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STATIONARY TIME
SERIES MODELS

Limited by a finite number of available observations, we often construct a fi-
nite order parametric model to describe a time series process. In this chapter,
we introduce the autoregressive moving average model, which includes the
autoregressive model and the moving average model as special cases. This
model contains a very broad class of parsimonious time series processes found
useful in describing a wide variety of time series. After giving detailed discus-
sions on the characteristics of each process in terms of the autocorrelation and
partial autocorrelation functions, we illustrate the results with examples.

3.1 AUTOREGRESSIVE PROCESSES

As mentioned earlier in Section 2.6, in the autoregressive representation of a
process, if only a finite number of = weights are nonzero, i.e., 7y = ¢, m, = ¢,
veey Ty = ¢ and m, = 0 for k >.p, then the resulting process is said to be an
autoregressive process (model) of order p, which is denoted as AR(p). It is
given by

Zy=$hZ, 4+ 8,2, ,+a, (3.1.1)
or
$,(B)Z, =a,, (3.1.2)
where ¢,(B) = (1-¢,B — - — ¢,BP).

Since 3°°7, | =] = Y71 14;] < oo, the process is always invertible. To be sta-
tionary, the roots of ¢,(B) = 0 must lie outside of the unit circle. The AR pro-
cesses are useful in describing situations in which the present value of a time
series depends on its preceding values plus a random shock. Yule (1927) used
an AR process to describe the phenomena of sunspot numbers and the behav-
jor of a simple pendulum. First, let us consider the following simple models.
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3.1.1 The First Order Autoregressive AR(1) Process
For the first order autoregressive process AR(1), we write

(1-¢,B)Z, =a, (3.1.3a)
or

2, =2, ,+a, (3.1.3b)

As mentioned above, the process is always invertible. To be stationary, the root
of (1 - ¢,B) = 0 must be outside of the unit circle. That is, for a stationary
process, we have |¢,| < 1. The AR(1) process is sometimes called the Markov
prué:ess because the value of Z, is completely determined by the knowledge
of Z,_,.

ACF of the AR(1) Process  The autocovariances are obtained as follows:

E(Zl —kzt) = E{ﬁi, —kzt—l) =+ E(zs —k%)

e =1 Ve—1» k>1, (3.1.4)
and the autocorrelation function becomes
= =%, k21, (3.1.5)

where we use the fact that p, = 1. Hence, when |¢,| < 1 and the process is sta-
tionary, the ACF exponentially decays in one of two forms depending on the
sign of ¢,. If 0 < ¢, < 1, all autocorrelations are positive; if -1 < ¢ < 0, the
sign of the autocorrelations shows an alternating pattern beginning with a neg-
ative value. The magnitudes of these autocorrelations decrease exponentially
in both cases, as shown in Figure 3.1.

PACF of the AR(1) Process
(2.3.19) is

For an AR(1) process, the PACF from

sz pl = é[; k = ll
Pk {o, fork > 2. (3.16)

Hence, the PACF of the AR(1) process shows a positive or negative spike at
lag 1 depending on the sign of ¢,, and then cuts off as shown in Figure 3.1.

Example3.1  Forillustration, we simulated 250 values from an AR(1) pro-
cess, (1 - ¢,B)(Z, — 10) = a,, with ¢; = .9. The white noise series a, are in-
dependent normal N (0, 1) random variables. Figure 3.2 shows the plot of the
series. It is relatively smooth.

Table 3.1 and Figure 3.3 show the sample ACF and the sample PACF for
the series. Clearly j, decreases exponentially and ¢, cuts off after lag 1 be-
cause none of the sample PACF values are significant beyond that lag and,
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Fig. 3.1 ACF and PACF of the AR(1) process: (1 - ¢B)Z, =a,.

more important, these insignificant i do not exhibit any pattern. The associ-
ated standard error of the sample ACF j, is computed by

sﬁ‘«-_-\/%(1+2ﬁ}+---+25§_1), (3.1.7)
and the standard error of the sample PACF 4, is set to be
1
Shw =\ (3.1.8)

which are standard outputs used in most time series programs.
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Fig. 3.2 A simulated AR(1) scrics, (1 -.9B)(Z, - 10) = a,.

Thble 3.1 Sample ACF and samplc PACF for a simulated serics
from (1-9B)(Z, - 10) = a,.

k 1 2 3 4 5 6 7 8 9 10

Mm B8 76 67 57 48 40 34 28 21 .17
SLtE. 06 .10 .12 .14 .14 15 .16 .16 .16 .16

du 88 01 -01 -11 .02 -01 .01 -02 -06 .05
SLtE. 06 06 06 06 .06 .06 .06 .06 .06 .06

Example 3.2  This example shows a simulation of 250 values from the
AR(1) process (1 - ¢,B)(Z, — 10) = a,, with ¢, = —.65 and a, being Gaussian
N (0, 1) white noise. The series is plotted in Figure 3.4 and is relatively jagged.
The sample ACF and sample PACF of the series are shown in Table 3.2
and Figure 3.5. We see the alternating decreasing pattern beginning with a
negalwe in the sample ACF and the cut-off property of the sample PACF. Since
$11 = i1» by, is also negative. It should be noted that even though only the first
two or three sample autocorrelations are significant, the overall pattern clearly
indicates the phenomenon of an AR(1) model with a negative value of ¢,.
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Flg. 3.3 Sample ACF and sample PACF of a simulated AR(1) serics: (1 —.9B)
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Flg. 3.4 A simulated AR(1) series (1 + .65B)(Z, - 10) = a,.
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Table 3.2 Sample ACF and sample PACF for a simulated series from
(1+ .65B)(Z, - 10) = a,.

k 1 2 3 4 5 6 7 8 9 10
M —-63 36 -17 09 -07 06 -08 .10 -.11 .06
SLE. .06 08 .09 09 .09 .09 .09 .09 .09 .09
éy -63 -06 05 02 -04 -01 -06 04 —-03 -05
SLE. .06 06 .06 06 .06 .06 .06 .06 .06 .06
A
1.0 1.03“
0.8 0.8
0.6 0.61
0.4 0.4
0.2 0.21
0 ]lf;lllliu > k 0 .II.TS'||l1|0 &
02 -0.2
-0.4 -0.4
-0.6 -0.6
-0.8 0.8
1.0 -1.0°

Fig. 3.5 Samplc ACF and sample PACF of a simulated AR(1) series (1 + .65B)(Z,
- 10) = a,. )

It should be noted that in discussing stationary autoregressive processes,
we have assumed that the zeros of the autoregressive polynomial ¢,(B) lie out-
side of the unit circle. In terms of the AR(1) process (3.1.3a or b), it implies
that |¢,| < 1. Thus, when |¢,| > 1, the process is regarded as nonstationary.
This is because we have implicitly assumed that the process is expressed as a
linear combination of present and past white noise variables. If we also con-
sider a process that is expressed as a linear combination of present and future
random shocks, there exists an AR(1) process with its parameter ¢, greater
than 1 in absolute value, which is still stationary in the usual sense of the term
as defined in Section 2.1. To see that, consider the process

zr = i(‘s)’.al +j? (3-]'9)

j=0
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where {a,} is a white noise process with mean zero and variance o2. It is
straightforward to verify that the process Z, in (3.1.9) is indeed stationary in
the sense of Section 2.1 with the ACF p, = (.5)*. Now, consider the process
(3.1.9) at time (1 — 1) and multiply both of its sides by 2, i.e.,

22, ,=2) (SYa,_,;

j=0

o9 -

=2a, 1+ ) (5Va,_y, (3.1.10)
j=1
bizcd .

=2a,_;+ Z(.S)Jﬂ, +*
j=0

Thus, (3.1.9) leads to the following equivalent AR(1) model with ¢, = 2,
Z,-2Z, ,=b, (3.1.11)

where b, = —2a,_,. However, it should be noted that although the bi in(3.1.11)
is a white noise process with mean zero, its variance becomes 407, which is
four times larger than the variance of a, in the following AR(1) model with
the same ACF p, = (.5)k],

By 8Ty (3.1.12)
which can be written as a linear combination of present and past random
shocks, i.e.,, Z, = 3°70(.5)a,_;.

In summary, although a process with an ACF of the form ¢/, wherce
|#| < 1, can be written either as

Z,-¢Z,_,=a, (3.1.13)

or

Z,-¢7'2,_,=b,, (3.1.14)
where both a, and b, are zero mean white noise processes, the variance of b,
in (3.1.14) is larger than the variance of a, in (3.1.13) by a factor of ¢~2. Thus,
for practical purposes, we will choose the representation (3.1.13). That is, in
terms of a stationary AR(1) process, we always refer to the case in which the
parameter value is less than 1 in absolute value,

a

3.1.2 The Second Order Autoregressive AR(2) Process

For the second order autoregressive AR(2) process, we have
(1-¢,B—¢,B>)Z, =a, (3.1.15a)

or

Zy=$hZ, 1+ $Z, s +a,. (3-1.15b)
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The.AR(Z) process, as a finite autoregressive model, is always invertible. To be
stationary, the roots of ¢(B) = (1—¢,B~ $,B2) = 0 must lic outside of the unit
circle. For example, the process (1—1.5B + .56B)Z, =a, is stationary because
(1-1.5B +.56B2) = (1-.7B)(1- -8B) = O gives B = 1/.7 and B = 1/.8, which
are larger than one in absolute value. However, (1 —.2B — 8B%)Z, =a, is not
stationary because one of the roots of (1-.2B-.8B%)=0isB =1, \\:hich is
not outside of the unit circle.

The stationarity condition of the AR(2) model can also be expressed in
terms ofits parameter values. Let B, and B, be the roots of (1 -$B—¢,BY) =0
or equivalently of $,B? + ¢,B — 1 = 0. We have

B, = —¢1+ /4] +44,

2&2 '
and
—$1— /¢ +4
B 1 1 952.
2¢,
Now,
i ‘i’i + V ‘ﬁ + 4¢'1
Bl 2 i
and
1 ¢'1‘\g‘¢'f"’4¢z
B, 2 ’

The required condition [B;| > 1 implies [1/B;] < 1 fori = 1 and 2. Hence,
1. 1
|5 5| =t <1

and

1 1
B, "5,
Thus, we have the following necessary condition for stationarity regardless of
whether the roots are real or complex:

{ ~-1<¢,<1,
-2< ¢| <2.
For real roots, we need ¢Z + 4¢, > 0, which implies that

_1<-B—1"_él_‘/§f+4¢25¢l+‘/§?+4¢2-
2

|#4] =

<2

(3.1.16)

1
—JTI<]’
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or equivalently,
{¢1+¢' sh (3.1.17)
¢2 = ¢'l <1

For complex roots, we have ¢, < 0 and g&f + 4¢, < 0. Thus, in terms of the
parameter values, the stationarity condition of the AR(2) model is given by
the following triangular region in Figure 3.6 satisfying

¢+ <1,
{éz—d,cl. (3.1.18)
-1<¢y<1.

ACF of the AR(2) Process  We obtain the autocovariances by multiplying
Z,_, on both sides of (3.1.15b) and taking the expectation,

E(zl-\-lzl) - ¢]E(zl-kz'_|) + ¢'1E(2'_*2,*2) + E(Z',_ka,)
M = -1+ P2 M- k>1.

Hence, the autocorrelation function becomes

Pk = $iP—r + bamk-2y k21 (3.1.19)
Specifically, when k = 1 and 2
pL= ¢+ b2y
P =dpyt b

Real roots

$2 0

Complex roots

|
& 0 2

=

Fig. 3.6 Stationary regions for the AR(2) modecl.
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which implies

= (3.1.20)

(41 #t + ¢, — 43
= + = i
[ e ?, T (3.1.21)
and p, for k > 3 is calculated recursively through (3.1.19).

The pattern of the ACF is governed by the difference equation given by
(3.1.19), namely (1 - ¢,B — ¢,B*)p, = 0. Using Theorem 2.7.1, we obtain

k
¢+ \/o} +4 - /¢t
Pr =bl [_._l._,._zaiil +b2 951 ¢1 +4¢2

k
2%, ] . (3.1.22)

where the constants b, and b, can be solved using the initial conditions given in
(3.1.20) and (3.1.21). Thus, the ACF will be an exponential decay if the roots of
(1-¢,B—¢,B?) = 0 are real and a damped sine wave if the roots of (1-¢,B —
$,B%) = 0 are complex. ;

The AR(2) process was originally used by G. U. Yule in 1921 to describe
the behavior of asimple pendulum. Hence, the process is also sometimes called
the Yule process.

PACF of the AR(2) Process  For the AR(2) process, because

Pk = P1Pk-1 + $2rk—2
for k > 1 as shown in (3.1.19), we have, from (2.3.19),

¢
$u=p = 3—_{;2 (3.1.23a)
5 o
=101 Al Pz—Pf
0522 | 1 P]I l—p%
p 1
$irer-¢} 2
_ ( 1 )-(ri‘%) (3.1.23b)

- (55)’

_#la —42)* - ¢1] -
(1-¢,)? - ¢}

$2
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1 p p
" 1 P2
P2 P1L_P3
¢ e o i

» I p P2

" 1 p .
1
rz M (3.1.23¢)
1 p & +éap
pn 1 ¢ty
_lp p himt il _

1 p P
n 1 pn
2 P 1

as the last column of the numerator is a linear combination of the first two
columns. Similarly, we can show that ¢,, = 0 for k > 3. Hence, the PACF of an
AR(2) process cuts off after lag 2. Figure 3.7 illustrates the PACEF and corre-
sponding ACF for a few selected AR(2) processes.

Example 3.3 Table 3.3 and Figure 3.8 show the sample ACF and the
sample PACF for a series of 250 values simulated from the AR(2) process
(1+.5B—.3B?)Z, = a,, with the a, being Gaussian N (0, 1) white noise. The os-
cillating pattern of the ACF is similar to that of an AR(1) model witha negative
parameter value. However, the rate of the decreasing of the autocorrelations
rejects the possibility of being an AR(1) model. The fact that i cuts off after
lag 2, on the other hand, indicates an AR(2) model.

Example 3.4  To consider an AR(2) model with the associated polyno-
mial having complex roots, we simulated a series of 250 values from (1-B +

.5B?)Z, = a,, with the a, being Gaussian N (0, 1) white noise. Table 3.4 and Fig-

ure 3.9 show the sample ACF and the sample PACF of this series. The sample
ACF exhibits a damped sine wave, and the sample PACF cuts off after lag 2.
Both give a fairly clear indication of an AR(2) model.

3.1.3 The General pth Order Autoregressive
AR(p) Process

The pth order autoregressive process AR(p) is
(1-¢,B—¢,B%...— ¢,B")Z, =a, (3.1.24a)

or

Z, =¢.I:;:M+¢22,_2+...+¢,.2,_p+a, (3.1.24b)
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Fip. 3.7 ACF and PACF of AR(2) process: (1 = d,B — 2B 2, =a,.
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Tuble 3.3 Sample ACF and sample PACF for a simulated scrics from
(1+.5B-3B%)Z, =a,.

k 1 2 3 4 5 6 7 8 9 10
A —T70 62 -48 41 -37 32 -30 271 =25 20

StE. 06 .09 .1 a1 a2 12 a3 a3 a3 .13

éo -70 26 05 .03 —08 .00 -04 03 -01 -.05
SLE. .06 .06 .06 06 .06 .06 .06 .06 .06 .06

1.0-3‘ 1.03"
0.81 0.81
0.6 0.61
0.4 l 0.41
0.21 0.2
0 5 | | IO_} k 0 | 1 Is i 1.” > k
1

ST
-0.41 -0.4
-0.61 0.6
0.8 08
-1.0° -1.0°

Fig. 3.8 Sample ACF and sample PACF of a simulated AR(2) series: (1 + .5B —
3BY)Z, = a,.

ACF of the General AR(p) Process  To find the autocovariance function,
we multiply Z,_, on both sides of (3.1.24b)

Z, 42, = $1ZgZyg +o ¢pzi—kz..l'«-p +2Z,4a,
and take the expected value
w=bnat +thN%p k>0, (3.1.25)

where we recall that E(a,Z,_,) = 0 for k > 0. Hence, we have the following
recursive relationship for the autocorrelation function:

Pk=Purt b k>0 (3-1.26)

1l o WA
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Table 3.4 Sample ACF and sample PACF for a simulated series f[rom
(1-B +.5B%)Z, =a,.

k Pr

1-12 67 20 -.13 -.26 -.22 -09 02 .08 .06 .00 -.10 —-.17
StE. 06 09 09 .09 .09 09 .09 .09 .10 .10 .10 .10

12-24 -.13 -04 07 .13 .10 .03 -.05 -.07 —-.09 -.13 —.12 —-.09
StE. .10 .10 .0 .10 .10 .10.- .10 .10 .10 .10 .10 .10

k Pk
1-12 67 —-45 -04 —08 .05 -.01 .03 —.01 —.04 —.01 —-.13 -.03
StE. 06 06 .06 .06 .06 06 .06 .06 .06 .06 .06 .06

12-24 06 -.04 09 —.02 -.04 .01 —-02 .03 -.12 -.07 -.03 -.03
StE. 06 06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06

A
I.OP * 1_08“
0.8 0.8
0.6 0.6
0.4] 0.4
0.2 | s 0.2 ;
0 |||T"mI|>k 0 37 mnra ne
0.2 -0.2
-04 -0.41
-0.6 -0.6
-0.8 -o.sJ
-1.0° -1.0

Fig. 3.9 Sample ACF and sample PACF of a simulated AR(2) scries: (1 - B +
SBY)Z, = a,.

From (3.1.26) we see that the ACF p, is determined by the difference equation
$p(B)p = (1 — 1B — $28% - — $)pBP)px = 0 for k > 0. Hence, we can write

¢,(8) = [[(1-G:B)*,
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where Y% d; =p,and G;"! (i = 1, 2, ..., m) are the roots of multiplicity d; of
#p(B) = 0. Using the difference equation result in Theorem 2.7.1, we have

m di—1

pe=» GFY Akl (3.1.27)
j=0

i=1

Ifd; = 1 for alli, G;" are all distinct and the above reduces to
r
=Y AGf, k>0 (3.1.28)
i=1

For a stationary process, |G',v"'| > 1 and |G;| < 1. Hence, the ACF p tails off
as a mixture of exponential decays and/or damped sine waves depending on
the roots of ¢,(B) = 0. Damped sine waves appear if some of the roots are
complex.

PACF of the General AR(p) Process By using the fact that p, = ¢, p, _, +
B2pk—2-+"+ $ppx—p for k > 0, we can easily see that when k > p the last column
of the matrix in the numerator of ¢, in (2.3.19) can be written as a lincar
combination of previous columns of the same matrix. Hence, the PACF ¢,
will vanish after lag p. This is a useful property in identifying an AR model for
the time series model building discussed in a later chapter.

3.2 MOVING AVERAGE PROCESSES

In the moving average representation of a process, if only a finite number of
¥ weights are nonzero, i.e, ¥ = =0, ¥, = —0,, ..., ¢, = -6, and ¢ = 0
for k > q, then the resulting process is said to be a moving average process or
model of order g and is denoted as MA(q). It is given by

Z, =a,-6a,_---—6,a,_, (3.2.1a)
or
Z, = 6(B)a, (3.2.1b)
where
8(B)=(1-06,B~---~6,B7).

Because 1 + ﬂf +-- 4 83 < oo, a finite moving average process is always
stationary. This moving average process is invertible if the roots of §(B) = 0
lie outside of the unit circle. Moving average processes are useful in describing
phenomena in which events produce an immediate effect that only lasts for
short periods of time. The process arose as a result of the study by Slutzky
(1927) on the effect of the moving average of random events. To discuss other
properties of the MA(q) process, let us first consider the following simpler
cases.
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3.2.1 The First Order Moving Average MA(1) Process
When 6(B) = (1-6,B), we have the first order moving average MA(1) process
Z,=a,-6a,_,
=(1-6,B)a,, (3.2.2)

where {a, } is a zero mean white noise process with constant variance 2. The
mean of {Z,} is E(Z,) = 0 and hence E(Z,) = p.

ACF of the MA(1) Process
MA(1) process is, using (2.6.9),

v(B) = oZ(1-6,B)(1-6,B~") =02 {—6,B~" + (1+ 62) - 6,B}).

The autocovariance generating function of a

Hence, the autocovariances of the process are

(1+6))ai, k=0,
= { —8,02, k=1, (3.2.3)
0, k>1.

The autocorrelation function becomes

...._9_12, k=1,
p = 1+6; (3.2.4)
0, ki,

which cuts off after lag 1, as shown in Figure 3.10.

Because 1+ 67 is always bounded, the MA(1) process is always stationary.
However, for the process to be invertible, the root of (1 - 6,B) = 0 must lie
outside the unit circle. Because B = g;, we require |6,| < 1 for an invertible
MA(1) process.

Two remarks are in order.

1. Both the process Z, = (1—.4B)a, and the process Z, = (1 — 2.5B)a, have
the same autocorrelation function

-1
Pk= Ea: k_ll
0, ki,

In fact, more generally, for any 6,, Z, = (1-6,B)a, and Z, = (1-1/8,B)a,
have the same autocorrelations. However, if the root of (1-6, B) lies outside
the unit circle, then the root of (1-1/6,B) = 0 lies inside the unit circle, and
vice versa. In other words, among the two processes that produce the same
autocorrelations, one and only one is invertible. Thus, for uniqueness, we
restrict ourselves to an invertible process in the model selections.

2. From (3.2.4), it is easy to see that 2|p, | < 1. Hence, for an MA(1) process,

lo] < .5.
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Fig. 3.10 ACF and PACF of MA(1) processes: Z, = (1 - 0B)a,.

PACF of the MA(1) Process Using (2.3.19) and (3.2.4), the PACF of an
MA(1) process can be easily seen to be
e .
U A

__.A___ -8 _-8a-6)
L Y Sl 1-6}
n_-__ =% _-60-6)

=T T Tr e 6 (-6

ST F A,

= ."
P
b
4
i

3.2 Moving Average Processes 49

In general,

_-0(1-8)

ékk _2{“-_]j_‘ fO[ k 2 1. (3.2.5)
1-6;

Contrary to its ACFE, which cuts off after lag 1, the PACF of an MA(1) model
tails off exponentially in one of two forms depending on the sign of 6, (hence
on the sign of p,). If alternating in sign, it begins with a positive value; oth-
erwise, it decays on the negative side, as shown in Figure 3.10. We also note
that |¢| < 1/2. ‘

Example3.5  The sample ACF and sample PACF are calculated from a se-
ries of 250 values simulated from the MA(1) model Z, = (1 —.5B)a,, using
a, as Gaussian N (0, 1) white noise. They are shown in Table 3.5 and plotted
in Figure 3.11. Statistically, only one autocorrelation g, and two partial au-
tocorrelations ¢,, and ¢,, are significant. However, from the overall pattern,
py clearly cuts off after lag 1 and §,, tails off, which indicate a clear MA(1)
phenomenon.

3.2.2 The Second Order Moving Average MA(2) Process

When 6(B) = (1-6,B — 6,B%), we have the second order moving average pro-
cess

Z,=(1-6,B-6,BYa,, (3.2.6)

where {a,} is a zero mean white noise process. As a finite order moving average
model, the MA(2) process is always stationary. For invertibility, the roots of
(1-6,B - 6,B%) = 0 must lie outside of the unit circle. Hence,

6,+6,<1 :
{92-91 <1 (3.2.7)
-1<6,<1,

which is parallel to the stationary condition of the AR(2) model, as shown in
(3.1.18).

Tuble 3.5 Sample ACF and sample PACF for a simulated serics [rom
Z, = (1- 5B)a,.

k 1 2 3 4 5 6 7 8 9 10

f —-44 00 02 -03 -01 -05 .04 -03 -03 .02
StE. 06 07 07 W07 07 07 07 .07 .08 .08

by —44 -24 —-11 -08 -07 -.12 -06 -07 —-.10 —.08
StE. 06 06 W06 06 06 .06 06 06 .06 .06
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A

Lot 1.03“
0.8 0.8
0.6 0.67
04 0.4
0.21 0.2
0 .5.‘--|u > k 0 ||'?|‘|I|fu > k
-0.2 -0.2
-04 -04
-0.61 -0.67
-0.8 -0.81
_].OJ -1.0°

Flg. 3.11 Samplc ACF and sample PACF of a simulated MA(1) scries: Z, = (1-.5B)a,.

ACF of the MA(2) Process  The autocovariance generating function via
(2.6.9) is
1(B) = o}(1-6,B-6,B%)(1-6,B~"' - 6,B™%)
=02 {-0,B72—6,(1-6,)B~" + (1+ 6} + 63)—6,(1-6,)B —6,B}.
Hence, the autocovariances of the MA(2) model are
¢ ot £ +9$ i 8%)03‘
n= =1 —92)03.
72 = =60},
and
% =0, k>2.
The autocorrelation function is

=6,(1-6,)

-

146} +6%° =L

w={ -6 _ (3.2.8)
1+62+6% e
0, k>2,

which cuts off after lag 2.
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PACF of the MA(2) Process  From (2.3.19), using the fact that p, = 0 for
k > 3, we obtain

du=py
2
P2—P
'?522="—""‘-§L
1-pf

$iy = L —P1py(2 - py)
B 1-pt=2p(1-py)

The MA(2) process contains the MA(1) process as a special case. Hence, the
PACEF tails off as an exponential decay or a damped sine wave depending on the
signs and magnitudes of 6, and 6, or equivalently the roots of (1-6,B—6,B?) =
0. The PACF will be damped sine wave if the roots of (1 —6,B — 6,B?) = 0 are
complex. They are shown in Figure 3.12 together with the corresponding ACF.

Example 3.6 A series of 250 values is simulated from the MA(2) process
Z, = (1-.65B — .24B%)a, with a Gaussian N (0, 1) white noise series a,. The
sample ACF and sample PACF are in Table 3.6 and plotted in Figure 3.13.
We see that j, clearly cuts off after lag 2 and ¢, tails off as expected for an
MA(2) process.

3.2.3 The General gqth Order Moving Average
MA(q) Process

The general gth order moving average process is

Z,=(1-6,B—6,B* ... —6,B%a,. (3.29)
For this general MA(q) process, the variance is
q
=0y 6, (3.2.10)
i=0

where 6, = 1, and the other autocovariances are

- {03(_&+ale,‘_,+---+9.,_k9¢,). k=1,2,..,4q, (3.2.11)
k 0 k>gq.

Hence, the autocorrelation function becomes

?

O+ 0,04y + -+ 0,40,
ﬂk= ]“"‘9?4‘“"‘95
0, k>q.

. k=1,2,...,4,
1 (3.2.12)
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Thble 3.6 Sample ACF and sample PACF for a simulated MA(2) scrics

from Z, = (1 - .65B — .2dB%)a,.

k 1 2 3 4 S5 6 1 8 9 10
fr -35 -17 09 -06 01 -01 -04 07 -07 .09
StE. .06 07 07 07 07 07 .07 .07 .07 07
di =B <# =48 =3 =0 i - <M < »
StE. 06 .06 .06 .06 .06 .06 .06 .06 .06 .06

1.0-3l 1.03"

0.81 0.8

0.6 0.6

0.4 0.4

0.2 0.21

0 |r|3'||1|o > k 0 |'|H]5”‘[m > k

-0.21 -0.2

0.4 -0.4

-0.6 -0.6

08 -0.8

-1.0 -10

Fig. 3.13 Samplc ACF and sample PACF of a simulatcd MA(2) scrices: Z, = (1~ .658
— .24B%)a,.

The autocorrelation function of an MA(q) process cuts off after lag q. This
important property enables us to identify whether a given time series is gen-
erated by a moving average process.

From the discussion of MA(1) and MA(2) processes, we can easily see that
the partial autocorrelation function of the general MA(q) process tails off as
a mixture of exponential decays and/or damped sine waves depending on the
nature of the roots of (1—6,B —---—6,B%) = 0. The PACF will contain damped
sine waves if some of the roots are complex.

3.3 THE DUAL RELATIONSHIP BETWEEN AR(p)
AND MA(q) PROCESSES

For a given stationary AR(p) process,

¢,(B)Z, =a,, (3.3.1)
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where ¢,(B) = (1 ¢,B —--- — §,B"), we can write
; 1
Z = qu(B)a, = ¢(B)a,, (3.3.2)
with ¢(B) = (1+ y,B + ¢, B% + ---) such that .
4,(BYH(B) = 1. (3.33)

The ¥ weights can be derived by equating the coeflicients of B/ on both sides
of (3.3.3). For example, we can write the AR(2) process as

1
- (1-¢,B—¢,B?) '
which implies that
(1-¢,B —¢,B*)(1+¢,B + ¢,B® + B> +...) =1,

Z. =(1 +v"|B+¢!282+---)a” (3.3.4)

i.e.,
14+ ¢,B+ B> + B> + -
—61B 1 $,B? — 1,4, B° - --.
- ¢$B =4y ¢,B>—--.=1.
Thus, we obtain the weights as follows:
B': = =0—v =9

Bz: ¢'2“¢'1¢|_¢1=0_’V" =|}‘|¢1+¢2=¢f+d’2
BY: ¢y—vady— by = 0— = Yy + Py,

Actually, forj > 2, we have
¥ =1 +¥jada (3.3.5)

where ¢, = 1. In a special case when ¢, = 0, we have W= c.b’l forj > 0. There-
fore,
7 = I = 2p? e
Z‘ = ma, = (l + ¢|B + ¢|B + )a,. (3.3.6)
This implies that a finite order stationary AR process is equivalent to an
infinite order MA process.
Given a general invertible MA(q) process,

Z,= 6,(B)a, (3.3.7
with 6,(B) = (1-6,B —--- — §,B7), we can rewrite it as

r(B)Z, = ﬁ;’(ﬁ‘jzt S (3.3.8)

L e

=T
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where

n(B)=1-nB—x,B*~...

= 5:(113_)' (3.3.9)
For example, we can write the MA(2) process as
(1-mB-mB?—x,B>~..)Z, = mz, =a,, (3.3.10)
where
(1-6,B—6,B)(1—mB —m,B* —m,B*—...) =1,
or

l—fiB—ﬂ'szﬂﬂjB;—"‘
—8,B +,6,B% + 7,0,B> + -
- 6,B24+m6,B +...=1.

Thus, the = weights can be derived by equating the coefficients of B/ as follows:

B': ~m =0, =0—m = -6,
B*: —m+mb ~0,=0—m =m0 —6,=-6]-6,
B*: —my+ mb +m by =0— 7y =m0, + 76,

In general,

m=m_0 +m 0,  forj>3. (3.3.11)

g e
When 6, = 0 and the process becomes the MA(1) process, we have x; = —8"1
forj > 1, and

1

22 .-.- = —
(1+6,8+618"+ )2, = s

Z,=a,. (3.3.12)
Thus, in terms of the AR representation, a finite order invertible MA process
is equivalent to an infinite order AR process.

In summary, a finite order stationary AR(p) process corresponds to an
infinite order MA process, and a finite order invertible MA(q) process cor-
responds to an infinite order AR process. This dual relationship between the
AR(p) and the MA(q) processes also exists in the autocorrelation and partial
autocorrelation functions. The AR(p) process has its autocorrelations tailing
off and partial autocorrelations cutting off, but the MA(q) process has its au-
tocorrelations cutting off and partial autocorrelations tailing off.
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3.4 AUTOREGRESSIVE MOVING AVERAGE
ARMA (p,q) PROCESSES

3.4.1 The General Mixed ARMA(p,q) Process

As we have shown, a stationary and invertible process can be represented ei-
ther in a moving average form or in an autoregressive form. However, a prob-
!cm with cither representation is that it may contain too many parameters. This
is true even for a finite order moving average and a finite order autoregressive
model as it often takes a high order model for good approximation. In general,
a large number of parameters reduces efficiency in estimation. Thus, in model
building, it may be necessary to include both autoregressive and moving aver-
age terms in a model. This leads to the following useful mixed autoregressive
moving average (ARMA) process:

$p(B)Z, = 6,(B)a,, (3.4.1)
where
$p(B)=1-¢B—-..— 4B,
and
0,(B)=1-6,B—..—6,B".

For the process to be invertible, we require that the roots of 6,(B) = 0 lie out-
side the unit circle. To be stationary, we require that the roots of #p(B) = 0lie
outside the unit circle. Also, we assume that #p(B) = 0 and ,(B) = 0 share no
common roots. Henceforth, we refer to this process as an ARMA(p, q) pro-
cess or model, in whichp and q are used to indicate the orders of the associated
autoregressive and moving average polynomials, respectively.

The stationary and invertible ARMA process can be written in a pure au-
toregressive representation discussed in Section 2.6, i.e.,

n(B)Z, =a,, (34.2)
where '
¢p(B)
n(B) = X0 =(1-mB-mB:-..). (3.4.3)
This process can also be written as a pure moving average representation,
Z, = (B)a,, (3.4.9)
vhere
¥(B) = %) = (1+¢,B + ¢,B?
) = B+ y,B* +...). (3.4.5)
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ACF of the ARMA(p,q) Process  To derive the autocovariance function,
we rewrite (3.4.1) as

zx = ¢’12r—1 L ¢ ¢p2|-p +a,—6a,_y—---—6,a,_,
and multiply by Z',_k on both sides
Zl—kzt = ¢lzf—k2‘—l A

+ ¢p2,_,,z‘,_p +2,48,-0,Z,_4a,_y——0,Z, 48, .
We now take the expected value to obtain’
M= P11 ' - .
+ Sy np HE(Z,4a,) —0,E(Z,_4a_y) — -+ — O, E(Z,_a,_4)-
Because
E(Z,_,a,_)=0 fork>i,
we have
="Kt -+ nu-p k2(@+1), (3.4.6)
and hence,
P =rPr-r b+ Spprp k2(q+1). (3.4.7)

Equation (3.4.7) satisfies the pth order homogeneous difference equation, as
shown in (3.1.20) for the AR(p) process. Therefore, the autocorrelation func-
tion of an ARMA(p, q) model tails off after lag q just like an AR(p) process,
which depends only on the autoregressive parameters in the model. However,
the first q autocorrelations py, p,_y, ..., p; depend on both autoregressive and
moving average parameters in the model and serve as initial values for the
pattern. This distinction is useful in model identification.

PACF of the ARMA(p,q) Process Because the ARMA process contains
the MA process as a special case, its PACF will also be a mixture of exponential
decays and/or damped sine waves depending on the roots of ¢(B) = 0 and
éB) = 0.

3.4.2 The ARMA(1,1) Process

(1-¢,B)Z, = (1-6,B)a,, (3.4.82)
or
Zi= 124y +ay — Ohapy. (3.4.8b)

For stationarity, we assume that |¢,| < 1, and for invertibility, we require that
|6;] < 1. When ¢, = 0, (3.4.8a) is reduced to an MA(1) process, and when
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6, =0, it is reduced to an AR(1) process. Thus, we can regard the AR(1) and
MA(1) processes as special cases of the ARMAC(1, 1) process.
In terms of a pure autoregressive representation, we write

m(B)Z, =a,,
where
?TB = 1--]r -1 2-.;... =Q.:¢_B_),
ie.,
(1-6,B)(1-mB —m,B? — 3B~ ...) = (1- ¢,B),
or

(1= (my +6,)B — (7, ~ 7,6,)B* — (w3 — 7,6,)B> —...] = (1 - é,B).
By equating coefficients of B on both sides of the above equation, we get

T =0""(¢,-6,), forj>1. (3.4.9)
To write the ARMAC(1, 1) process in a pure moving average representation,
1-6,B)
7. = - L_.._l_
] ‘!,(By!l' (1 _ ¢IB)aI'

We note that
(1=6:B)(1+ 4B +4,B* + B> +...) = (1- ,B),
LE.;
[T+ (1~ 60B + (Y2~ ¥14))B* +---] = (1-6,B).
Hence,
¥ =47 (4 -6)),
ACF of _lhe ARMA(1,1) Process  To obtain the autocovariance for {z,},
we multiply Z, _, on both sides of (3.4.8b) '
zr—kzt = ¢':Zt-kz:—l +Z, 4a,— slz.r—k“r—l
and take the expected value to obtain
W= %y +EZ,_a,)-6,E(Z,_,a,_,). (3.4.11)
More specifically, when k = 0,
Y% =ém+E(Za,)- 6,E(Za,_,).
Recall that E(Z,a,) = 0. For the term E(Z,a,_,), we note that
E(Zl‘al'—l) . ¢IE(Z.:—lat—l) +E(arat—l) —GIE(af_I)
= (¢~ 91)"3-

forj >1. (3.4.10)
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Hence
Yo =1 +02—6,(4, —6,)l. (34.12)
When k = 1, we have from (3.4.11)
7= $1%—6,9;- (3.4.13)

Substituting (3.4.13) in (3.4.12), we have
0 = 6170 — $1610% + 0f — $,6,05 + 610,

ie.,
- (1+67-24,6)) >
(1-¢9) g
Thus,
n=d1m—b60;
_a(+ 6} ‘zélsl)ai i
a-¢h
_ (h=6)(1-:0) »
(1-¢) ‘
For k > 2, we have from (3.4.11)
T = 1 Ve-1s k=2
Hence, the ARMA(1, 1) model has the following autocorrelation function
1 k=0,
(¢ —6,)(1—¢,6,)
= k = ]|
M 1+ 8% = 2¢191 L] ) (3.4.]4)
$1Pr-1s k22

Note that the autocorrelation function of an ARMAC(1, 1) model combines
characteristics of both AR(1) and MA(1) processes. The moving average pa-
rameter 8, enters into the calculation of p,. Beyond p,, the autocorrelation
function of an ARMA(1, 1) model follows the same pattern as the autocorre-
lation function of an AR(1) process.

PACF of the ARMA(1,1) Process The general form of the PACF of a
mixed model is complicated and is not needed. It suffices to hote that, since
the ARMAC(1, 1) process contains the MA(1) process as a special case, the
PACF of the ARMA(1, 1) process also tails off exponentially like the ACF,
with its shape depending on the signs and magnitudes of ¢, and 8,. Thus, the
fact that both ACF and PACEF tail off indicates a mixed ARMA model. Some
of the ACF and PACF patterns for the ARMA(1, 1) model are shown in Fig-
ure 3.14 (pp. 60-61). By examining Figure 3.14, the reader can note that due to
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3.4 Autoregressive Moving Average ARMA(p, q) Processes é1
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Fig. 3.14 ACF and PACF of ARMA(1,1) model (1 - ¢,B)Z, = (1-0,B)a,.
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the combined effect of both ¢, and 6, the PACF of the ARMA(1, 1) process
cor‘rlams many more different shapes than the PACF of the MAC(1) process
which consists of only two possibilities. ‘

Example 3.7 A series of 250 values is simulated from the ARMA(1, 1)
process (.l =9B)Z, = (1-.5B)a,, with the a, being a Gaussian N (0, 1) white
noise series. The sample ACF and sample PACF are shown in Table 3.7 and
alfo plotted in Figure 3.15. The fact that both £, and éﬁ tail off indicates a
!mxcd ARMA model. To decide the proper orders of p and q in a mixed model
1s a much more difficult and challenging task, sometimes requiring consider-
able experience and skill. Some helpful methods are discussed in Chapter 6 on
model identification. For now, it is sufficient to identify tentatively from the
sample ACF and sample PACF whether the phenomenon is a pure AR, pure
MA, or mixed ARMA model. It is interesting to point out here that solely
based on the sample PACF as shown in Table 3.7, without looking at the sam-

Tnble 3.7  Sample ACF and sample PACF for a simulated
ARMAC(1, 1) series from (1 -.9B)Z, = (1- .5B)a,.

k 1 2 13 4 5 6 7 8 9 10

Ay 57 50 47 35 31 25 21 a8 .10 .12
tE. .06 .08 09 .10 .11 .11 .11 .01 41 A1

3 57 .26 .18 -03 01 -01 .01 .01 —.08 .05
ik 4 ! : i
StE. 06 .06 06 .06 .06 .06 .06 06 .06 .06

S

1.03‘ 1.03"
0.8 0.8
0.6 0.61
0.4 , 0.4
0.2 l l 0.2

0 Sl'lllo_>k 0 ,].Slllo y &k
-0.21 0.2
-0.41 . 0.4
-0.61 -0.61
0.8 -0.81
1.0 -1.0J

3158 | i i
Dz im{:l:iggl;]rand sample PACF of a simulated ARMA(1,1) serics:

il =
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ple ACF, we know that the phenomenon cannot be an MA process, because
the MA process cannot have a positively exponentially decaying PACF.

Example 3.8 The sample ACF and PACF are calculated for a series of
250 values as shown in Table 3.8 and plotted in Figure 3.16. None is statis-
tically significant from 0, which would indicate a white noise phenomenon.
In fact, the series is the simulation result from the ARMA(1, 1) process,
(1-¢,B)Z, = (1-6,B)a, with ¢, = .6 and §, = .5. The sample ACF and sample
PACF are both small because the AR polynomial (1—.6B) and the MA poly-
nomial (1—.5B) almost cancel each other out. Recall from (3.4.14), the ACF
of the ARMAC(1, 1) process is p, = ¢',"1(¢1 - 6,)(1— ¢,6,)/(1+ 67 —24,6,)
for k > 1, which is approximately equal to zero when ¢, ~ 6,. Thus, the sample
phenomenon of a white noise series implies that the underlying model is either
a random noise process or an ARMA process with its AR and MA polynomials

Thble 3.8 Sample ACF and sample PACF for a simulated series of
the ARMA(1,1) process: (1 —.6B)Z, = (1 —.5B)a,.

k I 2 3 4 3 B 7 8 9 10

A 10 05 09 00 -02 02 -02 .04 -04 .01
StE. .06 .06 06 .06 .06 .06 .06 .06 .06 .06
b 10 04 08 -02 -02 01 -02 .05 -05 .02
StE. .06 .06 06 .06 .06 .06 .06 .06 .06 .06

1.0 3“ I.Ua“
0.8 0.81
0.6 0.6
04 04
0.2 0.21
o Pttty & o (L1 g k
-0.2 -0.2
-04 -04
-0.61 -0.6
-0.81 -0.8
-1.0° -1.0

Fig. 3.16 Sample ACF and sample PACF of a simulated ARMA(1,1) scrics:
(1=.6B)Z, = (1-.5B)a,.
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being nearly equal. The assumption of no common roots between $,(B)=10
and 6,(B) = 0 in the mixed model is needed to avoid this confusion.

Before closing this chapter, we note that the ARMA(p, g¢) modelin (3.4.1),
i.e.,

(1= B+~ 4,B°)Z, i) = (1-6,B -~ 6,B%a,,
can also be written as )
(1-¢B—---—¢,B")Z, =6y +(1-6,B—---—6,B%)a,, (3.4.15)
where
G=(1-¢B—--— ¢PBP)‘“
=(1=¢y == (3.4.16)
In terms of this form, the AR(p) model becomes
(1-¢B—---—¢,B")Z, = 6, +a, (3.4.17)
and the MA(q) model becomes
Z,=6,+(1-6,B~---—6,B%a,. (3.4.18)

It is clear that in the MA(q) process, 8, = .

Exerclses

3.1 Find the ACF and PACF and plot the ACF p, fork =0, 1, 2,3, 4, and 5 for cach
of the following models:
m Z,-5Z,_,=a,
(b) Z,-98Z,_, =a,
© Z,-13Z,_+4Z, , =a,
(d) Z, - l.ZZ,_I + .Bz‘._z = ﬂ'.

3.2 Consider the following AR(2) models:
W Z,-6Z,_,-32,_5=a,
(in Z, — .RZ,_I + .SZ,_Z =a,.
(n) Find the general expression for p,.
(b) Plot the p,, fork =0, 1, 2, ..., 10.
(c) Calculatc o2 by assuming o2 = 1.

3.3 Simulate a serics of 100 obscrvations from each of the models with 02 = 1 in
Exercise 3.1. For each case, plot the simulated serics, and calculate and study its
sample ACF §5, and PACF ¢, fork =0, 1, ..., 20.

*4 in) Show that the ACF p, for the AR(1) process satisfies the differcnce equation
pl—¢|1p*_] "—'0. fOl’kZ 1.

(b Find the general expression for p,.
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3.5 Given the AR(2) process: Z, = Z,_y —.25Z,_5 +a,
(n) Calculate p;. ) )
(b) Use pg, py as starting values and the difference equation to obtain the general

cxpression for p,.
(¢) Calculate the values p, fork = 1, 2, ..., 10.

3.6 (n) Find the range of a such that the AR(2) process
Z = Z,_] + uz'_z +a,

is stationary.
(b) Find the ACF for the model in (a) with a = —=1/2.

3.7 Show that if an AR(2) process is stationary, then

Pt <(pp + D2

3.8 (n) Without using the autocovariance generating function, find the ACEF for cach
of the following processes:
) Z, =(1-.8B)a,
) Z,=(1-12B+.58%)a,. . _
(b) Find the ACF for the processes in (a) using the autocovariance gencrating
function.
(¢) Find the PACF ¢, for the processes in (a).

3.9 Find an invertible process which has the following ACF:

po=1 m =25, and p, =0 fork>2.
3.10 Consider the process Z, = 0 + a, — 0ya,_,. Show that the ACF of the process
docs not depend on 0.

3.11 Consider the MA(2) process Z, = a, —.1a,_y + .21a,_,.
(n) Is the model stationary? Why?
(b) Is the model invertible? Why?
(¢} Find the ACF for the above process.

3.12 Simulate a scrics of 100 observations from cach of the models with o7 = 1 in
Exercisc 3.8. For cach case, plot the simulated scrics and calculate and study its
sample ACE, j, and PACE j, fork =0, 1,..., 20.

3.13 Consider the MA(q) process
9
Z = EG;‘“-—;
j=0
1

where 0; = =3 forj=0,1,....q.
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(a) Is the process stationary? Why?
(b) Find the ACF of the above process.

3.14 (a) Find the AR representation of the MA(1) process
Z, =a,—4a, ;.
(b) Find the MA representation of the AR(2) process
Z,=2Z,_ 1+.4Z,_;+a,.

3.15 [For each of the following models:
i (1-B)Z, =(1-1.5B)a,
(ii) (1-.8B)Z, = (1-.5B)a,,
(iii) (1-1.1B + 8B%)Z, = (1—1.7B +.72B%)a,,
(iv) (1-.6B)Z, = (1—1.2B + 2B%)a,
(a) Verify whether it is stationary and/or invertible.
(b) Express the model in an MA representation if it exists.
(c) Express the model in an AR representation if it exists.

3.16 For each of the following processes:
i) (1-.6B)Z, = (1-.9B)a,
(i) (1—14B + .6B%)Z, = (1— .8B)a,
(a) Find the ACF p,.
(b) Find the PACF ¢, fork =1, 2, 3.
(c) Find the autocovariance generating function.

3.17 Simulate a series of 100 observations from each of the models with o2 = 1 in
Exercise 3.16. For each simulated series, plot the series, calculate, and study its
sample ACF p, and PACF ¢, fork =0, 1, ..., 20.

NONSTATIONARY
TIME SERIES
MODELS

The time series processes we have discussed so far are all stationary processes.
However, many applied time series, particularly those arising from economic
and business areas, are nonstationary. With respect to the class of covariance
stationary processes, ncnstationary time series can occur in many different
ways. They could have nonconstant means y,, time varying second moments
such as nonconstant variance o2, or have both of these properties. For ex-
ample, the monthly series of unemployed females between ages 16 and 19 in
the United States from January 1961 to December 1985 plotted in Figure 4.1
clearly shows that the mean level changes with time. The plot of the yearly U. S.
tobacco production between 1871 and 1979 shown in Figure 4.2 indicates both
that the mean level depends on time and that the variance increases as the
mean level increases.

In this chapter we illustrate the construction of a very useful class of ho-
mogeneous nonstationary time series models—the autoregressive integrated
moving average (ARIMA) models. Some useful differencing and variance sta-
bilizing transformations are introduced to connect the stationary and nonsta-
tionary time series models.

4.1 NONSTATIONARITY IN THE MEAN

A process nonstationary in the mean could pose a very serious problem for es-
timation of the time dependent mean function without multiple realizations.
Fortunately, there are models that can be constructed from a single realization
to describe this time dependent phenomenon. Two such classes of models that
are very useful in modeling time series nonstationary in the mean are intro-
duced in this section.
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