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The Unit Root Land

Let εt � i.i.d. (0, 1), x0 = 0 and consider the following DGPs:

xt= 0.5+ 0.3xt�1+εt; xt= 0.5+ 0.7xt�1+εt xt= 0.5+ xt�1+εt
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The Unit Root Land

Recall:
xt = β+ xt�1 + ut; ut � i.i.d.

�
0, σ2

�
xt = x0 + βt+

tX
j=1

uj

Stochastic Properties
E [xt] = x0 + βt

V [xt] = σ2t

Cov [xt, xs] = min ft, sg σ2
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The Unit Root Land

Some Properties of Unit Root processes:

The rate of growth of a unit root process is stationary:

xt = β+ xt�1 + ut vs ∆xt = β+ ut

Shocks have a permanent effect on the future of the series

The forecast error (xt+h � E [xt+hjIt]) is unbounded if the forecast
horizon tends to infinity

Standard inference does not hold
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The Unit Root Land

Consider the OLS estimation of the AR(1) process,

yt = ρyt�1 + ut,

where ut � i.i.d.N
�
0, σ2� and y0 = 0. The OLS estimate of ρ is given by

ρ̂T =

TX
t=1

yt�1yt

TX
t=1

y2
t�1

= ρ+

TX
t=1

yt�1ut

TX
t=1

y2
t�1

.
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The Unit Root Land

If jρj < 1, then the LLN and the CLT can be applied to obtain the
asymptotic distribution of the OLS estimator of ρ. See Hamilton
(p. 215)
LLN:

1
T

TX
t=1

y2
t�1

p�! E
h
y2

t�1

i
=

σ2

1� ρ2 .

CLT:

1
T1/2

TX
t=1

yt�1ut
d�! N

�
0, lim

T!∞
E
h
y2

t�1u2
t

i�
= N

�
0,

σ4

1� ρ2

�
Therefore,

T1/2 (ρ̂T � ρ)
d�! N

�
0, 1� ρ2

�
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The Unit Root Land

Then, if ρ = 1, the distribution collapses to a point mass at zero;
that is, T1/2 (ρ̂T � ρ)

p�! 0. Obviously, this is not very helpful for
hypothesis testing

To obtain a non-degenerate asymptotic distribution for ρ̂T in the
unit root case, it turns out that we have to multiply ρ̂T by T rather
than by T1/2

Thus, the unit root coefficient converges at a faster rate (T) than a
coefficient for a stationary regression

�
T1/2�, but at a slower rate

than the coefficient on a time trend
�
T3/2�

Moreover, the asymptotic distribution when ρ = 1 is not standard.
It can be described in terms of functionals of Brownian motions
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Brownian Motion

Definition
A Standard Brownian motion W (.) is a continuous-time stochastic
process, associating each date r 2 [0, 1] with the scalar W (r) such that:

(a) W (0) = 0

(b) For any dates 0 � r1 < r2 < ... < rk � 1, the changes
[W (r2)�W (r1)] , [W (r3)�W (r2)] , ..., [W (rk)�W (rk�1)] are
independent Gaussian with [W (s)�W (r)] � N (0, s� r)

(c) For a given realization, W (r) is continuous in r with probability 1
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The Functional Central Limit Theorem

The CLT establishes convergence of random variables, the FCLT
establishes conditions for convergence of random functions

Let εt be an i.i.d.
�
0, σ2� sequence

The CLT considers

T1/2 ε̄T = T1/2 1
T

TX
t=1

εt

The FCLT considers

T1/2XT (r) = T1/2 1
T

[Tr]X
t=1

εt
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The Functional Central Limit Theorem

Consider an estimator of the sample mean that only considers the
rth fraction of the observations, r 2 [0, 1], that is

XT (r) =
1
T

[Tr]X
t=1

εt,

where [Tr] denotes the integer part of Tr
Then, for any given realization, XT (r) is a step function in r:

XT (r) =

8>>>>><>>>>>:

0 0 � r < 1/T
ε1/T 1/T � r < 2/T

(ε1 + ε2) /T 2/T � r < 3/T
...

...
(ε1 + ε2 + ...+ εT) /T r = 1
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The Functional Central Limit Theorem

The simplest FCLT is known as Donsker’s theorem (Donsker, 1951)

Theorem
Let εt be a sequence of i.i.d. random variables with mean zero. If
σ2 � var (εt) < ∞, σ2 6= 0, then

T1/2XT (r) /σ
d�! W (r)

Billingsley (1968)!
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The Functional Central Limit Theorem

ST (r) = T1/2XT (r) /σ
d�! W (r) = S (r) if:

(a) For any finite collection of k particular dates,
0 � r1 � r2 < ... < rk � 1,

(ST (r1) , ST (r2) , ..., ST (rk))
d�! (S (r1) , S (r2) , ..., S (rk)) .

That is, the finite-dimensional distributions of ST (r) converge to those
of S (r).

(b) For each ε > 0,

P

 
sup

jr1�r2j<δ

jST (r1)� ST (r2)j > ε

!
�! 0,

uniformly in T as δ ! 0.

(c) P (jST (0)j > λ)! 0 uniformly in T as λ ! ∞.
Vanessa Berenguer-Rico () University of Oxford January 2014 12 / 52



The Continuous Mapping Theorem

The Continuous Mapping Theorem, CMT, states that if

YT (.)
d�! Y (.) and g is a continuos functional, then

g (YT (.))
d�! g (Y (.))

Example: ST (r) = T1/2XT (r)
d�! σW (r)

Example: S2
T (r) =

�
T1/2XT (r)

�2 d�! σ2 [W (r)]2

Example:
R 1

0 ST (r) dr =
R 1

0 T1/2XT (r) dr d�! σ
R 1

0 W (r) dr

Example:
R 1

0 S2
T (r) dr =

R 1
0

�
T1/2XT (r)

�2 dr d�! σ2 R 1
0 [W (r)]2 dr
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Application to Unit Root Processes

Consider the random walk

yt = yt�1 + εt,

where εt � i.i.d.
�
0, σ2�, and y0 = 0, so that

yt =
tX

j=1

εj

Then, one can construct the stochastic function XT (r) as follows

XT (r)

8>>>>><>>>>>:

0 0 � r < 1/T
y1/T = ε1/T 1/T � r < 2/T

y2/T = (ε1 + ε2) /T 2/T � r < 3/T
...

...
yT/T = (ε1 + ε2 + ...+ εT) /T r = 1
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Application to Unit Root Processes

Notice thatZ 1

0
XT (r) dr =

y1

T2 +
y2

T2 + ...+
yT

T2 =
1

T2

TX
t=1

yt

Hence,

1
T3/2

TX
t=1

yt =

Z 1

0
T1/2XT (r) dr d�! σ

Z 1

0
W (r) dr

Similarly,

1
T2

TX
t=1

y2
t =

Z 1

0

h
T1/2XT (r)

i2
dr d�! σ2

Z 1

0
[W (r)]2 dr
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Application to Unit Root Processes

Recall, if
yt = ρyt�1 + εt,

where εt � i.i.d.
�
0, σ2�, then the OLS estimator of ρ is

ρ̂T =

TX
t=1

yt�1yt

TX
t=1

y2
t�1

= ρ+

TX
t=1

yt�1εt

TX
t=1

y2
t�1

If ρ = 1

(ρ̂T � 1) =

TX
t=1

yt�1εt

TX
t=1

y2
t�1

.
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Application to Unit Root Processes

For the numerator, notice that y2
t = y2

t�1 + ε2
t + 2yt�1εt. Hence,

1
T

TX
t=1

yt�1εt =
1
2

 
1
T

TX
t=1

�
y2

t � y2
t�1

�
� 1

T

TX
t=1

ε2
t

!

=
1
2

 
1
T

y2
T �

1
T

TX
t=1

ε2
t

!
d�! 1

2
σ2
�

W2 (1)� 1
�

And for the denominator

1
T2

TX
t=1

y2
t�1

d�! σ2
Z 1

0
[W (r)]2 dr
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Application to Unit Root Processes

Therefore,

T (ρ̂T � 1) =

1
T

TX
t=1

yt�1εt

1
T2

TX
t=1

y2
t�1

d�!
�
W2 (1)� 1

�
2
R 1

0 [W (r)]2 dr

Remark 1: The OLS estimator converges at a rate T:
Super-consistent!

Remark 2: The asymptotic distribution is not standard
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Application to Unit Root Processes: A useful Lemma

Lemma (iid)

Suppose that yt = yt�1 + εt, where y0 = 0 and εt � i.i.d.
�
0, σ2�. Then,

(a) T�1/2PT
t=1 εt

d�! σW (1)

(b) T�1PT
t=1 yt�1εt

d�! (1/2) σ2
n
[W (1)]2 � 1

o
(c) T�3/2PT

t=1 tεt
d�! σW (1)� σ

R 1
0 W (r) dr

(d) T�3/2PT
t=1 yt�1

d�! σ
R 1

0 W (r) dr

(e) T�2PT
t=1 y2

t�1
d�! σ2 R 1

0 [W (r)]2 dr

(f) T�5/2PT
t=1 tyt�1

d�! σ
R 1

0 rW (r) dr

(g) T�3PT
t=1 ty2

t�1
d�! σ2 R 1

0 r [W (r)]2 dr

(h) T�(v+1)PT
t=1 tv d�! 1/ (v+ 1) for v = 0, 1, ...
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Allowing for Serial Correlation in the error term

The assumption ut = εt � i.i.d. will be typically violated for many
economic time series

What if
yt = yt�1 + ut,

with

ut = Ψ (L) εt =
∞X

j=0

ψjεt�j,

and
εt � i.i.d.

�
0, σ2

�
?
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Allowing for Serial Correlation in the error term

Phillips and Solo (1992): Beveridge-Nelson decomposition

Lemma (BN)

Let Ψ (L) =
P∞

j=0 ψjL
j. Then

Ψ (L) = Ψ (1)� (1� L) Ψ̃ (L) ,

where Ψ̃ (L) =
P∞

j=0 ψ̃jL
j, ψ̃j =

P∞
k=j+1 ψk. If p � 1, then

∞X
j=1

jp
���ψj

���p < ∞ =)
∞X

j=0

���ψ̃j

���p < ∞ and jΨ (1)j < ∞.

If p < 1, then
∞X

j=1

j
���ψj

���p < ∞ =)
∞X

j=0

���ψ̃j

���p < ∞.
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Allowing for Serial Correlation in the error term

Lemma (BN’)
Let

ut = Ψ (L) εt =
∞X

j=0

ψjεt�j, εt � i.i.d.
�

0, σ2
�

,

and
∞X

j=0

j
���ψj

��� < ∞.

Then

ut = Ψ (1) εt + ηt � ηt�1 and
tX

j=1

uj = Ψ (1)
tX

j=1

εj + ηt � η0,

ηt =
P∞

j=0 αjεt�j, αj = �
�

ψj+1 + ψj+2 + ψj+3 + ...
�

and
P∞

j=0

��αj
�� < ∞.
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Allowing for Serial Correlation in the error term

Remarks:

Condition
P∞

j=0 j
���ψj

��� < ∞ is satisfied by any stationary ARMA
process

If yt = yt�1 + ut, then

yt =
tX

j=1

uj + y0 = Ψ (1)
tX

j=1

εj + ηt � η0 + y0

Notice that ηt =
P∞

j=0 αjεt�j is a stationary process

Hence,

1
t

tX
j=1

uj = Ψ (1)
1
t

tX
j=1

εj +
1
t

ηt �
1
t

η0 = Ψ (1)
1
t

tX
j=1

εj + op (1)
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Allowing for Serial Correlation in the error term

Remarks:
Let

XT (r) �
1
T

[Tr]X
t=1

ut,

where ut satisfies conditions of Lemma BN’ with E
�
ε4

t
�
< ∞.

Then, p
TXT (r)

d�! σψ (1)W (r) .

Therefore, for r = 1,

p
TXT (1) =

1p
T

TX
t=1

ut
d�! σψ (1)W (1) ,

and since W (1) � N (0, 1)

1p
T

TX
t=1

ut
d�! N

�
0, σ2 [ψ (1)]2

�
.
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Allowing for Serial Correlation in the error term

“Lemma iid” can be easily generalized by using BN

Lemma (LP)

Let ut = Ψ (L) εt =
P∞

j=0 ψjεt�j where
P∞

j=0 j
���ψj

��� < ∞, εt � i.i.d.
�
0, σ2�

and E
�
ε4

t
�
< ∞. Define

γj � E
�
utut�j

�
= σ2

∞X
s=0

ψsψs+j for j = 0, 1, 2, ...

λ � σ
∞X

j=0

ψj = σψ (1)

yt �
tX

j=1

uj for t = 1, 2, ..., T

with y0 = 0. Then,
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Allowing for Serial Correlation in the error term

Lemma (LP)

(a) T�1/2PT
t=1 ut

d�! λW (1)

(b) T�1/2PT
t=1 ut�jεt

d�! N
�
0, σ2γ0

�
for j = 1, 2, ...

(c) T�1PT
t=1 utut�j

p�! γj for j = 0, 1, 2, ...

(d) T�1PT
t=1 yt�1εt

d�! (1/2) σλ
n
[W (1)]2 � 1

o
(e) T�1PT

t=1 yt�1ut�j
d�!8<: (1/2)

n
λ2 [W (1)]2 � γ0

o
for j = 0

(1/2)
n

λ2 [W (1)]2 � γ0

o
+
Pj�1

s=0 γs for j = 1, 2, ...
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Allowing for Serial Correlation in the error term

Lemma (LP)

(f) T�3/2PT
t=1 yt�1

d�! λ
R 1

0 W (r) dr

(g) T�3/2PT
t=1 tut�j

d�! λ
n

W (1)�
R 1

0 W (r) dr
o

for j = 0, 1, 2, ...

(h) T�2PT
t=1 y2

t�1
d�! λ2 R 1

0 [W (r)]2 dr

(i) T�5/2PT
t=1 tyt�1

d�! λ
R 1

0 rW (r) dr

(j) T�3PT
t=1 ty2

t�1
d�! λ2 R 1

0 r [W (r)]2 dr

(k) T�(v+1)PT
t=1 tv d�! 1/ (v+ 1) for v = 0, 1, ...
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Allowing for Serial Correlation in the error term

Remarks:

Again, there are simpler ways to describe individual results. For
example:

(i) λW (1) in (a) is a N
�

0, λ2
�

distribution

(ii) (1/2) σλ
n
[W (1)]2 � 1

o
in (d) is (1/2) σλ

�
χ2 (1)� 1

	
(ii) λ

R 1
0 W (r) dr and λ

n
W (1)�

R 1
0 W (r) dr

o
in (f) and (g),

respectively, are both N
�

0, λ2/3
�

distributions

Lemmas idd and IP can be used to construct unit root tests
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Testing for Unit Roots

Unit Root tests are hypotheses testing procedures whose objective
is to determine whether a process contains a unit root

Traditional unit root tests are designed for testing the null
hypothesis of a unit root versus the hypothesis of
trend-stationary (although there are many other types)

Among this group, one the most popular test for unit roots is the
pioneer Dickey-Fuller (DF) test

The literature with regard to this area is very large and we only
give here a very brief outline to the DF test

For an overview on unit root testing: Phillips and Xiao (1998)
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Testing for Unit Roots

It is important to bear in mind that in sharp contrast to standard
inference

The asymptotic distribution of the DF statistic is not standard

Whether the true model contains or not deterministic components
and whether the regression model contains or not deterministic
components changes the asymptotic distribution and then,
different tables of critical values should be used in each case
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The Dickey-Fuller test

The Hypotheses �
Ho : yt � I (1)
Ha : yt � I (0)

The Auxiliary Regression

yt = ρyt�1 + ut,

and hence �
Ho : yt � I (1) � ρ = 1
Ha : yt � I (0) � ρ < 1

Equivalently,
∆yt = θyt�1 + ut,

where θ = (ρ� 1) and hence�
Ho : yt � I (1) � θ = 0
Ha : yt � I (0) � θ < 0
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The Dickey-Fuller test

Three possible specifications to consider deterministic
components:
No Deterministic Components:

(i) ∆yt = θyt�1 + ut

Constant Term:
(ii) ∆yt = α+ θyt�1 + ut

Linear Trend:

(iii) ∆yt = α+ βt+ θyt�1 + ut
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The Dickey-Fuller test

Which specification to use in practice?
One should use an auxiliary regression that is plausible under
both Ho and H1

A graphical simple device:
If the data looks trended, then (iii) would offer a plausible
specification under both hypothesis
Otherwise, (ii) is recommended
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The Dickey-Fuller test

Auxiliary Regression

∆yt = f (t) + θyt�1 + ut,

where θ = (ρ� 1)

Two scenarios:

(a) ut uncorrelated: DF test

(b) ut correlated: Augmented DF (ADF) test, Phillips-Perron (1988)
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The Dickey-Fuller test

Consider the following case

yt = yt�1 + ut where ut = εt � i.i.d.
�

0, σ2
�

Auxiliary Regression

∆yt = θyt�1 + ut,

where θ = (ρ� 1)

Test statistic under the Ho : θ = 0 is

tθ =
θ̂T

σ̂θ̂T

=
1
T
PT

t=1 yt�1εt�
1

T2

PT
t=1 y2

t�1

�1/2
sT

,

where, given that θ̂T = ρ̂T � 1,

s2
T =

1
(T� 1)

TX
t=1

(yt � ρ̂Tyt�1)
2

Vanessa Berenguer-Rico () University of Oxford January 2014 35 / 52



The Dickey-Fuller test

Recall

yt = yt�1 + ut where ut = εt � i.i.d.
�

0, σ2
�

,

Therefore,
(i)

s2
T

p�! σ2

(ii)
1
T

TX
t=1

yt�1εt
d�! (1/2) σ2

n
[W (1)]2 � 1

o
(iii)

1
T2

TX
t=1

y2
t�1

d�! σ2
Z 1

0
[W (r)]2 dr
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The Dickey-Fuller test

Hence,

tθ
d�!
(1/2)

n
[W (1)]2 � 1

o
�R 1

0 [W (r)]2 dr
�1/2

Remark: This distribution is not standard and therefore, it has to
be tabulated. Tables of critical values can be found in the
Appendix of most time series books. Check DFtest.prg!

Remark: Whether the true model contains or not deterministic
components and whether the regression model contains or not
deterministic components changes the asymptotic distribution
and then, different tables of critical values should be use in each
case
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The Dickey-Fuller test

The assumption ut = εt � i.i.d. will be typically violated for many
economic time series

To relax the previous assumption one could model ut as a
stationary process that admits a Wold decomposition ut = ψ (L) εt
with εt � i.i.d.

It is important to see that in this case the distribution of the DF
test will be different

We will consider briefly both the ADF test and the
Phillips-Perron correction
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The Augmented Dickey-Fuller test

The ADF test proposes a parametric correction to address the
presence of autocorrelation in the error

It is based on the following auxiliary regression

∆yt = f (t) + θyt�1 +

p�1X
j=1

ϕj∆yt�j + εt

Under Ho : θ = 0 the test based on the corresponding t-statistic has
the same asymptotic distribution as in the non-autocorrelated case

As before, the consideration of deterministic components will
change the distribution
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The Augmented Dickey-Fuller test

ADF auxiliary regression

∆yt = f (t) + θyt�1 +

p�1X
j=1

ϕj∆yt�j + εt

In practice, the order p is unknown and perhaps, it is infinite. Said
and Dickey (1984) showed that as long as p goes to infinity
sufficiently slowly relative to T, p = T1/3, then the OLS t-test of
θ = 0 can be carried out using the DF critical values

In practice, information criteria are often use to select the order of
the polynomial lags of ∆yt (General to Specific)
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Phillips-Perron approach

Phillips and Perron (1988) generalized the DF test, remember

∆yt = f (t) + θyt�1 + ut,

to the case when ut is serially correlated and possibly
heteroskedastic as well

For now we will assume that the true process is

∆yt = ut = ψ (L) εt,

where ψ (L) and εt satisfy the condition of Lemma LP
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Phillips-Perron approach

Recall, if
yt = α+ ρyt�1 + ut,

with jρj < 1 and ut is autocorrelated, then the OLS estimator, ρ̂T,
of ρ is not consistent.

However, if ρ = 1, the rate T of convergence of ρ̂T turns out to

ensure that ρ̂T
p�! 1 even when ut is serially correlated

Phillips and Perron (1988) proposed estimating

yt = f (t) + ρyt�1 + ut,

by OLS even when ut is serially correlated and then modifying the
DF statistic to take account of the serial correlation
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Phillips-Perron approach

How to take account of the serial correlation?

Example: Consider the DF auxiliary regression

yt = α+ ρyt�1 + ut,

when the true model is
yt = yt�1 + ut,

with ut satisfying the condition of Lemma LP. Then,�
γ0

λ2

�1/2

tρ �
�

1
2

�
λ2 � γ0

�
/λ

�
�
�

Tσ̂ρ̂T
� sT

	 d�! D,

where s2
T = (T� 2)�1PT

t=1 (yt � α̂T � ρ̂Tyt�1)
2 and D is distributed as

the DF statistic that assumes ut = εt � i.i.d. and uses the auxiliary
regression

yt = α+ ρyt�1 + ut.
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Phillips-Perron approach

The statistic�
γ0

λ2

�1/2

tρ �
�

1
2

�
λ2 � γ0

�
/λ

�
�
�

Tσ̂ρ̂T
� sT

	
,

requires knowledge of the population parameters γ0 and λ2.
Remember

γ0 � E
�

u2
t

�
= σ2

∞X
s=0

ψ2
s ,

and

λ2 � [σψ (1)]2 =

24σ
∞X

j=0

ψj

352

= γ0 + 2
∞X

j=1

γj,

where γj is the jth autocovariance of ut, are the short and long run
variances of ut, respectively.
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Phillips-Perron approach

Although γ0 and λ2 are unknown, they are easy to estimate
consistently. Phillips-Perron (1988) used

γ̂0 = (T� 2)�1
TX

t=1

û2
t = s2

T,

and the Newey-West estimator

λ̂
2
= γ̂0 +

qX
j=1

[1� j/ (q+ 1)] γ̂j,

where

γ̂j = T�1
TX

t=j+1

ûtût�j,

and ût = yt � α̂T � ρ̂Tyt�1.
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Phillips-Perron approach

Remarks:

The Newey-West estimator λ̂
2

can provide a consistent estimate of
λ2 for an MA (∞) process, provided that q grows sufficiently
slowly relative to T

Phillips (1987) established such consistency assuming that
qT ! ∞ and qT/T1/4 ! 0; for example qT = AT1/5 satisfies this
requirement

This is an asymptotic result and does not tell us exactly how q
should be chosen in practice
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Nelson and Plosser

Nelson and Plosser (1982): “Trends and Random Walks in
Macroeconomic Time Series”

“This paper investigates whether macroeconomic time series are better
characterized as stationary fluctuations around a deterministic trend or
as non-stationary processes that have no tendency to return to a
deterministic path.”

“Using long historical time series for the U.S. we are unable to reject the
hypothesis that these series are non-stationary stochastic processes with
no tendency to return to a trend line.”
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Nelson and Plosser

The data set:

The U.S. historical time series include measures of output,
spending, money, prices, and interest rates

The data are annual with starting dates varying from 1860 to 1909
and ending in 1970 in all cases

All series except the bond yield are transformed to natural logs

Remember: An extended version of this data set,
NelsonPlosserData.wf1, available
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Nelson and Plosser
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Nelson and Plosser
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Nelson and Plosser
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Nelson and Plosser
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