## Unit Roots and Co-integration Topic 5: Co-integration

by Vanessa Berenguer-Rico

University of Oxford

January 2014

### Definition (I(d))

A series with no deterministic components which has a stationary, invertible, ARMA representation after differencing *d* times, is said to be integrated of order *d*, denoted  $x_t \sim I(d)$ .

- In this course, only the values d = 0 and d = 1 will be considered (e.g. random walk), but many results can be generalized to other cases including the fractional difference model
- Remember: There are substantial differences between a series that is  $x_t \sim I(0)$  and another that is  $x_t \sim I(1)$ . (Random walk!)

Properties of  $x_t \sim I(0)$  (with zero mean):

(i) the variance of  $x_t$  is finite

(ii) an innovation has only a temporary effect on the value  $x_t$ 

(iii) the expected length of times between crossing x = 0 is finite

(iv) the autocorrelations,  $\rho_k$ , decrease steadily in magnitude for large enough k, so that their sum is finite

Properties of  $x_t \sim I(1)$  ( $x_0 = 0$ ):

(i) the variance of  $x_t$  goes to infinity as t goes to infinity

(ii) an innovation has a permanent effect on the value of  $x_t$ , as  $x_t$  is the sum of all previous changes

(iii) the expected time between crossings of x = 0 is infinite

(iv) the theoretical autocorrelations,  $\rho_k \rightarrow 1$  for all k as  $t \rightarrow \infty$ 

• If *x*<sub>t</sub> and *y*<sub>t</sub> are both *I*(*d*), then it is "**generally**" true that the linear combination

$$z_t = x_t - ay_t$$

will also be I(d)

• David Hendry said to Clive Granger: The difference of two *I*(1) variables can be *I*(0)...

Engle, R. F. and C. W. J. Granger (1987): "Co-integration and Error Correction: Representation Estimation and Testing," *Econometrica* 55, 251-276.

### Definition (Co-integration)

The components of the vector  $x_t$  are said to be co-integrated of order d, b, denoted  $x_t \sim CI(d, b)$ , if (i) all components of  $x_t$  are I(d); (ii) there exists a vector  $\alpha \neq 0$  so that  $z_t = \alpha' x_t \sim I(d-b)$ , b > 0. The vector  $\alpha$  is called the co-integrating vector

- Consider: d = b = 1. That is  $x_t \sim I(1)$  and  $z_t = \alpha' x_t \sim I(0)$
- Simplest example: Let  $y_t \sim I(1)$ ,  $x_t \sim I(1)$ , and

$$y_t = \theta x_t + z_t$$

with  $z_t \sim I(0)$ 

- Hence, *z*<sup>*t*</sup> will rarely drift far from zero (if it has zero mean) and will often cross the zero line
- Equilibrium Relationship:  $y_t \theta x_t$ ; so that  $u_{yt}$  represent the stationary deviation from the equilibrium
- Therefore, *y*<sup>*t*</sup> and *x*<sup>*t*</sup> will not move too far away from each other

# **Co-integration**

- Real Consumption and Real GDP
- U.S. Quarterly Data from the Federal Reserve Bank of St. Louis: 1947Q1-2012Q2



Vanessa Berenguer-Rico ()

# **Co-integration**

- Government Expenditures and Revenues
- U.S. Quarterly Data from the Federal Reserve Bank of St. Louis: 1947Q1-2012Q2



## **Co-integration**

- Real Stock Prices and Real Dividends
- U.S. Monthly Data from Robert Shiller: 1871m1-2012m6



#### The common factor explanation

• Example: Let  $W_t \sim I(1)$  and consider the following system

$$y_t = aW_t + u_{yt}$$
$$x_t = W_t + u_{xt}$$

where  $u_{yt}$  and  $u_{xt}$  are both I(0)

• Then, 
$$y_t \sim I(1)$$
 and  $x_t \sim I(1)$ 

But

$$y_t - ax_t = aW_t + u_{yt} - aW_t + au_{xt} = u_{yt} + au_{xt} \sim I(0)$$

• Cancellation of the common factor *W*<sub>t</sub>!

Vanessa Berenguer-Rico ()

# Co-integration: Estimation and Testing

### **Estimation and Testing**

• Single Equation: Engle and Granger (1987) approach (+DOLS)

• System of Equations: Johansen (1991)

### **Engle and Granger proposal**

- Two stages approach
- *Stage 1*: Estimate the long run (static) relationship by OLS

$$y_t = f(t) + \beta x_t + z_t,$$

and compute the OLS residuals,  $\hat{z}_t$ . Then, test for co-integration

$$\left( \begin{array}{c} H_o : \hat{z}_t \sim I(1) \\ H_a : \hat{z}_t \sim I(0) \end{array} \right)$$

• *Stage 2*: If the null hypothesis is rejected, then estimate the VECM by OLS

$$\Delta y_t = -\gamma \hat{z}_{t-1} + \sum_{i=1}^{p_1} \phi_i \Delta y_{t-i} + \sum_{i=0}^{p_1} \rho_i \Delta x_{t-i} + \varepsilon_t$$

#### EG Test for Co-integration

• Stage 1: Estimate the long run (static) relationship by OLS

$$y_t = f(t) + \beta x_t + z_t,$$

and compute the OLS residuals,  $\hat{z}_t$ . Then, test for co-integration

$$\left( \begin{array}{c} H_o : \hat{z}_t \sim I(1) \\ H_a : \hat{z}_t \sim I(0) \end{array} \right)$$

- DF test on *z*<sub>t</sub>: Important! Critical values are not the same as those derived by Dickey and Fuller (*z*<sub>t</sub> incorporates the OLS estimates!)
- Critical values tabulated by MacKinnon (1991)

### **EG Estimation Properties**

Stage 1:

$$y_t = \theta x_t + z_t$$

In general,

- OLS estimates biased and inefficient (although super-consistent!)
- Nonstandard distributions with nuisance parameters
- There could be more than one cointegrating vector
- Endogeneity

#### Simplest Example:

$$y_t = heta x_t + u_t$$
  
 $\Delta x_t = heta_t$ 

with  $u_t \sim i.i.d.N(0, \sigma_u^2)$ ,  $\varepsilon_t \sim i.i.d.N(0, \sigma_{\varepsilon}^2)$ , and  $E[u_t \varepsilon_s] = \sigma_{u\varepsilon} 1$  (t = s).

The OLS estimator of  $\theta$  satisfies

$$T\left(\hat{\theta}_n - \theta\right) = \frac{T^{-1} \sum_{t=1}^T x_t u_t}{T^{-2} \sum_{t=1}^T x_t^2}$$

**<u>Denominator</u>**: Remember  $\Delta x_t = \varepsilon_t$  with  $\varepsilon_t \sim i.i.d.N(0, \sigma_{\varepsilon}^2)$ . Hence, we can apply the FCLT and CMT to obtain

$$\frac{1}{T^2}\sum_{t=1}^T x_t^2 \xrightarrow{d} \sigma_{\varepsilon}^2 \int_0^1 W_{\varepsilon}(r)^2 dr.$$

**<u>Numerator</u>**: In order to derive the limiting distribution of  $T^{-1}\sum_{t=1}^{T} x_t u_t$ , it will be convenient to condition  $u_t$  on  $\varepsilon_t$  in the following fashion:

$$u_t = \gamma \varepsilon_t + v_t; \quad \gamma = \sigma_{u\varepsilon} / \sigma_{\varepsilon}^2; \quad \sigma_v^2 = \sigma_u^2 - \sigma_{u\varepsilon}^2 / \sigma_{\varepsilon}^2.$$

Hence, by construction  $E[\varepsilon_t v_s] = 0 \ \forall t \neq s$ . Moreover,

$$T^{-1} \sum_{t=1}^{T} x_t u_t = T^{-1} \sum_{t=1}^{T} x_t \left(\gamma \varepsilon_t + v_t\right)$$
$$= \gamma \left(T^{-1} \sum_{t=1}^{T} x_{t-1} \varepsilon_t\right) + \gamma \left(T^{-1} \sum_{t=1}^{T} \varepsilon_t^2\right)$$
$$+ \left(T^{-1} \sum_{t=1}^{T} x_{t-1} v_t\right) + \left(T^{-1} \sum_{t=1}^{T} \varepsilon_t v_t\right)$$

Numerator: We already derived that

$$\left(T^{-1}\sum_{t=1}^{T}x_{t-1}\varepsilon_{t}\right) \stackrel{d}{\longrightarrow} \left(\sigma_{\varepsilon}^{2}/2\right)\left(W_{\varepsilon}\left(r\right)^{2}-1\right)$$

and

$$T^{-1}\sum_{t=1}^T \varepsilon_t^2 \xrightarrow{p} \sigma_{\varepsilon}^2.$$

By the assumptions above it is easy to see that

$$T^{-1}\sum_{t=1}^{T}\varepsilon_t v_t \xrightarrow{p} 0$$

(why?).

Numerator: Finally, it remains to study

$$T^{-1}\sum_{t=1}^T x_{t-1}v_t,$$

which convergences to a stochastic integral! (Kurtz, T.G. & P. Protter, 1991: "Weak limit theorems for stochastic integrals and stochastic differential equations"). Specifically,

$$T^{-1}\sum_{t=1}^{T} x_{t-1}v_t \xrightarrow{d} \sigma_{\varepsilon}\sigma_{v} \int_{0}^{1} W_{\varepsilon}(r) dW_{v}(r).$$

**<u>Numerator</u>**:  $\int_{0}^{1} W_{\varepsilon}(r) dW_{v}(r)$  is an Ito stochastic integral which satisfies

$$\int_{0}^{1} W_{\varepsilon}(r) dW_{v}(r) \sim N\left(0, \int_{0}^{1} W_{\varepsilon}^{2}(r) dr\right),$$

see Lemma 5.1 in Park and Phillips (1988) "Statistical Inference with integrated regressors: Part 1"

#### Numerator: Therefore, the numerator satisfies

$$T^{-1}\sum_{t=1}^{T} x_{t}u_{t} \stackrel{d}{\longrightarrow} \gamma\left(\sigma_{\varepsilon}^{2}/2\right)\left(W_{\varepsilon}\left(r\right)^{2}-1\right)+\gamma\sigma_{\varepsilon}^{2}+\sigma_{\varepsilon}\sigma_{\upsilon}\int_{0}^{1}W_{\varepsilon}\left(r\right)dW_{\upsilon}\left(r\right).$$

#### <u>OLS</u>:

$$T\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d} \frac{\left(\gamma\sigma_{\varepsilon}^{2}/2\right)\left(W_{\varepsilon}\left(r\right)^{2}-1\right)+\gamma\sigma_{\varepsilon}^{2}+\sigma_{\varepsilon}\sigma_{v}\int_{0}^{1}W_{\varepsilon}\left(r\right)dW_{v}\left(r\right)}{\int_{0}^{1}W_{\varepsilon}\left(r\right)^{2}dr}$$

t-test:

$$t_{\theta=0} \stackrel{d}{\longrightarrow} \left(\gamma \sigma_{\varepsilon} \sigma_{u}^{-1} / 2\right) \left(W_{\varepsilon}\left(r\right)^{2} + 1\right) \left(\int_{0}^{1} W_{\varepsilon}\left(r\right)^{2} dr\right)^{-1/2} + \sigma_{v} \sigma_{u}^{-1} N\left(0, 1\right)$$

#### t-test:

$$t_{\theta=0} \stackrel{d}{\longrightarrow} \left(\gamma \sigma_{\varepsilon} \sigma_{u}^{-1} / 2\right) \left(W_{\varepsilon}\left(r\right)^{2} + 1\right) \left(\int_{0}^{1} W_{\varepsilon}\left(r\right)^{2} dr\right)^{-1/2} + \sigma_{v} \sigma_{u}^{-1} N\left(0, 1\right)$$

- In general, therefore, the t-ratio of  $\hat{\theta}_n$  will not have a standard normal distribution unless  $\gamma = \sigma_{u\varepsilon}/\sigma_{\varepsilon}^2 = 0$  (that is, unless  $x_t$  is strongly exogenous for the estimation of  $\theta$ )
- When γ ≠ 0 the first term in the asymptotic distribution gives rise to "second order" or "endogeneity" bias, which although asymptotically negligible in estimating θ due to super consistency, can be important in finite samples

### **EG Estimation Properties**

Stage 1:

$$y_t = \theta x_t + z_t$$

In general,

- OLS estimates biased and inefficient (although super-consistent!)
- Nonstandard distributions with nuisance parameters
- There could be more than one cointegrating vector
- Endogeneity

### **DOLS:** Dynamic OLS

• Saikkonen (1991): "Asymptotically Efficient Estimation of Cointegration Regressions"

• Stock and Watson (1993): "A Simple Estimator of Co-integrating Vectors in Higher Order Integrated Systems"

### **DOLS: Dynamic OLS**

The DOLS estimator is based on a regression function that incorporates leads and lags of the first differences of the regressors, that is,

$$y_t = x_t \theta + \sum_{j=-k_1}^{k_2} \Delta x_{t-j} \phi_j + u_t.$$

- Accounts for the dynamics when estimating the cointegrating vector
- Accounts for the correlation between the regressors and the error term
- Optimal (consistent and efficient) estimation of the cointegrating vector (mixed-gaussian distributions)
- Standard t-tests, Wald

### <u>Recall</u>:

Engle, R. F. and C. W. J. Granger (1987): "Co-integration and Error Correction: Representation Estimation and Testing," *Econometrica* 55, 251-276.

### Definition (Co-integration)

The components of the vector  $x_t$  are said to be co-integrated of order d, b, denoted  $x_t \sim CI(d, b)$ , if (i) all components of  $x_t$  are I(d); (ii) there exists a vector  $\alpha \ (\neq 0)$  so that  $z_t = \alpha' x_t \sim I(d-b)$ , b > 0. The vector  $\alpha$  is called the co-integrating vector

- Consider: d = b = 1. That is  $x_t \sim I(1)$  and  $z_t = \alpha' x_t \sim I(0)$
- **<u>Recall</u>**: Simplest example: Let  $y_t \sim I(1)$ ,  $x_t \sim I(1)$ , and

$$y_t = \theta x_t + z_t$$

with  $z_t \sim I(0)$ 

- Hence, *z*<sup>*t*</sup> will rarely drift far from zero (if it has zero mean) and will often cross the zero line
- Equilibrium Relationship:  $y_t \theta x_t$ ; so that  $u_{yt}$  represent the stationary deviation from the equilibrium
- Therefore, *y*<sup>*t*</sup> and *x*<sup>*t*</sup> will not move too far away from each other

#### <u>Remarks</u>:

- If *x<sub>t</sub>* has *m* > 2 components, then there can be more than one cointegrating vector *α* (*α'x<sub>t</sub>* ~ *I*(0))
- It is assumed that there are exactly *r* linearly independent co-integrating vectors with  $r \le m 1$
- It is useful to gather the co-integrating vectors together into the *m* × *r* array *α*
- So, by construction the rank of *α* will be *r* and it will be called the "co-integrating rank" of *x*<sub>t</sub>

### Representations of a Co-integrated System: (Watson, 1994)

• VAR: 
$$x_t = \sum_{i=1}^p \prod_i x_{t-i} + \varepsilon_t$$

• VECM: 
$$\Delta x_t = \Pi x_{t-1} + \sum_{i=1}^{p-1} \Phi_i \Delta x_{t-i} + \varepsilon_t$$

• MA: 
$$\Delta x_t = C(L) \varepsilon_t$$

• Common Trends:  $x_t = C(1) \sum_{s=1}^t \varepsilon_s + C^*(L) \varepsilon_t + x_0$ 

• Triangular: 
$$x_t = (x'_{1t}, x'_{2t})'$$
 with  $\Delta x_{1t} = u_{1t}$  and  $x_{2t} - \beta x_{1t} = u_{2t}$ 

**Simplest Example**: Let  $x_t$  be a 2 × 1 vector,  $x_t = (x_{1t}, x_{2t})'$ .

• Triangular Representation

$$\begin{array}{rcl} x_{1t} & = & \theta x_{2t} + \varepsilon_{1t} \\ x_{2t} & = & x_{2t-1} + \varepsilon_{2t} \end{array}$$

• MA Representation

$$\Delta x_{1t} = \Delta \varepsilon_{1t} + \theta \varepsilon_{2t}$$
$$\Delta x_{2t} = \varepsilon_{2t}$$

or equivalently

$$\left(\begin{array}{c}\Delta x_{1t}\\\Delta x_{2t}\end{array}\right) = \left(\begin{array}{cc}(1-L) & \theta\\0 & 1\end{array}\right) \left(\begin{array}{c}\varepsilon_{1t}\\\varepsilon_{2t}\end{array}\right).$$

Hence,

$$\Delta x_t = C(L) \varepsilon_t$$

Vanessa Berenguer-Rico ()

• Common Trends Representation: From the MA representation

$$\Delta x_{t} = C(L) \varepsilon_{t} = C(1) \varepsilon_{t} + [C(L) - C(1)] \varepsilon_{t}$$

and solving backward for the levels of  $x_t$ 

$$x_{t} = C(1) \sum_{s=1}^{t} \varepsilon_{s} + C^{*}(L) \varepsilon_{t} + x_{0}$$

where  $C^*(L) = (1-L)^{-1} [C(L) - C(1)]$ . In particular, for  $x_0 = 0$ ,  $\begin{pmatrix} x_{1t} \\ x_{2t} \end{pmatrix} = \begin{pmatrix} 0 & \theta \\ 0 & 1 \end{pmatrix} \sum_{s=1}^t \varepsilon_s + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$ ,

or equivalently

$$x_{1t} = \theta \sum_{s=1}^{t} \varepsilon_{2s} + \varepsilon_{1t} \text{ and } x_{2t} = \sum_{s=1}^{t} \varepsilon_{2s}$$

• VECM Representation: From the triangular representation

$$\begin{array}{rcl} x_{1t} & = & \theta x_{2t} + \varepsilon_{1t} \\ x_{2t} & = & x_{2t-1} + \varepsilon_{2t} \end{array}$$

or equivalently

$$\Delta x_{1t} = -x_{1t-1} + \theta x_{2t-1} - \theta x_{2t-1} + \theta x_{2t} + \varepsilon_{1t}$$
  
$$\Delta x_{2t} = \varepsilon_{2t}$$

that is

$$\begin{pmatrix} \Delta x_{1t} \\ \Delta x_{2t} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \varepsilon_{1t-1} + \begin{pmatrix} 1 & \theta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & -\theta \end{pmatrix} \begin{pmatrix} x_{1t-1} \\ x_{2t-1} \end{pmatrix} + \begin{pmatrix} 1 & \theta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}.$$

### • VECM Representation

That is

$$\begin{pmatrix} \Delta x_{1t} \\ \Delta x_{2t} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \varepsilon_{1t-1} + \begin{pmatrix} 1 & \theta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & -\theta \end{pmatrix} \begin{pmatrix} x_{1t-1} \\ x_{2t-1} \end{pmatrix} + \begin{pmatrix} 1 & \theta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}.$$

Hence,

$$\Delta x_t = \Pi x_{t-1} + \tilde{\varepsilon}_t = \alpha \beta' x_{t-1} + \tilde{\varepsilon}_t$$

• VAR Representation

From the VECM

$$x_t = (\Pi - I) x_{t-1} + \tilde{\varepsilon}_t,$$

or equivalently

$$\left( egin{array}{c} x_{1t} \ x_{2t} \end{array} 
ight) = \left( egin{array}{c} -2 & heta \ 0 & -1 \end{array} 
ight) \left( egin{array}{c} x_{1t-1} \ x_{2t-1} \end{array} 
ight) + \left( egin{array}{c} ilde{arepsilon}_{1t} \ ilde{arepsilon}_{2t} \end{array} 
ight),$$

that is a VAR(1)

$$x_t = \Pi_1 x_{t-1} + \tilde{\varepsilon}_t,$$

### **Granger Representation Theorem**

- It proves, in a general context, that a co-integrated system of variables can be represented in three (four) main forms: the vector autoregressive (VAR), error correction, and moving-average (common factors) forms
- These representations are all isomorphic to each other
- The theorem establishes the restrictions that hold between the lag-polynomial matrices in each representation of the process
- Engle and Granger (1987) or Johansen (1991)
- Common factor representation (Stock and Watson, 1988); Triangular representation (Phillips, 1991)

### Granger Representation Theorem (Johansen, 1991)

Consider a general VAR model with Gaussian errors written in the error correction form

$$\Delta X_t = \sum_{i=1}^{k-1} \Gamma_i \Delta X_{t-i} + \Pi X_{t-k} + \Phi D_t + \mu + \varepsilon_t,$$

where  $D_t$  are seasonal dummies orthogonal to the constant term. Further,  $\varepsilon_t$  are independent *p*-dimensional Gaussian variables with mean zero and variance matrix  $\Lambda$ . This model can be rewritten as

$$\Pi\left(L\right)X_{t}=-\Pi X_{t}+\Psi\left(L\right)\Delta X_{t}=\varepsilon_{t}+\mu+\Phi D_{t},$$

where  $\Psi(L) = (\Pi(L) - \Pi(1)) / (1 - L)$ . Note that  $-\Pi = \Pi(1)$  and  $-\Psi = -\Psi(1)$  is the derivative of  $\Pi(z)$  for z = 1.

**Theorem** (*Granger Representation Theorem*): Let the process  $X_t$  be as defined above and let

$$\Pi = \alpha \beta',$$

for  $\alpha$  and  $\beta$  of dimensions  $p \times r$  and rank r, and let

$$\alpha'_{\perp}\Psi\beta_{\perp},$$

have full rank p - r. We define

$$C = \beta_{\perp} \left( \alpha'_{\perp} \Psi \beta_{\perp} \right)^{-1} \alpha'_{\perp}.$$

*Then,*  $\Delta X_t$  *and*  $\beta' X_t$  *can be given initial distributions, such that* 

(i)  $\Delta X_t$  is stationary

(ii)  $\beta' X_t$  is stationary

(iii)  $X_t$  is nonstationary, with linear trend  $\tau t = C\mu t_{\Box}$ 

#### Further,

(iv) 
$$E(\beta' X_t) = -(\alpha' \alpha)^{-1} \alpha' \mu + (\alpha' \alpha)^{-1} \alpha' \Psi \beta_{\perp} (\alpha'_{\perp} \Psi \beta_{\perp})^{-1} \alpha'_{\perp} \mu$$
,  
(v)  $E(\Delta X_t) = \tau$ ,

apart from terms involving the seasonal dummies. If  $\alpha'_{\perp}\mu = 0$ , then  $\tau = 0$  and the linear trend disappears.

• • •

(vi) If the initial distributions are expressed in terms of the doubly infinite sequence  $\{\varepsilon_t\}$ , then  $\Delta X_t$  has a representation

$$\Delta X_{t}=C\left(L
ight)\left(arepsilon_{t}+\mu+\Phi D_{t}
ight)$$
 ,

with C(1) = C

(vii) For  $C_1(L) = (C(L) - C(1)) / (1 - L)$ , so that  $C(L) = C(1) + (1 - L)C_1(L)$ , the process  $X_t$  has the representation

$$X_{t} = X_{0} + C \sum_{i=1}^{t} \varepsilon_{i} + \tau t + C(L) \Phi \sum_{i=1}^{t} D_{i} + S_{t} - S_{0},$$

where  $S_t = C_1(L) \varepsilon_t$ , and  $\beta' X_0 = \beta' S_0$ .

# Co-integration: Estimation and Testing

### **Estimation and Testing**

• Single Equation: Engle and Granger (1987) approach (+DOLS)

• System of Equations: Johansen (1991)

### System of Equations: Johansen's Approach

- Uses likelihood methods for the analysis of cointegration in VAR models with Gaussian errors
- Likelihood ratio test of cointegration rank (nonstandard inference)
- Tests of structural hypothesis about cointegrating relationships (standard inference)

### The Cointegrated VAR

Let  $Y_t = (y_{1t}, y_{2t}, ..., y_{mt})'$  be generated as a VAR(p)  $Y_t = \Pi_1 Y_{t-1} + ... + \Pi_v Y_{t-v} + \varepsilon_t,$ 

with  $\varepsilon_t \sim i.i.d.N(0, \Omega)$ . (No deterministic terms). The VECM representation is

$$\Delta Y_t = \Pi Y_{t-1} + \sum_{i=1}^{p-1} \Gamma_i \Delta Y_{t-i} + \varepsilon_t,$$

where

$$\Pi = -\left(I - \Pi_1 - ... - \Pi_p\right),$$

and

$$\Gamma_i = -\left(\Pi_{i+1} + \Pi_{i+2} + \dots + \Pi_p\right).$$

(Try a VAR(2)!)

### Johansen's Methodology in Practice

**1**. Specify and estimate a VAR(p) model for  $Y_t$ 

**2**. Construct likelihood ratio tests for the rank of  $\Pi$  to determine the number of cointegrating vectors

**3**. If necessary, impose normalization and identifying restrictions on the cointegrating vectors

**4**. Given the normalized cointegrating vectors estimate the resulting cointegrated VECM by maximum likelihood

5. Test relevant hypothesis

### Estimation and Testing via a ML approach

The VECM is

$$\Delta Y_t = \Pi Y_{t-1} + \sum_{i=1}^{p-1} \Gamma_i \Delta Y_{t-i} + \varepsilon_t,$$

with  $\varepsilon_t \sim i.i.d.N(0, \Omega)$ . Hence, the log-likelihood function is

$$\log L(\Gamma,\Pi,\Omega) = -\frac{1}{2}T\log|\Omega| - \frac{1}{2}\sum_{t=1}^{T}\varepsilon_{t}'\Omega^{-1}\varepsilon_{t}.$$

### Concentrate the log-likelihood function

**Step 1**: Concentrate  $\log L$  with respect  $\Gamma$ 

**Step 2**: Concentrate log Lrespect  $\Omega$ 

**Step 3**: Concentrate  $\log L$  with respect  $\alpha$ 

#### Estimation and Testing via a ML approach

Recall: The log-likelihood function is

$$\log L(\Gamma,\Pi,\Omega) = -\frac{1}{2}T\log|\Omega| - \frac{1}{2}\sum_{t=1}^{T}\varepsilon_{t}'\Omega^{-1}\varepsilon_{t}.$$

Notice that the VECM can be rewritten as

$$Z_{0t} = -\Pi Z_{1t} + \Gamma Z_{2t} + \varepsilon_t,$$

where  $Z_{0t} = \Delta Y_t$ ,  $Z_{1t} = Y_{t-1}$ ,  $Z_{2t} = \left(\Delta Y'_{t-1}, ..., \Delta Y'_{t-p+1}\right)'$ ,  $\Pi = -\alpha \beta'$ , and  $\Gamma$  consist of the parameters  $(\Gamma_1, ..., \Gamma_{p-1})$ .

**Step 1**: Concentrate  $\log L$  with respect  $\Gamma$ The first order conditions for  $\Gamma$  are

$$\sum_{t=1}^{T}\left(Z_{0t}-lphaeta^{\prime}Z_{1t}+\Gamma Z_{2t}
ight)Z_{2t}^{\prime}=0,$$

or equivalently

$$M_{02}=\alpha\beta'M_{12}+\Gamma M_{22}.$$

This implies that, for fixed  $\alpha$  and  $\beta$ ,

$$\hat{\Gamma}(\alpha,\beta) = M_{02}M_{22}^{-1} - \alpha\beta'M_{12}M_{22}^{-1},$$

and hence

$$\log L\left(\alpha,\beta,\Omega\right) = -\frac{1}{2}T\log|\Omega| - \frac{1}{2}\sum_{t=1}^{T}\left(R_{0t} - \alpha\beta'R_{1t}\right)\Omega^{-1}\left(R_{0t} - \alpha\beta'R_{1t}\right),$$

where  $R_{0t}$  and  $R_{1t}$  are the residuals obtained from regressing  $Z_{0t}$  and  $Z_{1t}$  against  $Z_{2t}$ , respectively.

**Step 2**: Concentrate  $\log L$  with respect  $\Omega$ 

$$\log L(\alpha,\beta) = -\frac{Tm}{2}\log(2\pi) - \frac{Tm}{2}$$
$$-\frac{T}{2}\log\left|\frac{1}{T}\sum_{t=1}^{T} (R_{0t} - \alpha\beta'R_{1t}) (R_{0t} - \alpha\beta'R_{1t})\right|.$$

.....

(Why? Hint: 
$$\partial \log |\Omega| / \partial \Omega = (\Omega')^{-1}$$
,  
 $\partial tr (BA^{-1}C) / \partial A = - (A^{-1}CBA^{-1})'$ ,  
 $\sum_{t=1}^{T} (R_{0t} - \alpha\beta'R_{1t}) \hat{\Omega}^{-1} (R_{0t} - \alpha\beta'R_{1t}) = Tm$ ).

**Step 3**: Concentrate log *L* with respect  $\alpha$  and notice that maximizing  $\overline{\log L(\beta)}$  is equivalent to minimize

$$\begin{vmatrix} S_{00} - S_{01}\beta (\beta' S_{11}\beta)^{-1}\beta S_{10} \end{vmatrix},$$
where  $S_{ij} = T^{-1} \sum_{t=1}^{T} R_{it}R'_{jt}$ ,  $i, j = 0, 1$ .  
(Why?)

Moreover,

$$\begin{split} \left| S_{00} - S_{01}\beta \left(\beta' S_{11}\beta\right)^{-1}\beta S_{10} \right| &= \frac{\left| S_{00} \right| \left|\beta' \left(S_{11} - S_{10}S_{00}S_{01}\right)^{-1}\beta\right|}{\left|\beta' S_{11}\beta\right|} \\ &= \left| S_{00} \right| \prod_{i=1}^{r} \left(1 - \lambda_{i}\right), \end{split}$$

where  $\lambda_i$ , i = 1, ..., r denote the *r* largest eigenvalues obtained from

$$\left|\lambda S_{11} - S_{10}S_{00}S_{01}^{-1}\right| = 0.$$

(Reduced Rank regression: Anderson, 1951)

For a given *r* and largest eigenvalues  $\hat{\lambda}_1 > \hat{\lambda}_2 > ... > \hat{\lambda}_r$ , we obtain  $\hat{\beta}_i$ , i = 1, ..., r, the corresponding eigenvectors, from

$$\left(\hat{\lambda}_i S_{11} - S_{10} S_{00} S_{01}^{-1}\right) \hat{\beta}_i = 0 \quad i = 1, ..., r$$

and

$$\hat{lpha} = S_{01}\hat{eta}$$
  
 $\hat{\Pi} = -\hat{lpha}\hat{eta}'$   
 $\hat{\Omega} = S_{00} - \hat{lpha}\hat{lpha}'.$ 

In practice, the number of cointegrating vectors, *r*, is unknown!

### **Testing for Co-integration**

$$\Delta Y_t = \Pi Y_{t-1} + \sum_{i=1}^{p-1} \Gamma_i \Delta Y_{t-i} + \varepsilon_t,$$

Three situations of interest:

(i) <u>The rank of  $\Pi$  is zero</u>: There are no co-integrating relationships

(ii) <u>The rank of  $\Pi$  is *m*</u>: All variables in  $Y_t$  are stationary

(iii) <u>The rank of  $\Pi$  is r < m</u>: There exist r cointegrating vector and  $\Pi = -\alpha\beta'$  where  $\alpha$  and  $\beta$  are  $(m \times r)$  matrices

- Hence, testing for co-integration is equivalent to test for reduced rank of Π. In other words, testing for cointegration is equivalent to find the number of *r* linearly independent columns of Π
- Johansen's maximum likelihood approach to solve this problem amounts to a reduced rank regression which provides *m* eigenvalues λ<sub>1</sub> > λ<sub>2</sub> > ... > λ<sub>m</sub>, and their corresponding eigenvector V = (v̂<sub>1</sub>, v̂<sub>2</sub>, ..., v̂<sub>m</sub>)
- Those *r* elements in *Ŷ* which determine the linear combinations of stationary relationships can be denoted *β̂* = (*v̂*<sub>1</sub>, *v̂*<sub>2</sub>, ..., *v̂*<sub>r</sub>). The last (*m* − *r*) combinations indicate the non-stationary combinations
- Each eigenvector  $\hat{v}_i$  has a corresponding eigenvalue  $\hat{\lambda}_i$  and, in particular, the eigenvectors corresponding to the non-stationary part of the model equal are equal zero

Vanessa Berenguer-Rico ()

University of Oxford

Two alternative likelihood ratio tests:

(a) <u>Trace test</u>: This procedure tests that there are at most r cointegrating vectors (and thus (m - r) unit roots). Hence,  $H_o : \lambda_i = 0$  i = r + 1, ..., m. The test statistic is

$$\lambda_{trace}\left(r
ight)=-T\sum_{i=r+1}^{m}\ln\left(1-\hat{\lambda}_{i}
ight)$$

(b) **Max eigenvalue test**: This tests that there are r cointegrating vectors against the alternative that there are r + 1. The test statistic in this case is

$$\lambda_{\max}(r) = -T \ln (1 - \hat{\lambda}_{r+1})$$
  $r = 0, 1, 2, ..., m - 1$ 

 Remark 1: Sequential procedures

 Remark 2: Both statistics have nonstandard distributions (functionals of

 Brownian motions)!

Vanessa Berenguer-Rico ()

Both statistics are based on the Likelihood Ratio test. Notice that

$$\max \log L = -\frac{Tm}{2} \log (2\pi) - \frac{Tm}{2} - \frac{T}{2} \left[ \log |S_{00}| + \sum_{i=1}^{r} \log (1 - \lambda_i) \right]$$

Therefore,

$$LR(r_0, r_1) = 2 [\log L(r_1) - \log L(r_0)]$$
  
=  $T \left[ -\sum_{i=1}^{r_1} \log (1 - \lambda_i) + \sum_{i=1}^{r_0} \log (1 - \lambda_i) \right]$   
=  $-T \sum_{i=r_0+1}^{r_1} \log (1 - \lambda_i)$