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1. Introduction

In this chapter I will explain the two most frequently applied types of unit root tests, namely the

Augmented Dickey-Fuller tests [see Fuller (1996), Dickey and Fuller (1979, 1981)], and the Phillips-

Perron tests [see Phillips (1987) and Phillips and Perron (1988)]. The statistics and econometrics levels

required for understanding the material below are Hogg and Craig (1978) or a similar level for statistics,

and Green (1997) or a similar level for econometrics. The functional central limit theorem [see Billingsley

(1963)], which plays a key-role in the derivations involved, will be explained in this chapter by showing its

analogy with the concept of convergence in distribution of random variables, and by confining the discussion

to Gaussian unit root processes. 

This chapter is not a review of the vast literature on unit roots. Such a review would entail a long

list of descriptions of the many different recipes for unit root testing proposed in the literature, and would

leave no space for motivation, let alone proofs. I have chosen for depth rather than breadth, by focusing

on the most influential papers on unit root testing, and discussing them in detail, without assuming that the

reader has any previous knowledge about this topic. 

As an introduction of the concept of a unit root and its consequences, consider the Gaussian AR(1)

process  or equivalently  =  + ut, where L is the lag operator:yt ' $0 % $1yt&1 % ut , (1 & $1L)yt $0

Lyt = yt-1, and the ut ‘s are i.i.d. . The lag polynomial  has root equal to . If N(0 ,F2) 1 & $1L 1/$1 *$1*

< 1, then by backwards substitution we can write  so that yt is strictlyyt ' $0/(1&$1) % '4
j'0$

j
1ut&j ,



     2  See the chapter on spurious regression in this volume. This phenomenon can easily be
demonstrated by using my free software package EasyReg, which is downloadable from website
http://econ.la.psu.edu/~hbierens/EASYREG.HTM (Click on "Tools", and then on "Teaching tools").

     3  See the chapter on cointegration in this volume.
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stationary, i.e., for arbitrary natural numbers m1 < m2 <...< mk-1 the joint distribution of

 does not depend on t, but only on the lags or leads  m1, m2, ..,mk-1. Moreover,yt ,yt&m1
,yt&m2

, ... ,yt&mk&1

the distribution of yt, t > 0, conditional on y0, y-1, y-2,..., then converges to the marginal distribution of yt if

t . In other words, yt has a vanishing memory:  yt becomes independent of its past, y0, y-1, y-2,..., if t6 4

.6 4

If  = 1, so that the lag polynomial  has a unit root, then yt is called a unit root process.$1 1 & $1L

In this case the AR(1) process under review becomes yt = yt-1 +  + ut, which by backwards substitution$0

yields for t > 0,  Thus now the distribution of yt, t > 0, conditional on y0, y-1,yt ' y0 % $0t % 't
j'1uj .

y-2,..., is  so that yt has no longer a vanishing memory: a shock in y0 will have aN(y0 % $0t , F2t) ,

persistent effect on yt. The former intercept  now becomes the drift parameter of the unit root process$0

involved. 

It is important to distinguish stationary processes from unit root processes, for the following reasons:

1. Regressions involving unit root processes may give spurious results. If yt and x t are mutually

independent unit root processes, i.e. yt is independent of x t-j for all t and j, then the OLS regression of yt

on x t for t = 1,..,n, with or without an intercept, will yield a significant estimate of the slope parameter if n

is large: the absolute value of the t-value of the slope converges in probability to  if n . We then4 6 4

might conclude that yt depends on x t, while in reality the yt's are independent of the x t's. This phenomenon

is called spurious regression.2 One should therefore be very cautious when conducting standard

econometric analysis using time series. If the time series involved are unit root processes, naive application

of regression analysis may yield nonsense results. 

2. For two or more unit root processes there may exist linear combinations which are stationary,

and these linear combinations may be interpreted as long-run relationships. This phenomenon is called

cointegration3, and plays a dominant role in modern empirical macroeconomic research. 

3. Tests of parameter restrictions in (auto)regressions involving unit root processes have in general



     4  The reason for changing the subscript of  from 1 in (1) to 0 is to indicate the number of other"
parameters at the right-hand side of the equation. See also (39). 
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different null distributions than in the case of stationary processes. In particular, if one would test the null

hypothesis  = 1 in the above AR(1) model using the usual t-test, the null distribution involved is non-$1

normal. Therefore, naive application of classical inference may give incorrectly results. We will demonstrate

the latter first, and in the process derive the Dickey-Fuller test [see Fuller (1996), Dickey and Fuller (1979,

1981)], by rewriting the AR(1) model as

)yt ' yt&yt&1 ' $0 % ($1&1)yt&1 % ut ' "0 % "1yt&1 % ut , (1)

say, estimating the parameter  by OLS on the basis of observations y0,y1,...,yn, and then testing the unit"1

root hypothesis  = 0 against the stationarity hypothesis -2 <  < 0, using the t-value of . In Section"1 "1 "1

2 we consider the case where  = 0 under both the unit root hypothesis and the stationarity hypothesis."0

In Section 3 we consider the case where  = 0 under the unit root hypothesis but not under the"0

stationarity hypothesis. 

The assumption that the error process ut is independent is quite unrealistic for macroeconomic time

series. Therefore, in Sections 4 and 5 this assumption will be relaxed, and two types of appropriate unit

root tests will be discussed: the Augmented Dickey-Fuller (ADF) tests, and the Phillips-Perron (PP) tests.

In Section 6 we consider the unit root with drift case, and we discuss the ADF and PP tests of the

unit root with drift hypothesis, against the alternative of trend stationarity.

Finally, Section 7 contains some concluding remarks.

2. The Gaussian AR(1) case without intercept: Part 1

2.1 Introduction

Consider the AR(1) model without intercept, rewritten as4

)yt ' "0yt&1 % u t, where ut is i.i.d. N(0 ,F2) , (2)

and yt is observed for t = 1,2,..,n. For convenience I will assume that

yt ' 0 for t # 0 . (3)
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This assumption is, of course, quite unrealistic, but is made for the sake of transparency of the argument,

and will appear to be innocent. 

The OLS estimator of  is:"0

"̂0 '

j
n

t'1
yt&1)yt

j
n

t'1
y 2

t&1

' "0 %

j
n

t'1
yt&1u t

j
n

t'1
y 2

t&1

. (4)

If -2 <  < 0, so that yt is stationary, then it is a standard exercise to verify that  "0 n("̂0&"0)

 in distribution. On the other hand, if  = 0, so that yt is a unit root process, this result6 N(0 ,1&(1%"0)2) "0

reads:  in distr., hence  = 0. However, we show now that a much strongern"̂0 6 N(0,0) plimn64 n"̂0

result holds, namely that  converges in distribution, but the limiting distribution involved is non-D̂0 / n"̂0

normal. Thus, the presence of a unit root is actually advantageous for the efficiency of the OLS estimator

. The main problem is that the t-test of the null hypothesis that  = 0 has no longer a standard normal"̂0 "0

asymptotic null distribution, so that we cannot test for a unit root using standard methods. The same applies

to more general unit root processes. 

In the unit root case under review we have  for t > 0,yt ' yt&1 % ut ' y0 % 't
j'1u j ' 't

j'1uj

where the last equality involved is due to assumption (3). Denoting

St ' 0 for t # 0, St ' j
t

j'1
uj for t $ 1 . (5)

and , it follows thatF̂2 ' (1/n)'n
t'1u 2

t

1
nj

n

t'1
u tyt&1 '

1
2nj

n

t'1
(ut%yt&1 )2 & y 2

t&1 & u 2
t '

1
2

1
nj

n

t'1
y 2

t &
1
nj

n

t'1
y 2

t&1 &
1
nj

n

t'1
u 2

t

'
1
2

( y 2
n /n & y 2

0 /n & F̂2 ) '
1
2

( S 2
n /n & F̂2 ),

(6)

and similarly,

1

n 2j
n

t'1
y 2

t&1 '
1
nj

n

t'1
(St&1 / n )2 . (7)



     5  Recall that the notation op(an), with an a deterministic sequence, stands for a sequence of random
variables or vectors xn, say, such that plimn64xn/an = 0, and that the notation Op(an) stands for a
sequence of random variables or vectors xn such that xn/an is stochastically bounded: œg 0 (0,1)

. Also, recall that convergence in distribution implies› M 0 (0,4) : supn$1P(*xn/an* > M) < g

stochastic boundedness.
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Next, let 

Wn(x) ' S[nx]/(F n) for x 0 [0,1], (8)

where [z] means truncation to the nearest integer  z. Then we have5:#

1
nj

n

t'1
u tyt&1 '

1
2

(F2Wn(1)2 & F̂2 )

'
1
2

(F2Wn(1)2 & F2 & Op(1/ n ) ) ' F2 1
2

(Wn(1)2 & 1 ) % op(1) ,

(9)

and

1

n 2j
n

t'1
y 2

t&1 '
1
nj

n

t'1
F2Wn((t&1)/n)2 ' mWn(x)2dx , (10)

where the integral in (10) and below, unless otherwise indicated, is taken over the unit interval [0,1]. The

last equality in (9) follows from the law of large numbers, by which . The last equalityF̂2
' F2

% Op(1/ n)

in (10) follows from the fact that for any power m,

mWn(x)mdx ' m
1

0

Wn(x)mdx '
1
nm

n

0

Wn(z/n)mdz '
1
nj

n

t'1 m
t

t&1

Wn(z/n)m dz

'
1

n 1%m /2j
n

t'1 m
t

t&1

(S[z] /F )mdz '
1

n 1%m /2j
n

t'1
(St&1 /F )m .

(11)

Moreover, observe from (11), with m = 1, that  is a linear combination of i.i.d. standard normal*Wn(x)dx

random variables, and therefore normal itself, with zero mean and variance

E mWn(x)dx 2
' mmE Wn(x)Wn(y) dxdy ' mm

min[nx],[ny]
n

dxdy 6 mmmin(x,y)dxdy '
1
3

. (12)

Thus,  N(0,1/3)  in distribution.  Since ,  it follows therefore that *Wn(x)dx 6 *Wn(x)2dx $ ( *Wn(x)dx )2 *Wn(x)2dx



     6    The Borel sets in  are the members of the smallest F-algebra containing the collection , say,ú Œ
of all half-open intervals (-4,x], . Equivalently, we may also define the Borel sets as thex 0 ú
members of the smallest F-algebra containing the collection of open subsets of . A collection  ofú ö
subsets of a set  is called a F-algebra if the following three conditions hold: ;  implies thatS S0ö A0ö
its complement also belongs to :  (hence, the empty set  belongs to ); , n =ö S\A0ö i ö An0ö
1,2,3,.., implies . The smallest F-algebra containing a  collection  of sets is the^4

n'1An0ö Œ
intersection of all F-algebras containing the collection .Œ
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is bounded away from zero:

mWn(x)2dx &1
' Op(1) . (13)

Combining (9), (10), and (13), we now have:

D̂0 / n"̂0 '
(1/n)'n

t'1utyt&1

(1/n 2)'n
t'1y 2

t&1

'
(1/2)(Wn(1)2

& 1 ) % op(1)

*Wn(x)2dx
'

1
2

Wn(1)2
& 1

*Wn(x)2dx
% op(1). (14)

This result does not depend on assumption (3).

2.2 Weak convergence of random functions

In order to establish the limiting distribution of (14), and other asymptotic results, we need to extend

the well-known concept of convergence in distribution of random variables to convergence in distribution

of a sequence of random functions. Recall that for random variables Xn, X,  Xn 6 X in distribution if the

distribution function Fn(x) of Xn converges pointwise to the distribution function F(x) of X in the continuity

points of F(x). Moreover, recall that distribution functions are uniquely associated to probability measures

on the Borel sets6, i.e., there exists one and only one probability measure Fn(B) on the Borel sets B such

that Fn(x) = Fn((-4,x]), and similarly, F(x) is uniquely associated to a probability measure F on the Borel

sets, such that F(x) = F((-4,x]). The statement Xn 6 X in distribution can now be expressed in terms of

the probability measures Fn and F: Fn(B) 6 F(B) for all Borel sets B with boundary *B satisfying F(*B)

= 0. 

In order to extend the latter to random functions, we need to define Borel sets of functions. For our

purpose it suffices to define Borel sets of continuous functions on [0,1]. Let C[0,1] be the set of all
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continuous functions on the unit interval [0,1]. Define the distance between two functions f and g in C[0,1]

by the sup-norm: . Endowed with this norm, the set C[0,1] becomes aD(f,g) ' sup0#x#1*f(x)&g(x)*

metric space, for which we can define open subsets, similarly to the concept of an open subset of : A setú

B in C[0,1] is open if for each function f in B we can find an g > 0 such that

. Now the smallest F-algebra of subsets of C[0,1] containing the{g 0 C[0,1] : D(g , f) < g} d B

collection of all open subsets of C[0,1] is just the collection of Borel sets of functions in C[0,1].

A random element of C[0,1] is a random function W(x), say, on [0,1], which is continuous with

probability 1. For such a random element W, say, we can define a probability measure F on the Borel sets

B in C[0,1] by F(B) = P(W 0 B). Now a sequence Wn
* of random elements of C[0,1], with corresponding

probability measures Fn, is said to converge weakly to a random element W of C[0,1], with corresponding

probability measure F, if for each Borel set B in C[0,1] with boundary *B satisfying F(*B) = 0, we have

Fn(B) 6 F(B). This is usually denoted by: Wn
* Y W (on [0,1]). Thus, weak convergence is the extension to

random functions of the concept of convergence in distribution.

In order to verify that Wn
* Y W on [0,1], we have to verify two conditions. See Billingsley (1963).

First, we have to verify that the finite distributions of Wn
* converge to the corresponding finite distributions

of W, i.e., for arbitrary points x1,..,xm in [0,1], (Wn
*(x1),...,Wn

*(xm)) Y (W(x1),...,W(xm)) in distribution.

Second, we have to verify that Wn
* is tight. Tightness is the extension of the concept of stochastic

boundedness to random functions: for each g in (0,1) there exists a compact (Borel) set K in C[0,1] such

that Fn(K) > 1-g for n = 1,2.,... Since convergence in distribution implies stochastic boundedness, we

cannot have convergence in distribution without stochastic boundedness, and the same applies to weak

convergence: tightness is a necessary condition for weak convergence.

As is well-known, if Xn 6 X in distribution, and M is a continuous mapping from the support of X

into a Euclidean space, then by Slutsky's theorem, M(Xn) 6 M(X) in distribution. A similar result holds for

weak convergence, which is known as the continuous mapping theorem: If M is a continuous mapping from

C[0,1] into a Euclidean space, then Wn
* Y W implies M(Wn

*) 6 M(W) in distribution. For example, the

integral  with  is a continuous mapping from C[0,1] into the real line, henceM(f) ' *f(x)2dx f 0 C[0,1]

Wn
* Y W implies that    in distribution.*W(

n (x)2dx 6 *W(x)2dx

The random function Wn defined by (8) is a step function on [0,1], and therefore not a random



     7  Under the assumption that et is i.i.d. N(0,1),

P max1#t#n*et* # g n ' 1 & 2m
4

g n

exp(&x 2/2)

2B
dx

n

6 1

for arbitrary  > 0.g

8

element of C[0,1]. However, the steps involved can be smoothed by piecewise linear interpolation, yielding

a random element Wn
* of C[0,1] such that  = op(1). The finite distributions ofsup0#x#1*W

(

n (x) & Wn(x)*

Wn
* are therefore asymptotically the same as the finite distributions of Wn. In order to analyze the latter,

redefine Wn as

Wn(x) '
1

n
j
[nx]

t'1
et for x 0 [n &1,1] , Wn(x) ' 0 for x 0 [0,n &1) , et is i.i.d. N(0,1). (15)

(Thus, et = ut/F), and let

W(

n (x) ' Wn
t&1
n

% nx & (t&1) Wn
t
n

& Wn
t&1
n

' Wn(x) % nx & (t&1)
et

n
for x 0 t&1

n
, t

n
, t ' 1,...,n, W (

n (0) ' 0 .

(16)

Then 

sup
0#x#1

*W(

n (x) & Wn(x)* #
max1#t#n*et*

n
' op(1) . (17)

The latter conclusion is not too hard an exercise.7 

It is easy to verify that for fixed  we have0 # x < y # 1

Wn(x)

Wn(y) & Wn(x)
'

1

n

'[nx]
t'1 et

'[ny]
t'[nx]%1et

- N2

0

0
,

[nx]
n

0

0 [ny]&[nx]
n

6
W(x)

W(y)&W(x)
in distr. ,

(18)
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where W(x) is a random function on [0,1] such that for ,0 # x < y # 1

W(x)

W(y) & W(x)
- N2

0

0
,

x 0

0 y&x
. (19)

This random function W(x) is called a standard Wiener process, or Brownian motion. Similarly, for

arbitrary fixed x,y in [0,1],

Wn(x)

Wn(y)
6

W(x)

W(y)
- N2

0

0
,

x min(x,y)

min(x,y) y
in distr. (20)

and it follows from (17) that the same applies to Wn
*. Therefore, the finite distributions of Wn

* converge to

the corresponding finite distributions of W. Also, it can be shown that Wn
* is tight [see Billingsley (1963)].

Hence, Wn
* Y W, and by the continuous mapping theorem,

(W (

n (1) ,mW(

n (x)dx ,mW(

n (x)2dx ,mxW (

n (x)dx)T 6 (W(1) ,mW(x)dx ,mW(x)2dx ,mxW(x)dx)T (21)

in distr. This result, together with (17), implies that:

LEMMA 1. For Wn defined by (15),  converges jointly(Wn(1) , *Wn(x)dx , *Wn(x)2dx , *xWn(x)dx)T

in distribution to .  (W(1) ,*W(x)dx , *W(x)2dx , *xW(x)dx)T

2.3 Asymptotic null distributions

Using Lemma 1, it follows now straightforwardly from (14) that:

D̂0 / n"̂0 6 D0 / 1
2

W(1)2 & 1

mW(x)2dx
in distr. (22)



     8  This density is actually a kernel estimate of the density of  on the basis of 10,000  replicationsD̂0

of a Gaussian random walk   yt = yt-1 + et, t = 0,1,...,1000, yt = 0 for t < 0. The kernel involved  is the
standard normal density, and the bandwidth h = c.s10000-1/5, where s is the sample standard error, and
c = 1. The scale factor c has been chosen by experimenting with various values. The value c = 1 is
about the smallest one for which the kernel estimate remains a smooth curve; for smaller values of c the
kernel estimate becomes wobbly. The densities of , , , and  in Figures 2-6 have beenD1 J1 D2 J2

constructed in the same way, with c = 1.

10

Figure 1: Density of  D0

The density8 of the distribution of  is displayed in Figure 1, which clearly shows that theD0

distribution involved is non-normal and asymmetric, with a fat left tail.

Also the limiting distribution of the usual t-test statistic of the null hypothesis  = 0 is non-normal."0

First, observe that due to (10), (22), and Lemma 1,  the residual sum of squares (RSS) of the regression

(2) under the unit root hypothesis is:

RSS ' j
n

t'1
()yt & "̂0yt&1 )2 ' j

n

t'1
u 2

t & (n"̂0)2(1/n 2)j
n

t'1
y 2

t&1 ' j
n

t'1
u 2

t % Op(1). (23)

Hence  + Op(1/n). Therefore, similarly to (14) and (22), the Dickey-Fuller t-statistic RSS/(n&1) ' F2 Ĵ0

involved satisfies:

Ĵ0 / n"̂0

(1/n 2)'n
t'1y 2

t&1

RSS/(n&1)
'

(Wn(1)2 & 1 )/2

*Wn(x)2dx
% op(1) 6 J0 / (W(1)2

& 1 )/2

*W(x)2dx
in distr. (24)
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Figure 2: Density of  compared with the standard normal density (dashed curve)J0

Note that the unit root tests based on the statistics  and  are left-sided: under theD̂0 / n"̂0 Ĵ0

alternative of stationarity, -2 <  < 0, we have , hence  in probability at"0 plimn64"̂0 ' "0 < 0 D̂0 6 &4

rate n, and  in probability at rate .Ĵ0 6 &4 n

The non-normality of the limiting distributions  and  is no problem, though, as long one isD0 J0

aware of it. The distributions involved are free of nuisance parameters, and asymptotic critical values of the

unit root tests  and  can easily be tabulated, using Monte Carlo simulation. In particular, D̂0 Ĵ0

P(J0 # &1.95) ' 0.05, P(J0 # &1.62) ' 0.10 , (25)

(see Fuller 1996, p. 642), whereas for a standard normal random variable e, 

P(e # &1.64) ' 0.05, P(e # &1.28) ' 0.10 (26)

In Figure 2 the density of  is compared with the standard normal density. We see that the densityJ0

of  is shifted to left of the standard normal density, which causes the difference between (25) and (26).J0

Using the left-sided standard normal test would result in a type 1 error of about twice the size: compare

(26) with

P(J0 # &1.64) . 0.09, P(J0 # &1.28) . 0.18 (27)
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3. The Gaussian AR(1) case with intercept under the alternative of stationarity

If under the stationarity hypothesis the AR(1) process has an intercept, but not under the unit root

hypothesis, the AR(1) model that covers both the null and the alternative is:

)yt ' "0 % "1yt&1 % ut , where "0 ' &c"1 . (28)

If -2 <  < 0, then the process yt is stationary around the constant c:"1

yt ' &c"1 % (1%"1)yt&1 % ut ' j
4

j'0
(1%"1)j (&c"1 % ut&j ) ' c % j

4

j'0
(1%"1)jut&j, (29)

hence , , andE(y 2
t ) ' c 2 % (1&(1%"1)2)&1F2 E(ytyt&1) ' c 2 % (1%"1)(1&(1%"1)2)&1F2

plim
n64

"̂0 '
E(ytyt&1 )

E(y 2
t&1 )

& 1 '
"1

1 % (c/F)2(1&(1%"1)2)
, (30)

which approaches zero if . Therefore, the power of the test  will be low if the variance ofc 2/F2 6 4 D̂0

ut is small relative to [E(yt)]2. The same applies to the t-test . We should therefore use the OLSĴ0

estimator of  and the corresponding t-value in the regression of  on yt-1 with intercept."1 )yt

Denoting  the OLS estimator of  is:ȳ
&1 ' (1/n)'n

t'1yt&1 , ū ' (1/n)'n
t'1u t , "1

"̂1 ' "1 %
'n

t'1utyt&1 & n ū ȳ
&1

'n
t'1y 2

t&1 & n ȳ 2
&1

. (31)

Since by (8), , and under the null hypothesis  = 0 and the maintained hypothesis (3),nū ' FWn(1) "1

ȳ
&1/ n '

1

n n
j

n

t'1
St&1 ' FmWn(x)dx, (32)

where the last equality follows from (11) with m = 1, it follows from Lemma 1, similarly to (14) and (22)

that



13

Figure 3: Density of D1

D̂1 / n"̂1 '
(1/2)(Wn(1)2 & 1t) & Wn(1) *Wn(x)dx

*Wn(x)2dx & ( *Wn(x)dx )2
% op(1)

6 D1 / (1/2)(W(1)2 & 1) & W(1) *W(x)dx

*W(x)2dx & ( *W(x)dx )2
in distr.

(33)

The density of  is displayed in Figure 3. Comparing Figures 1 and 3, we see that the density of D1 D1

is farther left of zero than the density of , and has a fatter left tail.D0

As to the t-value  of  in this case, it follows similarly to (24) and (33) that under the unit rootĴ1 "1

hypothesis,

Ĵ1 6 J1 / (1/2)(W(1)2 & 1) & W(1) *W(x)dx

*W(x)2dx & ( *W(x)dx )2
in distr. (34)

Again, the results (33) and (34) do not hinge on assumption (3).

Note that  and  can be written asD1 J1

D1 '
1
2

W((1)2
&1

*W ((x)2dx
, J1 '

1
2

W ((1)2
&1

*W ((x)2dx
,
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Figure 4: Density of  compared with the standard normal density (dashed curve)J1

where W*(x) = W(x) -  is a demeaned Wiener process. Therefore, effectively the tests  and *W(z)dz D̂1 Ĵ1

are the same as the Dickey-Fuller tests  and , respectively, applied to demeaned time series.D̂0 Ĵ0

The distribution of  is even farther away from the normal distribution than the distribution of ,J1 J0

as follows from comparison of (26) with

P(J1 # &2.86) ' 0.05, P(J1 # &2.57) ' 0.1 (35)

See again Fuller (1996, p. 642). This is corroborated by Figure 4, where the density of  is comparedJ1

with the standard normal density. 

We see that the density of  is shifted even more to the left of the standard normal density than in FigureJ1

2, hence the left-sided standard normal test would result in a dramatically higher type 1 error than in the

case without an intercept: compare

P(J1 # &1.64) . 0.46, P(J1 # &1.28) . 0.64 (36)

with (26) and (27).

4. General AR processes with a unit root, and the Augmented Dickey-Fuller test

The assumption made in Sections 2 and 3 that the data-generating process is an AR(1) process,

is not very realistic for macroeconomic time series, because even after differencing most of these time series

will still display a fair amount of dependence. Therefore we now consider an AR(p) process:



     9  To see this, write 1 -  = , so that 1 -  = , where'p
j'1$jL

j Ap
j'1(1&DjL) 'p

j'1$j Ap
j'1(1&Dj)

the ’s are the roots of the lag polynomial involved. If root  is real valued, then the stationarity1/Dj 1/Dj

condition implies -1 <  < 1, so that 1 -  > 0. If some roots are complex-valued, then these rootsDj Dj

come in complex-conjugate pairs, say  = a+i.b and  = a-i.b, hence  =1/D1 1/D2 (1&D1)(1&D2)

 > 0.(1/D1&1)(1/D2&1)D1D2 ' ((a&1)2%b 2)/(a 2%b2)

     10  In the sequel we shall suppress the statement "without drift". A unit root process is from now on
by default a unit root without drift process, except if otherwise indicated.

15

yt ' $0 % 'p
j'1$jyt&j % ut , u t - i.i.d. N(0 ,F2) (37)

By recursively replacing  by  for j = 0,1,..,p-1, this model can be written asyt&j )yt&j % yt&1&j

)yt ' "0 % 'p&1
j'1 "j)yt&j % "pyt&p % ut , ut - i.i.d. N(0,F2) , (38)

where . Alternatively and equivalently, by recursively replacing"0 ' $0 , "j ' 'j
i'1$i & 1 , j ' 1,..,p .

 by  for j = 0,1,..,p-1, model (37) can also be written asyt&p%j yt&p%j%1 & )yt&p%j%1

)yt ' "0 % 'p&1
j'1 "j)yt&j % "pyt&1 % u t , ut - i.i.d. N(0,F2) , (39)

where now "j ' &'j
i'1$i , j ' 1,..,p&1 , "p ' 'p

i'1$i & 1 .

If the AP(p) process (37) has a unit root, then clearly  = 0 in (38) and (39). If the process (37)"p

is stationary, i.e., all the roots of the lag polynomial 1 -  lie outside the complex unit circle, then 'p
j'1$jL

j "p

=  - 1 < 0 in (38) and (39).9  The unit root hypothesis can therefore be tested by testing the null'p
j'1$j

hypothesis  = 0 against the alternative hypothesis  < 0, using the t-value  of  in model (38) or"p "p t̂p "p

model (39). This test is known as the Augmented Dickey-Fuller (ADF) tests.

We will show now for the case p = 2, with intercept under the alternative, i.e., 

)yt ' "0 %"1)yt&1 % "2yt&1 % ut , ut - i.i.d. N(0 ,F2) , t ' 1,...,n . (40)

that under the unit root (without drift10) hypothesis the limiting distribution of  is proportional to then"̂p

limiting distribution in (33), and the limiting distribution of  is the same as in (34).  t̂p

Under the unit root hypothesis, i.e., , we have"0 ' "2 ' 0 , *"1* < 1
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)yt ' "1)yt&1 % ut ' (1&"1L)&1u t ' (1&"1)&1ut % [(1&"1L)&1&(1&"1)&1]ut

' (1&"1)&1u t & "1(1&"1)&1(1&"1L)&1(1&L)u t ' (1&"1)&1ut % vt & vt&1 ,
(41)

say, where  is a stationary process. Hence:vt ' &"1(1&"1)&1(1&"1L)&1ut ' &"1(1&"1)&1'4
j'0"

j
1ut&j

yt / n ' y0 / n % v t / n & v0 / n % (1&"1)&1(1/ n)'t
j'1uj

' y0/ n % vt / n & v0 / n % F(1&"1)&1Wn(t/n)
(42)

and therefore, similarly to (6), (7), and (32), it follows that

(1/n)j
n

t&1
yt&1 / n ' F(1&"1)&1mWn(x)dx % op(1) , (43)

(1/n 2)j
n

t&1
y 2

t&1 ' F2(1&"1)&2mWn(x)2dx % op(1) , (44)

(1/n)j
n

t'1
utyt&1 ' (1/n)j

n

t'1
u t (1&"1)&1j

t&1

j'1
uj % y0 % vt&1 & v0

' (1&"1)&1(1/n)j
n

t'1
u tj

t&1

j'1
uj % (y0&v0)(1/n)j

n

t'1
u t % (1/n)j

n

t'1
u tvt&1

'
(1&"1)&1F2

2
Wn(1)2

& 1 % op(1)

(45)

Moreover,

plim
n64

(1/n)j
n

t'1
)yt&1 ' E ()yt ) ' 0 , plim

n64
(1/n)j

n

t'1
()yt&1 )2 ' E ()yt )2 ' F2/(1&"2

1) (46)

and
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(1/n)j
n

t'1
yt&1)yt&1 ' (1/n)j

n

t'1
()yt&1 )2 % (1/n)j

n

t'1
yt&2)yt&1

' (1/n)j
n

t'1
()yt&1 )2

%
1
2

(1/n)j
n

t'1
y 2

t&1 & (1/n)j
n

t'1
y 2

t&2 & (1/n)j
n

t'1
()yt&1 )2

'
1
2

(1/n)j
n

t'1
()yt&1 )2

% y 2
n&1 /n & y 2

&1 /n '
1
2
F2/(1&"2

1) % F2(1&"1)&2Wn(1)2
% op(1)

(47)

hence 

(1/n)j
n

t'1
yt&1)yt&1 / n ' Op(1/ n) . (48)

Next, let  be the OLS estimator of . Under the unit root"̂ ' ("̂0 , "̂1 , "̂2)T " ' ("0 ,"1 ,"2)T

hypothesis we have

n"̂0

n("̂1&"1)

n"̂2

' nDnÊ
&1
xx Êxu ' D &1

n ÊxxD
&1
n

&1
nD&1

n Êxu , (49)

where

Dn '

1 0 0

0 1 0

0 0 n

, (50)

Êxx'

1 (1/n)'n
t'1)yt&1 (1/n)'n

t'1yt&1

(1/n)'n
t'1)yt&1 (1/n)'n

t'1 ()yt&1 )2 (1/n)'n
t'1yt&1)yt&1

(1/n)'n
t'1yt&1 (1/n)'n

t'1yt&1)yt&1 (1/n)'n
t'1y 2

t&1

, (51)

and

Êxu '

(1/n)'n
t'1ut

(1/n)'n
t&1ut)yt&1

(1/n)'n
t'1u tyt&1

. (52)
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It follows from (43) through (48) that

D &1
n ÊxxD

&1
n '

1 0 F(1&"1)&1*Wn(x)dx

0 F2/(1&"2
1) 0

F(1&"1)&1*Wn(x)dx 0 F2(1&"1)&2*Wn(x)2dx

% op(1) , (53)

hence, using the easy equality

1 0 a

0 b 0

a 0 c

&1

'
1

c&a 2

c 0 &a

0 b &1(c&a 2) 0

&a 0 1

,

it follows that

D&1
n ÊxxD

&1
n

&1
'

F&2(1&"1)2

*Wn(x)2dx&( *Wn(x)dx )2

×

F2(1&"1)&2*Wn(x)2dx 0 &F(1&"1)&1*Wn(x)dx

0
*Wn(x)2dx&( *Wn(x)dx )

(1&"2
1)(1&"1)2

0

&F(1&"1)&1*Wn(x)dx 0 1

% op(1).

(54)

Moreover, it follows from (8) and (45) that

nD &1
n Êxu '

FWn(1)

(1/ n)'n
t'1ut)yt&1

F2(1&"1)&2 (Wn(1)2&1 )/2

% op(1) . (55)

Combining (49), (54) and (55), and using Lemma 1, it follows now easily that

n"̂2

1&"1

'

1
2

(Wn(1)2
& 1 ) & Wn(1) *Wn(x)dx

*Wn(x)2dx & ( *Wn(x)dx )2
% op(1) 6 D1 in distr. , (56)



     11  For example, let p = 2 in (37) and (39). Then , hence if  then ."1 ' &$1 $1 < &1 1 & "1 < 0

In order to show that  can be compatible with stationarity, assume that , so that the$1 < &1 $2
1 ' 4$2

lag polynomial  has two common roots  Then the AR(2) process involved1 & $1L & $2L 2 &2/*$1* .

is stationary for .&2 < $1 < &1
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where  is defined in (33). Along the same lines it can be shown:D1

THEOREM 1. Let yt be generated by (39), and let  be the OLS estimator of . Under the unit"̂p "p

root hypothesis, i.e.,  = 0 and  = 0, the following hold: If model (39) is estimated without"p "0

intercept, then  in distr., where  is defined in (22). If model (39) is estimatedn"̂p 6 (1&'p&1
j'1 "j)D0 D0

with intercept, then  in distr., where  is defined in (33). Moreover, under then"̂p 6 (1&'p&1
j'1 "j)D1 D1

stationarity hypothesis,  < 0, hence , provided that in the caseplimn64"̂p ' "p plimn64n"̂p ' &4

where the model is estimated without intercept this intercept, , is indeed zero."0

Due to the factor  in the limiting distribution of  under the unit root hypothesis, we1 & 'p&1
j'1 "j n"̂p

cannot use  directly as a unit root test. However, it can be shown that under the unit root hypothesisn"̂p

this factor can be consistently estimated by , hence we can use  as a unit1 & 'p&1
j'1 "̂j n"̂p /*1 & 'p&1

j'1 "̂j*

root test statistic, with limiting distribution given by (22) or (33). The reason for the absolute value is that

under the alternative of stationarity the probability limit of  may be negative11.1 & 'p&1
j'1 "̂j

The actual ADF test is based on the t-value of , because the factor   will cancel"p 1 & 'p&1
j'1 "j

out in the limiting distribution involved. We will show this for the AR(2) case.

First, it is not too hard to verify from (43) through (48), and (54), that the residual sum of squares

RSS of the regression (40) satisfies:

RSS ' j
n

t'1
u 2

t % Op(1). (57)

This result carries over to the general AR(p) case, and also holds under the stationarity hypothesis.

Moreover, under the unit root hypothesis it follows easily from (54) and (57) that the OLS standard error,

s2, say, of  in model (40) satisfies:"̂2



20

ns2 '
RSS/(n&3)F&2(1&"1)2

*Wn(x)2dx&( *Wn(x)dx )2
% op(1) '

1&"1

*Wn(x)2dx&( *Wn(x)dx )2
% op(1), (58)

hence it follows from (56) that the t-value  of  in model (40) satisfies (34). Again, this result carriest̂2 "̂2

over to the general AR(p) case:

THEOREM 2. Let yt be generated by (39), and let  be t-value of the OLS estimator of . Undert̂p "p

the unit root hypothesis, i.e.,  = 0 and  = 0, the following hold: If model (39) is estimated"p "0

without intercept, then  in distr., where  is defined in (24). If model (39) is estimated witht̂p 6 J0 J0

intercept, then  in distr., where   is defined in (34). Moreover, under the stationarityt̂p 6 J1 J1

hypothesis,  < 0, hence , provided that in the case where the model isplimn64t̂p / n plimn64t̂p ' &4

estimated without intercept this intercept, , is indeed zero."0

5. ARIMA processes, and the Phillips-Perron test

The ADF test requires that the order p of the AR model involved is finite, and correctly specified,

i.e., the specified order should not be smaller than the actual order. In order to analyze what happens if p

is misspecified, suppose that the actual data-generating process is given by (39) with  = 0 and p"0 ' "2

> 1, and that the unit root hypothesis is tested on the basis of the assumption that p = 1. Denoting  et = ut/F,

model (39) with  = 0 can be rewritten as"0 ' "2

)yt ' ('4
j'0(jL

j )et ' ((L)et , et - i.i.d. N(0,1) , (59)

where . This data-generating process can be nested in the((L) ' "(L)&1, with "(L) ' 1 & 'p&1
j'1 "jL

j

auxiliary model

)yt ' "0 % "1yt&1 % ut , ut ' ((L)et , et - i.i.d. N(0,1). (60)

We will now determine the limiting distribution of the OLS estimate  and corresponding t-value  of"̂1 t̂1

the parameter  in the regression (60), derived under the assumption that the ut's are independent, while"1

in reality (59) holds.

Similarly to (41)  we can write  where )yt ' ((1)et % vt & vt&1 , vt ' [(((L)&((1))/(1&L)]et
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is a stationary process. The latter follows from the fact that by construction the lag polynomial ((L)&((1)

has a unit root, and therefore contains a factor 1-L. Next, redefining Wn(x) as

Wn(x) ' (1/ n)j
[nx]

t'1
et if x 0 [n &1 , 1] , Wn(x) ' 0 if x 0 [0,n &1) , (61)

it follows similarly to (42) that

yt / n ' y0 / n % vt / n & v0 / n % ((1)Wn(t/n) , (62)

hence 

yn / n ' ((1)Wn(1) % Op(1/ n) , (63)

and similarly to (43) and (44) that

ȳ
&1 / n '

1
nj

n

t'1
yt&1 / n ' ((1)mWn(x)dx % op(1) , (64)

and

1

n 2j
n

t'1
y 2

t&1 ' ((1)2mWn(x)2dx % op(1) . (65)

Moreover, similarly to (6) we have

1
nj

n

t'1
()yt)yt&1 '

1
2

y 2
n /n & y 2

0 /n &
1
nj

n

t'1
()yt )

2

'
1
2

((1)2Wn(1)2
&

1
nj

n

t'1
(((L)et )

2
% op(1) ' ((1)2 1

2
(Wn(1)&8 ) % op(1) ,

(66)

where

8 '
E (((L)et)

2

((1)2
'

'4
j'0(

2
j

('4
j'0(j )

2
$ 1. (67)

The inequality involved is due to the fact that . Therefore, (33) now'4
j'0((j&((1))2 ' '4

j'0(
2
j & ((1)2

becomes:
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n"̂1 '
(1/2)(Wn(1)2 & 8 ) & Wn(1) *Wn(x)dx

*Wn(x)2dx & ( *Wn(x)dx )2
% op(1) 6 D1 %

0.5(1&8)

*W(x)2dx&( *W(x)dx )2 (68)

in distr., and (34) becomes:

t̂1 '
(1/2)(Wn(1)2 & 8 ) & Wn(1) *Wn(x)dx

*Wn(x)2dx & ( *Wn(x)dx )2
% op(1) 6 J1 %

0.5(1&8)

*W(x)2dx&( *W(x)dx t)2
(69)

in distr. These results carry straightforwardly over to the case where the actual data-generating process is

an ARIMA process , simply by redefining . "(L))yt ' $(L)et ((L) ' $(L)/"(L)

The parameter  is known as the long-run variance of ut = et: ((1)2 ((L)

F2
L ' lim

n64
var [ (1/ n)'n

t'1ut ] ' ((1)2
(70)

which in general is different from the variance of ut itself:

F2
u ' var(ut) ' E(u 2

t ) ' E ('4
j'0(jet&j)

2 ' '4
j'0(

2
j . (71)

If we would know  and , and thus , then it follows from (64), (65), and Lemma 1, thatF2
L F2

u 8 ' F2
u /F2

L

F2
L & F2

u

(1/n 2)'n
t'1 (yt&1&ȳ

&1 )2
6 1 & 8

*W(x)2dx & (*W(x)dx )2
in distr. (72)

It is an easy exercise to verify that this result also holds if we replace yt-1 by yt and  byȳ
&1

. Therefore it follows from (68) and (72) that, ȳ ' (1/n)'n
t'1yt

THEOREM 3. (Phillips-Perron test 1) Under the unit root hypothesis, and given consistent

estimators  and  of  and , respectively, we haveF̂2
L F̂2

u F2
L F2

u

Ẑ1 ' n "̂1 &
(F̂2

L&F̂
2
u)/2

(1/n)'n
t'1 (yt&ȳ )2

6 D1 in distr. (73)

This correction of (68) has been proposed by Phillips and Perron (1988) for particular estimators   andF̂2
L
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, following the approach of Phillips (1987) for the case where the intercept  in (60) is assumed to beF̂2
u "0

zero.

It is desirable to choose the estimators  and  such that under the stationarity alternative,F̂2
L F̂2

u

. We show now that this is the case if we choose plimn64Ẑ1 ' &4

F̂2
u '

1
nj

n

t'1
û 2

t , where û t ' )yt & "̂0 & "̂1yt&1 , (74)

and  such that  under the alternative of stationarity. F̂2
L F̄2

L ' plimn64F̂
2
L $ 0

First, it is easy to verify that  is consistent under the null hypothesis, by verifying that (57) stillF̂2
u

holds. Under stationarity we have  say,plimn64"̂1 ' cov(yt,yt&1) /var(yt) & 1 ' "(

1 ,

 say, and  say. Therefore, plimn64"̂0 ' &"(

1E(yt) ' "(

0 , plimn64F̂
2
u ' (1 & ("(

1%1)2 )var(yt) ' F2
(

,

plimn64Ẑ1 /n ' &0.5("( 2
1 % F̄2

L /var(yt) ) < 0 . (75)

Phillips and Perron (1988) propose to estimate the long-run variance by the Newey-West (1987)

estimator

F̂2
L ' F̂2

u % 2j
m

i'1
[1 & i/ (m%1)](1/n) j

n

t'i%1
ûtût&i, (76)

where  is defined in (74), and m converges to infinity with n at rate o(n1/4). Andrews (1991) has shownût

(and we will show it again along the lines in Bierens (1994)) that the rate o(n1/4) can be relaxed to o(n1/2).

The weights 1 - j/(m+1) guarantee that this estimator is always positive. The reason for the latter is the

following. Let  = ut for t = 1,..,n, and  = 0 for t < 1 and t > n. Then, u (

t u (

t

F̂(2
L / 1

n j
n%m

t'1

1

m%1
j
m

j'0
u (

t&j

2

'
1

m%1j
m

j'0

1
nj

n%m

t'1
u ( 2

t&j % 2 1
m%1j

m&1

j'0
j
m&j

i'1

1
n j

n%m

t'1
u (

t&j u (

t&j&i

'
1

m%1j
m

j'0

1
n j

n%m&j

t'1&j
u ( 2

t % 2 1
m%1 j

m&1

j'0
j
m&j

i'1

1
n j

n%m&j

t'1&j
u (

t u (

t& i

'
1
nj

n

t'1
u 2

t % 2 1
m%1 j

m&1

j'0
j
m&j

i'1

1
n j

n

t'i%1
u tut&i '

1
nj

n

t'1
u 2

t % 2 1
m%1j

m

i'1
(m%1&i)1

n j
n

t'i%1
ut ut&i

(77)
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is positive, and so is . Next, observe from (62) and (74) thatF̂2
L

û t ' ut & n"̂1((1)Wn(t/n) & "̂1v t % "̂1(v0&y0) & "̂0 . (78)

Since

   =  O(1),  E*(1/n)'n
t'1%iutWn((t&i)/n)* # (1/n)'n

t'1%iE(u 2
t ) (1/n)'n

t'1%iE(Wn((t&i)/n)2)

it follows that  = Op(1). Similarly,  = Op(1). Moreover, (1/n)'n
t'1%iutWn((t&i)/n) (1/n)'n

t'1%iut&iWn(t/n) "̂1

= Op(1/n), and similarly, it can be shown that . Therefore, it follows from (77) and (78)"̂0 ' Op(1/ n )

that

F̂2
L & F̂(2

L ' Op(1/n) % Op j
m

i'1
[1&i / (m%1)] / n ' Op(1/n) % Op(m/ n) . (79)

A similar result holds under the stationarity hypothesis. Moreover, substituting ut = et + v t - vt-1, andF2
L

denoting  = et,  = v t for t = 1,..,n,  =  = 0 for t < 1 and t > n, it is easy to verify that undere(

t v (

t v (

t e(

t

the unit root hypothesis,

F̂(2
L '

1
nj

n%m

t'1
FL

1

m%1
j
m

j'0
e(

t&j %
v (

t &v (

t&m

m%1

2

' F2
L

1
n j

n%m

t'1

1

m%1
j
m

j'0
e(

t&j

2

% 2FL
1
n j

n%m

t'1

1

m%1
j
m

j'0
e (

t&j

v (

t &v (

t&m

m%1

%
1
n j

n%m

t'1

v (

t &v (

t&m

m%1

2

' F2
L % Op ( m/n ) % Op (1/ m ) % Op(1/m) .

(80)

A similar result holds under the stationarity hypothesis. Thus:

THEOREM 4. Let m increase with n to infinity at rate o(n1/2). Then under both the unit root and

stationarity hypothesis, . Moreover, under the unit root hypothesis,plimn64 ( F̂2
L&F̂

(2
L ) ' 0

, and under the stationarity hypothesis,  > 0. Consequently, underplimn64F̂
(2
L ' F2

L plimn64F̂
(2
L

stationarity, the Phillips-Perron test satisfies  < 0.plimn64Ẑ1/n

 

Finally, note that the advantage of the PP test is that there is no need to specify the ARIMA
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process under the null hypothesis. It is in essence a nonparametric test. Of course, we still have to specify

the Newey-West truncation lag m as a function of n, but as long as m = o( ), this specification isn

asymptotically not critical. 

6. Unit root with drift versus trend stationarity

Most macroeconomic time series in (log) levels have an upwards sloping pattern. Therefore, if they

are (covariance) stationary, then they are stationary around a deterministic trend. If we would conduct the

ADF and PP tests in Sections 4 and 5 to a linear trend stationary process, we will likely accept the unit root

hypothesis, due to the following. Suppose we conduct the ADF test under the hypothesis p = 1 to the trend

stationary process yt = , where the ut's are i.i.d. N(0, ). It is a standard exercise to verify$0 % $1t % u t F2

that then  = 0, hence the ADF and PP tests in sections 4 and 5 have no power against linearplimn64n"̂1

trend stationarity!

Therefore, if one wishes to test the unit root hypothesis against linear trend stationarity, then a trend

term should be included in the auxiliary regressions (39) in the ADF case, and in (60) in the PP case: Thus

the ADF regression (39) now becomes

)yt ' "0 % 'p&1
j'1 "j)yt&1 % "pyt&1 % "p%1t % ut , ut - i.i.d. N(0 ,F2) (81)

where the null hypothesis of a unit root with drift corresponds to the hypothesis  =  = 0, and the"p "p%1

PP regression becomes:

)yt ' "0 % "1yt&1 % "2t % ut , ut ' ((L)et , et - i.i.d. N(0,1). (82)

The asymptotic null distributions of the ADF and PP tests for the case with drift are quite similar

to the ADF test without an intercept. The difference is that the Wiener process W(x) is replaced by the

detrended Wiener process:

W(((x) ' W(x) & 4mW(z)dz % 6mzW(z)dz % 6 mW(z)dz&2mzW(z)dz x

After some tedious but not too difficult calculations it can be shown that effectively the statistics 

 and  are asymptotically equivalent to the Dickey-Fuller tests statistics  and ,n"̂p /(1&'p
j'1"j) t̂p D̂0 Ĵ0

respectively, applied to detrended time series.
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Figure 5: Density of D2

THEOREM 5. Let yt be generated by (81), and let   and  be the OLS estimator and"̂p t̂p

corresponding t-value of . Under the unit root with drift hypothesis, i.e.,  =  = 0, we have"p "p "p%1

  in distr., wheren"̂p 6 (1&'p&1
j'1 "j)D2 and t̂p 6 J2

D2 '
1
2

W(((1) & 1

*W (((x)2dx
, J2 '

1
2

W(((1) & 1

*W(((x)2dx
.

Under the trend stationarity hypothesis,  < 0, hence  < 0. plimn64"̂p ' "p plimn64t̂p / n

The densities of  and  (the latter compared with the standard normal density), are displayedD2 J2

in Figures 5 and 6, respectively. Again, these densities are farther to the left, and heavier left-tailed, than

the corresponding densities displayed in Figures 1-4. The asymptotic 5% and 10% critical values of the

Dickey-Fuller t-test are:

P(J2 < &3.41) ' 0.05, P(J2 < &3.13) ' 0.10

Moreover, comparing (26) with

P(J2 # &1.64) . 0.77, P(J2 # &1.28) . 0.89 ,

we see that the standard normal tests at the 5% and 10% significance level would reject the correct   unit

root with drift hypothesis with probabilities of about 0.77 and 0.89, respectively!



27

Figure 6: Density of  compared with the standard normal density (dashed curve)J2

A similar result as in Theorem 5 can be derived for the PP test, on the basis of the OLS estimator

of  in, and the residuals  of, the auxiliary regression (82):"1 ût

THEOREM 6. (Phillips-Perron test 2) Let  be the residuals of the OLS regression of yt on t andr̂t

a constant, and let  and  be as before, with the 's the OLS residuals of the auxiliaryF̂2
u F̂2

L ût

regression (82). Under the unit root with drift hypothesis, 

Ẑ2 ' n "̂1 &
(F̂2

L&F̂
2
u)/2

(1/n)'n
t'1r̂ 2

t

6 D2 in distr., (83)

whereas under trend stationarity  < 0.plimn64Ẑ2 /n

7. Concluding remarks

In the discussion of the ADF test we have assumed that the lag length p of the auxiliary regression

(81) is fixed. It should be noted that we may choose p as a function of the length n of the time series

involved, similarly to the truncation width of the Newey-West estimator of the long-run variance in the

Phillips-Perron test. See Said and Dickey (1984). 

We have seen that the ADF and Phillips-Perron tests for a unit root against stationarity around a

constant have almost no power if the correct alternative is linear trend stationarity. However, the same may



     12  The most important difference with other econometric software packages is that EasyReg is free.
See footnote 2.  EasyReg also contains my own unit root tests, Bierens (1993,1997), Bierens and Guo
(1993), and the KPSS test.
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apply to the tests discussed in section 6 if the  alternative is trend stationarity with a broken trend. See

Perron (1988,1989,1990), Perron and Vogelsang (1992), and Zivot and Andrews (1992), among others.

All the tests discussed so far have the unit root as the null hypothesis, and (trend) stationarity as the

alternative. However, it is also possible to test the other way around. See Bierens and Guo (1993), and

Kwiatkowski et.al. (1992). The latter test is known as the KPSS test.

Finally, note that the ADF and Phillips-Perron tests can easily be conducted by various econometric

software packages, for example TSP,  EViews,  RATS, and EasyReg. 12

References

Andrews, D.W.K., 1991, Heteroskedasticity and autocorrelation consistent covariance matrix estimators,
Econometrica 59, 817-858.

Bierens, H.J., 1993, Higher order sample autocorrelations and the unit root hypothesis, Journal of
Econometrics 57, 137-160.

Bierens, H.J., 1997, Testing the unit root hypothesis against nonlinear trend stationarity, with an application
to the price level and interest rate in the U.S, Journal of Econometrics 81, 29-64.

Bierens, H.J., 1994, Topics in advanced econometrics: estimation, testing and specification of cross-
section and time series models (Cambridge University Press, Cambridge, U.K.).

Bierens, H.J. and S. Guo, 1993, Testing stationarity and trend stationarity against the unit root hypothesis,
Econometric Reviews 12, 1-32.

Billingsley, P., 1968, Convergence of probability measures (John Wiley, New York).

Dickey, D.A. and W.A. Fuller, 1979, Distribution of the estimators for autoregressive times series with a
unit root, Journal of the American Statistical Association 74, 427-431.

Dickey, D.A. and W.A. Fuller, 1981,  Likelihood ratio statistics for autoregressive time series with a unit



29

root, Econometrica 49, 1057-1072.

Fuller, W.A., 1996,  Introduction to statistical time series (John Wiley, New York).

Green, W., 1997, Econometric analysis (Prentice Hall, Upper Saddle River, NJ).

Hogg, R.V. and A.T. Craig, 1978, Introduction to mathematical statistics (Macmillan, London).

Kwiatkowski, D., P.C.B. Phillips, P. Schmidt, and Y. Shin, 1992, Testing the null of stationarity against
the alternative of a unit root, Journal of Econometrics 54, 159-178.

Newey, W.K. and K.D. West, 1987,  A simple positive definite heteroskedasticity and autocorrelation
consistent covariance matrix, Econometrica 55, 703-708.

Perron, P., 1988,  Trends and random walks in macroeconomic time series: further evidence from a new
approach, Journal of Economic Dynamics and Control 12, 297-332.

Perron, P., 1989,  The great crash, the oil price shock and the unit root hypothesis,  Econometrica 57,
1361-1402.

Perron, P., 1990,  Testing the unit root in a time series with a changing mean, Journal of Business and
Economic Statistics 8, 153-162.

Perron, P. and T.J. Vogelsang, 1992, Nonstationarity and level shifts with an application to purchasing
power parity, Journal of Business and Economic Statistics 10, 301-320.

Phillips, P.C.B., 1987,  Time series regression with a unit root, Econometrica 55, 277-301.

Phillips, P.C.B. and P. Perron, 1988,  Testing for a unit root in time series regression, Biometrika 75, 335-
346.

Said, S.E. and D.A. Dickey, 1984,  Testing for unit roots in autoregressive-moving average of unknown
order,  Biometrika 71, 599-607.

Zivot, E. and D.W.K. Andrews, 1992, Further evidence on the great crash, the oil price shock, and the
unit root hypothesis, Journal of Business and Economic Statistics 10, 251-270.


