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Integration

Definition (I (d))
A series with no deterministic components which has a stationary,
invertible, ARMA representation after differencing d times, is said to
be integrated of order d, denoted xt � I (d).

In this course, only the values d = 0 and d = 1 will be considered
(e.g. random walk), but many results can be generalized to other
cases including the fractional difference model

Remember: There are substantial differences between a series that
is xt � I (0) and another that is xt � I (1). (Random walk!)
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Integration

Properties of xt � I (0) (with zero mean):

(i) the variance of xt is finite

(ii) an innovation has only a temporary effect on the value xt

(iii) the expected length of times between crossing x = 0 is finite

(iv) the autocorrelations, ρk, decrease steadily in magnitude for large
enough k, so that their sum is finite
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Integration

Properties of xt � I (1) (x0 = 0):

(i) the variance of xt goes to infinity as t goes to infinity

(ii) an innovation has a permanent effect on the value of xt, as xt is the
sum of all previous changes

(iii) the expected time between crossings of x = 0 is infinite

(iv) the theoretical autocorrelations, ρk ! 1 for all k as t ! ∞
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Co-integration

If xt and yt are both I (d), then it is “generally” true that the linear
combination

zt = xt � ayt,

will also be I (d)

David Hendry said to Clive Granger: The difference of two I (1)
variables can be I (0)...
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Co-integration

Engle, R. F. and C. W. J. Granger (1987): “Co-integration and Error
Correction: Representation Estimation and Testing,” Econometrica 55,
251-276.

Definition (Co-integration)
The components of the vector xt are said to be co-integrated of order d,
b, denoted xt � CI (d, b), if (i) all components of xt are I (d); (ii) there
exists a vector α ( 6= 0) so that zt = α0xt � I (d� b), b > 0. The vector α
is called the co-integrating vector
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Co-integration

Consider: d = b = 1. That is xt � I (1) and zt = α0xt � I (0)

Simplest example: Let yt � I (1), xt � I (1), and

yt = θxt + zt

with zt � I (0)

Hence, zt will rarely drift far from zero (if it has zero mean) and
will often cross the zero line

Equilibrium Relationship: yt � θxt; so that uyt represent the
stationary deviation from the equilibrium

Therefore, yt and xt will not move too far away from each other
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Co-integration

Real Consumption and Real GDP

U.S. Quarterly Data from the Federal Reserve Bank of St. Louis:
1947Q1-2012Q2
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Co-integration

Government Expenditures and Revenues

U.S. Quarterly Data from the Federal Reserve Bank of St. Louis:
1947Q1-2012Q2

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

50 55 60 65 70 75 80 85 90 95 00 05 10

REVENUES EXPENDITURES

Vanessa Berenguer-Rico () University of Oxford January 2014 9 / 57



Co-integration

Real Stock Prices and Real Dividends

U.S. Monthly Data from Robert Shiller: 1871m1-2012m6
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Co-integration

The common factor explanation

Example: Let Wt � I (1) and consider the following system

yt = aWt + uyt

xt = Wt + uxt

where uyt and uxt are both I (0)

Then, yt � I (1) and xt � I (1)

But

yt � axt = aWt + uyt � aWt + auxt = uyt + auxt � I (0)

Cancellation of the common factor Wt!

Vanessa Berenguer-Rico () University of Oxford January 2014 11 / 57



Co-integration: Estimation and Testing

Estimation and Testing

Single Equation: Engle and Granger (1987) approach (+DOLS)

System of Equations: Johansen (1991)
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Estimation and Testing: Single Equation

Engle and Granger proposal

Two stages approach

Stage 1: Estimate the long run (static) relationship by OLS

yt = f (t) + βxt + zt,

and compute the OLS residuals, ẑt. Then, test for co-integration�
Ho : ẑt � I (1)
Ha : ẑt � I (0)

Stage 2: If the null hypothesis is rejected, then estimate the VECM
by OLS

∆yt = �γẑt�1 +

p1X
i=1

φi∆yt�i +

p1X
i=0

ρi∆xt�i + εt
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Estimation and Testing: Single Equation

EG Test for Co-integration

Stage 1: Estimate the long run (static) relationship by OLS

yt = f (t) + βxt + zt,

and compute the OLS residuals, ẑt. Then, test for co-integration�
Ho : ẑt � I (1)
Ha : ẑt � I (0)

DF test on ẑt: Important! Critical values are not the same as those
derived by Dickey and Fuller (ẑt incorporates the OLS estimates!)

Critical values tabulated by MacKinnon (1991)
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Estimation and Testing: Single Equation

EG Estimation Properties

Stage 1:
yt = θxt + zt

In general,

OLS estimates biased and inefficient (although super-consistent!)

Nonstandard distributions with nuisance parameters

There could be more than one cointegrating vector

Endogeneity
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Estimation and Testing: Single Equation

Simplest Example:

yt = θxt + ut

∆xt = εt

with ut � i.i.d.N
�
0, σ2

u
�
, εt � i.i.d.N

�
0, σ2

ε

�
, and E [utεs] = σuε1 (t = s).

The OLS estimator of θ satisfies

T
�
θ̂n � θ

�
=

T�1PT
t=1 xtut

T�2
PT

t=1 x2
t
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Estimation and Testing: Single Equation

Denominator: Remember ∆xt = εt with εt � i.i.d.N
�
0, σ2

ε

�
. Hence, we

can apply the FCLT and CMT to obtain

1
T2

TX
t=1

x2
t

d�! σ2
ε

Z 1

0
Wε (r)

2 dr.
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Estimation and Testing: Single Equation

Numerator: In order to derive the limiting distribution of
T�1PT

t=1 xtut, it will be convenient to condition ut on εt in the
following fashion:

ut = γεt + vt; γ = σuε/σ2
ε ; σ2

v = σ2
u � σ2

uε/σ2
ε .

Hence, by construction E [εtvs] = 0 8t 6= s. Moreover,

T�1
TX

t=1

xtut = T�1
TX

t=1

xt (γεt + vt)

= γ

 
T�1

TX
t=1

xt�1εt

!
+ γ

 
T�1

TX
t=1

ε2
t

!

+

 
T�1

TX
t=1

xt�1vt

!
+

 
T�1

TX
t=1

εtvt

!
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Estimation and Testing: Single Equation

Numerator: We already derived that 
T�1

TX
t=1

xt�1εt

!
d�!
�

σ2
ε /2
��

Wε (r)
2 � 1

�
and

T�1
TX

t=1

ε2
t

p�! σ2
ε .

By the assumptions above it is easy to see that

T�1
TX

t=1

εtvt
p�! 0

(why?).
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Estimation and Testing: Single Equation

Numerator: Finally, it remains to study

T�1
TX

t=1

xt�1vt,

which convergences to a stochastic integral! (Kurtz, T.G. & P. Protter,
1991: “Weak limit theorems for stochastic integrals and stochastic
differential equations”). Specifically,

T�1
TX

t=1

xt�1vt
d�! σεσv

Z 1

0
Wε (r) dWv (r) .
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Estimation and Testing: Single Equation

Numerator:
R 1

0 Wε (r) dWv (r) is an Ito stochastic integral which
satisfies Z 1

0
Wε (r) dWv (r) � N

 
0,
Z 1

0
W2

ε (r) dr

!
,

see Lemma 5.1 in Park and Phillips (1988) “Statistical Inference with
integrated regressors: Part 1”
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Estimation and Testing: Single Equation

Numerator: Therefore, the numerator satisfies

T�1
TX

t=1

xtut
d�! γ

�
σ2

ε /2
��

Wε (r)
2 � 1

�
+γσ2

ε +σεσv

Z 1

0
Wε (r) dWv (r) .

Vanessa Berenguer-Rico () University of Oxford January 2014 22 / 57



Estimation and Testing: Single Equation

OLS:

T
�
θ̂n � θ

� d�!

�
γσ2

ε /2
� �

Wε (r)
2 � 1

�
+ γσ2

ε + σεσv
R 1

0 Wε (r) dWv (r)R 1
0 Wε (r)

2 dr

t-test:

tθ=0
d�!
�

γσεσ
�1
u /2

��
Wε (r)

2 + 1
� Z 1

0
Wε (r)

2 dr

!�1/2

+σvσ�1
u N (0, 1)
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Estimation and Testing: Single Equation

t-test:

tθ=0
d�!
�

γσεσ
�1
u /2

��
Wε (r)

2 + 1
� Z 1

0
Wε (r)

2 dr

!�1/2

+σvσ�1
u N (0, 1)

In general, therefore, the t-ratio of θ̂n will not have a standard
normal distribution unless γ = σuε/σ2

ε = 0 (that is, unless xt is
strongly exogenous for the estimation of θ)

When γ 6= 0 the first term in the asymptotic distribution gives rise
to “second order” or “endogeneity” bias, which although
asymptotically negligible in estimating θ due to super consistency,
can be important in finite samples
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Estimation and Testing: Single Equation

EG Estimation Properties

Stage 1:
yt = θxt + zt

In general,

OLS estimates biased and inefficient (although super-consistent!)

Nonstandard distributions with nuisance parameters

There could be more than one cointegrating vector

Endogeneity
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Estimation and Testing: Single Equation

DOLS: Dynamic OLS

Saikkonen (1991): “Asymptotically Efficient Estimation of
Cointegration Regressions”

Stock and Watson (1993): “A Simple Estimator of Co-integrating
Vectors in Higher Order Integrated Systems”
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Estimation and Testing: Single Equation

DOLS: Dynamic OLS

The DOLS estimator is based on a regression function that incorporates
leads and lags of the first differences of the regressors, that is,

yt = xtθ +
k2X

j=�k1

∆xt�jφj + ut.

Accounts for the dynamics when estimating the cointegrating
vector

Accounts for the correlation between the regressors and the error
term

Optimal (consistent and efficient) estimation of the cointegrating
vector (mixed-gaussian distributions)

Standard t-tests, Wald
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Co-integration

Recall:

Engle, R. F. and C. W. J. Granger (1987): “Co-integration and Error
Correction: Representation Estimation and Testing,” Econometrica 55,
251-276.

Definition (Co-integration)
The components of the vector xt are said to be co-integrated of order d,
b, denoted xt � CI (d, b), if (i) all components of xt are I (d); (ii) there
exists a vector α ( 6= 0) so that zt = α0xt � I (d� b), b > 0. The vector α
is called the co-integrating vector
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Co-integration

Consider: d = b = 1. That is xt � I (1) and zt = α0xt � I (0)

Recall: Simplest example: Let yt � I (1), xt � I (1), and

yt = θxt + zt

with zt � I (0)

Hence, zt will rarely drift far from zero (if it has zero mean) and
will often cross the zero line

Equilibrium Relationship: yt � θxt; so that uyt represent the
stationary deviation from the equilibrium

Therefore, yt and xt will not move too far away from each other
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Co-integration

Remarks:

If xt has m > 2 components, then there can be more than one
cointegrating vector α (α0xt � I (0))

It is assumed that there are exactly r linearly independent
co-integrating vectors with r � m� 1

It is useful to gather the co-integrating vectors together into the
m� r array α

So, by construction the rank of α will be r and it will be called the
“co-integrating rank” of xt
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Co-integration: Representation

Representations of a Co-integrated System: (Watson, 1994)

VAR: xt =
Pp

i=1 Πixt�i + εt

VECM: ∆xt = Πxt�1 +
Pp�1

i=1 Φi∆xt�i + εt

MA: ∆xt = C (L) εt

Common Trends: xt = C (1)
Pt

s=1 εs + C� (L) εt + x0

Triangular: xt = (x01t, x02t)
0 with ∆x1t = u1t and x2t � βx1t = u2t
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Co-integration: Representation

Simplest Example: Let xt be a 2� 1 vector, xt = (x1t, x2t)
0.

Triangular Representation

x1t = θx2t + ε1t

x2t = x2t�1 + ε2t

MA Representation

∆x1t = ∆ε1t + θε2t

∆x2t = ε2t

or equivalently�
∆x1t
∆x2t

�
=

�
(1� L) θ

0 1

��
ε1t
ε2t

�
.

Hence,
∆xt = C (L) εt
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Co-integration: Representation

Common Trends Representation: From the MA representation

∆xt = C (L) εt = C (1) εt + [C (L)� C (1)] εt

and solving backward for the levels of xt

xt = C (1)
tX

s=1

εs + C� (L) εt + x0

where C� (L) = (1� L)�1 [C (L)� C (1)]. In particular, for x0 = 0,�
x1t
x2t

�
=

�
0 θ
0 1

� tX
s=1

εs +

�
1 0
0 0

��
ε1t
ε2t

�
,

or equivalently

x1t = θ
tX

s=1

ε2s + ε1t and x2t =
tX

s=1

ε2s
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Co-integration: Representation

VECM Representation: From the triangular representation

x1t = θx2t + ε1t

x2t = x2t�1 + ε2t

or equivalently

∆x1t = �x1t�1 + θx2t�1 � θx2t�1 + θx2t + ε1t

∆x2t = ε2t

that is�
∆x1t
∆x2t

�
=

�
�1
0

�
ε1t�1 +

�
1 θ
0 1

��
ε1t
ε2t

�
=

�
�1
0

��
1 �θ

�� x1t�1
x2t�1

�
+

�
1 θ
0 1

��
ε1t
ε2t

�
.
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Co-integration: Representation

VECM Representation

That is�
∆x1t
∆x2t

�
=

�
�1
0

�
ε1t�1 +

�
1 θ
0 1

��
ε1t
ε2t

�
=

�
�1
0

��
1 �θ

�� x1t�1
x2t�1

�
+

�
1 θ
0 1

��
ε1t
ε2t

�
.

Hence,

∆xt = Πxt�1 + ε̃t

= αβ0xt�1 + ε̃t
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Co-integration: Representation

VAR Representation

From the VECM
xt = (Π� I) xt�1 + ε̃t,

or equivalently�
x1t
x2t

�
=

�
�2 θ
0 �1

��
x1t�1
x2t�1

�
+

�
ε̃1t
ε̃2t

�
,

that is a VAR(1)
xt = Π1xt�1 + ε̃t,
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Co-integration: Representation

Granger Representation Theorem

It proves, in a general context, that a co-integrated system of
variables can be represented in three (four) main forms: the vector
autoregressive (VAR), error correction, and moving-average
(common factors) forms

These representations are all isomorphic to each other

The theorem establishes the restrictions that hold between the
lag-polynomial matrices in each representation of the process

Engle and Granger (1987) or Johansen (1991)

Common factor representation (Stock and Watson, 1988);
Triangular representation (Phillips, 1991)
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Co-integration: Representation

Granger Representation Theorem (Johansen, 1991)

Consider a general VAR model with Gaussian errors written in the
error correction form

∆Xt =
k�1X
i=1

Γi∆Xt�i +ΠXt�k +ΦDt + µ+ εt,

where Dt are seasonal dummies orthogonal to the constant term.
Further, εt are independent p-dimensional Gaussian variables with
mean zero and variance matrix Λ. This model can be rewritten as

Π (L)Xt = �ΠXt +Ψ (L)∆Xt = εt + µ+ΦDt,

where Ψ (L) = (Π (L)�Π (1)) / (1� L). Note that �Π = Π (1) and
�Ψ = �Ψ (1) is the derivative of Π (z) for z = 1.
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Co-integration: Representation

Theorem (Granger Representation Theorem): Let the process Xt be as
defined above and let

Π = αβ0,

for α and β of dimensions p� r and rank r, and let

α0?Ψβ?,

have full rank p� r. We define

C = β?
�
α0?Ψβ?

��1
α0?.

Then, ∆Xt and β0Xt can be given initial distributions, such that

(i) ∆Xt is stationary

(ii) β0Xt is stationary

(iii) Xt is nonstationary, with linear trend τt = Cµt
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Co-integration: Representation

Further,

(iv) E
�
β0Xt

�
= � (α0α)�1 α0µ+ (α0α)�1 α0Ψβ? (α

0
?Ψβ?)

�1 α0?µ,

(v) E (∆Xt) = τ,

apart from terms involving the seasonal dummies. If α0?µ = 0, then τ = 0
and the linear trend disappears.

...
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Co-integration: Representation

(vi) If the initial distributions are expressed in terms of the doubly infinite
sequence fεtg, then ∆Xt has a representation

∆Xt = C (L) (εt + µ+ΦDt) ,

with C (1) = C

(vii) For C1 (L) = (C (L)� C (1)) / (1� L), so that
C (L) = C (1) + (1� L)C1 (L), the process Xt has the representation

Xt = X0 + C
tX

i=1

εi + τt+ C (L)Φ
tX

i=1

Di + St � S0,

where St = C1 (L) εt, and β0X0 = β0S0.
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Co-integration: Estimation and Testing

Estimation and Testing

Single Equation: Engle and Granger (1987) approach (+DOLS)

System of Equations: Johansen (1991)
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Estimation and Testing: System of Equations

System of Equations: Johansen’s Approach

Uses likelihood methods for the analysis of cointegration in VAR
models with Gaussian errors

Likelihood ratio test of cointegration rank (nonstandard inference)

Tests of structural hypothesis about cointegrating relationships
(standard inference)
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Estimation and Testing: System of Equations

The Cointegrated VAR

Let Yt = (y1t, y2t, ..., ymt)
0 be generated as a VAR(p)

Yt = Π1Yt�1 + ...+ΠpYt�p + εt,

with εt � i.i.d.N (0, Ω). (No deterministic terms). The VECM
representation is

∆Yt = ΠYt�1 +

p�1X
i=1

Γi∆Yt�i + εt,

where
Π = �

�
I�Π1 � ...�Πp

�
,

and
Γi = �

�
Πi+1 +Πi+2 + ...+Πp

�
.

(Try a VAR(2)!)
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Estimation and Testing: System of Equations

Johansen’s Methodology in Practice

1. Specify and estimate a VAR(p) model for Yt

2. Construct likelihood ratio tests for the rank of Π to determine the
number of cointegrating vectors

3. If necessary, impose normalization and identifying restrictions on
the cointegrating vectors

4. Given the normalized cointegrating vectors estimate the resulting
cointegrated VECM by maximum likelihood

5. Test relevant hypothesis
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Estimation and Testing: System of Equations

Estimation and Testing via a ML approach

The VECM is

∆Yt = ΠYt�1 +

p�1X
i=1

Γi∆Yt�i + εt,

with εt � i.i.d.N (0, Ω). Hence, the log-likelihood function is

log L (Γ, Π, Ω) = �1
2

T log jΩj � 1
2

TX
t=1

ε0tΩ
�1εt.
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Estimation and Testing: System of Equations

Concentrate the log-likelihood function

Step 1: Concentrate log L with respect Γ

Step 2: Concentrate log Lrespect Ω

Step 3: Concentrate log L with respect α
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Estimation and Testing: System of Equations

Estimation and Testing via a ML approach

Recall: The log-likelihood function is

log L (Γ, Π, Ω) = �1
2

T log jΩj � 1
2

TX
t=1

ε0tΩ
�1εt.

Notice that the VECM can be rewritten as

Z0t = �ΠZ1t + ΓZ2t + εt,

where Z0t = ∆Yt, Z1t = Yt�1, Z2t =
�

∆Y0t�1, ..., ∆Y0t�p+1

�0
, Π = �αβ0,

and Γ consist of the parameters
�
Γ1, ..., Γp�1

�
.
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Estimation and Testing: System of Equations

Step 1: Concentrate log L with respect Γ
The first order conditions for Γ are

TX
t=1

�
Z0t � αβ0Z1t + ΓZ2t

�
Z02t = 0,

or equivalently
M02 = αβ0M12 + ΓM22.

This implies that, for fixed α and β,

Γ̂ (α, β) = M02M�1
22 � αβ0M12M�1

22 ,

and hence

log L (α, β, Ω) = �1
2

T log jΩj� 1
2

TX
t=1

�
R0t � αβ0R1t

�
Ω�1 �R0t � αβ0R1t

�
,

where R0t and R1t are the residuals obtained from regressing Z0t and
Z1t against Z2t, respectively.
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Estimation and Testing: System of Equations

Step 2: Concentrate log L with respect Ω

log L (α, β) = �Tm
2

log (2π)� Tm
2

�T
2

log

����� 1T
TX

t=1

�
R0t � αβ0R1t

� �
R0t � αβ0R1t

������ .
(Why? Hint: ∂ log jΩj /∂Ω = (Ω0)�1,
∂tr
�
BA�1C

�
/∂A = �

�
A�1CBA�1�0,PT

t=1
�
R0t � αβ0R1t

�
Ω̂�1 �R0t � αβ0R1t

�
= Tm).
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Estimation and Testing: System of Equations

Step 3: Concentrate log L with respect α and notice that maximizing
log L (β) is equivalent to minimize���S00 � S01β

�
β0S11β

��1
βS10

��� ,
where Sij = T�1PT

t=1 RitR0jt, i, j = 0, 1.
(Why?)
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Estimation and Testing: System of Equations

Moreover,

���S00 � S01β
�
β0S11β

��1
βS10

��� =
jS00j

���β0 (S11 � S10S00S01)
�1 β

�����β0S11β
��

= jS00j
rY

i=1

(1� λi) ,

where λi, i = 1, ..., r denote the r largest eigenvalues obtained from���λS11 � S10S00S�1
01

��� = 0.

(Reduced Rank regression: Anderson, 1951)
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Estimation and Testing: System of Equations

For a given r and largest eigenvalues λ̂1 > λ̂2 > ... > λ̂r, we obtain β̂i,
i = 1, ..., r, the corresponding eigenvectors, from�

λ̂iS11 � S10S00S�1
01

�
β̂i = 0 i = 1, ..., r

and

α̂ = S01 β̂

Π̂ = �α̂β̂
0

Ω̂ = S00 � α̂α̂0.

In practice, the number of cointegrating vectors, r, is unknown!
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Estimation and Testing: System of Equations

Testing for Co-integration

∆Yt = ΠYt�1 +

p�1X
i=1

Γi∆Yt�i + εt,

Three situations of interest:

(i) The rank of Π is zero: There are no co-integrating relationships

(ii) The rank of Π is m: All variables in Yt are stationary

(iii) The rank of Π is r < m: There exist r cointegrating vector and
Π = �αβ0 where α and β are (m� r) matrices
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Estimation and Testing: System of Equations

Hence, testing for co-integration is equivalent to test for reduced
rank of Π. In other words, testing for cointegration is equivalent
to find the number of r linearly independent columns of Π

Johansen’s maximum likelihood approach to solve this problem
amounts to a reduced rank regression which provides m
eigenvalues λ̂1 > λ̂2 > ... > λ̂m, and their corresponding
eigenvector V̂ = (v̂1, v̂2, ..., v̂m)

Those r elements in V̂ which determine the linear combinations of
stationary relationships can be denoted β̂ = (v̂1, v̂2, ..., v̂r). The last
(m� r) combinations indicate the non-stationary combinations

Each eigenvector v̂i has a corresponding eigenvalue λ̂i and, in
particular, the eigenvectors corresponding to the non-stationary
part of the model equal are equal zero
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Estimation and Testing: System of Equations

Two alternative likelihood ratio tests:

(a) Trace test: This procedure tests that there are at most r
cointegrating vectors (and thus (m� r) unit roots). Hence, Ho : λi = 0
i = r+ 1, ..., m. The test statistic is

λtrace (r) = �T
mX

i=r+1

ln
�
1� λ̂i

�
(b) Max eigenvalue test: This tests that there are r cointegrating
vectors against the alternative that there are r+ 1. The test statistic in
this case is

λmax (r) = �T ln
�
1� λ̂r+1

�
r = 0, 1, 2, ..., m� 1

Remark 1: Sequential procedures
Remark 2: Both statistics have nonstandard distributions (functionals of
Brownian motions)!
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Estimation and Testing: System of Equations

Both statistics are based on the Likelihood Ratio test. Notice that

max log L = �Tm
2

log (2π)� Tm
2
� T

2

"
log jS00j+

rX
i=1

log (1� λi)

#
.

Therefore,

LR (r0, r1) = 2 [log L (r1)� log L (r0)]

= T

"
�

r1X
i=1

log (1� λi) +
r0X

i=1

log (1� λi)

#

= �T
r1X

i=r0+1

log (1� λi)
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