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The Unit Root Land

o Lete ~iid. (0,1), xp = 0 and consider the following DGPs:

x= 0.5+ 0.3x;_1+¢; x=054+0.7x_1+& x=05+x;_1+¢
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The Unit Root Land

@ Recall:
X = B+x1+u; w~iid. (0, 02)

t
xt:xo—l—ﬁt—l—Zuj
j=1

@ Stochastic Properties
E [Xt] = Xxo + ‘Bt

% [xt] = O'Zt

Cov [x;, x5] = min {t,s} 0
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The Unit Root Land

Some Properties of Unit Root processes:

@ The rate of growth of a unit root process is stationary:
Xt =PB+x—1+u vs Axp=p+u

@ Shocks have a permanent effect on the future of the series

@ The forecast error (x;yj — E [x;14|]¢]) is unbounded if the forecast
horizon tends to infinity

@ Standard inference does not hold
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The Unit Root Land

Consider the OLS estimation of the AR(1) process,

Yt = PYi-1 + U,
where u; ~ i.i.d.N (0,02) and yo = 0. The OLS estimate of p is given by

T

T
> vy > v
t=1

—1

: Il —
Zy%fl
=1

T
2
Zyt—l
=1

pr =
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The Unit Root Land

e If |p| < 1, then the LLN and the CLT can be applied to obtain the
asymptotic distribution of the OLS estimator of p. See Hamilton

(p. 215)
o LLN:
sztfl —E [ytfl} 1 —
t=1
e CLT:

1 r d lim E 5 2 _N ot
Tlﬁgytlut_)N OfTE{}O {yt—lut} = 0,1_7‘)2

@ Therefore,
T2 (b — p) < N (0,1 - p?)

Vanessa Berenguer-Rico () University of Oxford January 2014 6 /52



The Unit Root Land

@ Then, if p = 1, the distribution collapses to a point mass at zero;

thatis, TV2 (p; — p) -7, 0. Obviously, this is not very helpful for
hypothesis testing

@ To obtain a non-degenerate asymptotic distribution for p; in the
unit root case, it turns out that we have to multiply o by T rather
than by T1/2

@ Thus, the unit root coefficient converges at a faster rate (T) than a
coefficient for a stationary regression (T'/2), but at a slower rate
than the coefficient on a time trend (T°/2)

@ Moreover, the asymptotic distribution when p = 1 is not standard.
It can be described in terms of functionals of Brownian motions
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Brownian Motion

Definition

A Standard Brownian motion W (.) is a continuous-time stochastic
process, associating each date r € [0, 1] with the scalar W (r) such that:

(@W(0)=0
(b) For any dates 0 <1y <1, <.. <rg <1,thechanges

(W (r2) =W (r1)], [W(r3) — W (r2)], ..., [W (rx) — W (r4—1)] are
independent Gaussian with [W (s) — W (r)] ~ N (0,5 —r)

(c) For a given realization, W (r) is continuous in r with probability 1

v
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The Functional Central Limit Theorem

@ The CLT establishes convergence of random variables, the FCLT
establishes conditions for convergence of random functions

o Letg beaniid. (0,0°) sequence

@ The CLT considers
T2, — 12} 1 ZS

@ The FCLT considers

1/2 1/21[Tr]
TV2Xr (1) =T Ze

Vanessa Berenguer-Rico () University of Oxford January 2014



The Functional Central Limit Theorem

@ Consider an estimator of the sample mean that only considers the
rth fraction of the observations, r € [0,1], that is

where [Tr] denotes the integer part of Tr

@ Then, for any given realization, Xt (r) is a step function in

0 0<r<1/T
e1/T 1/T<r<?2/T
Xr(r) = (e14+¢€) /T 2/T<r<3/T

(81+€2+...+8T)/T r=1
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The Functional Central Limit Theorem

The simplest FCLT is known as Donsker’s theorem (Donsker, 1951)

Let & be a sequence of i.i.d. random variables with mean zero. If
02 = var (g) < oo, 0% # 0, then

TV2Xr (r) Jo =5 W (r)

Billingsley (1968)!

Vanessa Berenguer-Rico () University of Oxford January 2014 11 /52



The Functional Central Limit Theorem

St (r) = TV2Xy (r) /o —5 W (r) = S (r) if:

(a) For any finite collection of k particular dates,
0<rn<n<.<n<l,

(ST (1’1) ,ST (1’2) y ey ST (Tk)) i> (S (1’1) ,S (1’2) Py S (Tk)) .

That is, the finite-dimensional distributions of St (r) converge to those
of S (r).

(b) For each e > 0,

P( sup |St(r1) — St (12)] >€> — 0,

‘7’171’2‘<5

uniformly in T as § — 0.

() P(|St(0)] > A) — 0 uniformly in T as A — oo.

Vanessa Berenguer-Rico () University of Oxford January 2014 12 / 52



The Continuous Mapping Theorem

@ The Continuous Mapping Theorem, CMT, states that if

Y7 (.) 2y (.) and g is a continuos functional, then

g(Yr () S (Y ()
e Example: St (r) = TV2X7 (r) -2 oW ()
o Example: 82 (r) = [TV/2Xr (r)]” % o2 [W (1))
o Example: [} Sy (r)dr = [ TV2Xy (r)dr <5 o [} W (r) dr

e Example: fol Sz (r)dr = fol [TY/2X1 (7’)]2 dr % o? fol (W (r)]? dr
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Application to Unit Root Processes

@ Consider the random walk

Yt = Y1+ &,

where ¢ ~ i.id. (0,0%),and yo = 0, so that
t
b= Z &
i=1

@ Then, one can construct the stochastic function Xt (r) as follows

0 0<r<1/T
n/T=e/T 1/T<r<2/T
Xr () y/T=(a+e)/T 2/T<r<3/T

]/T/T:(€1+€2—|—...—|—ST)/T r=1
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Application to Unit Root Processes

@ Notice that

1
1 2
/OXT(r)dr:?z—l—g,z—l- + ZTZZ%
@ Hence,
1 <& 1
Tg/zZyt /Tl/zx ()dT—W/ W(r)d
=1 0

@ Similarly,
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Application to Unit Root Processes

@ Recall, if
Yt = pYi-1 + &,
where ¢ ~ i.id. (0,0?%), then the OLS estimator of p is

T T

Zyt—lyt Zyt—lﬁt

t=1 t=1

T =P+
Zytz—l Zy%—l
=1 =1

pr =

o lfp=1

T
Z]/tflst
t=1
—
Zyil
t=1

(pT_l) =
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Application to Unit Root Processes

e For the numerator, notice that y? = y? | + €7 + 2y;_1&.. Hence,
T T T
1 1/(1 1
S 1 CONCET RS o)
=1 =1

t=1
_ 11, 15n
- 2 TyT T t

t=1

@ And for the denominator

T 1
1 d
SRRy O
t=1
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Application to Unit Root Processes

@ Therefore,

T
1
T Yi—1&t
' ; LN (W2 (1) — 1)
! 2 [3 [W () dr
Y Vi ’
t=1

T(pT_l) =

@ Remark 1: The OLS estimator converges at a rate T:
Super-consistent!

@ Remark 2: The asymptotic distribution is not standard
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Application to Unit Root Processes: A useful Lemma

Lemma (iid)

Suppose that y; = Y1 + &, where yo = 0 and & ~ i.id. (0,0%). Then,

@ T 12T & -4 oW (1)

) TV ye = (1/2) 0% { W (1)) - 1}
@ T325T te, L oW (1) — 0 J§ W (r)dr

@ T2 s 5 0 [y W(r)dr

@ T2E L 974 5 o o [W(r)] dr

(O T2 E g1~ 0 Jy rW (1) dr

QT2 Sty =5 02 fo r[W ()] dr

W TSI w1/ (0+1) for v=0,1,..
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Allowing for Serial Correlation in the error term

@ The assumption u; = & ~ i.i.d. will be typically violated for many
economic time series

@ What if
Ye = Yr—1 + U,
with -
u=Y(L)g = Z YiEr—j,
j=0
and
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Allowing for Serial Correlation in the error term

Phillips and Solo (1992): Beveridge-Nelson decomposition

Lemma (BN)

Let¥ (L) =) 72, 1/J]U. Then
Y(L)=Y1)-(1-L)¥Y@),

where ¥ (L) = Z;io JJ]'U/ {Dj = Zl:o:jﬂ Yy Ifp 2 1, then
| [P P
Z] ‘lpj) <oo:>Z‘tpj‘ < ooand |¥(1)] < oo.
= j=t

Ifp < 1, then
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Allowing for Serial Correlation in the error term

Lemma (BN’)

Let
=Y(L)g = th]st_], & ~ i.i.d. (0 a)
j=0
and -
Z] ’1/’]" =
j=0
Then
t t
uy =Y 1)e+n,—1n,_qand Zu]- =‘P(1)Z£]+nt Mo
j=1 j=1
M = Do Wjet—js 0 = — <1p].+1 + Pt Pt ) and 32 |aj| < oo.

v

22/52
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Allowing for Serial Correlation in the error term

Remarks:

o Condition 377 j ‘1/1].‘ < oo is satisfied by any stationary ARMA
process

o If yy = y;—1 + uy, then

t t
ye=> wi+yo=Y(1)> &+u,—1+yo
j=1 j=1

@ Notice that 7, = Z;io wj€;—j is a stationary process

@ Hence,

| =

t t t
1 1 1 1
Z”j =Y (1) ;Z%’WL;’%— el =Y (1) ;ZSJ'JFOP (1)
= = i1
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Allowing for Serial Correlation in the error term

Remarks:
o Let

1 (Tr]
= — Zut,
T t=1

where 1, satisfies conditions of Lemma BN with E [e}] < oco.
Then,

VTXr (1) =5 op (1) W (r).

@ Therefore, forr =1,

VX (1) = \}TZutiuﬂ,b(l)W(l),

and since W (1) ~ N (0,1)
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Allowing for Serial Correlation in the error term

“Lemma iid” can be easily generalized by using BN

Lemma (LP)

Letup =¥ (L) & = 32 e, where 37 ’lpj‘ < 00, & ~ iid. (0,0?)
and E [e}] < oco. Define

7 =E (uuy_j) = o? Z bssy forj=0,1,2,..
s=0

with yo = 0. Then,
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Allowing for Serial Correlation in the error term

Lemma (LP)
@ T V257w~ AW (1)

(b) T-1/2 Zthl Up_jgy AN (0,0y,) forj=1,2,..
(c) T~1 Zthl Uply_j 2, v forj=0,1,2,...

@ TS yqe — (1/2) oA {[w )P - 1}
T 13, Vi1l 4,

1/2) {2 W W)F =10} forj=0
/2) {2 W OP =70} + X7, forj=1,2,..
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Allowing for Serial Correlation in the error term

Lemma (LP)
HDT32 Ly =5 A fy W(r)dr

(9) T2 5T tuy L A {W(l) — [y Wrdr} forj=012,..
W T23T 2 -5 A2 [L W ()P dr

@D T2ty = A LW (r) dr

() T3S ty? 4 =0 A2 fy r[W (n)]d

O T- ST #2517 (0+1)

for v=0,1,.
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Allowing for Serial Correlation in the error term

Remarks:

@ Again, there are simpler ways to describe individual results. For
example:

(AW (1)in(a)isa N (O, Az) distribution
(ii) (1/2) oA {[w<1)]2 - 1} in (d)is (1/2) A {32 (1) — 1}

(i) A [ W (r)drand A {w (1) — Jiw(r) dr} in () and (g),
respectively, are both N (O, A%/ 3) distributions

@ Lemmas idd and IP can be used to construct unit root tests
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Testing for Unit Roots

@ Unit Root tests are hypotheses testing procedures whose objective
is to determine whether a process contains a unit root

o Traditional unit root tests are designed for testing the null
hypothesis of a unit root versus the hypothesis of
trend-stationary (although there are many other types)

@ Among this group, one the most popular test for unit roots is the
pioneer Dickey-Fuller (DF) test

@ The literature with regard to this area is very large and we only
give here a very brief outline to the DF test

@ For an overview on unit root testing: Phillips and Xiao (1998)
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Testing for Unit Roots

It is important to bear in mind that in sharp contrast to standard
inference

@ The asymptotic distribution of the DF statistic is not standard

@ Whether the true model contains or not deterministic components
and whether the regression model contains or not deterministic
components changes the asymptotic distribution and then,
different tables of critical values should be used in each case
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The Dickey-Fuller test

@ The Hypotheses

Hy:ye ~1(1)
{Hu:ytwl(o)

@ The Auxiliary Regression

Yt = pYr1 + Uy,

and hence
Hy:yy~I1(1)=p=1
Hy:yy~1(0)=p<1

e Equivalently,
Ayr = 0yr—1 + uy,
where 6 = (p — 1) and hence

Hy:yy~I1(1)=60=0
Hy:yy~1(0)=6<0
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The Dickey-Fuller test

@ Three possible specifications to consider deterministic
components:

@ No Deterministic Components:
(1) Ay =0yr1+u

@ Constant Term:
(it) Ayr = a+ 0y 1+ us

@ Linear Trend:

(iii) Ayr = o+ Bt + 0y, + u;
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The Dickey-Fuller test

@ Which specification to use in practice?

@ One should use an auxiliary regression that is plausible under
both H, and H;

@ A graphical simple device:

o If the data looks trended, then (iii) would offer a plausible
specification under both hypothesis

@ Otherwise, (ii) is recommended
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The Dickey-Fuller test

@ Auxiliary Regression
Ay = f (t) + Oyi—1 + uy,

where § = (p— 1)

@ Two scenarios:

(a) us uncorrelated: DF test

(b) u; correlated: Augmented DF (ADF) test, Phillips-Perron (1988)
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The Dickey-Fuller test

Consider the following case
Ve = Yi—1 + uy where u; = & ~ i.id. (O, (72)
@ Auxiliary Regression
Ayr = 0yi—1 + uy,
where 6 = (p— 1)
@ Test statistic under the H, : 6 = 0 is
b = br I Ve

9_‘79_ 1T 2 \2_ '

T <ﬁ P ytq) 5T

where, given that Or = pr—1,

1 T
T—1) > (e —prye)?

t=1

% =
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The Dickey-Fuller test

Recall
Yt = Yi—1 +uy where u; =g ~ i.id. (O, 02) )
Therefore,
()
ERNp

(ii)

1 <& J ,

=D yime == (1/2) e { W) -1}

=1

(iii)

T 1

1 d

T2 E y%fl — ‘72/0 (W (7)]2517
=1
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The Dickey-Fuller test

@ Hence,

. w2 {wor-1}
te — 172
(Jo W () ar)

@ Remark: This distribution is not standard and therefore, it has to
be tabulated. Tables of critical values can be found in the
Appendix of most time series books. Check DFtest.prg!

@ Remark: Whether the true model contains or not deterministic
components and whether the regression model contains or not
deterministic components changes the asymptotic distribution
and then, different tables of critical values should be use in each
case
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The Dickey-Fuller test

@ The assumption u; = & ~ i.i.d. will be typically violated for many
economic time series

@ To relax the previous assumption one could model u; as a
stationary process that admits a Wold decomposition u; = ¢ (L) &
with & ~ i.i.d.

o It is important to see that in this case the distribution of the DF
test will be different

@ We will consider briefly both the ADF test and the
Phillips-Perron correction
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The Augmented Dickey-Fuller test

@ The ADF test proposes a parametric correction to address the
presence of autocorrelation in the error

@ Itis based on the following auxiliary regression

p—1

Ay =f(8) +0ye1+ > @AY+
j=1

@ Under H, : 8 = 0 the test based on the corresponding t-statistic has
the same asymptotic distribution as in the non-autocorrelated case

@ As before, the consideration of deterministic components will
change the distribution
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The Augmented Dickey-Fuller test

@ ADF auxiliary regression

p—1

Aye =f(£)+ 0y 1+ > @Ay j+e
j=1

@ In practice, the order p is unknown and perhaps, it is infinite. Said
and Dickey (1984) showed that as long as p goes to infinity
sufficiently slowly relative to T, p = T'/3, then the OLS t-test of
# = 0 can be carried out using the DF critical values

@ In practice, information criteria are often use to select the order of
the polynomial lags of Ay; (General to Specific)
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Phillips-Perron approach

@ Phillips and Perron (1988) generalized the DF test, remember
Ayp = f (£) + 0ye-1 + uy,

to the case when u; is serially correlated and possibly
heteroskedastic as well

@ For now we will assume that the true process is
Ayr=ur =9 (L)e,

where ¢ (L) and & satisfy the condition of Lemma LP
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Phillips-Perron approach

@ Recall, if
Yi = &+ pYr—1 + Uy,

with |p| < 1and u; is autocorrelated, then the OLS estimator, p,
of p is not consistent.

e However, if p = 1, the rate T of convergence of p; turns out to

ensure that o 7., 1 even when u; is serially correlated

@ Phillips and Perron (1988) proposed estimating

v =f(t) + pyi—1 + us,

by OLS even when u; is serially correlated and then modifying the
DF statistic to take account of the serial correlation
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Phillips-Perron approach

How to take account of the serial correlation?

Example: Consider the DF auxiliary regression

Yi =+ pYr1 + Uy,
when the true model is
Ye = Y1+ Uy,
with u; satisfying the condition of Lemma LP. Then,

1/2
1
(Kg) ty— {2 (=) /A} x {Téo,, st} -5 D,

where 52 = (T — ) 'S (e —ar— ﬁTyt,l)z and D is distributed as
the DF statistic that assumes u; = & ~ i.i.d. and uses the auxiliary
regression

Ye = &+ pYr1 + U
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Phillips-Perron approach

The statistic

1/2 1
(Kg) t,— {2 (=) //\} x {Tép, +sr},

requires knowledge of the population parameters 7, and A2.
Remember -
ro=E (i) =342
s=0

2

= oy (D))" = azlp] =7+2)

=1

and

where ; is the jth autocovariance of uy, are the short and long run
variances of u;, respectively.
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Phillips-Perron approach

Although 7, and A? are unknown, they are easy to estimate
consistently. Phillips-Perron (1988) used

T
A -1 A
Yo=(T-2) Z“?IS%

t=1

and the Newey-West estimator

N 1

A =Fo+ D =i/ @+ D14

j=1
where
T
Y =170 D iy,
t=j+1

and ity = yy — &7 — PrYi—1-
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Phillips-Perron approach

Remarks:

@ The Newey-West estimator A% can provide a consistent estimate of
A? for an MA (o) process, provided that g grows sufficiently
slowly relative to T

o Phillips (1987) established such consistency assuming that
gr — oo and g7/ T'* — 0; for example g7 = AT'/? satisfies this
requirement

e This is an asymptotic result and does not tell us exactly how g
should be chosen in practice
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Nelson and Plosser

@ Nelson and Plosser (1982): “Trends and Random Walks in
Macroeconomic Time Series”

@ “This paper investigates whether macroeconomic time series are better
characterized as stationary fluctuations around a deterministic trend or
as non-stationary processes that have no tendency to return to a
deterministic path.”

e “Using long historical time series for the U.S. we are unable to reject the
hypothesis that these series are non-stationary stochastic processes with
no tendency to return to a trend line.”
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Nelson and Plosser

The data set:

@ The U.S. historical time series include measures of output,
spending, money, prices, and interest rates

@ The data are annual with starting dates varying from 1860 to 1909
and ending in 1970 in all cases

@ All series except the bond yield are transformed to natural logs

@ Remember: An extended version of this data set,
NelsonPlosserData.wfl, available
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Nelson and Plosser

Table 2
Sample autocorrelations of the natural logs of annual data®

Sample autocorrelations

Series Period T ry ry 3 ra rs ro
Random walk® 100 095 09 085 081 076 070
Time aggregated®

random walk 100 G 091 08 082 077 073
Real GNP 1909-1970 62 935 090 084 079 074 069
Nomina! GNP 1909-1970 62 095 089 083 077 072 067

Real per capita GNP i909-1970 62 095 088 081 075 070 065
Industrial production 1860-1970 111 097 094 090 087 084 081

Employment 1890-1970 81 09 091 086 081 076 07t
Unemployment rate 1890-1970 81 075 047 032 017 004 -001
GNF deflator 1889-1970 82 036 093 089 084 080 076
Consumer prices 1860-1970 111 096 092 087 084 081 0.77
Wages 19001970 1 09 091 086 082 077 0.73
Real wages 19001970 71 0% 092 083 084 080 075
Money stock 1889-1970 82 09 002 089 085 081 0.77
Velocity 1869-1970 102 0% 092 088 085 081 0.7%
Bond yield 1906-1970 71 034 072 G060 052 046 040

Common stock prices 1871-1970 100 096 080 085 079 075 07

“The natural jogs of a'l the data are used except for the bond yield. T is the sample size wnd r,
is the ith order autocorrelation coefficient. The large sample standard error under th: null
hypothesis of no autocorrelation is T™* or roughly 0.11 for series of the length considered here.

“Computed by the authors from the approximation due to Wichern (1973).
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Nelson and Plosser

Table 3 .
Sample autocorrelations of the first difference of the natural logs of annual cata.

Sample autocorrelations

Series Period T Ty r ry e ry re  sir)
Time aggregated
random walk® 0.25 0.00 0.00 0.00 0.00 000

Real GNP 19002970 62 034 004 —018 —023 019 001 013
Nominal GNP 19091970 62 044 008 —-012 -—-024 -007 015 013
Real per capita GNP 1909-1970 62 033 004 —017 —021 -018 002 013
indusirial production 1860-1970 i1l 003 —011 -000 -0I1 -028 005 009
Employment 1890-1970 81 032 005 —008 -017 -020 001 0.11
Unemployment rate 1890-1970 81 008 -—029 003 -003 -019 001 0.11
GNP deflator 1ud9-1970 82 043 0.20 0.07 -006 0.03 002 011
Consumer prices 1860-1970 111 (.58 .16 0.02 —000 005 003 $.09
Wages 1900-1970 T 046 0.10 —003 -009 -009 008 0.12
Real wages 1900-1970 71 019 —003 —007 —-011 -018 -—-0.15 012
Money stock 1889-1970 82 062 0.30 013 00! —-007 —-004 011
Velocily 1869-1970 102 011 —-€4 -—016 -015 -—011 0.11 Q.10
Bond i=ld 1900-1970 T 018 0.3 0.15 0.04 0.06 005 012
Comm:or stock prices 1871-1970 100 (022 013 —008 -—-013 -023 002 010

’fheﬁmldlﬁmwsulﬂtuﬁiw’a] logs of all the data are used except for the bond yield. T is the
s2mple <izz aad #, is the estimated ith order autocorrelation coefficient. The large sample standard error
for ris g;m oy sir) under the null hypothesis of no autocorrelation.

autocorrelations as the number of aggregated observations becomes large; result due to
Working (12060).
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Nelson and Plosser

Table 4
Sample autocorrelations of the deviations from the time trend.*

Sample autocorrelations

Series Feriod T ry r L) ry Ty rg
Detrended random 61 085 071 058 047 036 027
walk® 101 051 082 074 066 058 051
Real GNP 1909-1970 62 OBY 066 046 026 019 007
Nominal GNP 1909-1970 62 093 079 065 052 043 005

Real per capita GNP 1909-1970 62 087 065 043 024 011 004
Industrial production 1860-1970 111 084 067 053 040 030 028

Employment 1890-1970 81 089 071 055 039 025 017
Unemployment rate 1890-1970 81 075 046 030 015 003 =001
GNP deflator 1889-1970 82 092 081 €67 054 042 030
Consumer prices 1860-1970 111 097 091 084 078 071 0.63
Wages 1900-1970 71 093 081 067 054 042 031
Real wages 1900-1970 71 087 069 052 038 026 019
Money stock 18891970 2 095 083 069 053 037 021
Velocity 1869-1970 102 091 081 072 065 059 056
Bond vield 1900-1970 71 085 073 062 055 049 043

Common stock prices 1871-1970 100 090 076 064 053 046 043

*The data are residuais from linear least squares regression of the logs of the seris (except the
bond yield) on time. See footnote for tavle 3.
"Approximate expected sample autocerrelations based vu Nelson and Kang (1981).
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Table 5
Tests for antoregressive unit roots*

PAT L R AT E AT A L L N AT AN L8
Series T &k B Li i LY I ;) o) iy

Real GNP 62 2 0819 3.03 0006 303 0825 -299 0058 -0.02
Nominal GNP 62 2 1.06 237 0.006 2. 0899 -232 0.087 0.03
Real per

capita GNP 62 2 1.28 3.05 0004 301 OBIB -34 0059 -502
Industrial

production 1 6 0103 432 0.007 24 0835 =253 0097 0.03
Employment 81 3 142 268 0.002 254 0B61 266 0035 0.10
Unemployment

rate 81 4 0513 281 0000 -023 0706 355 0407 0.02
GNP deflator 82 2 0.260 255 0.002 265 0915 -252 06 -0.03
Consumer prices 1 4 0.090 1.76 0.001 284 0986 —197 0042 -006
Wages n o3 0.566 230 0.004 230 0910 -209 0060 0.00
Real wages 72 0487 310 0.004 3114 0831 304 003 001
Money stock £ 2 0133 152 0.005 303 0916 308 047 0.03
Velocity 102 1 0.052 0.99 —0000 —065 0941 =166 0.067 .11
Interest rate n o3 —0.186 -095 0.003 175 103 0686 0283 -002
Common stock

prices 0o 3 0.481 202 0.003 237 0813 205 0Is8 020

*z, represcnts the natural logs of anpual data except for the bond yicld. 1(5) and «(f) arc the ratios of the OLS estinates of g and 3 to their
respective standard errors. tg,) is the ratio of 5, — I to its standard error. s(i) is the standard error of the regression and r, is the first-order
autocorrelation coefficient of the residuals. The values of «3,) denoted by an (*) are smaller than the 0.05 one tail eritical value of the distribution
of 7(,) ad . tly fui 3, 11 should also be noted that rg) and i) are not distributed as normal random variables.
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