being defined for —x <
t < «. Then this ensemble forms the outcome space for a stationary
process X;, —# < 1 < ».In other words, each outcome of the process
is a function in the ensemble. Or you can think of the process as a device
or system whose output will be some record in the ensemble. Then we
can shake the device, begin it again, and get another member of the
ensemble as output.

Now that we know what our outcome space is for the model, there is
still the problem of how to assign probabilities. We use again the basic
heuristic that stands behind virtually every model in this book:

The probabilities assigned are a summary
of the statistical properties of the record.

In coin-tossing, we assigned probability 4 to heads on the grounds
that, in the long run, heads turned up half the time. This same reasoning
is what we use in construction of stationary models—assign probabilities
and expectations by means of long-run time averages. Thus, suppose that
2 of the time f(z) is between 1 and 2. Translate this as the assignment
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translate this into the model as

EX:=6.
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We gét joint probabilities the same way: Suppose that % of the total time
the record f(¢) satisfies the inequalities

0<fO<31Lft+DD<2
Then put }
P(OSX;S3,1SX:+1S2)=§-

The most important single translation bridge is to compute

T
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and consider X, to be a second-order stationary process with auto-
correlation I'(7) = (7). '

Once we have constructed our model, we want to know that the
structure of the model is internally consistent with the frequency heuristic
we have used to construct the model. For instance, within a model for
independent tosses of a fair coin, we can compute the probabilistic dis-
tribution of the proportion of heads in n tosses. What internal consistency
means in this example is that since probabilities were assigned in an
attempt to construct a model for a phenomenon that produced an experi-
mentally observed proportion of one-half heads, it would be shocking
if the distribution of this proportion, computed within the model, was
not highly concentrated around 4. Of course, the result that provides
internal consistency with the translation heuristic in coin-tossing is the
law of large numbers.

The analogous validation for stationary processes is provided by the
famous ergodic theorem. This theorem states (under a restriction we
discuss later), that long-term time averages along any single output
function of a stationary process converge to the expectations of the cor-
responding variables. A particular case of this theorem is the result that
the time-average of X, equals y, the common mean of the process, or

Similarly, if u = 0,

and

T
I‘(T)z %,/0 X1+7X[ dt.

Another way of looking at the ergodic theorem is to say that it guar-
antees that all possible outcome records of the process have the same
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statistical properties. Furthermore, it guarantees that these various
common values of long-run time averages are equal to the expected
values of the corresponding variables. In other words, just as in the case
of independence, we have the fundamental result:

- long-run time average = probabilistic acerage.

The stationary processes for which long-run time averages equal
probabilistic averages are called ergodic. Not all stationary processes are
ergodic. To see what non-ergodic stationary processes look like, here is
a simple, but typical, discrete time example: Consider two coins. Coin 1
is fair, coin H has probability % of heads. The process is gotten by picking
cither one of the coins with probability 4 and tossing the chosen coin
repeatedly. Let Xy, X, . .. be zero or one as the tosses of the chosen coin
result in tails or heads. There is no difliculty in checking that this process
is stationary. Think of it: Why should probabilitics change as you shift
the variables? Now notice how the time averages behave: The expression

X1+ 1+ X,
n A
converges to % if coin 1 was chosen, but converges to ¥ if coin 11 was
choscn. Each of these possibilities has probability one-half. Thus, there
is no single limiting time average. What is happening is that half of the
outcomes have the statistical properties of fair coin-tossing, the other
half have the statistical properties of biased coin-tossing with P(H) = 3.
The probabilistic average is over both of these chunks, i.e.

EX, = P(H on Ist toss)

P(H on 1st toss | coin I chosen)P(coin I chosen)

+ P(H on Ist toss | coin I1 chosen)P(coin II chosen)

R R T

Each of these two chunks, considered by itself, is an ergodic process.
You can look at this process as gotten by putting all the time records
generated by process 1 (coin I) in one urn, all the time records generated
by process II (coin II) in another urn, and deciding which urn to select

[}

-from by tossing a fair coin.

This example is typical of the way that every stationary process, if it
is not ergodic, is manufactured out of ergodic processes. Conceive of
any number of distinct systems which are ergodic in the sense that all
outputs of any one system have common statistical properties. Decide on
the basis of some random experiment which system’s start button to push.
Then this defines a stationary process. Obviously the time averages
depend on which system you started, but the probabilistic average is
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over all systems. Hence the process is not ergodic. This is a pretty general
description of the structure of non-ergodic processes. What it shows
basically is that every non-ergodic stationary process is really a sort of
lumping together of non-interacting ergodic processes. If you come
up in your modeling with a non-ergodic process you are usually doing
something wrong—you have not completely decomposed the system
down into its separate component parts.
How can we look at a stationary process and check that it is ergodic?

If we have one long time record, think of cutting it up into N pieces. If
the process is such that variables in it which are separated by a long-time
stretch are nearly independent, then these A observation intervals can be
considered as N nearly independent records of the process. In such a
situation, a time average over the entire record period is almost like taking i
the average of N independent variables. The law of large numbers gives :
the result that this average is about equal to the expectation. This gives a
rudimentary proof of the fact: If for a stationary process the variables

. in two. widely separated time intervals are nearly independent, then prob-
abilistic averages (expectations) are equal 10 the limiting time averages.
In other words, independence at widely separated time points implies that
the process is ergodic.

What processes have this property? Certainly a periodic process

X; = Vsin\t 4+ Ucos \t

does not! If you know X, over any small time interval, then you know
exactly its values over any other time interval no matter how far away.
And, in fact, this process is extremely non-ergodic. It is known for Gaus-
sian processes that they are ergodic if and only if they have no periodic
components, that is, if F(d\) does not assign positive mass to any single
points. In particular, this holds if

I(r)—0 as [r]— 2.

You can see by looking at the definition of stability for Markov pro-
cesses, that a stationary Markov process with stable transition prob-
abilities ought to have this sort of asymptotic independence. Indeed it
does, and these processes are also ergodic.

Problem 53 Show directly that a periodic process
X, = Vsin\t 4+ Ucos At

is not ergodic by computing the time averages of X7 and XXy,
over [0, T] and showing that these do not converge as T — « to
EXE, (7).




