5 FORECASTING

Uncertainty is a fact of life for both individuals and organizations. Forecast-
ing is essential for planning and operation control in a variety of areas such
as production management, inventory systems, quality control, financial plan-
ning, and investment analysis. In this chapter we develop the minimum mean
square error forecasts for the stationary and nonstationary time series models
introduced in Chapters 3 and 4. These models can also be used to update fore-
casts when new information becomes available. We also discuss the implication
of the constructed time series model in terms of its eventual forecast function.

5.1 INTRODUCTION

One of the most important objectives in the analysis of a time series is to fore-
cast its future values. Even if the final purpose of time series modeling is for
the control of a system, its operation is usually based on forecasting. The term
forecasting is used more frequently in recent time series literature than the
term prediction. However, most forecasting results are derived from a general
theory of linear prediction developed by Kolmogorov (1939, 1941), Wiener
(1949), Kalman (1960), Yaglom (1962), and Whittle (1983), among others.
Consider the general ARIMA(p, d, g) model

#(B)(1-B)'Z, = 6(B)a, (5.1.1)

where ¢(B) = (1-¢,B—---—¢,BP), 6(B) = (1-6,B~---—6, B?), and the series
a, isa Gaussian N (0, o2) white noise process. The deterministic trend parame-
ter 6, is omitted for simplicity but no loss of generality. Equation (5.1.1) is one
of the most commonly used models in forecasting applications. We discuss the
minimum mean square error forecast of this model for both cases whend = 0
and d # 0.
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5.2 MINIMUM MEAN SQUARE ERROR FORECASTS

5.2.1 Minimum Mean Square Error Forecasts
for ARMA Models

To derive the minimum mean square error forecasts, we first consider the case
whend = 0, i.e., the stationary ARMA model

$(B)Z, = 6(B)a,. (5.2.1)

Because the model is stationary, we can rewrite it in a moving average repre-
sentation,

Z = ‘J!’(B)at
=a,+ya,_ +ia,_,+-- (5.2.2)
where
. i _ 9(B)
¢(B) = 'leJ = 5.2.3
24P = 5m) S
and ¢, = 1. Fort = n +1, we have
Zyu=) Y8 (5.2.4)
j=0

Suppose at time t = n we have the observations Z Z, 1, Z,_,,...and wish

ny

to forecast I-step ahead of future value Z,,,, as a linear combination of the
Gbsenlfatiuns Z.2Z, 4 Zy 2 ....Since Z, fort =n,n—1,n— 2, ... can all
be written in the form of (5.2.2), we can let the minimum mean square error
forecast Z,(1) of Z,,,, be

Z,(1) = hi @y + Yy @0y + 2@y g+ - (5.2.5)

where the Yy are to be determined. The mean square error of the forecast is

-1 oo
3 2
E@pa =2, =02 3 47 +E 3 [ —viy]
j=0 j=0
which is easily seen to be minimized when ¥i+j = ¥145- Hence,

Za(1) =iy + 9y 18y + 4400, o+ (5.2.6)
But using (5.2.4) and the fact that

0, i >0,
E(a,,;|Z,, Z,_,, ---)={ : }

anﬂ‘ j S 09

we have

E(zn + Izm Zn—l’ ) = 1}‘3&” + II?“’."4'1"3!1—1 + 'f".‘+2ar|—2 T
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Thus, the minimum mean square error forecast of Z,, is given by its condi-
tional expectation. That is,

211(” = E(zuH 1Zrn zn—l’ 4 ) (52?)
2, (1) is usually read as the [-step ahead of the forecast of Z, ,; at the forecast
origin n.
The forecast error is
1-1
en(l) = ZH-H '_Zn(!) = Zur'jan +1—j* (528)
j=0

Because E(e, (1) | Z,, t <n) =0, the forecast is unbiased with variance

-1
Var(2, (1)) = Var(e,(1) = o2 > v} (5.2.9)

i=0

For a normal process, the (1 —a)100% forecast limits are

12
1-1
2,(1)£Ng [1+Z¢f] Oa (5.2.10)

=1

where N, is the standard normal deviate such that f’(N > No;z_) = ::r,’Z.

The forecast error e, (/) as shown in (5.2.8) is a linear corp.bmatmn of the
future random shocks entering the system after time n. Specifically, the one-
step ahead forecast error is

en(l)=zn+l_2n(l)=an+l‘ (52“)

Thus, the one-step ahead forecast errors are im.lept.andcnt. This implies t-hat
Z,(1)is indeed the best forecast of Z,, .. Otherwise, if one-step ahead forecast
errors are correlated, then one can calculate the forecast a, 4, ofa,,,, from the
available errors a,,, a,_y, @,_, ... and hence improve the forecast of Z, ,, by
simply using 2,(1) +a,,, as the forecast. However, the forecast errors for
longer lead times are correlated. This is true for the forecast errors

en(") = ZHH == Zn(l) =au4 + ﬂf'lan+f—1 e 1{’:_1“"{.1 (5212)
and
en—j(f) =Zy - _zn—j(") =apyyjtP1ps-jat Y18y (5.2.13)

which are made at the same lead time / but different origins n and n —j for
“1. It is also true for the forecast errors for different lead times made from
the same time origin. For example,

C(w[en(Z), en(])] = E[(“rHZ + tJI"I“:HI)(H:'HI)] = (?E’lgi' (5214)
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5.2.2 Minimum Mean Square Error Forecasts
for ARIMA Models

We now consider the general nonstationary ARIMA(p, d, q) model withd #
0, i.e.,

#(B)(1-B)'Z, = 6(B)a,, (5.2.15)
where ¢(B) = (1-¢;B—---— qﬁpB") is a stationary AR operator and 6(B) =
(1-6,B—:--—6,B%)is an invertible MA operator, respectively. It is interesting

to note that although for this process the mean and the second order moments
such as the variance and the autocovariance functions vary over time, as shown
in Chapter 4, the complete evolution of the process is completely determined
by a finite number of fixed parameters. Hence, we can view the forecast of
the process as the estimation of a function of these parameters and obtain the
minimum mean square error forecast using a Bayesian argument. It is well
known that using this approach with respect to the mean square error crite-
rion, which corresponds to a squared loss function, when the series is known
up to time n, the optimal forecast of Z, ,, is given by its conditional expecta-
tionE(Z,,,12Z,, Z,_y, --.)- The minimum mean square error forecast for the
stationary ARMA model discussed earlier is, of course, a special case of the
forecast for the ARIMA(p, d, q) model with d = 0.

To derive the variance of the forecast for the general ARIMA model, we
rewrite the model at time 1 +1 in an AR representation that exists because the
model is invertible. Thus,

7(B)Z,41 =41, (5.2.16)
where
N~ _ $B)(1-B)
m(B) =1 };‘njw S e (5.2.17)
or equivalently
Zf +1 — L?sz' +1—j + ﬂ,‘ e (5.2. 18)
j=1
Following Wegman (1986), we apply the operator
1+4B+-+1y_,B'!
to (5.2.18) and obtain
oo -1 1-1
D) T Zijokt Y ey =0 (5:2.19)

j=0 k=0 k=0
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where 7, = —1 and 1y = 1. It can be easily shown that
oo I-1

Z Z Tfj'i"'kzt +1—j—k

j=0 k=0 (5.2.20)

I-1 m oo -1

= ﬂozl at E Z“nl—it‘f‘izlﬂ—m + zzm—lﬂ'—ﬂ'{‘fz‘—f"‘l'

m=1i=0 j=1i=0

Choosing 1 weights so that

m
3 ity =0,  form=1,2,..,1-1, (5.2.21)
i=0
we have
B -1
Z = Z"‘: )Z;_j+1 + Z'f"iauf—i (5.2.22)
j=1 i=0
where
o
r" =S m it (5.2.23)
i=0

Thus, given Z,, for t <n, we have
Z,(N=E@ZuulZyt<n)

- !
=S "2, s (5.2.24)
j=1

because E(a,,4; | Z,, t <n) =0,forj>0. The forecast error is
en(’) = znﬂ' i Zn(}l)

-1
=Y Wluusy (5.2.25)
j=0

where the y; weights, by (5.2.21), can be calculated recursively from the ;
weights as follows:

j=1

?z,} = erj—f"{,i’ j = 1! sery -1 (52.26)

i=0

Note that (5.2.25) is exactly the same as (5.2.8). Hence, the results given in
(5.2.7) through (5.2.14) hold for both stationary and nonstationary ARMA
models. e

For a stationary process, lim;_ 3.2 u!rf exists. Hence, from (5.2.10), th.e
eventual forecast limits approach two horizontally parallel lines as shown in
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Figure 5.1(a). For a nonstationary process, lim;_, Z;:ul w_f does not exist. In

fact, E}:é wf increases and becomes unbounded as | — oo. Thus, the forecast
limits in this case become wider and wider as the forecast lead I becomes larger
and larger, as shown in Figure 5.1(b). The practical implication of the latter
case is that the forecaster becomes less certain about the result as the forecast
lead time gets larger. For more discussion on the properties of the mean square
error forecasts, see Shaman (1983).

5.3 COMPUTATION OF FORECASTS

From the result that the minimum mean square error forecasts Z,() of Z,,,,
at the forecast origin n is given by the conditional expectation

2,(N)=EZps11Z0y Zyys -2,

we can easily obtain the actual forecasts by directly using the difference equa-
tion form of the model. Let

¥(B)=¢(B)(1-B)' =(1-¥,B—---— ¥, ,B°*).

The general ARIMA(p, d, q) model (5.2.15) can be written as the following
difference equation form:

(1-¥B—- =¥, B*Z, =(1-6,B--.-—6,B%a,. (5.3.1)
Fort = n +1, we have
Zunt =N 2yt VaZpyyat o+ VYpaZysy pa
+ﬂrl+l’"91an+f—l_"'_8:;ar|+l'—¢}' (5.3.2)
Taking the conditional expectation at time origin n, we obtain

Z,)=9,Z,(1-1)+-+¥,,,2,(-p-d)

+a,()-6,a,1-1)—-.. —eqa,,{! -q) (5.3.3)
where
2 =Bl iy | i Bl § 24,
Z,() = Z,j, j <0,
an(j) = 0’ j 2 1!
and

a?l(};) = Zn+j _Znﬂ‘-l( l) = anﬂ'!j <0.

Example 5.1 To illustrate the above results, we consider the [-step ahead

forecast Z,,(!) of Z,,, for the following ARIMA(1, 0, 1) or ARMA(1, 1)
model:

(1-¢B)(Z, - ;1) = (1-6B)a,. (5.3.4)
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Z (a) 1. Calculate the forecast Z”(I} as the conditional expectation from the differ-
L ence equation form.
Fort =n +1, we can rewrite the above model in (5.3.4) as
Znni=n+$(Zpyy—p) +ayy —ba,,y_y. (5:3.5)
Hence
+ + + + + + @
" Z,(1)= u+4(Z, - ) - ba, (5.3.6a)
i . " ’ e and
+ o+ + 5 5
* ok TR Z,(1) = p+ 42,0 = 1) - p]
X =u+¢'(Z,—p)—¢'"6a,, 1>2. (5.3.6b)
ti ;
:{ gg::;]ls?bscwa on 2. Calculate the forecast variance Var(2, (1)) = o2 E};ﬁ t,bf.
+ Forecast Limit When |¢] < 1, we can calculate the ¢ weights from the moving average
! representation (5.2.2) with ¢(B) = (1 - ¢B) and 6(B) = (1—6B). That s,
(1-¢B)(1+¢,B + ,B* +---) = (1-6B). (5.3.7)
(b) Equating the coefficients of B/ on both sides gives
z g g
- v=¢"Ns-0), =1 (5.3.8)
+ Hence, the forecast variance becomes
+ 1 1-1
5 Var(Z, () = og { 1+ 3 [ (6-0))" 3, (53.9)
+ * i - . f=1
+ . ®
% 5 w B which converges to o2[1 + (¢ — 6)%/(1 — ¢%)].
x + *t + + + + 4+ + When ¢ = 1, which corresponds to taking the first difference, the model in
£ 5 + (5.3.4) becomes an IMA(1, 1) process
(1-B)Z,=(1-6B)a,, (5.3.10)
where we note that (1—B)x = 0. To calculate the ¥ weights needed for the
forecast variance, since the MA representation does not exist, we first rewrite
(5.3.10) in an AR form when time equals ¢ +1, i.e.,
x Actual Observation m(B)Z,y =4,y
« Forecast where
+ Forecast Limit (1-B)
B)=1-nB-m,B?—...— =
, TT( ) 1 ™ Ty, (1 — BB)
Fi- .1 (a) Forecasts for stationary processes. (b) Forecasts for nonstationary pro- ok
e (1-B)=1—(m +6)B — (7 —m8)B> — (73— m,0)B> — ...

Equating the coefficients of B/ on both sides gives
m=(1-0)0"", j>1. (5.3.11)
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Now, applying (5.2.26) we obtain

Py =m =(1-6),
Py =y 4 myahy = (1-0)0+ (1-6)2 = (1-0),

That is, we have ¢ = (1—6), 1 <j < —1. Thus, the variance of Z, (), from
(5.2.9), becomes

Var(Z, (1)) = o2[1+ (I - 1)(1-6)?), (5.3.12)

which approaches +co as | — oo.

As expected, (5.3.12) is the limiting case of (5.3.9) when ¢ — 1. Thus, when
¢ is close to 1, the choice between a stationary ARMA(1, 1) model and a non-
stationary IMA(1, 1) model has very different implications for forecasting.
This can be seen even more clearly from the limiting behavior of the I-step
ahead forecast Z,(/) in (5.3.6b). For |¢| < 1, Z,(I) approaches the mean, p,
of the process as | — co. When ¢ — 1, the first equation of (5.3.6b) implies
that Z,(I) = Z,(I = 1) for all . That is, the forecast is free to wander, with no
tendency for the values to remain clustered around a fixed level.

5.4 THE ARIMA FORECAST AS A WEIGHTED AVERAGE
OF PREVIOUS OBSERVATIONS

Recall that we can always represent an invertible ARIMA model in an autore-
gressive representation. In this representation, Z, is expressed as an infinite
weighted sum of previous observations plus a random shock, i.e.,

o0
an = erjznﬂ-—j +a, (541)
j=1
or equivalently

TI‘(B)Z” + = Apap

where

n(B) = 1—iﬂjﬁf = f@%@—d. (5.4.2)
Pins, J

2"(!)=irrj2"(l—j), 21, (5.4.3)

j=1
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By repeated substitutions, we see that 2, (/) can be expressed as a weighted
sum of current and past observations Z,, for t <n. For example,

2,(N)=mZ, + 1,2, | +MZ, _p 4

o
= Z“jznn—j
Jj=1

11 25(1) + 732, + 32y + -+

o0 o0
=) M Znrij+ ) MnZnsr
j=1 j=1
o0
_5. 0
=) 7Zy
j=1

Z,(2)

where

More generally, it can be shown by successive substitutions that

[= =]
1
Zn(’) = ZT’T_;( )Zn+l—j' (544)
j=1
where
1-1 )
ﬂj(” = }Iff'—l + Eﬂiﬂjﬂ_l), ’ > I, (5.4.5)
i=1
and
15-{]) = 7.

Thus, many smoothing results, such as moving averages and exponential
smoothing, are special cases of ARIMA forecasting. ARIMA models provide
a very natural and optimal way to obtain the required weights for forecasting.
The user does not have to specify either the number or the form of weights
as required in the moving average method and the exponential smoothing
method. [t should also be noted that the ARIMA forecasts are minimum mean
square error forecasts. This optimal property is not shared in general by the
moving average and the exponential smoothing methods.

For an invertible process, the = weights in (5.4.3) or (5.4.4) form a con-
vergent series. This implies that for a given degree of accuracy, Z, (/) depends
only on a finite number of recent observations. The associated = weights pro-
vide very useful information for many important managerial decisions.
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Example 5.2 For the ARMA(1, 1) model in (5.3.4) with |6] < 1, we have
from (5.4.2) with d =0

(1-¢B)=(1-mB~-m,B*—-.-)(1-6B) (5.4.6)
or
(1-¢B)=1—(m +6)B - (my— 1, 0)B% — (3 = m,0)B —---.
Equating the coefficients or B/ on both sides gives
m=(¢-0)0"", j=21 (5.4.7)

Assuming that u = 0, from (5.4.3), we have

z,()=>(6-0)6"'2,(1-)). (5.4.8)
j=1
When | = 1, we get
2,()=(-0>_07'Z,,,_; (5.4.9)
j=1

For I = 2, from (5.4.4) and (5.4.5),

Zrl(z) = Z ﬂ}h)zn +1—j
j=1

o0
= E[“jn + ™)y 4

8 X

=S [(6—O)F + (- 00 "Z, 11

—
Il

=¢(6—0)) 07" Z1 . (5.4.10)
j=1

5 - - : i o abe ()
Again Z,(2) is a weighted average of the previous observations with the 7;

weights given by w}z) = ¢(¢—6)8/ ! forj > 1. Note that comparing (5.4.9) and
(5.4.10), we see that

Z,(2)= 6Z,(1), (5.4.11)

~hich as expected, agrees with (5.3.6b) with [ = 2 and st = 0.

To see the implications of these weights, let us examine (_5‘f4-9) more care-
ti+ity. For |0] < 1, m; = 6i-1 (¢—0) converges to 0asj — 0. This implies that the
nt- - recent observations have a greater influence on the forecast. For 18] > 1,
a1t aph the model is still stationary, its AR representation does not exist. To

¢ Lo trouble, note that if |8] > 1, the = weights rapidly approach —oo or
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+o0o as j increases. This implies that the more remote past observations have
a much greater influence on the forecast. When |6] = 1, the = weights become
m=(¢—1)for6=1,and m; = (=1)/(1+ ¢) for 6 = —1, which have the same
absolute value for all j. This means that all past and present observations are
equally important in their effect on the forecast. Thus, a meaningful forecast
can be derived only from an invertible process. The models corresponding to
|6] > 1 and |6] = 1 are both noninvertible.

5.5 UPDATING FORECASTS

Recall that when a time series Z, is available for t < n, the [-step ahead min-
imum mean square forecast error for the forecast origin n using the general
ARIMA model is obtained in (5.2.25), which, for convenience, is listed again
in the following:

-1
(1) =2, =2,() =) _¥jauuj. (5.5.1)

i=0

In particular, the one-step ahead forecast error is

en(1) = Zp4y ~ 2,4(1) =4y (5.52)
Clearly, the result can be reversed, giving
z,-2, ,(1)=a,. (5.5.3)
From (5.5.1), it is clear that
e, (I +1)=¢e,(I)+ya,, (5.5.4)
where
eni(l+1)= 2, =2, (1 +1),
and

en(!) . znﬂ _211:(’)'

Hence, after substituting, rearranging, and using (5.5.3), we have the following
updating equation:

2,1y =2, U+ D)+ $(Z, -2, (D], (3.5.5)
or equivalently
Zpn()= 2,4 + 1)+ %lZ,11 - Z, (D). (5.5.6)

The updated forecast is obtained by adding to the previous forecast a con-
stant multiple ¢, of the one-step ahead forecasterrora, ., = Z, ,, -2,,(1). This
is certainly sensible. For example, when the value Z, ., becomes available and
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is found to be higher than the previous forecast, (resulting in a positive fore-
casterrora, ., = Z, ,, —2,(1)), we will naturally modify the forecast Z,,(I + 1)
made earlier by proportionally adding a constant multiple of this error.

5.6 EVENTUAL FORECAST FUNCTIONS
Let the ARIMA model be
U(B)Z, = 6(B)a,
where W(B) = ¢(B)(1 - B)?. Recall from Equation (5.3.3) that
2,)=92,0-D)+9,2,(1-2)++¥,,,2,(-p-d)
+a,()-6,4,(1 —1)—---—6,a,(I —q).
When I > q, Z,(I) becomes
Z,)=9Z,(0-2)++¥,,,2,0-p-d)

or

¥(B)Z, (1) =0. (5.6.1)
That is, 2, (1) for I > q satisfies the homogeneous difference equation of or-

der (p +d). Let ¥(B) = [['L,(1-R;B)™ with 3 ,m; = (p +d). Then from
Theorem 2.7.1, the general solution is given by

N m;—1
2,=3" (Z C&"’”) R| (5:62)

i=1 \ j=0

for! > (q —p —d), where the Cf(;'] are constants that depend on time origin n.
For a given forecast origin n, they are fixed constants for all forecast lead times
[. The constants change when the forecast origin is changed.

The solution in (5.6.2) is called the eventual forecast function because it
holds only for/ > (g —p —d). When q < (p +d), the eventual forecast function
actually holds for all lead times I > 0. In general, the function is the unique
curve that passes through the (p + d) values given by zn(q), Z,,(q -1), ...,
2,(q-p-d+1),where Z,(—j) = Z,_; forj > 0. Forthe ARIMA(p, d, ) model
with g = 0, i.e., the ARIMA(p, d, Uj model, the function passes through the
points Z,, Z, ,, ..., and ZH_P_d+1-

ny

Example 5.3 For the ARIMAC(1, 0, 1) model given in (5.3.4),
(1-¢B)(Z,—p) = (1-6B)a,,

‘e forecast Z, (1) satisfies the difference equation (1—¢B)(Z,(1) — ) = 0 for
" 1. The eventual forecast function is given by

20— p=CP¥
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or
Z,)=p+ch¢ (5.6.3)

forl > (q—p—d) = 0 and constant CE"]. The eventual forecast function passes
through Z,(1). As I — oo, Z,,(1) approaches the mean p of the stationary pro-
cess as expected.

Example 5.4 Consider the ARIMAC(1, 1, 1) model,
(1-¢B)(1-B)Z, = (1-6B)a,.

The eventual forecast function is the solution of (1 - ¢B)(1 —-B)Z,(I) = 0 for
I > 1, and is given by

2,()=c® +ch¢ (5.6.4)

forI > (¢ —p —d) = —1. The function passes through the first forecast 2,,(1)
and the last observation Z,,.

Example 5.5 Consider the ARIMA(0, 2, 1) model,
(1-B)*Z, = (1-6B)a,.

The eventual forecast function is the solution of (1-B)?Z, (1) = 0 for | > 1,
and from (5.6.2) it is given by

Z,H=cM+c™ (5.6.5)

for! > (q —p —d) = —1. The function is a straight line passing through Z, (1)
and Z,,.

5.7 A NUMERICAL EXAMPLE

As a numerical example, consider the AR(1) model,
(1-¢B)(Z,—p) =aq,

with ¢ = .6, u = 9, and o2 = .1. Suppose that we have the observations Zige =
8.9,Z¢9=9,Z3 =9, Zy; = 9.6, and want to forecast Z ,,, Z\02s Zyg3, and Z,,
with their associated 95% forecast limits. We proceed as follows:

1. The AR(1) model can be written as

Z,—n=¢Z,_y—p)+a,
and the general form of the forecast equation is

2,()=p+¢2,(-1)-p)

=p+ QS"{Z, - 1), 1>1. ey
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Thus,
Z100(1) =9+ .6(8.9-9) = 8.94,
Z100(2) = 9+ (.6)*(8.9 - 9) = 8.964,
Z100(3) =9+ (.6)*(8.9-9) = 8.9784,
Z100(4) = 9+ (.6)*(8.9—9) = 8.98704.
2. To obtain the forecast limits, we obtain the ¢ weights from the relationship
(1-¢B)(1+¢,B+¢,B*+---)=1. (5.7.2)
That is,
w=¢/, j20. (5.7.3)
The 95% forecast limits for Z,,, from (5.2.10) are
8.94+1.96V.1  or 8.320 < Z,y; < 9.560.

The 95% forecast limits for Z,,, are

8.964£1.96\/1+(.6)2V/1 or  8.241<Z,y < 9.687.

The 95% forecast limits for Z,4; and Z 44 can be obtained similarly. The
results are shown in Figure 5.2.

3. Suppose now that the observation at ¢ = 101 turns out to be Z,, = 8.8.
Because yy, = ¢' = (.6)', we can update the forecasts for Z oy, Z 03, and Z g,
by using (5.5.5) as follows.

2101( )= 2”,0(2) + ¢y [Zy — Zluu( D]

= 8.964 +.6(8.8 — 8.94) = 8.88
Z101(2) = Z199(3) + ¥[Z 19 — Z 199(1)]

= 8.9784 + (.6)*(8.8 — 8.94) = 8.928
2,01(3) = 2104(4) + ¥3[Z 101 — Z100(1))

= 8.98704 + (.6)*(8.8—8.94) = 8.9568.

The earlier forecasts for Z,,;, Z,43, and Z,,, made at ¢ = 100 are adjusted
downward due to the negative forecast error made for Z,.

Forecasting discussed above is based on the assumption that the param-
cters are known in the model. In practice, the parameters are, of course, un-
t nown and have to be estimated from the given observations {Z,, Z,, ..., Z, }.
! tiwever, with respect to the forecasting origin t = n, the estimates are known
v nstants and hence the results remain the same under this conditional sense.
I rimation of the model parameters is discussed in Chapter 7.
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Fig. 5.2 Forccasts with 95% forccast limits for an AR(1) process.

Exercises

5.1 For each of the following models:
M (1-¢B)Z, - p) = a,
() (1-¢,B—$,B*)(Z, - p) =a,,
(i) (1-¢,B)(1-B)Z, = (1-6,B)a,.
(a) Find the I-step ahead forecast 2,,(1) of Z, ,,.
(b) Find the variance of the [-step ahead forecast error for I = 1, 2, and 3.

5.2 (a) Show that the covariance between forecast errors from different origins is
given by

-1

Cov[e,(1), eujD] =02 Y Wity 1>].

i=j
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5.3

5.4

5.6

5.7

(b) Show that the covariance between forecast errors from the same origin but
with difTerent lead times is given by

1-1

Covle, (1), e,(1 +))1= 07 Y _ ¥t

i=0

Consider the model
(1-.68B)(1 -B)*Z, = (1-.75B + 34B%)a,.

(1) Compute and plot the correlations between the error of the forecast 2,(5)
and those of the forecasts 2, _;(5) forj = 1,2, ..., 10.

(b) Compute and plot the correlations between the error of the forecast 2,(3)
and those of Z,(I) for I = 1,2, ..., 10.

A sales series was fitted by the ARIMA(Z2, 1, 0) model
(1-1.4B + .7B*)(1-B)Z, = q,

where a‘f = 58000 and the last 5 observations are 560, 580, 640, 770, and 800.
(a) Calculate the forecasts of the next 3 observations.

(b) Find the 95% forecast limits for the forecasts in (a).

(¢) Find the eventual forecast function.

Consider the IMA(1, 1) model
(1-B)Z, =(1-0B)a,.

(n) Write down the forecast equation that generates the forecasts.

(b) Find the 95% forecast limits produced by this model.

(c) Express the forecasts as a weighted average of previous observations.

(d) Discuss the connection of this modcl with the simple exponential smoothing
method.

(n) Show that (5.2.23) and (5.4.5) are equivalent.
(b) Illustrate the equivalence of (5.2.23) and (5.4.5) using the model in Excr-
cise 5.5

Consider an AR(2) model (1—¢,B—¢,B%)(Z,—p) = a,, where ¢y = 1.2, ¢, = —.6,

i = 65, and o2 = 1. Suppose we have the observations Z¢ = 60.4, Z;; = 589,

ZTE = 64.7, Z-m = ?0‘4, and Zs(} = 62.6.

() Forecast Zg;, Zgy, Zg3, and Zg,.

(b) Find the 95% forecast limits for the forecasts in (a).

(¢) Suppose that the observation at ¢ = 81 turns out to be Zg, = 62.2. Find the
updated forecasts for Zg,, Zgy, and Zg,.
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5.8

5.9

5.10

Consider the model
(1-43B)(1-B)Z, =4,

and the observations Z49 = 33.4 and Z5y = 33.9.

(a) Compute the forecast Zgy(1), forl =1,2,..., 10, and their 90% forecast limits.
(b) What is the eventual forecast function for the forecasts made at t = 507

(c) Attimet = 51, Zs; became known and equaled 34.1. Update the forecasts
obtained in (a).

Consider the ARIMA(0, 1, 1) model
(1-B)Z, =(1- .8B)a,.
(a) Find the 7 weights for the following AR representation:
Z,=Z,_,+a,
where Z, = 357, mZ, _;, and show that 32, m; = 1.
(b) Let 21{2) = E}’:l frj-(z)Z,_Hl be the two-step ahead forecasts of Z, , ; at time

t. Express w;.m in terms of the weights .

Obtain the eventual forecast function for the following models:
(8) (1-.6B)Z, = (1- 8B + .3B%)a,,

(b) (1-3B)(1-B) = 4+a,,

(©) (1-12B + .6B*)(Z, - 65) = a,,

(d) (1-B)’Z, = (1 - .2B - .3B%)a,,

(&) (1-.6B)(1-B)*Z, = (1-.75B + .34B%)a,.



