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(n) Is the process stationary? Why?
(b) Find the ACF of the above process.

3.14 (n) Find the AR representation of the MA(1) process
Z =a, - 4a,_,.
(b) Find the MA representation of the AR(2) process
Z BT AT ey

3.15 For cach of the following modcls:
h (1-B)Z, = (1-1.5B)a,,
() (1-.8B)Z, = (1-.5B)a,,
(1) (1-1.1B + 8B%)Z, = (1-1.7B + .72B%)a,,
(iv) (1-.6B)Z, = (1-1.2B + .2B?)a,
(n) Verify whether it is stationary and/or invertible.
(b) Express the model in an MA representation if it exists.
(c) Express the modcl in an AR representation if it exists.

3.16 For cach of the following processes:
0 (1-.6B)Z, = (1-.9B)a,,
() (1-14B + .6B)Z, = (1- 8B)a,
(n) Find the ACF p,.
(b) Find the PACF ¢, fork =1, 2, 3.
(c) Find the autocovariance generating function.

3.17 Simulate a scrics of 100 obscrvations from cach of the models with o} = lin
Excrcise 3.16. For each simulated scries, plot the serics, calculate, and study its
sample ACF j, and PACF ¢,, fork =0, 1, ..., 20.

NONSTATIONARY
TIME SERIES
MODELS

The time series processes we have discussed so far are all stationary processes.
However, many applied time series, particularly those arising from economic
and business areas, are nonstationary. With respect to the class of covariance
stationary processes, nonstationary time series can occur in many diflerent
ways. They could have nonconstant means 41, time varying second moments
such as nonconstant variance o2, or have both of these properties. For ex-
ample, the monthly series of unemployed females between ages 16 and 19 in
the United States from January 1961 to December 1985 plotted in Figure 4.1
clearly shows that the mean level changes with time. The plot of the yearly U. S.
tobacco production between 1871 and 1979 shown in Figure 4.2 indicates both
that the mean level depends on time and that the variance increases as the
mean level increases.

In this chapter we illustrate the construction of a very useful class of ho-
mogeneous nonstationary time series models—the autoregressive integrated
moving average (ARIMA) models. Some vseful differencing and variance sta-
bilizing transformations are introduced to connect the stationary and nonsta-
tionary time series modcls.

4.1 NONSTATIONARITY IN THE MEAN

A process nonstationary in the mean could pose a very serious problem for es-
timation of the time dependent mean function without multiple realizations.
Fortunately, there are models that can be constructed from a single realization
to describe this time dependent phenomenon. Two such classes of models that
are very useful in modeling time series nonstationary in the mean are intro-
duced in this section.
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Fig. 4.1 Monthly scrics of unemployed females between ages 16 and 19 in the United
States from January 1961 to December 1985.

4.1.1 Deterministic Trend Models

The mean function of a nonstationary process could be represented by a de-
terministic trend of time. In such a case, a standard regression model might be
used to describe the phenomenon. For example, if the mean function i, follows
a linear trend, p, = o + oyt one can use the deterministic linear trend model

Z, =ﬂ‘u+ﬂ’lt +a“ (4.1.1)

with the a, being a zero mean white noise series. For a deterministic quadratic
mean function, i, = ap + o, + a,t?, one can use

Z,=ag+at +ayl+a,. (4.1.2)

More generally, if the deterministic trend can be described by a k th order poly-
nomial of time, one can model the process by

Z,=ag+at 4+ +at* +a, (4.1.3)

It the deterministic trend can be represented by a sine-cosine curve, one can
use

Z,=yy+rvcos(uwt +0)+a, (4.1.4)
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Flg. 4.2 Yearly U. S. tobacco production between 1871 and 1971.

=y + acos(wt)+ fAsin(wt) +a,, (4.1.5)
where

a=vcosb, = —vsiné, (4.1.6)

v=1/a?+ 32, (4.1.7)
and

6 = tan~' (- f/a). (4.1.8)

We call v the amplitude, w the frequency, and # the phase of the curve.
More generally, we can have
m
Z, =+ Z(aj coswit + 3 sinwit) +a,, (4.1.9)
j=1
which is often called the model of hidden periodicities. These models can be

handled through standard regression analysis and are discussed again later in
Chapter 11.
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4.1.2 Stochastic Trend Models and Differencing

Although many time series are nonstationary, due to some equilibrium forces,
different parts of these series behave very much alike except for their differ-
ence in the local mean levels. Box and Jenkins (1976, p. 85) refer to this kind of
nonstationary behavior as homogeneous nonstationary. In terms of the ARMA
madels, the process is nonstationary if some roots of its AR polynomial do not
lie outside the unit circle. However, by the nature of homogeneity, the local
behavior of this kind of homogeneous nonstationary series is independent of
its level. Hence, by letting y(B) be the autoregressive operator describing the
behavior, we have

Y(B)Z,+C)=¥(B)Z, (4.1.10)
for any constant C. This implies that ¥(B) must be of the form
¥(B) = ¢(B)(1-B)?, (4.1.11)

for some d > 0 where ¢(B) is a stationary autoregressive operator. Thus, a
homogeneous nonstationary series can be reduced to a stationary series by
taking a suitable difference of the general series. In other words, the series {Z, }
is nonstationary but its dth differenced series, {(1—B)?Z,} for some integer
d > 1, is stationary. For example, if the dth differenced series follows a white
noise phenomenon, we have

(1-B)'Z, =a,. (4.1.12)

To see the implication of this kind of homogeneous nonstationary series,
considerd = 1in (4.1.12), i.e.,

(1-B)Z, =a, (4.1.13a)
or
Z,=2,_+a, (4.1.13b)
Given the pastinformation Z,_,, Z, _,, ..., the level of the series at time ¢ is
mM=2Z,_ (4.1.14)

which is subject to the stochastic disturbance at time (¢t — 1). In other words,
tl:~ mean level of the process Z, in (1-B)?Z, ford > 1 changes through time
ste hastically, and we characterize the process as having a stochastic trend.
“hi- is different from the deterministic trend model mentioned in the previous
‘ction, where the mean level of the process at time ¢ is a pure deterministic
ietion of time,
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4.2 AUTOREGRESSIVE INTEGRATED MOVING
AVERAGE (ARIMA) MODELS

4.2.1 The General ARIMA Model

Obviously, the stationary process resulting from a properly differenced ho-
mogeneous nonstationary series is not necessarily white noise as in (4.1.12).
More generally, the differenced series (1 —B)?Z, follows the general station-
ary ARMA(p, q) process discussed in (3.4.1) of Chapter 3. Thus, we have

$,(B)(1 -B)!Z, =6, + 6,(B)a,, (4.2.1)
where the stationary AR operator ¢,(B) = (1-¢,B —--- — ¢,B”) and the in-
vertible MA operator 6,(B) = (1- 6,B —---—6,B7) share no common factors.

The parameter 6, plays very different roles ford = 0 and d > 0. Whend =0,
the original process is stationary, and we recall from (3.4.16) that 6, is related
to the mean of the process, i.e., 6y = u(1-¢; —---—4,). However, whend > 1,
6, is called the deterministic trend term and, as shown in the next section, is
often omitted from the model unless it is really needed.

The resulting homogeneous nonstationary model in (4.2.1) has been re-
ferred to as the Autoregressive Integrated Moving Average model of order
(p, d, q) and is denoted as the ARIMA(p, d, q) model. When p = 0, the
ARIMA(p, d, q) model is also called the Integrated Moving Average model
of order (d, q) and is denoted as the IMA(d, q) model. In the following, we
illustrate some commonly encountered ARIMA models.

4.2.2 The Random Walk Model

In (4.2.1),if p = 0,d = 1, and q = 0, we have the well-known random walk
model, g

(1-B)Z, =a, (4.2.20)
or
Z,=2,_,+a, (4.2.2b)

This model has been widely used to describe the behavior of the series of a
stock price. In the random walk model the value of Z at time ¢ is equal to its
value at time (¢ — 1) plus a random shock. This behavior is similar to following
a drunken man whose position at time ¢ is his position at time (¢ — 1) plus a
step in a random direction at time f.

Note that the random walk model is the limiting process of the AR(1)
process (1 — ¢B)Z, = a, with ¢ — 1. Because the autocorrelation function
of the AR(1) process is p, = ¢X, as ¢ — 1, the random walk model phe-
nomenon can be characterized by large nonvanishing spikes in the sample ACF
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of the original series {Z,} and insignificant zero ACF for the differenced se-
rics {(1-B)Z,}.

Next, consider the following simple modification of (4.2.2a) with a nonzero
constant term

(1-B)Z, =68, +a, _ (4.2.3)
or |
Zy=2,_ +68,+a,. (4.2.4)
With reference to a time origin k, by successive substitution, we have
Z,=Z,_,+0,+a,
=Z,_,+20)+a, +a,_,

]
=Z,+ (1 —k)by+ Z a;, fort >k. (4.2.5)

j_—.’t +1

Thus, it is clear that Z, contains a deterministic trend with slope or drift 6.
More generally, for the model involving the dth differenced series {(1 — B)!
Z,} the nonzero 8, in (4.2.1) can be shown to correspond to the coeflicient
ay of 1 in the deterministic trend, ag + oy + -+ + a . For this reason, when
d > (), 8, is referred to as the deterministic trend term. For large ¢, this term can
become very dominating so that it forces the series to follow o deterministic
pattern. IHence, in general, when o > (), we assume that 8, = 0, unless it is clear
from the data or the nature of the problem that a deterministic component is
really needed.

The process in (4.2.3) with &, # 0 is usually called the random walk model
with drift. Given Z,_,, Z,_,, ..., by (4.2.4) the mcan level of the series Z, at
time 1 is

1 =2Z_y + 6 (4.2.6)

which is influenced by the stochastic disturbance at time (¢ — 1) through the
term Z,_, as well as by the deterministic component through the slope 6,.
When 6, = 0, we have a model with only a stochastic trend.

Example 4.1 To illustrate the results of the random walk model discussed
in this section, we simulated 100 observations each from the model (1-B)Z, =
@, and the model (1-B)Z, = 4 +a,, where the a, in both models are i.i.d. nor-
mal N (0, 1) white noise. The sample ACF and PACF of the original series are
~hown in Table 4.1 and Figure 4.3. The fact that the ACF for both series decays
very slowly indicates that it is nonstationary. To identify the model properly,
we caleulate the sample ACF and PACF of the differenced series (1 — B)Z, as

hown in Table 4.2 and Figure 4.4. As expected, both exhibit phenomena of a
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Table 4.1 Sample ACF and sample PACEF for the original serics Z, simulated .
from random walk modecls.

(a) ForZ, from (1-B)Z, =a,
3 4 5 6 7 8 9 10

Pr 94 88 8 77 71 66 60 53 46 .40
StE. .10 17 .21 24 26 28 30 31 32 32

b 94 —07 —01 -04 02 -07 -04 —15 .02 -.04
SLE. .10 .10 .10 .10 .10 -.10 .10 .10 .10 .10

(b) ForZ, from (1-B)Z, =4 +a,
3 4 5 6 7

P 94 9 91 88 8 8 79 76 .73 .70
StE. .10 17 22 25 28 30 33 34 36 .38

b 97 -01 -01 -02 -.01 -01 -02 -02 -.01 -.01
StE. .10 10 .10 0 .10 .10 .0 .10 .10 .10

white noise process. In fact, the values of /5, and 4, are coincidently equal for
the two models. Then how can we tell the difference between the regular ran-
dom walk model and the random walk model with drift? We cannot if we rely
only on their autocorrelation structures, although the sample ACF of the orig-
inal series from a random walk model with drift generally decays more slowly.
However, if we look at their behaviors as plotted in Figure 4.5, the difference
is striking. The series of the random walk model with drift is clearly dominated
by the deterministic linear trend with slope 4. On the other hand, the nonsta-
tionarity of the random walk model without drift is shown through a stochastic
trend and its values are free to wander.

4.2.3 The ARIMA(0,1,1) or IMA(1,1) Model
Whenp =0,d = 1, and q = 1, the model in (4.2.1) becomes

(1-B)Z, = (1-6B)a, (4.2.7a)
or

Z,=Z,_,+a,~08a,_,, (4.2.7b)

where —1 < 8 < 1. This IMA(1, 1) model is reduced to a stationary MA(1)
process after taking the first difference. The random walk model is a special
case of this IMA(1, 1) model with 8 = 0. Thus, the basic phenomenon of the
IMA(1, 1) model is characterized by the facts that the sample ACF of the origi-
nal series fails to die out and that the sample ACF of the first differenced series
exhibits the pattern of a first order moving average phenomenon.
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Fig. 4.3 Sample ACF and PACF of the random walk modcl. (a) For Z, from (1-B)Z, =

a,.(b)For Z, from (1-B)Z, =4 +a,.

For-1<8<1,

(1-B)

=) =(1-B)(1+6B +6°B* +...)

=1+6B+6°B+ ...

~-B-0B%-...
=1-(1-6)B-(1-6)B*—(1-6)6’B>—...
=1-aB-a(l-a)B*-a(1-0)B’-... (4.2.8)
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Thble 4.2 Sample ACF and sample PACF for the differenced
scrics W, = (1 - B)Z, simulated from random walk models,

(a) ForW,=(1-B)Z, from (1-B)Z, =a,
1 2 3 4 5 6 1 8 9

Pr .11 .03 .00 00 .11 .02 .06 .01 -.02 .06
St.E. .10 .10 .10 .10 .10 .10 .10 .10 .10 .10

éu 11 02 .00 .00 .11 .00 .05 .00 -.03 .05
StE. .10 .10 .10 .10 .10 .10 .10 .10 .10 .10

10

(b) ForW, =(1-B)Z, from (1-B)Z, =4 +aq,
1 2 '3 4 5 6 9

7 8 10

s 11 03 00 00 .11 .02 06 .01 —02 .06
SLE. .10 .10 .10 .10 .10 .10 .10 .10 .10 .10

¢ 11 .02 00 .00 .11 .00 05 .00 -.03 .05
St.E. .10 .10 .10 .10 .10 .10 .10 .10 .10 .10

where a = (1 - 46). Hence,

oo
Z,=a) (1-a)~'Z,_; +a, (4.2.9)
j=1
This is the AR representation of the model, and from the results of regression
analysis the optimal forecast, Z,, of Z, is given by

oo
2,=a) (1-a)y~'zZ, ;. (4.2.10)
=1
In other words, the optimal forecast of Z, at time ¢ is an exponentially decreas-

ing weighted moving average of its past values Z,_,, Z, _,, ..., etc. Moreover,
(4.2.10) implies that

Ziy=a) (1-a)7'Z,,,;

j=1

=aZ +(1-a)a)_(1-a)2Z,,,
i=2

=aZ,+(1-a)a) (1-a)~'zZ,;
i=1

=aZ,+(1-0)2,,

" which shows that the new forecast of Z at the next time period is equal to the

weighted average of the newly available observation and the last forecast. The
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Fig. 4.4 Samplc ACF and PACF of differences of random walk modcls. (a) For I, =
(1-B)Z, from (1-B)Z, =a,.(b) For W, = (1-B)Z, from (1-B)Z, =4 +a,.

coeflicient a is often called the smoothing constant in the method of expo-
nential smoothing. Thus, the general ARIMA(p, d, q) model contains many
smoothing methods as special cases. See Abraham and Ledolter (1983) for a
more detailed discussion of the relationship between exponential smoothing
snd the ARIMA models.

I'xnmple 4.2 We simulated 250 values for each of the following three
AIKIMA models: (1) the ARIMAC(1, 1, 0) model, (1-.8B)(1-B)Z, = a,; (2) the
ARIMAC(O, 1, 1) model, (1-B)Z, = (1-.75B)a,; and (3) the ARIMA(], 1, 1)
qodel, (1-.9B)(1-B)Z, = (1 -.5B)a,. The scries a, are independent Gaus-
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Fig. 4.5 ' Simulated serics from random walk modcls. (a) A simulated random walk sc-
rics: (1 — B)Z, = a,. (b) A simulated random walk serics with drift: (1-B)Z, =4 +a,.

sian N(0, 1) white noise. The sample ACF and PACF of the original three
series are computed and shown in Table 4.3 and Figure 4.6. Each one shows
the same phenomenon of the sustained large ACF and an exceptionally large
first lag PACF. The dominating phenomenon of nonstationarity overshadows
the fine details of the underlying characteristics of these models. To remove
the shadow, we take differences for each of these series. The sample ACF
and PACEF for these differenced series are shown in Table 4.4 and Figure 4.7.
Now, all the fine details are evident. The ACF j; of W, = (1-B)Z, from the
ARlMA(l 1, 0) model tails off while its PACF §,, cuts off after lag 1; the
ACF j, of W, = (1-B)Z, from the ARIMA(O 1, 1) model cuts off after lag 1
while its PACF xx tails off; both the ACF j, and PACF 4, of W, = (1-B)Z,
from the ARIMA(1, 1, 1) model tail off as expected from their characlcnsllcs
discussed in Chapter 3.

4.3 NONSTATIONARITY IN THE VARIANCE AND
THE AUTOCOVARIANCE

4.3.1 Varlance and Autocovarlance of the ARIMA Models

A process that is stationary in the mean is not necessarily stationary in the vari-
ance and the autocovariance. However, a process that is nonstationary in the
mean will also be nonstationary in the variance and the autocovariance. As we
have shown in the previous section, the mean function of the ARIMA model
is time dependent. We now show that the ARIMA model is also nonstationary
in its variance and autocovariance functions.

First, we note a very fundamental phenomenon about the ARIMA model.
That is, although the model is nonstationary, the complete characteristic of the
process is determined for all time only by a finite number of parameters, i.e.,
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‘Inble 4.3 Sample ACF and sample PACF for the vriginal scrics Z, ) (@ )
simulated from three ARIMA modcls. 1.0 7* 1.0 1
(1) ForZ, from (1 - 8B)(1-B)Z, =a, g-g 0.8 |
kK 1 2 3 4 5 ‘6 1 & 9 10 : 0.6
0.4 0.4 1
A 97 95 92 89 86 83 80 .77 .74 .72 0.2 0.2 s
SLE. 06 .11 .14 .16 18 19 21 22 23 .24 0 s 5 >k 0 . i > k
du 97 —06 —04 —02 —01 —01 —01 —00 .02 .03 il oy
SLE. 06 06 06 06 06 06 .06 .06 .06 .06 e s
-0.6 -0.6
(b) For Z, from (1-B)Z, = (1-.75)a, 0.8 -0.8
k 1 2 3 4 5 6 7 8 9 10 -1.0 ! -1.0 -
I 96 .91 8 8 79 75 .72 69 .67 .66 (b)
SLE. 06 .11 13 a5 17 A9 20 21 22 22 B 311
Fi
fu 96 -13 04 01 03 01 00 .13 .07 .06 ; o 1.0
SLE. 06 .06 06 06 06 06 06 .06 .06 .06 3 0.8 0.8
0.6 1 0.6 1
(¢) ForZ, from (1-.9B)(1-B)Z, = (1-.5B)a, 0.4 1 0.4 1
k1 2 3 4 5 6 / 8 9 10 i 0.2 1 02
" 0 19 >k 0 e »k
Pr 98 9 94 91 .89 87 B84 82 .80 .78 02 .02 |
SLE. 06 .11 4 16 18 200 21 23 24 .25 ! 0.4 _0'4 ]
b 98 —03 —03 —02 —02 -02 -02 -01 01 02 -0.6 | 0.6
SLtE. 06 06 .06 06 .06 06 .06 .06 .06 .06 X -0.8 ; -0.8
: .10/ -1.0
the ¢;, the 8., and o2. Thus, the complete future evolution of the process can be i 3 © ?
developed from the ARIMA madel fitted to a given data set, {Z,, Z,, ..., Z, ). : 1.0 74 1.0 *
For example, suppose we fit the IMA(1, 1) model : 0.8 0.8
{ 0.6 1 0.6 1
(1-B)Z, =(1-6B)a, (4.3.1a) 3 0.4 1 0.4 J
&k 0.2 1 ‘ 0.2 s . .
.‘l 0 5 10 >k 0 LE 10 >k
Z,=Z,_,+a,-6a,_, (4.3.1b) _ 02 0.2 -
. -0.4 - -04
to a series of ny observations. With reference to this time origin ny, fort > n,, A 0.6 -3.6
we can write by successive substitutions, A 08 . 08
Z,=2, +a,-6a,_, [ el 0
=Z,,+a,+(1-0a,_,-0a,_, 1 Fig. 4.6 Sample ACF and PACF from three ARIMA models. (a) For Z, from
: (1- 8B)(1-B)Z, = a,. (b) For Z, from (1 - B)Z, = (1-.75B)a,. (c) For Z, from
: ! (1-.9B)(1-B)Z, = (1 - .5B)a,.
=2, +a,+(1-0)a,_, +---+(1-0)a, , ~6a,. (4.32) :
Sialarly, fort —k > n,, }
ok =Zp 0y A (1=0)a, g+ +(1=-0)a,, . —0a,. (4.33) :
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Tuble 4.4 Sample ACF and sample PACEF for the differenced scrics
W, = (1 - B)Z, simulated from thrcc ARIMA modecls.

(a) ForW, =(1-B)Z, from (1-.8B)(1-B)Z, =a,
1 2 3 4 5 6 7 8 9 10

Pr Jir 50 36 .20 .12 05 .02 .00 -.03 -.01
SLtE. 06 .09 .10 .11 S [ RN | CRNE o S (S 1 ERNR

b 7101 01 —12 04 -04 00 .11 -03 .05
SLE. 06 06 06 .06 .06 .06 .06 .06 06 .06

(b) ForW, =(1=B)Z, from (1-B)Z, = (1-.75B)a,
1 2 3 4 5 6 1 8 9 10

P 40 -07 -02 -10 -08 -06 -06 -.14 -04 .04
SLtE. 06 07 07 07 W07 .07 .07 .07 .07 .07

b 40 -28 16 -23 .11 -.16 07 -0 02 .05

SLE. 06 06 06 06 .06 06 06 06 06 .06
(c) For W, =(1-B)Z, from (1-.9B)(1-B)Z, = (1-.5B)a,
kK 1 2 3 4 s 6 1 '8 9 10

Pr 41 34 3 17 .18 12 08 .11 05 .09
StE. 06 07 08 .08 W09 09 09 W09 .09 .09

b Al 20 17 -06 04 -01 00 04 —03 .06
SLE. 06 .06 .06 06 .06 .06 .06 .06 .06 .06

Hence, with respect to the time origin ng,

Var(Z,) =14+ (t —ng— 1)(1-6)*]02 (4.3.4)
Var(Z,_,) = [1+ (t =k —ng — 1)(1=6)*]42 (4.3.5)
Cov(Z,_4, Z,) =[(1-6) + (t =k —ng—1)(1-8)?]a2, (4.3.6)

where we note that Z, anda,, are known values with respect to the time origin

ny, and
Cov(Z,_4, Z,)

VVar(Z,_,) Var(Z,)

_ (1-8)+(t =k —ng—1)(1-86)?
VIT+({—k—ng—=1)(1-6)?J[1+ (t —ng—1)(1- 0]

Now, from (4.3.4) to (4.3.7), we have the following important observations:

1. The variance, Var(Z,), of the ARIMA process is time dependent and
Var(Z,) # Var(Z,_,) for k # 0.

' The variance Var(Z,) is unbounded as  — co.

I'he autocovariance Cov(Z,_,, Z,) and the autocorrelation Corr(Z,_,, Z,)
I the process are also time dependent, and hence not invariant with respect

Corr(Z,_4, Z,) = (4.3.7)

L s 2o

DRE
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B (a) 3
Loy 1.0 7%
0.8 0.8
0.6 0.6 1
0.4 | 0.4
g'z | [ 10 >k g'z L
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Fig. 4.7 Samplc ACF and PACF for differences from three ARIMA modcls. (a) For
W, =(1-B)Z, from (1 8B)(1-B)Z, =a,. (b) For W, = (1~ B)Z, from (1-B)Z, =
(1-.75B)a,. (c) For W, = (1= B)Z, from (1-.9B)(1-B)Z, = (1 - .5B)a,.
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to time translation. In other words, they are not only functions of the time
difference k but also functions of both the time origin ¢ and the original
reference point n,.

4. If ny is large with respect to k, from (4.3.7), Corr(Z,_y, Z,) =~ 1. Because
|Corr(Z,_, Z,)| < 1, this implies that the autocorrelation function vanishes
slowly as k increases. i

In general, with only a single realization, it is difficult or impossible to make
the statistical inferences of a process that is nonstationary in both the mean and
the autocovariance or autocorrelation function. Fortunately, for the homoge-
neous nonstationary process, we can apply a proper differencing to reduce it
to stationary process. That is, although the original series Z, is nonstationary,
its properly differenced series W, = (1 - B)?Z, is stationary and can be repre-
sented as an ARMA process

$(B)W, = 6(B)a, (4.3.8)
where
¢(B)=(1-¢B~--~¢,B")  and

have all their roots outside of the unit circle. Thus, the parameters ¢;, 6;, and 03
that control the evolution of the nonstationary phenomenon of Z, can be esti-
mated from the differenced series W, in exactly the same way as the stationary
case discussed in Chapter 7.

8(B) = (1-6,B—---—,B)

4.3.2 Varlance Stabilizing Transformations

Not all nonstationary problems can be cured by differencing. There are many
time series that are stationary in the mean but nonstationary in the variance. To
overcome this problem, we need a proper variance stabilizing transformation.

It is very common for the variance of a nonstationary process to change
as its level changes. Thus,

Var(Z,) = ¢f (1)) (4.3.9)

for some positive constant ¢ and function f. How do we find a function T so
that the transformed series, T'(Z,), has a constant variance? To illustrate the
method, we approximate the desired function by a first order Taylor series
about the point 1. Let

T(Z) =T () + T' (1 )(Z, - 1) (4.3.10)
where T'(y,) is the first derivative of T(Z,) evaluated at j,. Now
Var[T(Z,)] = [T" ()] Var(Z,)
= [T (IS (0)- (4.3.11)
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Thus, in order that the variance of T(Z,) be constant the variance stabilizing
transformation T'(Z,) must be chosen so that

1

T'(1) = ————. 3.
)= T 1
Equation (4.3.12) implies that
|
iy / i (4.3.13)

For example, if the standard deviation of a series is proportional to the
level so that Var(Z,) = c%¢?, then

T(1,) = ] #dﬂ, =In(s1,). (4.3.14)

Hence, a logarithmic transformation (the base is irrelevant) of the series,
In(Z,), will give a constant variance,

Next, if the variance of the series is proportional to the level so that
Var(Z,) = ¢y, then

Ty e / 7'5:1,;, =2/ (4.3.15)

Thus, a square root transformation of the series, | /Z,, will give a constant vari-
ance.

Third, if the standard deviation of the series is proportional to the square
of the level so that Var(Z,) = c2i!, then

1

. 1
T = [ dm = -
'l T

Therefore, a desired transformation that gives a constant variance will be the
reciprocal 1/Z,.

More generally, to stabilize the variance, we can use the power transfor-
mation

(4.3.16)

»_Z'-1
o =

TZ,)=Z2 -

(4.3.17)

introduced by Box and Cox (1964). A is called the transformation parameter.
Some commonly used values of A and their associated transformations are
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Values of A (lambda) Transformation

1
-1.0 Z
05 s
VZ,
0.0 InZ,
0.5 Z,
1.0 Z, (no transformation)

To see why A = 0 corresponds to the logarithmic transformation, we note
that

A
« - [CY I Z; -1 -
lim T(Z,) = lim Z{" = lim =L— = In(Z,). (4.3.18)

Some important remarks are in order.

1. The variance stabilizing transformations introduced above are defined only
for positive series. However, this is not as restrictive as it seems because a
constant can always be added to the series without affecting the correlation
structure of the series.

2. A variance stabilizing transformation, if needed, should be performed be-
fore any other analysis such as differencing.

3. Xin the power transformation can be taken as a parameter in the model to
be estimated from the observed series. The maximum likelihood estimate
of A is the one that minimizes the residual sum of squares, a term discussed
further in Chapter 7. For any given value of A, the residual sum of squares
is calculated from the fitted model. The maximum likelihood estimate of
A is the one that gives the smallest residual sum of squares from among
all values of A. In actual applications, evaluations of these residual sum of
squares are often based on a grid of A values.

4. Frequently, the transformation not only stabilizes the variance, but also im-

proves the approximation to normality.

Exercises
4.1 Consider the following modcl:
(1-B)’Z,=(1-.3B - .5B%)a,.

(a) Is the modecl for Z, stationary? Why?
(b) Let W, = (1-B)?Z,. Is the model for W, stationary? Why?
(c) Find the ACF for the sccond order differences W,.
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4.2 Consider the following processes:
() (1-B)’Z, = a, - 8la,_, + 38a,_,,
(b) g-B)z, = (1-.5B)a,.
xpress each of the above processes in the AR representati
g Ao g - presentation by actually find-

4.3 (n) Simulate a series of 100 observations from cach of th i
foll :
O (-Bg = P ¢ lollowing modcls:
() (1-B)Z, =5+(1- .6B)a,,
(i (1-.98)(1 -B)Z, =a,,
(v) (1-.9B)(1-B)Z, = (1-.5B)a,.
(b) Plot the simulated series.
(c) Calculate and examine the sampl 5 5
ple ACE 4, and PACE, =
for cach simulated serics, * faAEtbival

4.4 Supposc that Z, is generated accordin
H h é é toZ, = + ves
where c is a constant, ’ ST at ol
(a) Find the mean and covariance for Z,.Is it stationary?
(b) Find the mean and covariance for (1-B)Z,.Is it stationary?

» 4.5 Consider the stationary MA(1) process Z, = (1 - 0B)a,, where [0] < 1. If we take

the first di!lc‘rcncing of this stationary scrics, what will be the variance of the dif-
ferenced series? Comparc it with the variance of the original scries Z
s Z,.

4.6 Let Z,,Z,, ..., Z, be arandom sample from a Poisson distribution with mean .

(a) Show that the variance of Z, depends on its mean .

(b) Find a proper transformation so that the vari i
ot " variancc of the transformed variable
() Find the variance of the transformed variable,

4.7 Letr, be the Pearson correlation coeflicient of a sample size of n. It is known that

;-. is a:ympéotica]lly distributed as N (p, (1-p2)%/n). Show that Fisher's z-trans
ormation Z = - i i i "
oudinr s g 2In((1 +r)/(1-r,)) is actually a kind of variance-stabilizing



