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6 MODEL IDENTIFICATION

In time series analysis, the most crucial steps are to identify and build a model
based on the available data. This requires a good understanding of the pro-
cesses discussed in Chapters 3 and 4, particularly the characteristics of these
processes in terms of their ACF, p;, and PACEF, ¢,,. In practice, these ACF and
PACF are unknown, and for a given observed time series Z,, ;2, .,and Z,
they have to be estimated by the sample ACF, j,, and PACF, ¢, discussed in
Section 2.5. Thus, in model identification, our goal is to match patterns in the
sample ACF, /5, and sample PACEF, ¢,,, with the known patterns of the ACF,
pi» and PACE, ¢,,, for the ARMA models. For example, since we know that
the ACF cuts off at lag 1 for an MA(1) model, a large single significant spike
at lag 1 for g, will indicate an MA(1) model as a possible underlying process.

After introducing systematic and useful steps for model identification, we
give illustrative examples of identifying models for a wide variety of actual time
series data. We also discuss some recently introduced identification tools such
as the inverse autocorrelation and extended sample autocorrelation functions.

6.1 STEPS FOR MODEL IDENTIFICATION

Toillustrate the model identification, we consider the general ARIMA(p, d, q)
model

(1= B =g BN)(1 ~BYZ = 6+(1-6,B—---—6,B"a,. (6.1.1)
‘el identification refers to the methodology in identifying the required
t . 'ormations, such as variance stabilizing transformations and differencing
tr. ‘ormations, the decision to include the deterministic parameter 6, when
{: 'nd the proper orders of p and q for the model. Given a time series, we

e o tollowing useful steps to identify a tentative model.
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Step 1. Plot the time series data and choose proper transformations.

In any time series analysis, the first step is to plot the data. Through careful
examination of the plot, we usually get a good idea about whether the series
contains a trend, seasonality, outliers, nonconstant variances, and other non-
normal and nonstationary phenomena. This understanding often provides a
basis for postulating a possible data transformation.

In time series analysis, the most commonly used transformations are
variance-stabilizing transformations and differencing. Since differencing may
create some negative values, we should always apply variance-stabilizing trans-
formations before taking differences. A series with nonconstant variance
often needs a logarithmic transformation. More generally, to stabilize the vari-
ance, we can apply Box-Cox’s power transformation discussed in Section 4.3.2.
Since a variance-stabilizing transformation, if necessary, is often chosen before
we do any further analysis, we refer to this transformed data as the original se-
ries in the following discussion unless mentioned otherwise.

Step 2. Compute and examine the sample ACF and the sample PACF of
the original series to further confirm a necessary degree of differencing. Some
general rules are:

1. If the sample ACF decays very slowly (the individual ACF may not be large)
and the sample PACF cuts off after lag 1, it indicates that differencing is
needed. Try taking the first differencing (1 —B)Z,. One can also use the test
proposed by Dickey and Fuller (1979). In a borderline case, differencing is
generally recommended (see Dickey, Bell, and Miller [1986]).

2. More generally, to remove nonstationarity we may need to consider a higher
order differencing (1 —B)?Z, ford > 1. In most cases, d is either 0, 1, or 2.
Some authors argue that the consequences of unnecessary differencing are
much less serious than those of underdifferencing. But do beware of the
artifacts created by overdifferencing, so that unnecessary overparameteri-
zation can be avoided.

Step 3. Compute and examine the sample ACF and PACF of the properly
transformed and differenced series to identify the orders of p and g (where we
recall that p is the highest order in the autoregressive polynomial (1—¢,B —
-+« —¢,BP), and q is the highest order in the moving average polynomial (1 —
6,B —--- —6,B7). Usually, the needed orders of these p and q are less than or
equal to 3. Table 6.1 summarizes the important results for selecting p and q.

It is useful and interesting to note that a strong duality exists between the
AR and the MA models in terms of their ACFs and PACFs. To build a reason-
able ARIMA model, ideally, we need a minimum of n = 50 observations, and
the number of sample ACF and PACF to be calculated should be about n/4,
although occasionally for data of good quality one may be able to identify an
adequate model with a smaller sample size.

We identify the orders p and q by matching the patterns in the sample
ACF and PACF with the theoretical patterns of known models. The art of a
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Thble 6.1 Characteristics of theoretical ACF and PACF for stationary

processes.
Process ACF PACF
AR(p) Tails off as exponential Cuts off after lagp
decay or damped sine wave
MA(q) Cuts off after lag q Tails off as exponential

decay or damped sine wave
ARMA(p, q) Tails off after lag (q —p) Tails off after lag (p —q)

time series analyst’s model identification is very much like the method of an
FBIl agent’s criminal search. Most criminals disguise themselves to avoid being
recognized. This is also true of ACF and PACE. The sampling variation and the
correlation among the sample ACF and PACF as shown in Section 2.5 often
disguise the theoretical ACF and PACF patterns. Hence, in the initial model
identification we always concentrate on the general broad features of these
sample ACF and PACF without focusing on the fine details. Model improve-
ment can be easily achieved at a later stage of diagnostic checking.

The estimated variances of both the sample ACF and PACF given in
(2.5.21) and (2.5.27) are very rough approximations. Some authors recom-
mend that a conservative threshold of 1.5 standard deviations be used in check-
ing the significance of the short-term lags of these ACF and PACF at the initial
model identification phase. This is especially true for a relatively short series.

Step 4. Test the deterministic trend term 6, when d > 0.

As discussed in Section 4.2, for a nonstationary model, ¢(B)(1 -B)?Z, =
6y + 6(B)a,, the parameter f, is usually omitted so that it is capable of repre-
senting series with random changes in the level, slope, or trend. However, if
there is reason to believe that the differenced series contains a deterministic
trend mean, we can test for its inclusion by comparing the sample mean W of
the differenced series W, = (1—B)?Z, with its approximate standard error Sy

To derive S37, we note from Section 2.5.1 that lim nVar(W) = Ym0
and hence

n—oo

ot = ;o Z g Z %= 57(1), (6.1.2)

j=—o00 j==—oc0

where «(B) is the autocovariance generating function defined in (2.6.8) and

*"Vis its value at B = 1. Thus, the variance and hence the standard error for
b model dependent. For example, for the ARIMA(1, d, 0) model, (1 -
8" =a, we have, from (2.6.9),

ol

"B = 5By = ¢
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so that
a_oh 1 _oy 1-¢4
W T (=92 n (1-¢)
_ % (148 %k 1_+ﬂ_) (6.13)
T on \1-¢ n \1-p /'
where we note that 02, = 02/(1 — ¢?). The required standard error is
w18 6.1.4
7=\ (l—ﬁl)' (5l

Expressions of S for other models can be derived similarly. However, at the
model identification phase, since the underlying model is unknown, most avail-
able software use the approximation

, 17
Siy= [%(1+251+2;32+‘-.+25k)] (6.1.5)

where 4, is the sample variance and j, ..., j are the firstk signiﬁcz.mt sample
ACFs of {W,}. Under the null hypothesis p, = 0 for k > 1, Equation (6.1.5)

reduces to
S = \/Goln. (6.1.6)

Alternatively, one can include 6, initially and discard it at the final model
estimation if the preliminary estimation result is not significant. Parameter es-
timation is discussed in the next chapter.

6.2 EMPIRICAL EXAMPLES

In this section we present a variety of real-world examples to illustrate the
method of model identification. Several mainframe computer programs such
as BMDP, MINITAB, SAS, SCA, and SPSS, and PC software such as AUTO-
BOX and RATS are available to facilitate the methods. Some programs are
available for both the mainframe and personal computers.

Example 6.1 Figure 6.1 shows Series W1, which is the daily average num-
ber of defects per truck found in the final inspection at the end of the assembly
line of a truck manufacturing plant. The data consist of 45 daily observations of
consecutive business days between November 4 to January 10, as reported in
Bun (1976, p. 134). The figure suggests a stationary process with constant mean
and variance. The sample ACF and sample PACF are calculated in Table 6.2
and plotted in Figure 6.2. The fact that the sample ACF decays exponenlua]l.y
and the sample PACF has a single spike at lag 1 indicates that the series is
likely to be generated by an AR(1) process,

(1-¢B)Z,—p)=a,. (6.2.1)
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Fig. 6.1 Daily average number of truck manufacturing defects (Series W1).

Example 6.2 Series W2 is the classic series of the Wolf yearly sunspot num-
bers between 1700 and 1984, giving a total of n = 285 observations. Scientists
believe that the sunspot numbers affect the weather of the earth and hence hu-
man activities such as agriculture, telecommunications, and others. The Wolf
sunspot numbers have been discussed extensively in time series literature, e.g.,
Yule (1927), Bartlett (1950), Whittle (1954), Brillinger and Rosenblatt (1967),
and others. This series is also known as the Wolfer sunspot numbers, named
after Wolfer, who was a student of Wolf's. For an interesting account of the
history of the series, see Izenman (1985). The series between 1700 and 1955 is

Table 6.2 Sample ACF and sample PACF for the daily average number
of truck manufacturing defects (Series W1).

k 1 2 3 4 5 6 7 8 9 10

Pr 43 26 .14 08 -—-09 -07 -21 -.11 -.05 -.01
SLtE. .15 .15 17 18 1% .19 19 .19 19 19

P 43 .09 00 00 -16 00 -18 .07 05 .01
wE. .15 .15 .15 .15 A3 A3 A5 LIS 15 (15
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A

1_op‘ 1.033'*
0.8 0.81
0.61 0.6
0.41 04
0.21 ‘ 1 0.2
0 lllsl‘lilp > k 0 | ]5[““’ >y Kk
-0.21 -0.21
-0.41 -0.41
-0.67 -0.6
-0.81 -0.8
1.0 -1.0°

Fig. 6.2 Sample ACF and PACF of the daily average number of truck manufacturing
defects (Series W1).

from Waldmeirer (1961), and the remaining observations are calculated from
the monthly sunspot numbers in Andrews and Herzberg (1985).

The plot of the data is given in Figure 6.3. It indicates that the series is
stationary in the mean. To investigate whether the series is also stationary in
the variance, we calculated the following preliminary residual sum of squares:

n

SO =Y (2,0 -@a)? (6.2.2)

=1

for various values of the power transformation parameter as shown in
Table 6.3, where /i is the corresponding sample mean of the transformed se-
ries. These calculations suggest that a square root transformation be applied
to the data.

The sample ACF and sample PACF of the transformed data are computed
as shown in Table 6.4 and Figure 6.4. The sample ACF shows a damping sine-
cosine wave, and the sample PACF has relatively large spikes at lags 1, 2, and
9, suggesting that a tentative model may be an AR(2).

(1-¢,B-6,B)(/Z,—p) =a,, (6.2.3)
or an AR(9)
(1= $B—-- = 4B )VZ,— 1) =a,. (6.2.4)

By ignoring the values of ¢, beyond lag 3, Box and Jenkins (1976) suggest that
an AR(3) model, (1—¢,B — ¢,B% — $,B%)(\/Z, — jt) = a,, is also possible, even
though their analysis was based on the nontransformed data between 1770
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200+ Table 6.4 Sample ACF and sample PACF for the square root transformed
sunspot numbers (Series W2).
k Pi
| 1-10 81 45 06 -25 -—-41 —-40 -21 .08 40 .61
150 StE. .06 .09 .10 .10 .10 .11 a1 1t a1 L1
11-20 65 .50 .22 -.06 -.28 -37 -34 -21 -.00 .20
§ St.E. A2 14 15 15 15 15 15 16 .16 .16
E 21-30 35 37 26 05 -.15 -30 -37 -32 -20 -.03
& 100+ SGE. .16 16 .16 17 A7 7 47 a7 A7 .17
g h -
2 k Pu
@ 1
ﬂ 1-10 81 -62 -16 -02 -05 .13 24 16 28 .03
50 SL.E. 06 06 06 06 06 06 06 06 .06 .06
1120 -01 -05 —-06 .09 —-01 -.08 —-.09 —-11 -.01 —-.05
SLE. 06 06 06 .06 06 .06 .06 .06 .06 .06
N 21-30 05 -03 -10 -08 02 -03 01 .05 -05 .01
St.E. 06 06 W06 06 06 06 .06 06 06 .06
0 T T T T T 1
1700 1750 1800 1850 1900 1950 2000
Year A
1o} 10~3“
Fig. 6.3 Wolf yearly sunspot numbers, 1700-1983 (Series W2). ’ '
0.8 0.81
Table 6.3 Residual sum 0.61 0.6
of squares in the power
transformation. 0.4 0.4
A Residual f 92 .2 s[lll s
esidual sum of squares 5 15 30 ) L)
0 10 20 ko | T T T T T e
1.0 13.82 -0.21 -0.2
0.5 9.77 ]
0.0 11.06 -04 04
-0.5 25.86 -0.61 -0.6
-1.0 147.68 081 0.8
-1.0° -1.0°

Fig. 6.4 Sample ACF and sample PACF [or the square root transformed sunspot num-

and 1869. B f the ] t lation .65 at lag 11, ientist
m ecause of the large autocorrelation at lag many scientists bers (Series W2).

wlieve that the series contains a cycle of eleven years. We examine this series
1 carefully in later chapters.

Esvniple 6,3 Series W3 is a laboratory series of blowfly data taken from
lic on (1950). A fixed number of adult blowflies with balanced sex ratios
‘1 ot inside a cage and given a fixed amount of food daily. The blowfly
nul -on was then enumerated every other day for approximately two years,
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giving a total of n = 364 observations. Brillinger, Guckenheimer, Guttorp, and
Oster (1980) first applied time series analysis on the data set. Later Tong (1983)

considered the following two subseries:
Blowfly A: for Z, between 20 <t < 145,
Blowfly B: for Z, between 218 <t <299,
and argued that the series Blowfly A is nonlinear. Series W3 used in our anal-
ysis is the series Blowfly B of 82 observations as shown in Figure 6.5.
The data plot suggests that the series is stationary in the mean. However,

the power transformation analysis indicates that a square root or a logarithmic
transformation is needed as shown in Table 6.5.

The sample ACF and PACF are calculated for the square root transformed
data as shown in Table 6.6 and Figure 6.6. The sample j, tails off exponentially
and qﬁ,‘k cuts off after lag 1. Thus, the following AR(1) model is entertained:

(1-¢B)(\/Z, - ) =a, (6.2.5)

Example 6.4  Recall the monthly series of 300 unemployed females be-
tween ages 16 and 19in the United States from January 1961 to December 1985
as shown in Figure 4.1. The series is labeled as Series W4, It is clearly nonsta-
10000+
8000

6000 -

4000

Number of blowflies

2000

04— [

]
0 20 40 60 80 100
Day

ig Blowlly data (Serics W3).
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Table 6.5 Results of the power
transformation on blowlly data.

A Residual sum of squares

1.0 55.31
0.5 50.09
0.0 50.38
-0.5 56.67
-1.0 71.50

tionary in the mean, suggesting differencing is needed. This is further con-
firmed by the sustained large spikes of the sample ACF shown in Table 6.7 and
Figure 6.7. The differenced series is now stationary and is shown in Figure 6.8.
The sample ACF and sample PACF are computed for this differenced series
in Table 6.8 and also plotted in Figure 6.9. The sample ACF now cuts off af-

Table 6.6 Sample ACF and sample PACF for the blow(ly data (Serics W3).

k 1 2 3 4 5 6 i 8 9 10

Pr g3 49 30 20 .12 02 -01 -.04 -01 -03
SLE. .11 d6 18 a8 19 19 19 19 19 .19

o T3 —09 —04 04 —03 -12 07 -05 07 —.08
SLE. .11 .11 .11 1 a1 At a1 At Lt a1

M
Lo L%
0.8 0.8
0.6 0.6
0.4 0.4
i l[l o - R S
0 = & 0 Tk
-0.2] -0.2
-0.41 -0.4
-0.67 -0.61
-0.81 -0.81
-1.0 -1.0°

Fig. 6.6 Sample ACF and sample PACF for the blowfly data (Series W3).
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Table 6.7 Sample ACF and sample PACF of Series W4 — the
U.S. monthly series of unemployed females between ages 16
and 19 from January 1961 to December 1985.

k 1 2 3 4 5 6 7 8 9 10

Pr 97 96 95 94 93 93 92 91 90 .90
StE. .06 .10 .13 .15 .17 .18 .20 21 22 .24

é 97 37 .10 .08 .02 .08 .02 .02 -.04 .00
StE. .06 .06 .06 .06 .06 .06 .06 .06 .06 .06

0.81 0.8
0.61 0.6
0.41 0.4
0.21 0.21
0 s ) & 0 g
-0.2 -0.21
-0.41 -0.4
-0.6 -0.6
-0.8 -0.8
-1.0 -1.0°

Fig. 6.7 Sample ACF and sample PACF of Series W4 — the U.S. monthly series of
uncmployed females between ages 16 and 19 from January 1961 to December 1985,

ter lag 1 while the sample PACF tails oft. This pattern is very similar to the
ACF and PACF for MA(1) with positive 8, as shown in Figure 3.10, suggest-
ing an MA(1) model for the differenced series and hence an IMA(1, 1) model
for the original series. To test whether a deterministic trend parameter 6, is
needed, we calculate the t-ratio W/S3; = 1.0502/2.4223 = .4335, which is not
significant. Thus, our proposed model is

(1-B)Z, = (1-6,B)a,. (6.2.6)

“wample 6.5 The accidental death rate is a vital statistic for many state
| federal governments. Figure 6.10 shows Series W5, which is the yearly

* lental death rate (per 100,000 population) of Pennsylvania between 1950
1984 published in the 1984 Pennsylvania Vital Statistics Annual Report by

t! nnsylvania State Health Data Center. The series is clearly nonstation-
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Fig. 6.8 The dillerenced monthly serics, W, = (1 — B)Z,, of the U.S. monthly serics
of unemployed females between ages 16 and 19 from January 1961 to December 1985
(Scrics W4).

ary with a decreasing trend. This nonstationarity is also shown by the slowly
decaying ACF in Table 6.9 and Figure 6.11. Both Figure 6.11 and the evalua-
tion of power transformations indicate no transformations other than differ-
encing are needed. The sample ACF and PACF of the differenced data shown
in Table 6.10 and Figure 6.12 suggest a white noise phenomenon. The t-ratio,
W/Sz = —.5618/.2507 = —2.24, implies that a deterministic trend term is

Table 6.8 Sample ACF and sample PACF of the differenced U.S. monthly
Scrics W, = (1 - B)Z,, of unemployed females between ages 16 and 19

(Scries W4) W = 1.0502, S = 2.4223.

k 1 2 3 4 5 6 1 8 9 10

P —.41 N6 -08 06 -09 07 -03 07 -06 —-.08
StE. W06 07 07 07 07 07 .07 07 07 .07

B = =f4 G4 -4 <01 02 ~0F 05 61 05
SLE. 06 .06 .06 .06 .06 .06 .06 .06 .06 .06
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A

1.0"0' 1.03"
0.8 0.8
0.61 0.61
0.4 0.4
0.21 0.21
0 BT SE I 0 11'15"1110 5 b
-0.21 -0.21
-0.41 -0.41
-0.61 -0.61
-0.81 -0.81
-1.0° -1.0°

Fig. 6.9 Sample ACF and sample PACF of the differenced U.S. monthly serics, W, =
(1 -B)Z,, of unemployed females between the ages of 16 and 19 (Series W4).
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Fi- 10 Series W5—The yearly Pennsylvania accidental death rate between 1950
e =4,
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Table 6.9 Sample ACF and sample PACF of the Pennsylvania
accidental death rate between 1950 and 1984 (Series W5).

k 1 2 3 4 5 6 7 8 9 10

Py 87T 73 57 44 34 25 15 08 .01 -.02
StE. .17 27 32 35 3 37 38 38 38 .38

b 87 -13 =15 03 06 -.08 -14 04 -02 .03
LT o r S by ) 7 A br A \r (R 17 S i (7 (M 7 S | S )

A

1.0 1.0@“
0.8 0.81
0.6 0.61
0.4 0.41
0.2 ‘ ‘ 1 0.21
0 sll‘m > k 0 |]'§|[ll’n > k
-0.21 021
-0.41 -0.41
-0.6 -0.61
0.8 -0.81
1.0 1.0’

Fig. 6.11 Sample ACF and sample PACF of Series W5—the yearly Pennsylvania acci-
dental death rate between 1950 and 1984,

recommended. Hence, the following random walk model with drift is enter-
tained:

(1-B)Z, =6, +a,. (6.2.7)
Based on the ACF and PACF of the original nondifferenced data in Table 6.9,
one may also suggest an alternative AR(1) model
(1-$,B)(Z, ) =a,. (6.2.8)
However, the clear downward trend should give an estimate of ¢, close to 1. We
investigate both models in Chapter 7 when we discuss parameter estimation.

Example 6.6 We now examine Series W6, which is the yearly U.S. tobacco
production from 1871 to 1984 published in the 1985 Agricultural Statistics by
the United States Department of Revenue and shown in Figure 4.2. The plot
indicates that the series is nonstationary both in the mean and the variance. In
fact, the standard deviation of the series is roughly proportional to the level
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Table 6.10 Sample ACF and sample PACEF for the differenced scries of
the Pennsylvania accidental death rate from 1950 to 1984 (Scries W5)

W = —.5618, S = .2507.

k 1 2 3 4 5 6 7 8 9 10

P -.10 27 —-04 09 02 05 -08 .01 -05 -.12
SLtE. .17 a7 .18 8 18 18 18 .19 19 .19
qﬁ,‘ -.10 27 .01 02 05 .03 -10 -02 -01 -.14

Sl.kE. A7 a7 17 a7 a7 a7 a7 a7 a1 a7

P, 1‘0-&“t

1.0;
0.81 0.81

0.6 0.61

0.4 0.41

0.2 J 0.2 ’

0 F—4 =, 0 [7 7 110 >k
-0.21 0.2

-0.4 -0.4

0.6 0.6

0.8 0.8

100 -1.0°

Fig. 6.12 Sample ACF and sample PACF for the differenced scries of the Pennsylvania
accidental death rate (Scries WS).

of the series. Hence, from the results of Section 4.3.2, a logarithmic trans-
formation is suggested, which is also confirmed by the A value of the power
transformation calculated in Table 6.11. These transformed data are plotted
in Figure 6.13 and show an upward trend with a constant variance.

The very slowly decaying ACF as shown in Table 6.12 and Figure 6.14 fur-
ther supports the need for differencing. Hence, the sample ACF and PACF for
th Terenced data, W, = (1-B)InZ,, are calculated in Table 6.13 with their

e Figure 6.15. The ACF cuts off after lag 1, and the PACF tails off expo-
'n. "+, which looks very similar to Figure 3.10 with 8, > 0. It suggests that
I 1, 1) is a possible model. To determine whether a deterministic trend
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Table 6.11 Result of the power
transformation on the tobacco
production data.

A Residual sum of squares

1.0 7.88
0.5 5.95
0.0 5.11
-0.5 5.55
-1.0 7.92
8 P
o
g
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=
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Fig. 6.13 Natural logarithms of the U.S. yearly tobacco production in million pounds
(Series W6).

term 6, is needed, we examine the t-ratio, ¢ = W{SW = .0147/.0186 = .7903,
which is not significant. Hence, we entertain the following IMA(1, 1) model
as our tentative model:

(1-B)InZ, = (1-6,B)a,. (6.2.9)
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Tuble 6.12  Sample ACF and sample PACF for natural logarithms
of the U.S. yearly tobacco production (Scrics W6).

k 1 2 3 4 5 6 7 8 9 10

Pr 90 88 84 79 78 .76 75 .72 69 .66
StE. .15 .19 22 24 27 .28 30 .32 33 34

b 90 37 05 —.11 .15 .14 08 .11 -.12 .00
StE. .09 .09 09 09 .09 09 09 09 .09 .09

A
l.OP‘ 1.03‘“
0.81 0.8
0.61 0.6
0.4 0.4
0.2 I l 0.2 |
0 5 T 0 l|:»I||im > k
-0.2 -0.21
-0.41 -04
-0.6 -0.6
-0.8 -0.81
-1.0° -1.0°

Fig. 6.14 Sample ACF and sample PACF for natural logarithms of the U.S. yearly to-

bacco production (Series W6).

Table 6.13 Sample ACF and sample PACF for the differenced series of
natural logarithms of the U.S. yearly tobacco production (Scries W6).

k 1 2 3 4 5 6 7 8 9 10
A =51 11 —09 02 —-03 .00 .04 04 —-05 -.01
SUE 12 3 2 a2 A2 12 a2 12 2 .12
e —51 -20 —17 —14 —-13 —12 —-04 06 .02 -.03

SLE. .09 .09 .09 .09 .09 .09 09 .09 .09 .09
W = 0147, S = 0186
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1.0 1.0
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Fig. 6.15 Sample ACF and sample PACF for the differenced natural logarithms of the
tobacco data (Series W6).

Example 6.7 Figure 6.16(a) shows Series W7—the yearly number of lynx
pelts sold by the Hudson’s Bay Company in Canada between 1857 and 1911 as
reported in Andrews and Herzberg (1985). The result of the power transforma-
tion in Table 6.14 indicates that a logarithmic transformation is required. The
natural logarithm of the series is stationary and is plotted in Figure 6.16(b).

The sample ACF in Table 6.15 and Figure 6.17 show a clear sine-cosine
phenomenon indicating an AR(p) model with p > 2. The three significant
PACF strongly suggest p = 3. Thus, our entertained model is

(1-¢,B—¢,B> —4,B*)(InZ, — i) =a,. (6.2.10)

Acrelated series that was studied by many time series analysts is the number
of Canadian lynx trapped for the years from 1821 to 1934. References include
Campbell and Walker (1977), Tong (1977), Priestly (1981, Section 5.5), and Lin
(1987). The series of lynx pelt sales that we analyze here is much shorter and
has received much less attention in the literature. We use this series extensively
for various illustrations in this book.
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Fig. 6.16 The Canadian lynx pelt sales data (Series W7). (a) The yearly number of lynx
pelts sold in Canada between 1857 and 1911. (b) The natural logarithms of yearly num-
bers of lynx pelts sold in Canada between 1857 and 1911.

uble 6.14 Result of the power
transformation on the lynx pelt
sales.

A Residual sum of squares

1.0 107.1642
0.5 61.1585
0.0 51.6603
-0.5 68.1996
-1.0 129.2240

Table 6.15 Sample ACF and PACF for natural logarithms of the yearly
number of lynx pelts sold (Scries W7).

(2) ACE, j,

1-10 73 022 -32 -69 -76 -53 —-08 35 61 .59
StE. A3 <1 200 21 25 29 30 .30 =31 <33

11-20 31 —-06 -41 -58 —-49 -21 A6 44 54 40
St.E. 35 36 37 37 39 40 40 41 4 43

(b) PACE, ¢,

1-10 73 -68 -36 -20 -09 -08 .13 -.08 .06 -.07
St.E. A3 =13 13 513 250 33 #H3 513 513 513

11-20 -.13 05 -19 07 -02 -04 .14 -04 .10 -.09
St.E. A3 413 43 13 13 13 13 13 13 .13
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1.0f* 1.0~$"
0.81 0.81
0.6 0.61
0.4 0.41
0.21 0.2
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-0.2 -0.21 “
-0.41 -0.41
-0.61 -0.61
-0.8 -0.81
-1.0 -1.0°

Fig. 6.17 Sample ACF and PACF for natural logarithms of the yearly number of lynx
pelts sold (Series W7).

6.3 INVERSE AUTOCORRELATION FUNCTION (IACF)
Let

$,(B)(Z, — 1) = 6,(B)a, (63.1)
be an ARMA(p, q) model where $pB)=(1-¢B—---— $,B") is a stationary
autoregressive operator, §,(B) = (1-6;B —-.. — 998‘3) is an invertible moving

average operator, and the a, is a white noise series with a zero mean and a
. 2 . - .

constant variance ;. We can rewrite Equation (6.3.1) as the moving average

representation

8,(B)
¢p(B)

where (B) = 6,(B)/4,(B). From (2.6.9), the autocovariance generating func-
tion of this model is given by

(Zi—p)= a, =y(B)a,, (6.3.2)

1(B)= Y wB*=o2y(B)y(B™)
k=—oc
_ 2 0B, (B™)

“3p(B)e, (BT )
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Assume that |y(B)| > 0 for all |B| < 1 and let

1 oo
py= — = (1 gk
1 ¢,(B)é,(B")

- T (6.3.4)

Clearly, from the assumptions on ¢,(B) and 6,(B), the coeflicients {7,5”} in

(6.3.4) form a positive definite, square summable sequence that is symmet.ric
about the origin. Hence, they are proper autocovariances for a process. With
respect to the model given in (6.3.1), the process having 4()(B) as its auto-
covariance generating function is referred to as the inverse process. Hence,
+I(B) is also referred to as the inverse autocovariance generating function of
{Z,}. Naturally, the inverse autocorrelation generating function of {Z,}, from
(2.6.10), is given by

B
%
p(B) = (E, ), (6.3.5)
Yo

The kth lag inverse autocorrelation is defined as

n

o = L‘fri' (6.3.6)
To

which, of course, is equal to the coefficient of BX or B~* in p)(B). As a function
of k, p}(” is called the inverse autocorrelation function (IACF). )

From Equations (6.3.3) and (6.3.4), it is clear that if {Z,] is an ARMA
(p, q) process, then the inverse process will be an ARMA(q, p) process. Specit-
ically, if {Z,} is an AR(p) process with autocorrelations tailing off, then lllc_
inverse process will be an MA(p) process with its autocorrelations cutting off
at lag p. In other words, the inverse autocorrelation function of an AR(p) pro-
cess will cut off at lag p. Similarly, an MA(q) process with autocorrelations
cutting off at lag g will have its inverse autocorrelations tailing off. Hence, the
inverse autocorrelation function of a process exhibits characteristics similar to
the partial autocorrelation function and can be used as an identification tool
in model identification.

For an AR(p) process, it is easily seen that the inverse autocorrelation
function is given by

R R L T R s

pg)= 1+ @2+ + ¢2
0, k >p.

k=1,....p,
: peaese (6.3.7)
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Since one can approximate a series by an AR(p) model with a sufficiently large

p, one method to obtain a sample inverse autocorrelation ﬁf] is to replace the
AR parameters by their estimates, i.e.,

~d + $idn t o+ b idp
1+ 4+ + @
0, k >p.

The parameter estimation is discussed in Chapter 7. Under the null hypothesis
of a white noise process, the standard error of ,6,(:) is given by

1

Thus, one can use the limits £2/y/n to assess the significance of the sample
inverse autocorrelations.

- ’ k=1’---’ ’
p,((”= p

(6.3.8)

Example 6.8  As illustrations, Table 6.16 shows sample inverse autocorre-
lations for two time series examined in Section 6.2. Table 6.16(a) is the sample
inverse autocorrelation for the daily average series of truck manufacturing de-
fects that we discussed in Example 6.1 in which we entertained an AR(1) model
for the series. Note that although the inverse autocorrelation function seems
to cut off at lag 1, it is not statistically significant at a = .05. Table 6.16(b) is
the sample inverse autocorrelation for the natural logarithms of the Canadian
lynx pelt sales that was identified as an AR(3) model based on the three sig-
nificant PACF examined in Example 6.7. However, in terms of the IACF, the
maximum AR order will be 2. In fact, because the standard error of the sample
IACF is .14, the model implied by the IACF may be an AR(1), which is clearly
not appropriate from the ACF in Table 6.15(a).

Itis not unusual that the values of the IACF are smaller than those of PACF
at lower lags in the above examples. If the underlying model is an AR(p), we

Table 6.16 Sample inverse autocorrelation functions (SIACF).

(a) The daily average number of truck manufacturing defects (Series W1)
k 1 2

3 4 5 6 1 8 9 10

p —27 05 —03 -07 .10 -1 22 01 —.05 02

SLE. .15 .15 .15 .15 .15 .15 .5 .15 .15 15
(b) The natural logarithms of Canadian lynx pelt sales (Series W7)

1 2 3 4 S5 6 71 8 9 10

A0 -67 23 01 -03 09 —11 .15 —11 07 -—.13

SLE. .14 .14 14 14 14 14 14 14 04 14
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know that ¢, = pg) = 0 for k > p. But, Equation (6.3.7) implies that

-9
(N £ 6.3.10
] 14+ @7+ + ¢} ( )

and from the discussion in the closing paragraph of Section 2.3, we have

Bpp = Bp- (6.3.11)

Hence, |4,,| > [p},”L and sample IACF in general are smaller than sample
PACEF, particularly at lower lags. In a recent study, Abraham and Ledolter
(1984) conclude that, as an identification aid, the PACF generally outperforms
the IACF. Some computer programs such as SAS and SCA provide both PACF
and IACF options for analysis.

The inverse autocorrelation function was first introduced by Cleveland
(1972) through the inverse of a spectrum and the relationship between the
spectrum and the autocorrelation function. This leads to another method to
obtain a sample inverse autocorrelation function. We return to this point in
Chapter 11.

6.4 EXTENDED SAMPLE AUTOCORRELATION
FUNCTION AND OTHER
IDENTIFICATION PROCEDURES

6.4.1 Extended Sample Autocorrelation
Function (ESACF)

From the previous empirical c:;amp!cs, it seems clear that, due to the cutting
off property of the PACF and IACF for AR models and the same cutting oft
property of the ACF for MA models, the identification of the order p of an AR
model and the order g of an MA model through the sample ACF, PACF, and
IACEF are relatively simple. However, for a mixed ARMA process, the ACE,
PACF, and IACF all exhibit tapering off behavior, which makes the identifica-
tion of the orders p and ¢ much more difficult. One commonly used method is
based on the fact that if Z, follows an ARMA(p, q) model

(1-¢B—-—¢,B")Z, =6+ (1-6,B—---—9,B%)a,, (6.4.1a)

or equivalently

P q
Z, =0+ $Z,_,- ) 84, +a, (6.4.1b)
i=1 i=1
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then
Yi=(1-pB == 4,B)Z,
P
=2, Eéizl—i (6:4.2)
i=1

follows an MA(q) model
Y, =(1-6,B—----6,B%)a, (6.4.3)

where without loss of generality we assume ; = 0. Thus, some authors such as
Tiao and Box (1981) suggest using the sample ACF of the estimated residuals

Y, =(1“£1‘B‘“"“$p3p)zt (6.4.4)

from an ordinary least squares (OLS) AR fitting to identify g and hence ob-
taining the orders p and q for the ARMA(p, q) model. For example, an MA(2)
residual process from an AR(1) fitting implies a mixed ARMA(1, 2) model.
But, as we show in Section 7.4, because the OLS estimates of the AR param-
eter ¢;s in (6.4.4) are not consistent when the underlying model is a mixed
ARMA(p, q) with g > 0, the procedure may lead to incorrect identification.

To derive consistent estimates of ¢;, suppose that n observations adjusted
for mean are available from the ARMA(p, q) process in (6.4.1a). If an AR(p)
is fitted to the data, i.e.,

P
zl:zd’izt—i'Fer' t=p+1,..,n (6.4.5)

i=1

where e, represents the error term, then the OLS estimates &f“’ of g, i=1,...,
p, will be inconsistent and the estimated residuals

P
0 £(0
& =z,-3 8z,
i=1

will not be white noise. In fact, if ¢ > 1, the lagged values &%, i = 1, ..., ¢, will
contain some information about the process Z,. This leads to the following
iterated regressions. First, we consider an AR(p) regression plus an added

term éf'i)l, ie.,

P
Z,=Y ¢z, _;+ 8¢+,  t=p+2,..,n (6.4.6)

i=1
where the superscript (1) refers to the first iterated regression and c,(” repre-
sents the corresponding error term. The OLS estimates q!;fl} will be consistent
if g = 1. However, if g > 1, the qﬁp) will again be inconsistent, the estimated
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" y 1}, i
residuals 2{") are not white noise, and the lagged values éf_)i will contain some

information about Z,. We thus consider the second iterated AR(p) regression

P b )
2,=Y 60z, + 500 + P67, +¢?,  t=p+3,..,n (647)
i=1
A . . (2 . y

The OLS estimates ¢>§2) will be consistent if g = 2. For g > 2, the & will again
be inconsistent. However, consistent estimates can be obtained by repeating
the above iteration. That is, the OLS estimates ¢f‘” obtained from the following
qth iterated AR(p) regression will be consistent:

14 q i
Z,= 5692, + 3 B0 4, t=ptqg+l,...n  (648)
i=1 i=1

where 8/) = Z, - Y ¥ i é}j)l,_i -y HF)E?_}E} is the estimated residual of the

jthiterated AR(p) regression and the 5?” and 3?) are the corresponding least
square estimates.

In practice, the true order p and q of the ARMA(p, q) model are usually
unknown and have to be estimated. However, based on the preceding con-
sideration, Tsay and Tiao (1984) suggest a general set of iterated regressions
and introduce the concept of the extended sample autocorrelation function
(ESACF) to estimate the orders p and q. Specifically, form =0, 1, 2, ..., let

qﬁ}j},i =1,...,m, be the OLS estimates from the jthiterated AR(m) regression

of the ARMA process Z,. They define the mth ESACF ﬁf’") of Z, as the sample
autocorrelation function for the transformed series

Y =(1-¢YB-...— §9B™)Z,. (6.4.9)
It is useful to arrange ;’:}"’) in a two-way table as shown in Table 6.17 where
the first row corresponding to ﬁ}n} gives the standard sample ACF of Z,, the

Table 6.17 The ESACF Table.
MA

AR — :
0 1 2 3 4

o n A0 A0 ~(0
T L NP CRPCRPC

IR TR

(1 A1 A(1 (1 (1
W ORFORF O ORFY

(2 (2 (2 (2 (2
S S U U

3 (3 ~(3 A3 (3
3 "”(l) pg] ;:(3) ;;g) pg)
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Table 6.18 The asymptotic

ESACF for an ARMA(1,1)
model.
MA
AR
0 1 2 3 4
0 X X X X X
1 X 0 0 0 0
2 X X 0 0 0
- X X X 0 0
4 X X X X o0

second row gives the first ESACF ﬁ}l), and so on. The rows are numbered 0,
1, ... to specify the AR order, and the columns are numbered in a similar way
for the MA order.

Note that the ESACF 5™ is a function of n, the number of observations,
even though it is not explicitly shown. In fact, it can be shown (see Tsay and
Tiao [1984]) that for an ARMA(p, q) process, we have the following conver-
gence in probability, i.e., form =1,2,...,andj =1, 2, ..., we have

5™ 2, {0' Osm-p<j-q, (6.4.10)
X #0, otherwise.

Thus, by (6.4.10), the asymptotic ESACF table for an ARMA(1, 1) model be-
comes the one shown in Table 6.18. The zeros can be seen to form a triangle
with the vertex at the (1, 1) position. More generally, for an ARMA(p, q) pro-
cess, the vertex of the zero triangle in the asymptotic ESACF will be at the
(p, q) position. Hence, the ESACF can be a useful tool in model identifica-
tion, particularly for a mixed ARMA model.

Of course, in practice, we have finite samples, and the limit of ;3}” for0 <
m —p < j —q may not be exactly zero. However, the asymptotic variance of fi}’")
can be approximated using Bartlett’s formula or more crudely by (n —m —j)!
on the hypothesis that the transformed series Y‘U) of (6.4.9) is white noise. The
ESACEF table can then be constructed using indicator symbols with X referring

to values greater than or less than +2 standard deviations and 0 for values
within £2 standard deviations.

Example 6.9  Toillustrate the method, we use SCA to compute the ESACF
for the natural logarithms of Canadian lynx pelt sales discussed in Example 6.7.
Table 16.19(a) shows the ESACF and Table 16.19(b) the corresponding indica-
tor symbols for the ESACF of the series. The vertex of the triangle suggests a
mixed ARMA(2, 2) model. This is different from an AR(3) model that we en-
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Tuble 6.19 (a) The ESACF for natural logarithms of Canadian lynx
pelt salcs.

MA
AR S Ly s
0 1 2 3 4 5 6 7 8 9

(a) The ESACF

73 22 -32 -69 -76 -53 —08 33 61 .59
68 22 -28 -60 -65 .51 -09 31 .53 .57
-5 01 20 -15 .17 -26 25 -.15 -05 .10
-53 06 32 09 -02 -10 .15 -.16 -20 .06
M 3 3T A1~ =00 = =18 <16 00

o= O

(b) The ESACF with indicator symbols

BN -
S KKK
Hocoo
HAoo K
coo M
cSoo KM
cooMH
cocoo
coo MM
cooM
cooMM

tertained earlier based on the characteristic of the PACE. We further examine
the series in Chapter 7.

Example 6.10  As another example, Table 6.20 shows the ESACF for Se-
ries C of 226 temperature readings in Box and Jenkins (1976). Because the
vertex of the zero triangle occurs at the (2, 0) position, the ESACF approach
suggests an AR(2) model for this series.

It should be noted that the OLS estimation is used in the iterated regres-
sion. Because the OLS regression estimation can always be applied to a re-
gression model regardless of whether a series is stationary or nonstationary,
invertible or noninvertible, Tsay and Tiao (1984) allow the roots of AR and MA
polynomials to be on or outside the unit circle in their definition of the ESACF.

Table 6.20 The ESACEF of Series C in Box
and Jenkins.

MA

o W -
KA Ao MK
KXo KK
Koo KX
ccoo MM
cooco XX
coocoMM | wn
ccoo MM
cooco XX |
coooM» |
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Hence, the ESACF is computed from the original nondifferenced data. As a
result, the ARIMA(p, d, q) process is identified as the ARMA(P, q) process
with P = p +d. For example, based on the sample ACF and PACF of Series C
as given in Table 6.21, Box and Jenkins (1976) suggested an ARIMAC(1, 1, 0)
model or an ARIMA(0, 2, 0) model. However, both these ARIMA(1, 1, 0)
and ARIMA(0, 2, 0) models are identified as an ARMA(2, 0) model in terms
of the ESACFE.

Because the ESACF proposed by Tsay and Tiao (1984) is defined on the
original series, they argue that the use of ESACF eliminates the need for differ-
encing and provides a unified identification procedure to both stationary and
nonstationary processes. To see whether a series is nonstationary, they suggest
that for given specified values of p and g, the iterated AR estimates can be ex-
amined to see whether the AR polynomial contains a nonstationary factor with
roots on the unit circle. For example, in the above Series C in Box and Jenk-
ins (1976), the iterated AR estimates are 45(10) = 1.81 and é(zo) = —.82. Because
$©(B) ~ (1-B)(1-.8B), it indicates that the AR polynomial contains the fac-
tor (1 —B). However, other than a few nice exceptions, the task of identifying
nonstationarity through this approach is generally difficult. The real advantage
of the ESACEF is for the identification of p and q for the mixed ARMA mod-

Tuble 6.21 Sample ACF and PACF of Serics C in Box and Jenkins (1976).

(2) Z,
5

k 1 2 3 4 6 7 8 9 10

P 98 94 9% 8 8 75 69 64 58 52
StE. 07 07 07 07 07 07 07 07 .07 .07

Drek 98 -8 -03 -02 -10 -07 -01 -.03 04 -.04
SLE. 0707 07 07 07 07 07 07 07 .07

() (1-B)Z,
4 5 6

7 8 9 10

P 80 65 53 44 38 32 26 .19 .14 .14
StE. 07 07 07 07 07 07 07 07 .07 .07

bk 80 -.01 -.01 06 03 -0 -01 -08 .00 .10
StE. 07 07 07 07 07 07 .07 .07 .07 .07

(c) (1-B)*Z,
4 5 6 7 8 9 10

Pr -08 -07 -12 -06 01 -02 05 -05 -.12 .12
StE. 07 07 07 07 .07 07 .07 .07 .07 .07

¢ —08 -08 -14 -10 -03 -05 .02 -06 -.16 .09
StE. W07 07 07 07 07 07 07 07 07 .07
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els. This advantage, I think, can be much better utilized if the ESACF is used
for a properly transformed stationary series. This is particularly true because
a tentatively identified model will be subjected to more efficient estimation
procedures (such as the maximum likelihood estimation), which generally re-
quire stationarity.

Due to sampling variations and correlations among sample ACF, the pat-
tern in the ESACF table from most time series may not be as clear-cut as
those shown in the above examples. But from the author’s experience, models
can usually be identified without much difficulty through a joint study of ACF,
PACF, and ESACF.

Some computer programs such as AUTOBOX and SCA provide the op-
tion to compute the ESACF in the model identification phase.

6.4.2 Other Identification Procedures

Other model identification procedures include the information criterion
(AIC) proposed by Akaike (1974); the R-and-S-array introduced by Gray,
Kelley, and Mclntire (1978); and the corner method suggested by Beguin,
Gourieroux, and Monfort (1980). The statistical properties of the statistics
used in the R-and-S-array approach and the corner method are still largely
unknown, and the software needed for these methods is not easily available.
Interested readers are referred to their original research papers listed in the
reference section of this book. The information criterion is discussed later in
Chapter 7.

At this point, it is appropriate to say that model identification is both a
science and an art. One should not use one method to the exclusion of oth-
ers. Through careful examination of the ACF, PACF, IACF, ESACEF, and other
properties of time series, model identification truly becomes the most inter-
esting aspect of time series analysis.

Exercises

6.1 Identify appropriate time series models from the sample ACF below. Justily your
choice using the knowledge of the theoretical ACF for ARIMA modecls.
(n) n = 121, data = Z,
ko1 2 3 4 5 6 7 8 9 10
A 15 —-08 .04 08 .08 .03 .02 .05 .04 -.11

(b) n = 250, data = Z,
k 1 2 3 4 5 6 7 8 9 10
A =63 36 —17 .09 -—-.07 .06 -08 .10 —.11 .06

ey n = 250, data = Z,
k 1 2 3 4 5 6 7 8 9 10
Ay =35 17 .09 —-06 .01 -01 -04 07 -.07 .09
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(d) n =100, data = Z,, W, = (1-B)Z,, W = 2.5, § = 20.
k 1 2 3 4 5 6 1 8 9
pr(k) 99 98 98 97 94 91 89 86 .85
pw(k) 45 -04 12 06 -.18 .16 —07 .05 .10

(&) n =100, data=Z,, W, = (1-B)Z,, W = 35,52 = 15
k 1 2 3 4 5 6 7 8 9 10
pp(k) 94 93 90 89 .87 86 .84 .81 .80 .80
pw(k) 69 .50 33 .19 .10 08 .03 .01 .01 .00

6.2 Identifly proper models for the following data sets (read across):

10
.83
.09

(a) —-2.401 -.574 382 -535 -1639 -960 -1.118

=719 -1.236 17 —.493 2282 -1.823

.645

-.179 589 1413 370 082 -.531 -1.891
-.961 -.865 -.790 -1476 -2.491 -4.479 -2.809

-2.154 -1.532 -2.119 -3.349 -1.588 .740
1.540 557 2259 2622 701 2.463
2089 3750 4322 3.186 3.192 2939
3.279 295 227 1356 1912 1.060
-.195 340 1.084 1237 610 2,126
3317 2,167 1.292 595 140 -.082

870 1551 2,610 2.193 1353 —.600

203 1472 1367 1.875 2082  1.604
3746 2954 676 1.163  1.368 343
1.041 1328 1.325 968 1970 2.296
1.918  1.569

(b) —1.453 867 727 -765 —1.317 024
—.048 -80S 858 563 1986 —.454

907
2.714
3.263

370
3.960

-.769
—.455
2.033
-.334
2.896

—.542
1.738

—.566 697 1.060 -478 —-.140 -.581 -1.572

74 -289  -270 -1.002 -1.605 -2.984
469 -239 -1200 -2.077 421 1.693
99 -367 1925 1267 872 2043
461 2497 2.072 593 1.281 1.023
1.321 -1.673 050 1219 1.098 -.087
-.417 457 880 586 —.132 1760
941 177 -008 -.180 -217 -.165
1332 1.029 1.679 627 038 -1.412
476 1.350 484 1.055 957 ;830
2.526 707 -1.096 sl 670 —.477
1.241 704 528 A73 0 1389 1115
180 419

(c) 3485 5741 5505 3991 3453 4.773
4598 3796 5430 3960 2.541  4.054
3.778 5006 5422 3908 4302 3.876
4613 4075 4054 3288 2654 1.215
3452 3569 2523 1584 3998 5.135

-.122
463
1.236
1.500
—.266
2.684
=720
-.095
1.071
—.540
1.519

4.142
6.155
2.888
3.979
3.842



