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4404 3077 5432 4795 2747 5767  4.988
4311 6456 6.114 4785 5646 5516 6.121
6.059 3196 5.050 6231 6.119 4988  4.885
4777 5666 6.081 5801 5126 7.067 8.015
6.358 5752 5700 5614 5629 5705  5.155
7.204 6871 7.555 6565 6.081 4.719  6.09
6.637 7492 6.635 7264 7.221 6.694 7493
9012 7274 5622 7593 7533 6432 6424
8219 7.668 7.534 7232 8501 8266 B.748
7.501  7.856

(d) 315 -458 -—-488 -.170 565 —-344 -1.176
—1.054 -.826 J10 —-341 -1.809 -1.242 -.667
—-.999 2812 1286 -1.084 -1505 -2.556 —.144
-1.749 -3.032 -2958 -2.827 -3.392 -2431 -2.757
—-2.822 -3314 -2738 -1979 -1.671 -2977 -.709
718 736 879 1642 2,180 1.963 716
769 973 334 1.309 878 .062 169
677  1.851 .242 828 —-317 -1.042 -2.093
653 261 2020 2136 1635 —.141 -1.747
-2.047 -.752 =211 -1.062 -1.565 232 015
-935 -.338 .853 888  3.069 3364 3.854
4419 2145 2291 1.753 1.058  1.048 200
1.424 .590 356 476 684 -2260 -.569
-1.014 -.207 638 —.664 469 215 -.296
-1.561 .246

6.3 Consider the yearly data of lumber production (in billions of board feet) in the
United States given below.

Year Production

1921-30 29.0 35.2 410 395 410 398 373 368 38.7 294
193140 200 135 172 188 229 276 29.0 248 288 312
1941-50 36.5 363 343 329 28.1 34.1 354 37.0 322 38.0
1951-60 37.2 375 36.7 364 374 382 329 334 372 329
1961-70 32.0 332 347 366 368 36.6 347 365 358 347
1971-80 37.0 37.7 38.6 346 326 363 394 405 40.6 354
1981-82 31.7 30.0

() Plot the data and determine an appropriate model for the series.

(b) Find and plot the forecasts for the next 4 years, and calculate 95% forecast
limits.

(c) Update your forecasts when the 1983 observation became available and
equaled 34.6.

PARAMETER ESTIMATION,
/ DIAGNOSTIC CHECKING,
AND MODEL SELECTION

After identifying a tentative model, the next step is to estimate the parame-
ters in the model. With full generality, we consider the general ARMA(p, q)
model. That is, we discuss the estimation of parameters ¢ = (¢,, ¢,, ..., ¢P)’.
n=E(Z), 0=(6, 80, ..., 6) and o2 = E(a?) in the model
Zy=0Zy+ 02+ -+ G2, ,+a -6 _—---—ba _,

where Z, =Z, -, Z, (t = 1, 2, ..., n) are n observed stationary or properly
transformed stationary time series, and {a,} are i.i.d. N(0, 02) white noise.
Several widely used estimation procedures are discussed.

Once parameters have been estimated, we check on the adequacy of the
model for the series. Very often several models can adequately represent a
given series. Thus, after introducing diagnostic checking, we also present some
criteria that are commonly used for model selection in time series model
building.

7.1 THE METHOD OF MOMENTS

This method consists of substituting sample moments such as the sample mean,
Z, sample variance §,, and sample ACF p; for their theoretical counterparts
and solving the resultant equations. For example, in the AR(p) process

Zy=$\Zy +$1Z g+ + 2,y +a,, (7.1.1)

the mean p = E(Z,) is estimated by Z.To estimate ¢ , we first use the fact that
Pk = G101 + b2pk_2 +  + d,p_p, fOr k > 1 to obtain the following system
of Yule-Walker equations:

Pr=01% dpy tbapy o Gpppy

Pr=dipy+dytdapy et g
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Pp = O1rp-1+ P2Pp2+ 3pp_3t -+ 4. (7.1.2)

Then, replacing pj by j,, we obtain the moment estimators @,, 52, weey @p bY
solving the above linear system of equations. That is,

4?1 1 iy Py v ﬁp—z 5;—1 - A
b, P 1 Py Pp3z Pp-a Iz
= (7.1.3)
"J}p ﬁp—l -ﬁpmz ﬁp—] o ﬁl 1 f;p
These estimators are usually called Yule-Walker estimators.
Having obtained ¢,, ¢,, ..., py WE use the result
= E(Z'EZ',) = E[Z‘:(élzt—l * ¢22r~2 ki qspzr—p +a,)]
and obtain the moment estimator for o2 as
Ga=A0(1= b1/~ apy -+ = dyiy)- (7.1.5)
Example 7.1 For the AR(1) model,
(Z, =) =¢(Z,_y—p) *ay, (7.1.6)
the Yule-Walker estimator for ¢,, from (7.1.3), is
b = py. (7.1.7)
The moment estimators for y and o2 are given by
e (7.1.8)
and
éi =‘?0(1—¢?'1ﬁ1) (7.1.9)
respectively, where 4, is the sample variance of the Z, series.
Next, let us consider a simple MA(1) model
Z,=a,-0,a,_,. (7.1.10)
Again, y is estimated by Z. For #,, we use the fact that
__—6
T Tve
1 solve the above quadratic equation for 6, after replacing p, by j,. This
Is to
-1 :t I — 4;}%
Pl ; (7.1.11)
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If p, = +.5, we have a unique solution 8, = +1, which gives a noninvertible
model. If |5,| > .5, the real valued moment estimator 8, does not exist. This is
expected, since a real valued MA(1) model always has |p,| < .5, as discussed
in Section 3.2.1. For |, | < .5, there exist two distinct real valued solutions and
we always choose the one that satisfies the invertibility condition. After having
obtained 8,, we calculate the moment estimator for o2 as

-

22 _ _To
G 140 (7.1.12)

The above example of the MA(1) model shows that the moment estimators
for MA and mixed ARMA models are complicated. More generally, regard-
less of AR, MA, or ARMA models, the moment estimators are very sensitive
to rounding errors. They are usually used to provide initial estimates needed
for a more efficient nonlinear estimation to be discussed later in this chapter.
This is particularly true for the MA and mixed ARMA models. The moment
estimators are not recommended for final estimation results and should not be
used if the process is close to being nonstationary or noninvertible.

7.2 MAXIViUM LIKELIHOOD METHOD

7.2.1 Conditional Maximum Likelihood Estimation
For the general stationary ARMA(p, q) model

Zy=$Zy g+ -+ b2, pta,—ba,_, --—0a,_, (1.21)

where Z, = Z, —qcand {a,} are i.i.d. N (0, 02) white noise, the joint probability
density of a = (a,, a,, ..., a,)' is given by

P@l$, 1t 0, 02) = Qrody Pexpl-55 Y all (7.22)

e q=1
Rewriting (7.2.1) as

a =0,a,_y+-+0,a,_o+Z —$pZ, ;e — St (7.2.3)

we can write down the likelihood function of the parameters (¢, 4, 6, ag).

Let Z = (Z,, Z,, ..., Z,) and assume the initial conditions Z, =
(_Z,_P, vy Z_y, Zy) and a, = (ay_g, ..., a_y, a,)". The conditional log-
likelihood function

2_ 1 2 S.(é u 0)
InL.($, 1, 0, 03) = —3 In2mof — =200 (1.2.4)
where
n
S.(¢, 11, 0)=> at(¢, 1, 0|2, a,, Z) (7.2.5)

=1
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is the conditional sum of squares function. The quantities of qfn, fi, and 6, which
maximize Equation (7.2.4), are called the conditional maximum likelihood es-
timators. Since InL (¢, u, 8, ¢?) involves the data only through S, (¢, u, ),
these estimators are the same as the conditional least squares estimators ob-
tained from minimizing the conditional sum of squares function S,(¢, p, 8),
which, we note, does not contain the parameter o2.

There are a few alternatives for specifying the initial conditions Z, and a,.
Based on the assumptions that {Z,} is stationary and {a,} is a series of i.i.d.
N (0, oj), random variables, we can replace the unknown Z, by the sample
mean Z and the unknown a, by its expected value of 0. For the model in (7.2.1),
we may also assumea, =a,_; =---=a,,;_, = 0andcalculatea, fort > (p+1)
using (7.2.1). The conditional sum of squares function in (7.2.5) thus becomes

n

S.(¢ 1, 0)= Y al(¢, p, 02), (7.2.6)

1=p+1

which is also the form used by most computer programs.
After obtaining the parameter estimates ¢, /i, and 8, the estimate 62 of o2
is calculated from

a2 _ S.(QSJ ﬁl é)

gy = T (7.2.7)
where the number of degrees of freedom d.f. equals the number of terms used
in the sum ofS,(qB, fi, @) minus the number of parameters estimated. If (7.2.6)
is used to calculate the sum of squares,df.=(n—-p)—-(p+q+1)=n—-(2p +
q + 1). For other models, the d.f. should be adjusted accordingly.

7.2.2 Unconditional Maximum Likelihood Estimation
and Backcasting Method

As seen from Chapter 5, one of the most important functions of a time series
model s to forecast the unknown future values. Naturally, one asks whether we
can back-forecast or backcast the unknown values Z, = (Z,_, ..., Z_,, Z,)'
anda, = (a,_g, ..., a_y, ay)' needed in the computation of the sum of squares
and likelihood functions. Indeed, this is possible since any ARMA model can
be written in either the forward form

(1 —qﬁ,B—---—q’o,B”)Z’, = (1—613—‘-‘-9&,8‘*)@, (7.2.8)
or the backward form
(1= ¢F ==, FP)Z, = (1-6,F —---—0,F)e, (7.2.9)

where FIZ, = Z,,j. Because of the stationarity, (7.2.8) and (7.2.9) should have
exactly the same autocovariance structure. This implies that {e, } is also a white
noise series with mean zero and variance o2, Thus, in the same way as we
use the forward form (7.2.8) to forecast the unknown future values Z,,,; for
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j > 0 based on the data (Z,, Zy, ...y Z,,), we can also use the backward form
(7.2.9) to backcast the unknown past values Z; and hence compute a; forj <0
based on the data {Z,, Z, |, ..., Z,}. Therefore, for a further irnpf'oveme_m
in estimation, Box and Jenkins (1976) suggest the following unconditional log-
likelihood function:

Hn_ " 2 S(¢yp, 0)
InL(¢, 11, 8, 0f) = — 3 In2nof — —273— (7.2.10)
where S(¢, j1, 8) is the unconditional sum of squares function given by
S(é, 1, 0)= 3" [Ea,| ¢, 1, 8, Z)]? (7.2.11)
I=—oo

and E(a, | ¢, p, 6, Z) is the conditional expectation of a, given ¢, u, 6, and
Z. Some of these terms have to be calculated using backcasts illustrated in
Example 7.2.

The quantities ¢, /i and 8 that maximize Equation (7.2.10) are called
unconditional maximum likelihood estimators. Again, since In L(®, 1, 8, 0?)
lpvulvcs the data only through S(¢, s, 8), these unconditional maximum Iikae-
lihood estimators are equivalent to the unconditional least squares estimators
obtained by minimizing S(¢, s, 8). In practice, the summation in (7.2.11) is
approximated by a finite form

n
S(d 1 0)= Y [E(a, |, 11, 6, Z)), (7.2.12)
t=—M
where M is a sufficiently large integer such that the backcast increment |E(Z, |
® 1 0, Z)~E(Z,_, | ¢, i, 8, Z)| is less than any arbitrary predetermined
small e value fort < —(M + 1). This implies that E(Z, | ¢, p1, 8, Z) >~ ;i and
hence E(a, | ¢, 1, 8, Z) is negligible for t < —(M +1).

After obtaining the parameter estimates qg, /i, and @, the estimate 42 of o2
can then be calculated as ’ '
A S(¢, ﬁl 9)
!‘J’a e S s

n

For efficiency, the use of backcasts for parameter estimation is important
for seasonal models (to be discussed in Chapter 8), for models that are close
to being nonstationary, and especially for series that are relatively short. Most
computer programs have implemented this option.

(7.2.13)

Example 7.2 To illustrate the backcasting method, consider the AR(1)
model that can be written in the forward form

a,=Z,-¢Z,_, (7.2.14)
or equivalently in the backward form

e =2 —¢Z 4 (7.2.15)
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where, without loss of generality, we assume that E(Z,) = 0. Consider a very
simple example with ten observations, Z = (Z,, Z,, ..., Z,,), from the pro-
cesses that are listed in Table 7.1 under the column E(Z, | Z) fort = 1, 2, ...,
10. Suppose ¢ = .3 and we want to calculate the unconditional sum of squares

10
S(¢=.3)= ) [E@]|é=.232) (7.2.16)

1=-M

where M is chosen so that |[E(Z, | ¢ = 3, Z)—-E(Z,_; | ¢ = 3, Z)| <
.005 for t < —(M + 1). To simplify the notations for this example we write
E(a,|¢=.3,Z)asE(a,|Z)and E(Z, |¢ = .3, Z)as E(Z, | Z).

To obtain E(a, | Z) we use (7.2.14) and compute

E(a,|Z) = E(Z,|2Z) - ¢E(Z,_, | Z). (7.2.17)

However, the above computation of E(a, | Z) for t <1 involves the unknown
Z, values for t <0, which need to be backcasted. To achieve this, we use the
backward form in (7.2.15), i.e.,

E(Z,|Z) =E(e, | Z) + ¢E(Z4, | Z). (7.2.18)

First, we note that in terms of the backward form, e, for t < 0 are unknown

future random shocks with respect to the observations Z,, Z, _;, ..., Z,, and
Z,. Hence,

E(e,|Z)=0, fort <0. (7.2.19)

Therefore, for ¢ = .3, we have from (7.2.18)

E(Zy|2)=E(ey|2) + 3E(Z, 1 Z)

=0+ (3)(~=.2) = —.06

E(Z_,12)=E(e_,|2)+ 3E(Z,|2)
= 04 (.3)(—.06) = —.018

E(Z_,|Z)=E(e_,|Z)+.3E(Z_,|2)
= (.3)(=.018) = —.0054

E(Z_3|Z)=E(e_3|Z)+.3E(Z_,|Z)
= (.3)(=.0054) = —.00162.

Since |[E(Z_3| Z)—E(Z_, | Z)| = .00378 < .005, the predetermined ¢ value,
we choose M = 2.

Now, with these backcasted values Z, for t <0, we can return to the for-
ward form in (7.2.17) to compute E(a, | Z) for ¢ = .3 fromt = -2 tot = 10
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as follows:
E(a_,|2)=E(Z_,|2Z)~ 3E(Z_4|2)
= —.0054 - (.3)(-.00162) = —.0049
E(a_,|Z)=E(Z_,|Z)-3E(Z_,|Z)
= —.018-(.3)(—.0054) = —-.0164
E(Zy|Z)-.3E(Z_,|Z)
= —.06—(.3)(—.018) = —.0546
E(a,|Z)=E(Z,|Z)-.3E(Z,|Z)
= —.2—(.3)(-.06) = -.182
E(a,|Z)=E(Z,|Z)-3E(Z,|Z)
= —4-(3)(-.2)=-.34

E(ao|2)

E(ay|Z)=E(Z,|Z)-3E(Zy|2Z)
=—-2-(3)(-.1)=-.17.
All the above computations can be carried out systematically as shown in Ta-
ble 7.1 and we obtain
10
S(p=.3)= Z [E(a,| ¢ = .3, Z))* = .8232.

t==2

Similarly, we can obtain S(¢) for other values of ¢ and hence find its minimum.

Table 7.1 Calculation of S(¢ = .3) for (1 - ¢B)Z, = a, using
backcasting method.

t E(,|Z) -3E(Z,_,|Z) E(Z|2) 3E(Z4,|Z) E(e,|Z)

-3 -.0016 —.0016 0
-2 —.0049 .0005 —.0054 —.0054 0
-1 —.0164 .0016 —.018 —-.018 0
0 —.0546 .0054 -.06 -.06 0
1 -.182 .018 -2
2 =34 .06 -4
3 -.38 12 -.5
4 -35 15 -5
5 -45 15 -.6
6 -.32 .18 -5
7 =25 15 -4
8 -.08 12 -2
9 -.04 .06 -1
10 -17 .03 -2
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It should be noted that for the AR(1) model we do not need the value E
(e, | Z) for ¢ > 1. For other models, they may be required. However, the pro-
cedure is the same. For more detailed examples, we refer readers to Box and
Jenkins (1976, p. 212).

7.2.3 Exact Likelihood Functions

Both the conditional and unconditional likelihood functions (7.2.4) and
(7.2.10) are approximations. To illustrate the derivation of the exact likelihood
function for a time series model, consider the AR(1) process

(1-¢B)Z, =a, (7.2.20)
or

Z‘ = 4’2;_1 +a,
where Z, = (Z,— ), |#| < 1and thea, arei.i.d. N (0, 02). Rewriting the process
in the moving average representation, we have

[= o]
Z,=> da,_. (7.2.21)
j=0

Clearly, the Z‘ will be distributed as N (0, 03}'(1 - qbz)). However, the Zt are
highly correlated. To derive the joint probability density function P(Z,, Z,,
iy 2,)0f (24, Z,, ..., Z,) and hence the likelihood function for the param-
eters, we consider

= o]
e J = 7
e =) dai =2,
j=0

a = 22 i (jﬁz‘],
a, = 23 — éz.z,
iy e i (71.2.22)

Note that e, follows the normal distribution N (0, ¢2/(1—-¢?)), a,, for2 <t <n,
follows the normal distribution N (0, ¢2), and they are all independent of each
other. Hence, the joint probability density of (e, a,, ..., a,) is

pley, ay, ..., a,)

_ a2 —e2(1 — &2 2 o
=[(1 ¢')juznp[ e;(1 ¢’)][2;0210._1),*25,(},[_2_(1’_2Za'z]_ (7.2.23)

2 2
2no} 202 Hrper
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Now consider the following transformation:

2] =el
2.3 = ¢'22 +a3
Z,=¢2, ,+a,. (7.2.29)
The Jacobian for the transformation, from (7.2.22), is
1 0 - +« v v w0
-$ 1 0 . . . . 9
J=[0 —¢ 1.0 . . . =1
0 0 -¢ 1

It follows that
P(Zl, 22, ey 2,,) =P(ey, a;, ..., a,)
i i
" [U ¢ )] exp [:ﬁil_‘ﬁﬁz)J

2ral 202 ==

1 1-nr 1 &
; [5;;“2,] exp [_EE ‘;(Z, —G‘)Z,_Jz] - (7.2.25)

Hence, for a given series (Z,, 2 Z i
R pe 1» €25 «++y Z,) we have the following exact log-

a

lnL(Zl‘ crey Z.nlé‘ 1, 0'3)=-—Eln2?r+—'!]n 1-—¢2 —'Elnaz— (¢, 1)
3 3 (1= ¢~ Zing2 54 1)
a

i
where (7.2.26)

n
S@ == A=)+ Y (2, - 1)~ 82, - P (12.27)
=2
is the sum of squares term that is a function of only ¢ and 4.

Thf..t exact closed form of the likelihood function of a general ARMA
model is complicated. Tiao and Alj (1971) derived it for an ARMA(1, 1)
model. Newbold (1974) derived it for a general ARMA(p, q) model In,ter~
ested readers are advised also to see Ansley (1979), Nichcll; and Hall i1979),

LJuIlg &”d B()X (1 9;9) (l]ld HI”IT]CI Ell'ld ]l(!(] 19; D among ot s -
1] .
( ) g ht:r f(]r addl
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7.3 NONLINEAR ESTIMATION

It is clear that the maximum likelihood estimation and the least squares esti-
mation involve minimizing either the conditional sum of squares S_(¢, 11, 8)
or the unconditional sum of squares S(¢, u, 8). These are the sums of squares
of the error terms ajs. For an AR(p) process,

a, =zl_4)12-‘—1_ézz‘t-—lr’“_épzt—p! (7.3.1)

and a, is clearly linear in parameters. However, for a model containing an
MA factor, the a, is nonlinear in parameters. To see that, consider a simple
ARMAC(1, 1) model
Z~$Zy=a,-ba,_,. (7.3.2)
To calculate a,, we note that
a,= 2r 0 Z +ba_,
=Z,~$0Z,_+0(Z,_y—hZ, 2+ 6a,_;)
; ; ; 5
=Z,~(¢1-0)Z,_, - $,6,Z,_, +6ia,_,

(7.3.3)

which is clearly nonlinear in the parameters. Hence, for a general ARMA
model, a nonlinear least squares estimation procedure must be used to obtain
estimates.

The nonlinear least squares procedure involves an iterative search tech-
nique. Because a linear model is a special case of the nonlinear model, we
can illustrate the main ideas of the nonlinear least squares using the following
linear regression model:

Y, =E(Y, | Xis) +e,
= a1 X, +n-3X‘2+--A+anm+t" (7.3.4)
fort =1, 2,...,n, where e/s are i.i.d. N(0, ¢2) independent of all the X;. Let
Y =(Y, Yy ..., V) a=(ay, ay ..., a,) and X be the corresponding matrix

for the independent variables X,is. From results in linear regression analysis,
we know that the least squares estimators are given by

&=X'X)'%, (7.3.5)
which follows a multivariate normal distribution MN(e, V (&)) with
V(&)=d2(X'X)\ (7.3.6)

“e minimum residual (error) sum of squares is

n
S(&) =D (Y, —6,1X, — & X5 — - — @, X)) (7.3.7)

t=1
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The least squares estimates in (7.3.5) can also be obtained by the following
two-step procedure discussed in Miller and Wichern (1977).

Let & = (&y, @y, ..., G,)" be aninitial guess value of a = (ay, ay, ..., )"
We can rewrite the minimum residual sum of squares in (7.3.7) as

S(&) = Z[ Yi' _f.l']X.Il - _(;per
=1
= (6 — @)Xy = — (G, — ) X, ) (7.3.8)
or
S(8)=5(a)=) (& —56X,...—8,X,)’ (7.3.9)
=1

where €,’s are estimated residuals based on the initial given values &, and § =
(& — &). Now, §(8) in Equation (7.3.9) and S(&) in (7.3.7) are in the same
form. Hence the least squares value of § is

s§=(X'X)"'x'¢ (7.3.10)

where &= (¢, ..., €,)". Once the values § = (6, 6,, ..., 6,) are calculated, the
least squares estimates are given by

G=a+é. (7.3.11)
We note that the residual ¢, is calculated as Y, — ¥, where
Y, =a, X +---+ ‘-"p’\]:p

represents a guess of the regression equation obtained by using the original
model and the given initial values ajs. Moreover, it is clear from Equation
(7.3.4) that :

OE(Y,|X’s) _
Da; -

1
fori=1,2,...,pandt = 1,2, ...,n. Hence, the X matrix used in the equation
of the least squares estimates in (7.3.5) and (7.3.10) is actually the matrix of
the partial derivatives of the regression function with respect to each of the
paramcters.
Now, consider the following model (linear or nonlinear):

Y, =f(X,, a)+e, {21,208 (7.3.13)

where X, = (X, X5, ..., X,,) is asetof independent variables corresponding
to the observations, & = (ay, @y, ..., ,)" is a vector of parameters, and e, is a
white noise series having zero mean and constant variance o2 independent of
X.LetY =(Y,, Yy, ..., Y,,) and f(a) = [ (X;, ), [(X;, a), ..., [(X,, a)].
From the above discussion, the least squares estimators (linear or nonlinear)
can always be calculated iteratively as follows:

X (7.3.12)
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Step 1. Given any vector of initial guess values &, compute the residual
& = (Y - Y) and the residual sum of squares

S(a@)=¢e=(Y-Y)'(Y-Y), (7.3.14)

where Y = f(&) is a vector of predicted values obtained by replacing the un-
known parameters by the initial guess values. Approximate the model [ (X, &)
with the first order Taylor series expansion about the initial value &. That is,

fla)=f(G)+X 56 (7.3.15)

where § = (a—a)and X 4 = {X,} is the n x p matrix of the partial derivatives
at & in the above linear approximation. That is,

L= l! 2! TR A )
X, = i(% g o= " (7.3.16)
ﬂ}' a=d J—li 2;---;[’-
Then we calculate
6= (XX s) ' X 8= (5, 6 ..., 8,). (7.3.17)

Note that for a linear model the X& is fixed and equals X; for a nonlinear
model, this X ;5 changes from iteration to iteration.

Step 2. Obtain the updated least square estimates
G=a+6 (7.3.18)

and the corresponding residual sum of squares S(¢&). We note that é; in 6 rep-
resents the difference or change in the parameter values. For a linear model,
Step 2 gives the final least squares estimates. For a nonlinear model, Step 2
only leads to new initial values for further iterations.

In summary, for a given general ARMA(p, q) model, we can use the non-
linear least squares procedure to find the least squares estimates that minimize
the error sum of squares S, (¢, jt, 8) or S(¢, s, 8). The nonlinear least squares
routine starts with initial guess values of the parameters. it rnonitors these val-
ues in the direction of the smaller sum of squares and updates the initial guess
values. The iterations continue until some specified convergence criteria are
reached, Some convergence criteria that have been used are the relative re-
duction in the sum of squares, the maximum change in the parameter values
less than a specified level, or the number of iterations greater than a certain
number. To achieve a proper and faster convergence, many search algorithms

re developed. One of the algorithms that is commonly used is due to Mar-

qardt (1963). It is a compromise between the Gauss-Newton method and the
method of steepest descent. For more discussions on nonlinear estimation, see
Draper and Smith (1981), among others.
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Properties of the Parameter Estimates Let a = (¢, s, ), & be the estimate
of a, and X , be the matrix of the partial derivatives in the final iteration of the
nonlinear least squares procedure. We know that & is distributed as a multi-
variate normal distribution MN(«, V (&)). The estimated variance-covariance
matrix V(&) of & is
V(6)=63(XaX,)""!
=44, (7.3.19)

where 6; is estimated as in (7.2.7) or (7.2.13) and &‘;i‘;j is the sample covariance
between &; and &;. We can test the hypothesis Hy: «; = o using the following
[ statistic:

G; — ajp

V éﬁi&i

with the degrees of freedom equaling n — (p +q + 1) for the general ARMA
model in (7.2.1). (More generally, the degrees of freedom equals the sam-

ple size used in estimation minus the number of parameters estimated in the
model.) The estimated correlation matrix of these estimates is

R(a) = (Psia,) (23.21)

=

where

_ 7 iy

-
Pty =~
fT‘-.J(-.iU‘,_;_J_&j

A high correlation among estimates indicates overparameterization, which
should be avoided as it often causes difficulties in the convergence of the non-
linear least squares.

7.4 ORDINARY LEAST SQUARES (OLS) ESTIMATION
IN TIME SERIES ANALYSIS

Regression analysis is possibly the most commonly used statistical method in
data analysis. As a result, the ordinary least squares (OLS) estimation devel-
oped for standard regression models is perhaps also the most frequently used
estimation procedure in statistics. In this section, we discuss some problems of
OLS estimation in time series analysis.

Consider the following simple linear regression model:

Z, =¢X, +e, t=1,...,n. (7.4.1)

Under the following basic assumptions on the error term e,:
1. Zero mean: E(e,) = 0
2. Constant Variance: E(e?) = o2
3. Nonautocorrelation: E(e,e,) = 0 fort # k :
4. Uncorrelated with explanatory variable X, : E(X,e,) = 0



148  Chapter 7 Parameter Estimation, Dlagnostic Checking, and Model Selectlon

it is well known that the OLS estimator

r=lXIzr
Tia Xt
is a consistent and the best linear unbiased estimator of ¢. However, it is im-
portant to note that assumption (4) is crucial for this‘ result to hold. AssumP—
tion (4) automatically follows if the explanatory varlables' are no_nstochasuc.
However, in a noncontrollable study, particularly when time series data are
involved, the explanatory variables are usually also random variables.

Now, consider the following time series model:

(1.4.2)

(S:

Z,=¢Z,_ +e, i L) (7.4.3)
The OLS estimator of ¢, based on available data, is
(5 — Z?:Z zr—zlzt' (7_4_4)
szz 21—1

We would like to ask whether d‘; is still unbiased and consistent in this case when
the explanatory variable is a lagged dependent variable. The answer Elepends
on the stochastic nature of the error term e,. To see that, we rewrite ¢ as

ZT:zzt-—lz: _ Zf=zzt—1(¢zr—1 +er)
S0z n Yi=2Zi
= & LizaZi® (1.4.5)
Y2zt

and consider the following two cases:

(5:

Case 1: e, =a,. That is, the e, is a zero mean white noise series of co'nstan;
variance o2. In this case, conditional on the obs'erlved Z,, the expectqq val?uz 2
d; is ¢ and hence, q@ is still unbiased. Moreover, 1t .lS eafy to see that é in E 4. )f
is equivalent to the first lag sample autocorrclanoq py for the series 7. bll
|#| < 1, and hence Z, becomes an AR(1) process with an absolutc!y summable
autocorrelation function, then by Section 2.5, /, is a consistent estimator of py,

which is equal to ¢. Thus, $ in (7.4.4) is a consistent estimator of ¢.

Case 2: e, = (1-6B)a,, where the a, is a zero mean white noise scri.e.s of
constant variance o2, and hence e, is an MA(1) process. Under this condition,
the series Z, becomes an ARMA(1, 1) process

Z,=¢Z,_+a,—0a,_, (7.4.6)

E(Z,_e,) = E1Z,_y(a, - 6a,_1)] = —60. (7.47)

| his shows that autocorrelation in the error term not only violates assump-
tion (3) but also causes a violation of assumption (4) when the explanatory
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variables contain a lagged dependent variable. Thus, éin (7.4.4) is no longer
unbiased. Even worse, ¢ is not a consistent estimator of ¢, because ¢ ~ p, is a
consistent estimator for p;, and for an ARMAC(1, 1) process, by (3.4.14),

_(¢=0)(1-4¢06)
piFiag g cwag D

In summary, the OLS estimator for the parameter of an explanatory vari-
able in a regression model will be inconsistent unless the error term is uncor-
related with the explanatory variable. For ARMA(p, q) models, this condition
usually does not hold except when g = 0. Estimation methods discussed in Sec-
tions 7.2 and 7.3 are more efficient and commonly used in time series analysis.

7.5 DIAGNOSTIC CHECKING

Time series model building is an iterative procedure. It starts with model iden-
tification and parameter estimation. After parameter estimation, we have to
assess model adequacy by checking whether the model assumptions are satis-
fied. The basic assumption is that the {a,} are white noise. That is, the a,’s are
uncorrelated random shocks with zero mean and constant variance. For any
estimated model, the residuals 4,’s are estimates of these unobserved white
noise a,’s. Hence, model diagnostic checking is accomplished through a careful
analysis of the residual series {d,}. Because this residual series is the product
of parameter estimation, the model diagnostic checking is usually contained
in the estimation phase of a time series package.

To check whether the errors are normally distributed, one can construct a
histogram of the standardized residuals 4,/d, and compare it with the standard
normal distribution using the chi-square goodness of fit test or even Tukey’s
simple five-number summary. To check whether the variance is constant, we
can examine the plot of residuals or evaluate the effect of different X values
via the Box-Cox method. To check whether the residuals are white noise, we
compute the sample ACF and PACF (or IACF) of the residuals to see whether
they do not form any pattern and are all statistically insignificant, i.e., within
two standard deviations if a = .05.

Another useful test is the portmanteau lack of fit test. This test uses all the
residual sample ACF’s as a unit to check the joint null hypothesis

Hyipy= o == pp=h,
with the test statistic

K
Q=n(n+2)) (n-k)"'4. (7.5.1)

k=1
This test statistic is the modified Q statistic originally proposed by Box and
Pierce (1970). Under the null hypothesis of model adequacy, Ljung and Box
(1978) and Ansley and Newbold (1979) show that the Q statistic approximately
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follows the x2(K —m) distribution where m is the number of parameters €s-
timated in the model.

Based on the results of these residual analyses, if the entertained model
is inadequate, a new model can be easily derived. For example, assume the
entertained AR(1) model

(1-6,B)(Z, — 1) = b, (7.5.2)
produces an MA(1) residual series instead of a white noise series, i.e.,
b,=(1-6,B)a,. (7.5.3)
Then we should re-identify an ARMA(1, 1) model
(1-$,B)(Z, - 1) = (1-6;B)a, (7.5.4)

and go through the iterative stages of the model building until a satisfactory
model is obtained. As mentioned earlier, if the model should be indeed a mixed
model, then the OLS estimates of the AR parameters based on a misidenti-
fied model are inconsistent. Although this may sometimes cause problems, the
above procedure of using the residuals to modify models usually works fine.

7.6 EMPIRICAL EXAMPLES FOR SERIES W1-W7

For an illustration, we estimated the AR(3) modelidentified in Example 6.7 for
Series W7—the yearly numbers of lynx pelt sales—and obtained the following

result:

(1-.97B +.12B% + .50B*)(InZ, — .58) =4, (7.5.5)
(.122) (.184) (.128) (.038)

and 62 = .124 where the values in the parentheses under estimate refer to the
standard errors of those estimates. They are all significant except for ¢,, and
the model can be refitted with ¢, removed if necessary.

To check model adequacy Table 7.2 gives the residual ACF and PACF
and the Q statistics. The residual ACF and PACEF are all small and exhibit no
patterns. For K = 24, the Q statisticis Q = 26.7, which is not significant as
x3s(21) = 32.7, the chi-square value at the significance level a = .05 for the
degrees of freedom =K —m = 24 —3 = 21. Thus, we conclude that the AR(3)
model fitting is adequate for the data.

Similarly, we use the nonlinear estimation procedure discussed in Sec-
tion 7.3 to fit the models identified in Section 6.2 for Series W1 to W6. The
results are summarized in Table 7.3.

Diagnostic checking similar to the one for Series W7 was performed for
~ach model fitted in Table 7.3. All models except the AR(2) for Series W2
are adequate. Related tables are not be shown here. Instead, we recall that
in Example 6.9, Section 6.4.1, Series W7 was alternatively identified as an
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Table 7.2 Residual ACF and PACF for the AR(3) model.

(a) ACF jy

1-12 -.18 -17 .27 -.00 -.01 15 .14
: g -. : -09 -.09 .05 . .
SLE. A4 14 15 16 16 16 16 .16 16 16 (1% (l)g

Q. 18 35 76 76 76 90 103 108 11:3 ]]:5 11:5 11.6
13-24 -25 .18 .02 -.12 22 05 .04

: ; - ; -.03 -00 .03 -. -
SLE. 16 .17 17 .17 .18 18 .18 .18 .18 .18 ?g llg

Q. 16.0 184 185 195 233 235 236 23.7 237 238 245 26.7

(b) PACEF ¢y,

1-12 -18 -21 21 06 .09 -21 .10 -.15 .02 -.08 .10 .01

SLE. .14 .14 d4 0 14 14 14 14 14 14 14 14 14
13-24 -20 07 -.04 07 17 02

: . : i 04 -06 -06 —-04 01 -
SLE. .14 14 14 A4 14 14 14 14 d4 0 14 ‘1; (1}:

ARMA(2, 1) model using the ESACEF. The estimation of this model gives

(1-1.55B +.94B%)(InZ, — .58) = (1 - .59B
(.063) (.058) (.038) (.121))“! VAR

with all parameters being significant and 62 = .116

. sign : = ,116. The result was also pre-
sented in Tzzhl‘e 7.3. The residual aumcor‘;e]alinns from this ARMA(Zp 1)
model shown in Table 7.4 also indicate the adequacy of the model. In f,uct
bo_th AR(3) anq ARMA(2, 1) models fit the data almost equally well. 'I‘hi.‘;
raises the question of model selection to be discussed next.

7.7 MODEL SELECTION CRITERIA

In time series analysis or more generally in any data analysis, there may be
stera] adequate models that can be used to represent a given (:lata set %Yme
times, the be_sl choice is easy; other times the choice can be very diﬂ‘lcul.t LThus-
numerous criteria for model comparison have been introduced in the Iitt:.ralure,
fl:_)r model selection. They are different from the model identification method
discussed in Chapter 6. Model identification tools such as ACF, PACEF, I/\CPS
and ESACF are used only for identifying adequate models. R,esiduais fron;
all adequate models are white noise and are, in general indislin.guislmblc i
terms of these functions. For a given data set, when thére are multiple adl:n
quate models, the selection criterion is normally based on summar sftatist' :
from residuals computed from a fitted model or on forecast errors ia]cu]atlec;
from the out-sample forecasts. The latter is often accomplished by using the
first portion of the series for model construction and the remainin u%ti

as a holdout period for forecast evaluation. In this section, we immd%ufz: suncig
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Table 7.3 Summary of mod
parentheses under each estim

¢ls fitted to Serics W1-W7 (the values in the
ate refer to the standard errors of those estimates).

No. of

~2
Scries  obser- Fitted models Lo
vations
wi 45 (1- 43B)(Z,-179)=aq, 21
(.134)  (.076)
w2 285 (1-133B+.63B%)(y/Z,-6.3) =4, 1.637
(.046)  (.046) (169) 5
(1-1.13B + .42B* + .10B> - .16B" + .14B
(057) (.088) (:09) (091) (098)
+ 08B% — 25B7 + 3B% — 35B°)(\/Z,-6.3) =a, 12986
(.104) (.104) (.101) (.063) (.169)
(1-1.17B + .46B> + 21B°)(/Z,-6.3) =a, 1.362
(.048) (.049) (.028) (.169)
w3 82 (1-.713B)(\/Z,—6347)=q, 45.772
(071) (1.157)
A
w4 300 (1-B]Z,={l—tﬁi}3)a, 1397.269
w5 35 {1—B)z,=.gg+a, 2.136
(1 96B)(Z, - 44.26) = a, 2.415
(051)  (917)
028
115 (1-B)InZ, =(1-.61B)a, ;
b Caie e (.076)
2 3(InZ, - .58)=a 124
w7 55 (1—.97B +.12B* + 5B*)(InZ, .
: (122) (.184) (.128) (.038)
(1-1.55B + .94B>)(InZ, - .58) = (1-.59B)a, 116
(.063) (.058) (.038) (.121)
Tuble 7.4 Residual autocorrelations, f,, from the ARMA(2,1) model.
030 —.003 —.004
-8 -.103 09  .178 057 095 .
ét.SE. (137)  (139) (140) (144) (.145) (.146) (,1446) (.1446)
Q. 1 1. 3 3. 4. 4. , )
= 100 052 —.141
E 064 —.121 000 094 —.146 .
gtlEé (146)  (146) (148) (.148) (149) (.152) (153) (.134)
0. 4 5 5.0 6 B 8. 8. ;
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model selection criteria based on residuals. Criteria based on out-sample fore-
cast errors are discussed in the next chapter.

1. Akaike's AIC and BIC Criteria. Assume that a statistical model of M
parameters is fitted to data. To assess the quality of the model fitting, Akaike
(1973, 1974a) introduced an information criterion. The criterion has been
called AIC (Akaike's information criterion) in the literature and is defined as

AIC(M ) = =2 In[maximum likelihood] + 2M (7.7.1)

where M is the number of parameters in the model. For the ARMA model and

n effective number of observations, recall from (7.2.10) that the log-likelihood
function is

1
InL = --g In2ro? — 7,358, 1, 6). (1.7.2)
Maximizing (7.7.2) with respect to ¢, 1, 6, and o7, we have, from (7.2.13),
InL =~ 1né2 - 2(1 +In2n). (1.1.3)
2 2
Because the second term in (7.7.3) is a constant, the AIC criterion reduces to

AIC(M)=nIngl+2M. (1.7.4)

The optimal order of the model is chosen by the value of M, which is a function
of p and ¢, so that AIC(M) is minimum.

Shibata (1976) has shown that the AIC criterion tends to overestimate the
order of the autoregression. More recently, Akaike (1978, 1979) has developed

a Bayesian extension of the minimum AIC procedure, called BIC, which takes
the following form:

BIC(M)=nlIng? —(n—M)In (1 —~ ’g) +MlInn

52
+ M, In {(% - |) ;’M}
5

where 5;1; is the maximum likelihood estimate of .73, M is the number of pa-
rameters, and &7 is the sample variance of the series. Through a simulation
study Akaike (1978) has claimed that the BIC is less likely to overestimate the
order of the autoregression. For further discussion on the properties of AIC,
see Findley (1985).

2. Schwartz's SBC Criterion. Similar to Akaike’s BIC, Schwartz (1978)
suggested the following Bayesian criterion of model selection, which has been
called SBC (Schwartz's Bayesian Criterion):

SBC(M) =nlInél+ M lnn. (7.7.6)
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Table 7.5  AIC values for Series W7.

q 0 1 2 3 4

142.1200 93.6185 70.0174 57.8203 55.3785
94.7730  69.9294 62.2191 56.4811 58.4985
319081 »23.7781 41.5118 49.7238 48.1051
24.0529  25.2286 43.7349 31.1166 47.2080
25.6708  27.4769 88.6398 60.0407 75.5548

BPUN—=S |

Again in (7.7.6), 62 is the maximum likelihood estimate of 02, M is the number
of parameters in the model, and n is the effective number of observations that
is equivalent to the number of residuals that can be calculated from the series.

3. Parzen's CAT Criterion. Parzen (1977) has suggested the following
model selection criterion, which he called CAT (criterion for autoregressive
transfer functions):

—(1+%). p=0,

CAT(p)={ 1 2.1 1 (7.7.7)
a2l P=L23.
j=1 "

where 67 is the unbiased estimate of o7 when an AR(j) model is fitted to the
series, and n is the number of observations. The optimal order of p is chosen
so that CAT(p) is minimum.

We have introduced only some commonly used model selection criteria.
There are many other criteria introduced in the literature. Interested readers
are referred to Stone (1979), Hannan and Quinn (1979), Hannan (1980), and
others.

Example 7.3 The AIC criterion has become a standard tool in time series
model fitting, and its computation is available in many time series programs.
In Table 7.5, we use the SAS/ETS software to compute AIC for Series W7—
Canadian lynx pelt sales. From the table, it is clear that the minimum AIC
occurs forp = 2and g = 1. Hence, based on the AIC criterion, an ARMA(2, 1)
model should be selected for the data. Note that a competitive AR(3) model
that we fitted earlier to the same data set gives the second smallest value of
AlIC.

Exercises
7.1 Assume that 100 observations from an ARMA(1, 1) model
Z,-hZ,y=a,~ba,_,
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7.2

7.3

7.4

7.5

¢7.6

7.7

7.8

gave the following estimates:62 = 10, A =.523, and 5, = 418. Find initial esti-
mates for #1, 0y, and .73.

Assume that 100 obscrvations from an AR(2) modcl
Z,=$Z,_ + $21Z, 3 +a,
gave the following sample ACF: 5, = .8, Az =.5,and py = 4. Estimate ¢ and ¢5.

Given the set of observations 2.2, 4.5,25,23,1.1,3.0,2.1, and 1.0, calculate the

;()ndil;nnal sum of squares S(A;, 0,) for the MA(2) process with #; = —.5 and
2 = L.

Given th.c‘scl of observations 6, 2, 4, 5, 3, 4,2, and 1, illustrate how to calculate
the conditional sum of squares function S(1, 0y) for the ARMA(1, 1) modecl.

Consider the following observations from an MA(1) model with @ = 4:

t Z, W,=(1-B)Z,
0 59

1 62 3

2 S8 -4

3 63 5
479 16

5 90 1

6 88 =2

(n) Calculate the conditional sum of squares (with ay = ().

(b) Calculate the unconditional sum of squarcs using the backcasting method as
shown in Table 7.1. ‘

Simulate 100 observations from an ARMAC(1, 1) model.

(a) Ii‘il the simulated serieswithan AR(1) or an MA(1) model. Carry out diagnos-

tic L:hccking. and modify your fitted model from the result of residual analysils

(b) Estimate the parameters of your modified model, and compare with the truc.
parameter values of the model.

A summary of |.'m)dcls fitted for the series W1 to W7 is given in Table 7.3. Perform
residual analysis and model checking for each of the fitted models.

Use AIC to find a model for each of the serics W1to W7

, and compare it wi
fitted model given in Table 7.3. prrcitith the
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7.9 Suppose (1—¢B)Z, = (1 - 6B)a, is a tentatively entertained model for a process.
Given

0 11 12
t 1 2 3 4 5 6 7 8 9 1
Z -31 -8 12 6 28 -9 3 -14 -25 -1.1 9 14

calculate the unconditional sum of squares for ¢ = Aand 0 = 8.

7.10 Consider the AR(1) model
(1-¢B)Z,—p)=a,
(a) For p = 0, find the maximum likelihood estimator for ¢ and its associated

variance. ) .
(b) Find the maximum likelihood estimators for ¢ and p when gt 7& ;
(¢) Discuss the relationship between the ordinary least square estimator and the
maximum likelihood estimator for ¢ in the above model.

SEASONAL TIME
SERIES MODELS

Because of their common occurrence in our daily activities, we devote a sep-
arate chapter to seasonal time series. After a brief introduction of some basic
concepts and conventional methods, we extend the autoregressive integrated
moving average models to represent seasonal series. Detailed xamples are
given to illustrate the methods.

8.1 INTRODUCTION

Many business and economic time series contain a seasonal phenomenon that
repeats itself after a regular period of time. The smallest time period for this
repetitive phenomenon is called the seasonal period. For example, the quar-
terly series of ice cream sales is high each summer, and the series repeats this
phenomenon each year, giving a seasonal period of 4. Similarly, monthly auto
sales and earnings tend to decrease during August and September every year
because of the changeover to new models, and the monthly sales of toys rise
every year in the month of December. The seasonal period in these later cases
is 12. Seasonal phenomena may stem from factors such as weather, which af-
fects many business and economic activities like tourism and home building;
custom events like Christmas, which is closely related to sales such as jewelry,
toys, cards, and stamps; and graduation ceremonies in the summer months,
which are directly related to the labor force status in these months.

As an illustration, Figure 8.1 shows the U.S. monthly employment figures
(in thousands) for males aged between 16 and 19 years from 1971 to 1981. The
seasonal nature of the series is apparent. The numbers increase dramatically in
the summer months, with peaks occurring in the month of June when schools
are not in session, and decrease in the fall months when schools reopen. The
phenomenon repeats itself every 12 months, and thus the seasonal period is 12.

More generally, suppose the series {Z,} is seasonal with seasonal period
s. To analyze the data, it is helpful to arrange the series in a two-dimensional



