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1   INTRODUCTION

   A substantial part of economic theory generally deals with long-run equilibrium

relationships generated by market forces and behavioral rules. Correspondingly, most

empirical econometric studies entailing time series can be interpreted as attempts to

evaluate such relationships in a dynamic framework.

   At one time, conventional wisdom was that in order to apply standard inference

procedures in such studies, the variables in the system needed to be stationary since the

vast majority of econometric theory is built upon the assumption of stationarity.

Consequently, for many years econometricians proceeded as if stationarity could be

achieved by simply removing deterministic components (e.g., drifts and trends) from the

data. However, stationary series should at least have constant unconditional mean and

variance over time, a condition which hardly appears to be satisfied in economics, even

after removing those deterministic terms.

   Those problems were somehow ignored in applied work until important papers by

Granger and Newbold (1974) and Nelson and Plosser (1982) alerted many to the

econometric implications of non-stationarity and the dangers of running nonsense or

spurious regressions (see, e.g., Granger, chapter ? in this book). In particular, most of

the attention focussed on the implications of dealing with integrated variables which are a

specific class of non-stationary variables with important economic and statistical
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properties. These are derived from the presence of unit roots which give rise to

stochastic trends, as opposed to pure deterministic trends, with innovations to an

integrated process being permanent rather than transitory.

   The presence of, at least, a unit root in economic time series is implied in many

economic models. Among them, there are those based on the rational use of available

information or the existence of very high adjustment costs in some markets. Interesting

examples include future contracts, stock prices, yield curves, exchange rates, money

velocity, hysteresis theories of unemployment and, perhaps the most popular, the

implications of the permanent income hypothesis for real consumption under rational

expectations.

   Statisticians, in turn, following the influential approach by Box and Jenkins (1970), had

advocated transforming integrated time series into stationary ones by successive

differencing of the series before modelization. Therefore, from their viewpoint, removing

unit roots through differencing ought to be a pre-requisite for regression analysis.

However, some authors, notably Sargan (1964), Hendry and Mizon (1978) and

Davidson et al. (1978), inter alia, started to criticized on a number of grounds the

specification of dynamic models in terms of differenced variables only, especially because

of the difficulties in inferring the long-run equilibrium from the estimated model. After

all, if deviations from that equilibrium relationship affect future changes in a set of

variables, omitting the former, i.e, estimating a differenced model, should entail a

misspecification error. However, for some time it remained to be well understood how

both variables in differences and levels could coexist in regression models.

   Granger (1981), resting upon the previous ideas, solved the puzzle by pointing out that

a vector of variables, all which achieve stationarity after differencing, could have linear

combinations which are stationary in levels. Later, Engle and Granger (1987) were the

first to formalize the idea of integrated variables sharing an equilibrium relation which

turned out to be either stationary or have a lower degree of integration than the original

series. They denoted this property by cointegration, signifying co-movements among

trending variables which could be exploited to test for the existence of equilibrium

relationships within a fully dynamic specification framework. In this sense, the basic

concept of cointegration applies in a variety of economic models including the

relationships between capital and output, real wages and labor productivity, nominal

exchange rates and relative prices, consumption and disposable income, long and short-



3

term interest rates, money velocity and interest rates, price of shares and dividends,

production and sales, etc. In particular, Campbell and Shiller (1987) have pointed out

that a pair of integrated variables that are related through a Present Value Model, as it is

often the case in macroeconomics and finance, must be cointegrated.

   In view of the strength of these ideas, a burgeoning literature on cointegration has

developed over the last decade. In this chapter we will explore the basic conceptual

issues and discuss related econometric techniques, with the aim of offering an

introductory coverage of the main developments in this new field of research. Section 2

provides some preliminaries on the implications of cointegration and the basic estimation

and testing procedures in a single equation framework, when variables have a single unit

root. In Section 3, we extend the previous techniques to more general multivariate set-

ups, introducing those system-based approaches to cointegration which are now in

common use. Section 4, in turn, presents some interesting developments on which the

recent research on cointegration has been focusing. Finally, Section 5 draws some

concluding remarks.

   Nowadays, the interested reader, who wants to deepen beyond the introductory level

offered here, could find a number of textbooks (e.g., Banerjee et al., 1993, Johansen,

1995 and Hatanaka, 1996) and surveys (e.g., Engle and Granger, 1991 and Watson,

1994 on cointegration) where more general treatments of the relevant issues covered in

this chapter are presented. Likewise, there are now many software packages that support

the techniques discussed here (e.g., Gauss-COINT, E-VIEWS and  PC-FIML).       

2   PRELIMINARIES : UNIT ROOTS AND COINTEGRATION

   A well-known result in time series analysis is Wold’s (1938) decomposition theorem

which states that a stationary time series process, after removal of any deterministic

components, has an infinite moving average (MA) representation which, in turn, can be

represented by a finite autoregressive moving average (ARMA) process.

   However, as mentioned in the Introduction, many time series need to be appropriately

differenced in order to achieve stationarity. From this comes the definition of

integration : a time series is said to be integrated of order d, in short, I(d), if it has a

stationary, invertible, non-deterministic ARMA representation after differencing d times.

A white noise series and a stable first-order autoregressive AR(1) process are well-
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known examples of I(0) series, a random walk process is an example of an I(1) series,

while accumulating a random walk gives rise to an I(2) series, etc.

   Consider now two time series y t1  and y t2  which are both I(d) (i.e., they have

compatible long-run properties). In general, any linear combination of y t1  and y t2  will

be also I(d). However, if there exists a vector ( )1, '− β , such that the linear combination

(1) z y yt t t= − −1 2α β

is ( )I d b− , d b≥ > 0, then, following Engle and Granger (1987), y t1  and y t2  are

defined as cointegrated of order ( )d b, , denoted ( )y y yt t t= 1 2, ' ~ ( )CI d b, , with (1, -β)’

called the cointegrating vector.

   Several features in (1) are noteworthy. First, as defined above cointegration refers to a

linear combination of nonstationary variables. Although theoretically it is possible that

nonlinear relationships may exist among a set of integrated variables, the econometric

practice about this more general type of cointegration is less developed (see more on this

in Section 4). Second, note that the cointegrating vector is not uniquely defined, since for

any nonzero value of λ , ( )λ λβ, '−  is also a cointegrating vector. Thus, a normalization

rule needs to be used; for example, λ = 1  has been chosen in (1). Third, all variables

must be integrated of the same order to be candidates to form a cointegrating

relationship. Notwithstanding, there are extensions of the concept of cointegration,

called multicointegration, when the number of variables considered is larger than two

and where the possibility of having variables with different order of integration can be

addressed (see, e.g., Granger and Lee, 1989). For example, in a trivariate system, we

may have that y t1  and y t2   are I(2) and y t3  is I(1); if y t1  and y t2   are ( )CI 2 1, , it is

possible that the corresponding combination of y t1  and y t2  which achieves that property

be itself cointegrated with y t3  giving rise to an I(0) linear combination among the three

variables. Fourth, and most important, most of the cointegration literature focuses on the

case where variables contain a single unit root, since few economic variables prove in

practice to be integrated of higher order. If variables have a strong seasonal component,

however, there may be unit roots at the seasonal frequencies, a case that we will briefly

consider in Section 4; see Ghysels, chapter ? in this book for further details. Hence, the

remainder of this chapter will mainly focus on the case of ( )CI 1 1,  variables, so that z t  in
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(1) is I(0) and the concept of cointegration mimics the existence of a long-run

equilibrium to which the system converges over time. If, e.g., economic theory suggests

the following long-run relationship between y t1  and y t2 ,

(2) y yt t1 2= +α β ,

then z t  can be interpreted as the equilibrium error (i.e., the distance that the system is

away from the equilibrium at any point in time). Note that a constant term has been

included in (1) in order to allow for the possibility that z t  may have nonzero mean. For

example, a standard theory of spatial competition argues that arbitrage will prevent

prices of similar products in different locations from moving too far apart even if the

prices are nonstationary. However, if there are fixed transportation costs from one

location to another, a constant term needs to be included in (1).

   At this stage, it is important to point out that a useful way to understand cointegrating

relationships is through the observation that ( )CI 1 1,  variables must share a set of

stochastic trends. Using the example in (1), since y t1  and y t2  are I(1) variables, they can

be decomposed into an I(1) component (say, a random walk) plus an irregular I(0)

component (not necessarily white noise). Denoting the first components by µit  and the

second components by u iit , ,= 1 2 , we can write

(3) y ut t t1 1 1= +µ

(3’) y ut t t2 2 2= +µ .

Since the sum of an I(1) process and an I(0) process is always I(1), the previous

representation must characterize the individual stochastic properties of y t1  and y t2  .

However, if y yt t1 2− β  is I(0), it must be that µ βµ1 2t t= , annihilating the I(1)

component in the cointegrating relationship. In other words, if y t1  and y t2  are ( )CI 1 1,

variables, they must share (up to a scalar) the same stochastic trend, say µt , denoted as

common trend, so that µ µ1t t=  and µ βµ2 t t= . As before, notice that if µt  is a common

trend for y t1  and y t2 , λµ t  will also be a common trend implying that a normalization

rule is needed for identification. Generalizing the previous argument to a vector of

cointegration and common trends, then it can be proved that if there are n r−  common

trends among the n variables, there must be r cointegrating relationships. Note that

0 < <r n , since r = 0  implies that each series in the system is governed by a different

stochastic trend and that r n=  implies that the series are I(0) instead of I(1). These
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properties constitute the core of two important dual approaches toward testing for

cointegration, namely, one that tests directly for the number of cointegrating vectors ( )r

and another which tests for the number of common trends ( )n r− . However, before

explaining those approaches in more detail (see Section 3), we now turn to another

useful representation of ( )CI 1 1,  systems which has proved very popular in practice.

   Engle and Granger (1987) have shown that if y t1  and y t2  are cointegrated ( )CI 1 1, ,

then there must exist a so-called vector error correction model (VECM) representation

of the dynamic system governing the joint behavior of y t1  and y t2   over time, of the

following form

(4) ∆ ∆ ∆y z y yt t i t i
i

p

i t i
i

p

t1 10 11 1 12 1
1

13 2
1

1

1 2

= + + + +− −
=

−
=

∑ ∑θ θ θ θ ε, , , , ,

(4’) ∆ ∆ ∆y z y yt t i t i
i

p

i t i
i

p

t2 20 21 1 22 1
1

23 2
1

2

3 4

= + + + +− −
=

−
=

∑ ∑θ θ θ θ ε, , , , ,

where ∆  denotes the first-order time difference (i.e., ∆y y yt t t= − −1 ) and where the lag

lengths p ii , , ... ,= 1 4  are such that the innovations ( )ε ε εt t t= 1 2, '  are ( )i i d. . . ,0 Σ .

Furthermore, they proved the converse result that a VECM generates cointegrated

( )CI 1 1,  series as long as the coefficients on z t −1  (the so-called loading or speed of

adjustment parameters) are not simultaneously equal to zero.

   Note that the term z t −1  in equations (4) and (4’) represents the extent of the

disequilibrium levels of y1  and y2  in the previous period. Thus, the VECM

representation states that changes in one variable not only depends on changes of the

other variables and its own past changes, but also on the extent of the disequilibrium

between the levels of y1  and y2 . For example, if β = 1 in (1), as many theories predict

when y t1  and y t2  are taken in logarithmic form, then if y1  is larger than y2  in the past

( )zt − >1 0 , then θ 11 0<  and θ 21 0>  will imply that, everything else equal, y1  would fall

and y2  would rise in the current period, implying that both series adjust toward its long-

run equilibrium. Notice that both θ 11  and θ 21  cannot be equal to zero. However, if

θ 11 0<  and θ 21 0= , then all of the adjustment falls on y1 , or vice versa if θ 11 0=  and

θ 21 0> . Note also that the larger are the speed of adjustment parameters (with the right

signs), the greater is the convergence rate toward equilibrium. Of course, at least one of
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those terms must be nonzero, implying the existence of Granger causality in cointegrated

systems in at least one direction. Hence, the appeal of the VECM formulation is that it

combines flexibility in dynamic specification with desirable long-run properties : it could

be seen as capturing the transitional dynamics of the system to the long-run equilibrium

suggested by economic theory (see, e.g., Hendry and Richard, 1983). Further, if

cointegration exists, the VECM representation will generate better forecasts than the

corresponding representation in first-differenced form (i.e., with θ θ11 21 0= = ),

particularly over medium and long-run horizons, since under cointegration z t  will have a

finite forecast error variance whereas any other linear combination of the forecasts of the

individual series in y t  will have infinite variance; see Engle and Yoo (1987) for further

details.

   Based upon the VECM representation, Engle and Granger (1987) suggest a two-step

estimation procedure for dynamic modeling which has become very popular in applied

research. Assuming that y t ~I(1), then the procedure goes as follows :

(i) First, in order to test whether the series are cointegrated, the cointegration

regression

(5) y y zt t t1 2= + +α β

 is estimated by ordinary least squares (OLS) and it is tested whether the cointegrating

residuals $ $ $z y yt t t= − −1 2α β  are I(1). To do this, for example, we can perform a

Dickey-Fuller test on the residual sequence { }$zt  to determine whether it has a unit root.

For this, consider the autoregression of the residuals

(6) ∆$ $z zt t t= +−ρ ε1 1

where no intercept term has been included since the { }$zt , being residuals from a

regression equation with a constant term, have zero mean. If we can reject the null

hypothesis that ρ 1 0=  against the alternative ρ1 0<  at a given significance level, we can

conclude that the residual sequence is I(0) and, therefore, that y t1  and y t2  are ( )CI 1 1, .

It is noteworthy that for carrying out this test it is not possible to use the Dickey-Fuller

tables themselves since { }$zt  are a generated series of residuals from fitting regression

(5). The problem is that the OLS estimates of α  and β  are such that they minimize the

residual variance in (5) and thus prejudice the testing procedure toward finding
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stationarity. Hence, larger (in absolute value) critical levels than the standard Dickey-

Fuller ones are needed. In this respect, MacKinnon (1991) provides appropriate tables to

test the null hypothesis ρ 1 0=  for any sample size and also when the number of

regressors in (5) is expanded from one to several variables. In general, if the { }$ε t

sequence exhibits serial correlation, then an augmented Dickey-Fuller (ADF) test should

be used, based this time on the extended autoregression

(6’) ∆ ∆$ $ $z z zt t i
i

p

t i t= + +−
=

−∑ρ ζ ε1 1
1

,

where again, if ρ1 0< , we can conclude that  y t1  and y t2  are ( )CI 1 1, . Alternative

versions of the test on { }$zt  being I(1) versus I(0) can be found in Phillips and Ouliaris

(1990). Banerjee et al. (1997), in turn, suggest another class of tests based this time on

the direct significance of the loading parameters in (4) and (4’) where the β  coefficient

is estimated alongside the remaining parameters in a single step using nonlinear least

squares (NLS).

    If we reject that $z t  are I(1), Stock (1987) has shown that the OLS estimate of β  in

equation (5) is super-consistent, in the sense that the OLS estimator $β  converges in

probability to its true value β  at a rate proportional to the inverse of the sample size,

T −1 , rather than at T −1 2/  as is the standard result in the ordinary case where y t1  and y t2

are I(0). Thus, when T grows, convergence is much quicker in the ( )CI 1 1,  case. The

intuition behind this remarkable result can be seen by analyzing the behavior of $β  in (5)

(where the constant is omitted for simplicity) in the particular case where

z t ~ ( )i i d z. . . ,0 2σ , and that θ θ20 21 0= =  and  p p3 4 0= = , so that y t2  is assumed to

follow a simple random walk

(7) ∆y t t2 2= ε ,

or, integrating (7) backwards with y20 0= ,

(7’) y t i
i

t

2 2
1

=
=
∑ε ,

with ε2 t  possibly correlated with z t . In this case, we get ( ) ( )var vary t tt2 21 2
2= =ε σ ,

exploding as T ↑ ∞ . Nevertheless, it is not difficult to show that T y tt

T−
=∑2

2
2

1
 converges
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to a random variable. Similarly, the cross-product T y zt tt

T−
=∑1 2

21

/  will explode, in

contrast to the stationary case where a simple application of the Central Limit Theorem

implies that it is asymptotically normally distributed. In the I(1) case, T y ztt

T

t
−

=∑1
21

converges also to a random variable. Both random variables are functionals of Brownian

motions which will be denoted henceforth, in general, as ( )f B . A Brownian motion is a

zero-mean normally distributed continuous (a.s.) process with independent increments,

i.e., loosely speaking, the continuous version of the discrete random walk. See Phillips

(1987) and Bierens (chapter ? in this book).

   Now, from the expression for the OLS estimator of β , we obtain

(8) $β β− = =

=

∑

∑

y z

y

t t
t

T

t
t

T

2
1

2

1

,

and, from the previous discussion, it follows that

(9) ( )T

T y z

T y

t t
t

T

t
t

T
$β β− =

−

=

−

=

∑

∑

1
2

1

2 2

1

is asymptotically (as T ↑ ∞ ) the ratio of two non-degenerate random variables that in

general, is not normally distributed. Thus, in spite of the super-consistency, standard

inference cannot be applied to $β  except in some restrictive cases which are discussed

below.

(ii) After rejecting the null hypothesis that the cointegrating residuals in equation

(5) are I(1), the $z t −1  term is included in the VECM system and the remaining parameters

are estimated by OLS. Indeed, given the superconsistency of $β , Engle and Granger

(1987) show that their asymptotic distributions will be identical to using the true value of

β . Now all the variables in (3) and (3’) are I(0) and conventional modeling strategies

(e.g., testing the maximum lag length, residual autocorrelation or whether either θ 11  or

θ 21  is zero, etc.) can be applied to assess model adequacy; see Lütkepohl, (chapter ? in

this book) for further details.
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   In spite of the beauty and simplicity of the previous procedure, however, several

problems remain. In particular, although $β  is super-consistent, this is an asymptotic

result and thus biases could be important in finite samples. For instance, assume that the

rates of convergence of two estimators are T −1 2/  and 1010 1T − . Then, we will need huge

sample sizes to have the second estimator dominating the first one. In this sense, Monte

Carlo experiments by Banerjee et al. (1993) showed that the biases could be important

particularly when z t  and ∆y t2  are highly serially correlated and they are not

independent. Phillips (1991), in turn, has shown analytically that in the case where y t2

and z t  are independent at all leads and lags, the distribution in (9) as T grows behaves

like a gaussian distribution (technically is a mixture of normals) and, hence, the

distribution of the t-statistic of β  is also asymptotically normal. For this reason, Phillips

and Hansen (1990) have developed an estimation procedure which corrects for the

previous bias while achieves asymptotic normality. The procedure, denoted as a fully

modified ordinary least squares estimator (FM-OLS), is based upon a correction to the

OLS estimator given in (8) by which the error term z t  is conditioned on the whole

process { }∆y tt2 0 1, , ,...= ± and, hence, orthogonality between regressors and

disturbance is achieved by construction. For example, if z t  and ε 2 t  in (5) and (7) are

correlated white noises with ( ) ( )γ ε ε= E z t t t2 2var , the FM-OLS estimator of β ,

denoted $β FM , is given by

(10)
( )

$
$

β
γ

FM

t t t
t

T

t
t

T

y y y

y

=
−

=

=

∑

∑

2 1 2
1

2

1

∆
,

where $γ  is the empirical counterpart of  γ  obtained from regressing the OLS residuals

$z t  on ∆y t2 . When  z t  and ∆y t2  follow more general processes, the FM-OLS estimator

of β  is similar to (10) except that further corrections are needed in its numerator.

Alternatively, Saikkonen (1991) and Stock and Watson (1993) have shown that, since

{ }( ) ( )E z y h L yt t t∆ ∆2 2= , where h(L) is a two-sided filter in the lag operator L,

regression of y t1  on y t2  and leads and lags of ∆y t2  (suitably truncated), using either



11

OLS or GLS, will yield an estimator of β  which is asymptotically equivalent to the FM-

OLS estimator. The resulting estimation approach is known as dynamic OLS

(respectively GLS) or DOLS (respectively, DGLS).

3 SYSTEM-BASED APPROACHES TO COINTEGRATION

   Whereas in the previous section we confined the analysis to the case where there is at

most a single cointegrating vector in a bivariate system, this set-up is usually quite

restrictive when analyzing the cointegrating properties of an n-dimensional vector of I(1)

variables where several cointegration relationships may arise. For example, when dealing

with a trivariate system formed by the logarithms of nominal wages, prices and labor

productivity, there may exist two relationships, one determining an employment equation

and another determining a wage equation. In this section we survey some of the popular

estimation and testing procedures for cointegration in this more general multivariate

context, which will be denoted as system-based approaches.

  In general, if y t  now represents a vector of n I(1) variables its Wold representation

(assuming again no deterministic terms) is given by

(11) ( )∆y C Lt t= ε ,

where now ε t ~ ( )nid 0, Σ , Σ  being the covariance matrix of ε t  and C(L) an ( )n n×

invertible matrix of polynomial lags, where the term “invertible” means that ( )C L = 0

has all its roots strictly larger than unity in absolute value. If there is a cointegrating

( )n × 1  vector, ( )β β β' , ... ,= 11 nn , then, premultiplying (11) by β ’ yields

(12)      ( ) ( )[ ]β β ε' '
~∆ ∆y C C Lt t= +1 ,

where C(L) has been expanded around L = 1 using a first-order Taylor expansion and

( )~
C L  can be shown to be an invertible lag matrix. Since the cointegration property

implies that β ' y t  is I(0), then it must be that ( )β 'C 1 0=  and hence ( )∆ = −1 L  will

cancel out on both sides of (12). Moreover, given that C(L) is invertible, then y t  has a

vector autoregressive representation such that

(13) ( )A L y t t= ε ,

where ( ) ( )A L C L I n= ∆ , I n  being the ( )n n×  identity matrix. Hence, we must have that

( ) ( )A C1 1 0= , implying that ( )A 1  can be written as a linear combination of the elements
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β , namely, ( )A 1 = αβ '  , with α  being another ( )n × 1  vector. In the same manner, if

there were r cointegrating vectors ( )0 < <r n , then ( )A B1 = Γ' , where B and Γ  are this

time ( )n r×  matrices which collect the r different α  and β  vectors. Matrix B is known

as the loading matrix since its rows determine how many cointegrating relationships

enter each of the individual dynamic equations in (13). Testing the rank of A(1) or C(1),

which happen to be r and n r− , respectively, constitutes the basis of the following two

procedures :

   (i) Johansen (1995) develops a maximum likelihood estimation procedure based on the

so-called reduced rank regression method that, as the other methods to be later

discussed, presents some advantages over the two-step regression procedure described in

the previous section. First, it relaxes the assumption that the cointegrating vector is

unique, and, secondly, it takes into account the short-run dynamics of the system when

estimating the cointegrating vectors. The underlying intuition behing Johansen’s testing

procedure can be easily explained by means of the following example. Assume that y t

has a ( )VAR 1  representation, that is, A(L) in (13) is such that ( )A L I A Ln= − 1 . Hence,

the ( )VAR 1  process can be reparameterized in the VECM representation as

(14) ( )∆y A I yt n t t= − +−1 1 ε .

   If ( )A I An1 1 0− = − = , then y t  is I(1) and there are no cointegrating relationships

( )r = 0 , whereas if ( )rank A I nn1 − = , there are n cointegrating relationships among the

n series and hence y t ~I(0). Thus, testing the null hypothesis that the number of

cointegrating vectors (r) is equivalent to testing whether ( )rank A I rn1 − = . Likewise,

alternative hypotheses could be designed in different ways, e.g., that the rank is ( )r + 1

or that it is n.

   Under the previous considerations, Johansen (1995) deals with the more general case

where y t  follows a ( )VAR p  process of the form

(15) y A y A y A yt t t p t p t= + + + +− − −1 1 2 2 L ε ,

which, as in (3) and (3’), can be rewritten in the ECM representation

(16) ∆ ∆ ∆ ∆y D y D y D y Dyt t t p t p t t= + + + + +− − − − + −1 1 2 2 1 1 1L ε .

Where ( )D A Ai i p= − + ++1 L , i p= −1 2 1, ,..., , and ( )D A A I Ap n= + + − = −1 1L ( )
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= −BΓ ' . To estimate B and Γ , we need to estimate D subject to some identification

restriction since otherwise B and Γ  could not be separately identified. Maximum

likelihood estimation of D goes along the same principles of the basic partitioned

regression model, namely, the regressand and the regressor of interest ( )∆y yt tand −1  are

regressed by OLS on the remaining set of regressors ( )∆ ∆y yt t p− − +1 1, ... ,  giving rise to

two matrices of residuals denoted as $e0  and $e1  and the regression model

$ $ $e Deot t= +1 residuals. Following the preceding discussion, Johansen (1995) shows that

testing for the rank of $D  is equivalent to test for the number of canonical correlations

between  $e0  and $e1   that are different from zero. This can be conducted using either of

the following two test statistics

(17) ( ) ( )λ λtr i
i r

n

r T= − −
= +
∑ ln $1

1

(18) ( ) ( )λ λmax rr r T, ln $+ = − − +1 1 1 ,

where the $λi ’s are the eigenvalues of the matrix S S S10 00
1

01
−  with respect to the matrix

S11 , ordered in decreasing order ( )1 01> > > >$ $λ λL n , where S T e eij it jtt

T
= −

=∑1

1
$ $ ' ,

i j, ,= 0 1. These eigenvalues can be obtained as the solution of the determinantal

equation

(19)  λS S S S11 10 00
1

01 0− =− .

   The statistic in (17), known as the trace statistic, tests the null hypothesis that the

number of cointegrating vectors is less than or equal to r against a general alternative.

Note that, since ( )ln 1 0=  and ( )ln 0 ↑ −∞ , it is clear that the trace statistic equals zero

when all the $λi ’s  are zero, whereas the further the eigenvalues are from zero the more

negative is ( )ln $1− λi  and the larger is the statistic. Likewise, the statistic in (18), known

as the maximum eigenvalue statistic, tests a null of r cointegrating vectors against the

specific alternative of r + 1. As above, if $λr+1  is close to zero, the statistic will be small.

Further, if the null hypothesis is not rejected, the r cointegrating vectors contained in

matrix Γ  can be estimated as the first r columns of matrix ( )$ $ , , $V v vn= 1 K  which

contains the eigenvectors associated to the eigenvalues in (19) computed as
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( )λi iS S S S v11 10 00
1

01 0− =− $ , i n= 1 2, , ,K

subject to the length normalization rule $ ' $V S V I n11 = . Once Γ  has been estimated,

estimates of the B, Di  and Σ  matrices in (16) can be obtained by inserting $Γ  in their

corresponding OLS formulae which will be functions of Γ .

   Osterwald-Lenum (1992) has tabulated the critical values for both tests using Monte

Carlo simulations, since their asymptotic distributions are multivariate ( )f B  which

depend upon: (i) the number of nonstationary components under the null hypothesis

( )n r−  and  (ii) the form of the vector of deterministic components, µ  (e.g., a vector of

drift terms), which needs to be included in the estimation of the ECM representation

where the variables have nonzero means. Since, in order to simplify matters, the inclusion

of deterministic components in (16) has not been considered so far, it is worth using a

simple example to illustrate the type of interesting statistical problems that may arise

when taking them into account. Suppose that r = 1 and that the unique cointegrating

vector in Γ  is normalized to be ( )β β β' , , ,= 1 22 K nn , while the vector of speed of

adjustment parameters, with which the cointegrating vector appears in each of the

equations for the n variables, is ( )α α α' ,= 11 K nn . If there is a vector of drift terms

( )µ µ µ' ,= 1 K n  such that they satisfy the restrictions µ α µi ii= 1   (with α11 1= ), it then

follows that all ∆yit  in (16) are expected to be zero when

y y yt t nn n t1 1 22 2 1 1 1 0, , ,− − −+ + + + =β β µL  and, hence, the general solution for each of the

{ }yit  processes, when integrated, will not contain a time trend. Many other possibilities,

like e.g. allowing for a linear trend in each variable but not in the cointegrating relations,

may be considered. In each case, the asymptotic distribution of the cointegration tests

given in (17) and (18) will differ, and the corresponding sets of simulated critical values

can be found in the reference quoted above. Sometimes, theory will guide the choice of

restrictions; for example, if one is considering the relation between short-term and long-

term interest rates, it may be wise to impose the restriction that the processes for both

interest rates do not have linear trends and that the drift terms are restricted to appear in

the cointegrating relationship interpreted as the “term structure”. However, in other

instances one may be interested in testing alternative sets of restrictions on the way µ

enters the system; see, e.g., Lütkepohl, (chapter ? in this book) for further details
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   In that respect, the Johansen’s approach allows to test restrictions on µ , B and Γ

subject to a given number of cointegrating relationships. The insight to all these tests,

which turn out to have asymptotic chi-square distributions, is to compare the number of

cointegrating vectors (i.e., the number of eigenvalues which are significantly different

from zero) both when the restrictions are imposed and when they are not. Since if the

true cointegration rank is r, only r linear combinations of the variables are stationary, one

should find that the number of cointegrating vectors does not diminish if the restrictions

are not binding and vice versa. Thus, denoting by $λi  and λi
*  the set of r eigenvalues for

the unrestricted and restricted cases, both sets of eigenvalues should be equivalent if the

restrictions are valid. For example, a modification of the trace test in the form

(20) ( ) ( )[ ]T i i
i

r

ln ln $*1 1
1

− − −
=
∑ λ λ

will be small if the λi
* ’s are similar to the $λi ’s, whereas it will be large if the λi

* ’s  are

smaller than the $λi ’s. If we impose s restrictions, then the above test will reject the null

hypothesis if the calculated value of (20) exceeds that in a chi-square table with ( )r n s−

degrees of freedom.

   Most of the existing Monte Carlo studies on the Johansen methodology point out that

dimension of the data series for a given sample size may pose particular problems since

the number of parameters of the underlying VAR models grows very large as the

dimension increases. Likewise, difficulties often arise when, for a given n, the lag length

of the system, p, is either over or under-parameterized. In particular, Ho and Sorensen

(1996) and Gonzalo and Pitarakis (1998) show by numerical methods that the

cointegrating order will tend to be overestimated as the dimension of the system

increases relative to the time dimension, while serious size and power distortions arise

when choosing too short and too long a lag length, respectively. Although several

degrees of freedom adjustments to improve the performance of the test statistics have

been advocated (see, e.g., Reinsel and Ahn, 1992), researchers ought to have

considerable care when using the Johansen estimator to determine cointegration order in

high dimensional systems with small sample sizes. Nonetheless, it is worth noticing that a

useful approach to reduce the dimension of the VAR system is to rely upon exogeneity

arguments to construct smaller conditional systems as suggested by Ericsson (1992) and

Johansen (1992a). Equally, if the VAR specification is not appropriate, Phillips (1991)
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and Saikkonen (1992) provide efficient estimation of cointegrating vectors in more

general time series settings, including vector ARMA processes.

(ii) As mentioned above, there is a dual relationship between the number of

cointegrating vectors (r) and the number of common trends ( n r− ) in an n-dimensional

system. Hence, testing for the dimension of the set of  “common trends” provides an

alternative approach to testing for the cointegration order in a VAR//VECM

representation. Stock and Watson (1988) provide a detailed study of this type of

methodology based on the use of the so-called Beveridge-Nelson (1981) decomposition.

This works from the Wold representation of an I(1) system, which we can write as in

expression (11) with ( )C L C Lj
j

j
=

=

∞∑ 0
, C I n0 = . As shown in expression (12), ( )C L

can be expanded as ( ) ( ) ( )( )C L C C L L= + −1 1
~

, so that, by integrating (11), we get

(21) ( )y C Y wt t t= +1 ~ ,

where ( )~ ~
w C Lt t= ε  can be shown to be covariance stationary, and Yt ii

t
=

=∑ ε
1

 is a

latent or unobservable set of random walks which capture the I(1) nature of the data.

However, as above mentioned, if the cointegration order is r, there must be an ( )r n×  Γ

matrix such that ( )Γ 'C 1 0=  since, otherwise, Γ ' y t  would be I(1) instead of I(0). This

means that the ( )n n×  C(1) matrix cannot have full rank. Indeed, from standard linear

algebra arguments, it is easy to prove that the rank of C(1) is ( )n r− ,  implying that

there are only ( )n r−  independent common trends in the system. Hence, there exists the

so-called common trends representation of a cointegrated system, such that

(22) y y wt t
c

t= +Φ ~ ,

where Φ  is an ( )n n r× −  matrix of loading coefficients such that Γ Φ' = 0  and y t
c  is an

( )n r−  vector random walk. In other words, y t  can be written as the sum of  ( )n r−

common trends and an I(0) component. Thus, testing for ( )n r−  common trends in the

system is equivalent to testing for r cointegrating vectors. In this sense, Stock and

Watson’s (1988) testing approach relies upon the observation that, under the null

hypothesis, the first-order autoregressive matrix of y t
c  should have ( )n r−  eigenvalues

equal to unity, whereas, under the alternative hypothesis of higher cointegration order,

some of those eigenvalues will be less than unity. It is worth noticing that there are other
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alternative strategies to identify the set of common trends, y t
c , which do not impose a

vector random walk structure. In particular, Gonzalo and Granger (1995), using

arguments embedded in the Johansen’s approach, suggest identifying y t
c  as linear

combinations of y t  which are not caused in the long-run by the cointegration

relationships Γ ' y t −1 . These linear combinations are the orthogonal complement of matrix

B in (16), y B yt
c

t= ⊥ , where B⊥  is an ( )( )n n r× −  full ranked matrix, such that

B B' ⊥ = 0 , that can be estimated as the last ( )n r−  eigenvectors of the second moments

matrix  S S S01 11
1

10
−  with respect to S00 . For instance, when some of the rows of matrix B

are zero, the common trends will be linear combinations of those I(1) variables in the

system where the cointegrating vectors do not enter into their respective adjustment

equations. Since common trends are expressed in terms of observable variables, instead

of a latent set of random walks, economic theory can again be quite useful in helping to

provide useful interpretation of their role. For example, the rational expectations version

of the permanent income hypothesis of consumption states that consumption follows a

random walk whilst saving (disposable income minus consumption) is I(0). Thus, if the

theory is a valid one, the cointegrating vector in the system formed by consumption and

disposable income should be ( )β ' ,= −1 1  and it would only appears in the second

equation (i.e., ( )α α' ,= 0 22 ), implying that consumption should be the common trend

behind the nonstationary behavior of both variables.

   To give a simple illustration of the conceptual issues discussed in this section, let us

consider the following Wold (MA) representation of the bivariate I(1) process

( )y y yt t t= 1 2, ' ,

( ) ( )1 1 0 2
1 0 6 0 8

0 2 1 0 6
1

2

1 1

2

−






 = −

−
−














−

L
y

y
L

L L

L L
t

t

t

t

.
. .

. .
.

ε
ε

Evaluating C(L) at L = 1 yields

( )C 1
05 1

0 25 05
=









.

. .
,

so that ( )rank C 1 1= . Hence, y t ~ ( )CI 1 1, . Next, inverting C(L), yields the VAR

representation
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1 0 6 08

0 2 1 0 6
1

2

1

2

− −
− −














 =









. .

. .

L L

L L

y
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t

t

t

t

ε
ε

,

where

( )A 1
0 4 0 8

0 2 0 4
=

−
−









. .

. .
,

so that ( )rank A 1 1=  and

( ) ( )A 1
0 4

0 2
1 2=

−






 − =

.

.
, '.αβ

Hence, having normalized on the first element, the cointegrating vector is ( )β ' ,= −1 2 ,

leading to the following VECM representation of the system

 ( ) ( )1
0 4

0 2
1 2

1

2

1 1

2 1

1

2

−






 =

−





 −







 +









−

−

L
y

y

y

y
t

t

t

t

t

t

.

.
, .

,

,

ε
ε

   Next, given C(1) and normalizing again on the first element, it is clear that the common

factor is y t
c

ii

t

ii

t
= +

= =∑ ∑ε ε11 21
2 , whereas the loading vector Φ  and the common trend

representation would be as follows

y

y
y w

t

t
t
c

t

1

2

05

0 25







 =







 +

.

.
~ .

Notice that β ' yt  eliminates y t
c  from the linear combination which achieves

cointegration. In other words, Φ  is the orthogonal complement of β  once the

normalization criteria has been chosen.

   Finally, to examine the effects of drift terms, let us add a vector ( )µ µ µ= 1 2, '  of drift

coefficients to the VAR representation. Then, it is easy to prove that y t1  and y t2  will

have a linear trends with slopes equal to µ µ1 22 +  and µ µ1 24 2+ , respectively.

When 2 01 2µ µ+ ≠  the data will have linear trends, whereas the cointegrating

relationship will not have them, since the linear combination in β  annihilates the

individual trends for any µ1  and µ2 .

   The interesting case arises when the restriction 2 01 2µ µ+ =  holds, since now the

linear trend is purged from the system, leading to the restricted ECM representation
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( ) ( )1
0 4

0 2
1 2

1

1
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1

1 1

2 1

1

2

−
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t

t
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, , *

,

,µ
ε
ε

,

where µ µ1 1 0 4* .= .

4 FURTHER RESEARCH ON COINTEGRATION

   Although the discussion in the previous sections has been confined to the possibility of

cointegration arising from linear combinations of I(1) variables, the literature is currently

proceeding in several interesting extensions of this standard set-up. In the sequel we will

briefly outline some of those extensions which have drawn a substantial amount of

research in the recent past.

   (i) Higher Order Cointegrated Systems

   The statistical theory of I(d) systems with d = 2 3, ,K , is much less developed than the

theory for the I(1) model, partly because it is uncommon to find time series, at least in

economics, whose degree of integration higher than two, partly because the theory in

quite involved as it must deal with possibly multicointegrated cases where, for instance,

linear combinations of levels and first differences can achieve stationarity. We refer the

reader to Haldrup (1997) for a survey of the statistical treatment of I(2) models,

restricting the discussion in this chapter to the basics of the ( )CI 2 2,  case.

   Assuming, thus, that y t ~ ( )CI 2 2, , with Wold representation given by

(23) ( ) ( )1 2− =L y C Lt tε ,

then, by means of a Taylor expansion, we can write C(L) as

( ) ( ) ( )( ) ( )( )C L C C L C L L= − − + −1 1 1 1 2* ~ ,

with ( )C* 1  being the first derivative of C(L) with respect to L, evaluated at L = 1.

Following the arguments in the previous section, y t ~ ( )CI 2 2,  implies that there exists a

set of cointegrating vectors such that ( ) ( )Γ Γ' ' *C C1 1 0= = , from which the following

VECM representation can be derived

(24) ( )( )A L L y B y B yt t t t
* ' '1 2

1 1 2 1− = − − +− −Γ Γ ∆ ε
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with ( )A I n
* 0 = . Johansen (1992b) has developed the maximum likelihood estimation of

this class of models, which albeit more complicated than in the ( )CI 1 1,  case, proceeds

along similar lines to those discussed in Section 3.

   Likewise, there are systems where the variables have unit roots at the seasonal

frequencies. For example, if a seasonally integrated variable is measured every half-a-

year, then it will have the following Wold representation

(25) ( ) ( )1 2− =L y C Lt tε .

Since ( ) ( )( )1 1 12− = − +L L L , the { }y t  process could be cointegrated by obtaining

linear combinations which eliminate the unit root at the zero frequency, (1-L), and/or at

the seasonal frequency, (1+L). Assuming that Γ1  and Γ2  are sets of cointegrating

relationships at each of the two above mentioned frequencies, Hylleberg et al. (1990)

have shown that the VECM representation of the system this time will be

(26)  ( )( ) ( )A L L y B y B y yt t t t t
* ' '1 2

1 1 1 2 2 1 2− = − − + +− − −Γ ∆ Γ ε ,

 with ( )A I n
* 0 = . Notice that if there is no cointegration in (1+L), Γ2 = 0 and the second

term in the right hand side of (26) will vanish , whereas lack of cointegration in (1- L)

implies Γ1 = 0 and the first term will disappear. Similar arguments can be used to obtain

VECM representations for quarterly or monthly data with seasonal difference operators

of the form ( )1 4− L  and ( )1 12− L , respectively.

   (ii) Fractionally Cointegrated Systems

   As discussed earlier in this chapter, one of the main characteristics of the existence of

unit roots in the Wold representation of a time series is that they have “long memory”, in

the sense that shocks have permanent effects on the levels of the series so that the

variance of the levels of the series explodes. In general, it is known that if the

differencing filter ( )1 − L d , d being now a real number, is needed to achieve stationarity,

then the coefficient of ε t j−  in the Wold representation of the I(d) process has a leading

term j d −1  (e.g., the coefficient in an I(1) process is unity, since d = 1) and the process is

said to be fractionally integrated of order d. In this case, the variance of the series in

levels will explode at the rate T d2 1−  (e.g., at the rate T when d = 1) and then all that is

needed to have this kind of long memory is a degree of differencing d > 1 2 .



21

   Consequently, it is clear that a wide range of dynamic behavior is ruled out a priori if d

is restricted to integer values and that a much broader range of cointegration possibilities

are entailed when fractional cases are considered. For example, we could have a pair of

series which are ( )I d1 , d1 1 2> , which cointegrate to obtain an ( )I d 0  linear

combination such that 0 1 20< <d . A further complication arises in this case if the

various integration orders are not assumed to be known and need to be estimated for

which frequency domain regression methods are normally used. Extensions of least

squares and maximum likelihood methods of estimation and testing for cointegration

within this more general framework can be found in Jeganathan (1996), Marmol (1998)

and Robinson and Marinucci (1998).

   (iii) Nearly Cointegrated Systems

   Even when a vector of time series is I(1), the size of the unit root in each of the series

could be very different. For example, in terms of the common trend representation of a

bivariate system discussed above, it could well be the case that y y wt t
c

t1 1 1= +φ ~  and

y y wt t
c

t2 2 2= +φ ~  are such that φ1  is close to zero and that φ2  is large. Then y t1  will not

be different from ~w t1  which is an I(0) series while y t2  will be clearly I(1). The two series

are cointegrated, since they share a common trend. However, if we regress y t1  on y t2 ,

i.e., we normalize the cointegrating vector on the coefficient of y t1 , the regression will

be nearly unbalanced, namely, the regressand is almost I(0) whilst the regressor is I(1). In

this case, the estimated coefficient on y t2  will converge quickly to zero and the residuals

will resemble the properties of y t1 , i.e., they will look stationary. Thus, according to the

Engle and Granger testing approach, we will often reject the null of no cointegration. By

contrast, if we regress y t2  on y t1 , now the residuals will resemble the I(1) properties of

the regressand and we will often reject cointegration. Therefore, normalization plays a

crucial role in least squares estimation of cointegrating vectors in nearly cointegrated

systems. Consequently, if one uses the static regression approach to estimate the

cointegrating vector, it follows from the previous discussion that is better to use the “less

integrated” variable as the regressand. Ng and Perron (1997) have shown that these

problems remain when the equation are estimated using more efficient methods like FM-
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OLS and DOLS, while the Johansen’s methodology provides a better estimation

approach, since normalization is only imposed on the length of the eigenvectors.

   (iv) Nonlinear Error Correction Models

   When discussing the role of the cointegrating relationship z t  in (3) and (3’), we

motivated the EC model as the disequilibrium mechanism that leads to the particular

equilibrium. However, as a function of an I(0) process is generally also I(0), an

alternative more general VECM model has z t −1  in (3) and (3’) replaced by ( )g z t −1  where

( )g z  is a function such that ( )g 0 0=  and ( )[ ]E g z  exists. The function ( )g z  is such that

it can be estimated nonparametrically or by assuming a particular parametric form. For

example, one can include { }z max z t
+ = 0,  and { }z min z t

− = 0,  separately into the model

or large and small values of z according to some prespecified threshold in order to deal

with possible sign or size asymmetries in the dynamic adjustment. Further examples can

be found in Granger and Teräsvirta (1993). The theory of non-linear cointegration

models is still fairly incomplete, but nice applications can be found in Gonzalez and

Gonzalo (1998) and Balke and Fomby (1997).

   (v) Structural Breaks in Cointegrated Systems

   The parameters in the cointegrating regression model (5) may not be constant through

time. Gregory and Hansen (1995) developed a test for cointegration allowing for a

structural break in the intercept as well as in the slope of model (5). The new regression

model now looks like

(27)   ( ) ( )y D t y y D t zt t t t1 1 2 0 1 2 2 2 0= + + + +α α β β ,

where ( )D t0  is a dummy variable such that ( )D t0 0=  if 0 0< ≤t t  and ( )D t0 1=  if

t t T0 < ≤ . The test for cointegration is conducted by testing for unit roots (for instance,

with an ADF test) on the residuals $z t  for each t0 . Gregory and Hansen propose and

tabulate the critical values of the test statistic

   ( ){ }ADF ADF t
t T

* inf=
< <1

0
0

.

The null hypothesis of no cointegration and no structural break is rejected if the statistic

ADF *  is smaller than the corresponding critical value. In this case the structural break
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will be located at time t *  where the inf of the ADF test is obtained. The work of

Gregory and Hansen is opening an extensive research on analyzing the stability of the

parameters of multivariate possibly cointegrated systems models like the VECM in (16).

Further work in this direction can be found in Hansen and Johansen (1993), Quintos

(1994) and Juhl (1997).

5 CONCLUDING REMARKS

   The considerable gap in the past between the economic theorist, who had much to say

about equilibrium but relatively less to say about dynamics and the econometrician whose

models concentrated on the short-run dynamics disregarding the long-run equilibrium,

has been bridged by the concept of cointegration. In addition to allowing the data to

determine the short-run dynamics, cointegration suggest that models can be significantly

improved by including long-run equilibrium conditions as suggested by economic theory.

The generic existence of such long-run relationships, in turn, should be tested using the

techniques discussed in this chapter to reduce the risk of finding spurious conclusions.

   The literature on cointegration has greatly enhanced the existing methods of dynamic

econometric modeling of economic time series and should be consider nowadays as a

very valuable part of the practitioner’s toolkit.
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