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Spurious Regressions

Spurious regressions have a long tradition in statistics

Yule (1926): “Why do we sometimes get nonsense-correlations
between time-series?”

“It is fairly familiar knowledge that we sometimes obtain between
quantities varying with the time (time-variables) quite high correlations
to which we cannot attach any physical significance whatever, although
under the ordinary test the correlation would be held to be certainly
"significant"”

Vanessa Berenguer-Rico () University of Oxford January 2014 2 / 20



Spurious Regressions

Real Data Example: Yule (1926)

Proportion of Church of England marriages to all marriages for
the years 1866-1911 inclusive and standarized mortality per 1000
persons for the same years

Correlation coefficient = 0.9512
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Spurious Regressions

“As the occurrence of such “nonsense-correlations” makes one mistrust
the serious arguments that are sometimes put forward on the basis of
correlations between time series (...) it is important to clear up the
problem how they arise and in what special cases.”

“When we find that a theoretical formula applied to a particular case
gives results which common sense judges to be incorrect, it is generally
as well to examine the particular assumptions from which it was
deduced, and see which of them are inapplicable to the case in point.”

“The special case considered in the next section will suffice to show
that when the successive x’s and y’s in a sample no longer form a random
series, but a series in which succesive terms are closely related to
one another, the usual conceptions to which we are accustomed fail
totally and entirely to apply.”
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Spurious Regressions

Yule (1926): Experimental excercise

He simulated the distribution of the empirical correlation
coefficient calculated from two independent i.i.d. processes, from
two independent random walks, and from two independent
cumulated random walks
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Spurious Regressions

Granger and Newbold (1974): “Spurious Regressions in
Econometrics”

“It is very common to see reported in applied econometric literature time
series regression equations with an apparently high degree of fit,
measured by the coefficient of multiple correlation R2 or the corrected
coefficient R̄2, but with an extremely low value for the Durbin-Watson
statistic.”

How nonsense regressions can arise? A simulation study:

Let yt = yt�1 + vt and xt = xt�1 +wt with y0 = Op (1), x0 = Op (1),
and vt � i.i.d. (0, 1) independent of vt � i.i.d. (0, 1) and consider
the least squares regression

yt = α̂+ β̂xt + ût, t = 1, ..., T
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Spurious Regressions

Let yt = yt�1 + vt and xt = xt�1 +wt with y0 = Op (1), x0 = Op (1), and
vt � i.i.d. (0, 1) independent of vt � i.i.d. (0, 1) and consider the least
squares regression yt = α̂+ β̂xt + ût, t = 1, ..., T

A draw T = 99 T = 999
α̂ -0102 -11.658
tα̂ -0.170 -26.032
β̂ 0.605 0.610
tβ̂ 10.821 65.532
R2 0.546 0.811

DW 0.151 0.032
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Spurious Regressions

A Monte Carlo percentiles
5% 50% 95%

T = 99 tα̂ -17.384 0.361 18.955
tβ̂ -10.987 0.012 11.247 rf1.96=0.756
R2 0.001 0.168 0.659 m(R2)=0.232

DW 0.047 0.144 0.372 m(DW)=0.171
T = 999 tα̂ -56.073 -1.656 56.769

tβ̂ -37.819 0.516 39.271 rf1.96=0.927
R2 0.001 0.171 0.695 m(R2)=0.240

DW 0.004 0.016 0.038 m(DW)=0.018
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Spurious Regressions

Phillips (1986): “Understanding Spurious Regressions in
Econometrics”

“The present paper develops an asympotitc theory for regressions that
relate quite general integrated random processes. This includes spurious
regressions of the Granger-Newbold type as a special case. It turns out
that the correct asymptotic theory goes a long way towards explaining
the experimental results that these authors obtained. In many cases their
findings are quite predictable from the true asymptotic behavior of the
relevant statistics.”
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Spurious Regressions

“Thus, our theory demonstrate that in the Granger-Newbold regressions
of independent random walks the usual t-ratio significance test does not
possess a limiting distribution, but actually diverges as the sample size
T ! ∞.”

“Inevitably, therefore, the bias in this test towards the rejection of no
relationship (based on a nominal critical value of 1.96) will increase with
T.”

“We.also show that the Durbin-Watson statistic actually converges in
probability to zero, while the regression R2 has a non-degenerate limiting
distribution as T ! ∞.”
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Spurious Regressions

Let fξtg
∞
1 be a sequence of random n-vectors defined on a

probability space (Ω,F , Y) and St =
Pt

j=1 ξ j be the partial sum
process and set S0 = 0
Assumption 1

(a) E (ξt) = 0 for all t;
(b) supi,t E jξ itj

β+ε < ∞ for some β > 2 and ε > 0;
(c) Σ = limT!∞ T�1E (STS0T) exists and is positive definite;
(d) fξtg

∞
1 is strong mixing with mixing numbers αm satisfying

∞X
1

α
1�2/β
m < ∞.

If ξ 0t = (vt, wt), then the Granger-Newbold framework applies
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Spurious Regressions

Remark: Mixing: Let fXtg∞
�∞ be a stochastic process defined in a

probability space (Ω,F , P) and let F t
�∞ = σ (..., Xt�2, Xt�1, Xt) and

F t
�∞ = σ (Xt+m, Xt+m+1, Xt+m+2...). The sequence is said to be

α-mixing (or strong mixing) if

lim
m!∞

αm = 0,

where
αm = sup

t
α
�
F t
�∞,F∞

t+m
�

and

α
�
F t
�∞,F∞

t+m
�
= sup

G2F t
�∞,H2F∞

t+m

jP (G\H)� P (G)P (H)j .
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Spurious Regressions

Moreover, when ξ 0t = (vt, wt) and vt and wt are independent, as in
the spurious regressions context, we have

Σ =
�

σ2
v 0

0 σ2
w

�
,

where

σ2
v = lim

T!∞
T�1E

24 tX
1

vj

!2
35 and σ2

w = lim
T!∞

T�1E

24 tX
1

wj

!2
35
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Spurious Regressions

Lemma SR. Suppose yt = yt�1 + vt and xt = xt�1 +wt. If the
innovation sequences fvtg∞

1 and fwtg∞
1 are independent and if

f(vt, wt)g∞
1 satisfies Assumption 1 then, as T ! ∞,

(a)

T�3/2
TX
1

xt =) σw

Z 1

0
W (r) dr and T�3/2

TX
1

yt =) σv

Z 1

0
V (r) dr,

(b)

T�2
TX
1

x2
t =) σ2

w

Z 1

0
W (r)2 dr and T�2

TX
1

y2
t =) σ2

v

Z 1

0
V (r)2 dr,
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Spurious Regressions

(c)

T�2
TX
1

(xt � x̄)2 =) σ2
w

24Z 1

0
W (r)2 dr�

(Z 1

0
W (r) dr

)2
35

T�2
TX
1

(yt � ȳ)2 =) σ2
v

24Z 1

0
V (r)2 dr�

(Z 1

0
V (r) dr

)2
35 ,

(d)

T�2
TX
1

ytxt =) σvσw

Z 1

0
V (r)W (r) dr
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Spurious Regressions

(e)

T�1
TX
r

yt (yt � yt�r) =) (r/2)
n

σ2
vV (1)2 +Ωv0

o
+

rX
j=1

(r� j)Ωvj,

T�1
TX
r

xt (xt � xt�r) =) (r/2)
n

σ2
wW (1)2 +Ωw0

o
+

rX
j=1

(r� j)Ωwj,

(f)

T�1
TX
r

yt (xt � xt�r) + T�1
TX
r

xt (yt � yt�r) =) rσvσwV (1)W (1) ,
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Spurious Regressions

where W (r) and V (r) are independent Wiener processes on C [0, 1]
and where for j = 0, 1, ...

Ωvj = lim
T!∞

T�1
TX

j+1

E
�
vtvt�j

�
and Ωwj = lim

T!∞
T�1

TX
j+1

E
�
wtwt�j

�
.

Moreover (a)-(f) hold irrespective of the initial conditions assigned to
y0 and x0.
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Spurious Regressions

Theorem SR. Suppose that

yt = α̂+ β̂xt + ût, t = 1, ..., T

is estimated by least squares regression and the conditions of Lemma 1
are satisfied. Then, as T ! ∞,

(a)

β̂ =)
σv

nR 1
0 V (r)W (r) dr�

R 1
0 V (r) dr

R 1
0 W (r) dr

o
σw

�R 1
0 W (r)2 dr�

�R 1
0 W (r) dr

�2
� = (σv/σw) ζ,

(b)

T�1/2α̂ =) σv

(Z 1

0
V (r) dr� ζ

Z 1

0
W (r) dr

)
,
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Spurious Regressions

(c)
T�1/2tβ =)

µ

υ1/2 ,

where

µ =

Z 1

0
V (r)W (r) dr�

Z 1

0
V (r) dr

Z 1

0
W (r) dr,

and

υ =

�R 1
0 V (r)2 dr�

�R 1
0 V (r) dr

�2
��R 1

0 W (r)2 dr�
�R 1

0 W (r) dr
�2
�

�
nR 1

0 V (r)W (r) dr�
R 1

0 V (r) dr
R 1

0 W (r) dr
o2

.
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Spurious Regressions

(d)

T�1/2tα =)

nR 1
0 V (r) dr� ζ

R 1
0 W (r) dr

o�R 1
0 W (r)2 dr�

�R 1
0 W (r) dr

�2
�

h
υ
R 1

0 W (r)2 dr
i1/2 ,

(e)

R2 =)
ζ2
�R 1

0 W (r)2 dr�
�R 1

0 W (r) dr
�2
�

R 1
0 W (r)2 dr�

�R 1
0 W (r) dr

�2

(f)
DW

p�! 0 and TDW = Op (1) .
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