
In this chapter, we cover some more advanced topics in time series econometrics. In
Chapters 10, 11, and 12, we emphasized in several places that using time series data
in regression analysis requires some care due to the trending, persistent nature of

many economic time series. In addition to studying topics such as infinite distributed
lag models and forecasting, we also discuss some recent advances in analyzing time
series processes with unit roots.

In Section 18.1, we describe infinite distributed lag models, which allow a change
in an explanatory variable to affect all future values of the dependent variable.
Conceptually, these models are straightforward extensions of the finite distributed lag
models in Chapter 10; but estimating these models poses some interesting challenges.

In Section 18.2, we show how to formally test for unit roots in a time series process.
Recall from Chapter 11 that we excluded unit root processes to apply the usual asymp-
totic theory. Because the presence of a unit root implies that a shock today has a long-
lasting impact, determining whether a process has a unit root is of interest in its own
right.

We cover the notion of spurious regression between two time series processes, each
of which has a unit root, in Section 18.3. The main result is that even if two unit root
series are independent, it is quite likely that the regression of one on the other will yield
a statistically significant t statistic. This emphasizes the potentially serious conse-
quences of using standard inference when the dependent and independent variables are
integrated processes.

The issue of cointegration applies when two series are I(1), but a linear combina-
tion of them is I(0); in this case, the regression of one on the other is not spurious, but
instead tells us something about the long-run relationship between them. Cointegration
between two series also implies a particular kind of model, called an error correction
model, for the short-term dynamics. We cover these models in Section 18.4.

In Section 18.5, we provide an overview of forecasting and bring together all of the
tools in this and previous chapters to show how regression methods can be used to fore-
cast future outcomes of a time series. The forecasting literature is vast, so we focus only
on the most common regression-based methods. We also touch on the related topic of
Granger causality.
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18.1 INFINITE DISTRIBUTED LAG MODELS

Let {(yt,zt): t � …,�2,�1,0,1,2,…} be a bivariate time series process (which is only
partially observed). An infinite distributed lag (IDL) model relating yt to current and
all past values of z is

yt � � � �0zt � �1zt�1 � �2zt�2 � … � ut, (18.1)

where the sum on lagged z extends back to the indefinite past. This model is only an
approximation to reality, as no economic process started infinitely far into the past.
Compared with a finite distributed lag model, an IDL model does not require that we
truncate the lag at a particular value.

In order for model (18.1) to make sense, the lag coefficients, �j, must tend to zero
as j * �. This is not to say that �2 is smaller in magnitude than �1; it only means that
the impact of zt�j on yt must eventually become small as j gets large. In most applica-
tions, this makes economic sense as well: the distant past of z should be less important
for explaining y than the recent past of z.

Even if we decide that (18.1) is a useful model, we clearly cannot estimate it with-
out some restrictions. For one, we only observe a finite history of data. Equation (18.1)
involves an infinite number of parameters, �0, �1, �2, …, which cannot be estimated with-
out restrictions. Later, we place restrictions on the �j that allow us to estimate (18.1).

As with finite distributed lag models, the impact propensity in (18.1) is simply �0

(see Chapter 10). Generally, the �h have the same interpretation as in an FDL. Suppose
that zs � 0 for all s � 0 and that z0 � 1 and zs � 0 for all s � 1; in other words, at time
t � 0, z increases temporarily by one unit and then reverts to its initial level of zero. For
any h 	 0, we have yh � � � �h � uh for all h 	 0, and so

E(yh) � � � �h, (18.2)

where we use the standard assumption that uh has zero mean. It follows that �h is the
change in E(yh), given a one-unit, temporary change in z at time zero. We just said that
�h must be tending to zero as h gets large for the IDL to make sense. This means that a
temporary change in z has no long-run effect on expected y: E(yh) � � � �h * � as
h * �.

We assumed that the process z starts at zs � 0 and that the one-unit increase
occurred at t � 0. These were only for the purpose of illustration. More generally, if z
temporarily increases by one unit (from any initial level) at time t, then �h measures the
change in the expected value of y after h periods. The lag distribution, which is �h plot-
ted as a function of h, shows the expected path that future y follow given the one-unit,
temporary increase in z.

The long run propensity in model (18.1) is the sum of all of the lag coefficients:

LRP � �0 � �1 � �2 � �3 � …, (18.3)

where we assume that the infinite sum is well-defined. Because the �j must converge
to zero, the LRP can often be well-approximated by a finite sum of the form �0 �
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�1 � … � �p for sufficiently large p. To interpret the LRP, suppose that the process zt

is steady at zs � 0 for s � 0. At t � 0, the process permanently increases by one unit.
For example, if zt is the percentage change in the money supply and yt is the inflation
rate, then we are interested in the effects of a permanent increase of one percentage
point in money supply growth. Then, by substituting zs � 0 for s � 0 and zt � 1 for
t 	 0, we have

yh � � � �0 � �1 � … � �h � uh,

where h 	 0 is any horizon. Because ut has a zero mean for all t, we have

E(yh) � � � �0 � �1 � … � �h. (18.4)

[It is useful to compare (18.4) and (18.2).] As the horizon increases, that is, as h * �,
the right-hand side of (18.4) is, by definition, the long run propensity. Thus, the LRP

measures the long-run change in the ex-
pected value of y given a one-unit, perma-
nent increase in z.

The previous derivation of the LRP, and
the interpretation of �j, used the fact that
the errors have a zero mean; as usual, this is
not much of an assumption, provided an

intercept is included in the model. A closer examination of our reasoning shows that we
assumed that the change in z during any time period had no effect on the expected value
of ut. This is the infinite distributed lag version of the strict exogeneity assumption that
we introduced in Chapter 10 (in particular, Assumption TS.2). Formally,

E(ut�…,zt�2,zt�1,zt,zt�1,…) � 0, (18.5)

so that the expected value of ut does not depend on the z in any time period. While
(18.5) is natural for some applications, it rules out other important possibilities. In
effect, (18.5) does not allow feedback from yt to future z because zt�h must be uncor-
related with ut for h � 0. In the inflation/money supply growth example, where yt is
inflation and zt is money supply growth, (18.5) rules out future changes in money sup-
ply growth that are tied to changes in today’s inflation rate. Given that money supply
policy often attempts to keep interest rates and inflation at certain levels, this might be
unrealistic.

One approach to estimating the �j, which we cover in the next subsection, requires
a strict exogeneity assumption in order to produce consistent estimators of the �j. A
weaker assumption is

E(ut�zt,zt�1,…) � 0. (18.6)

Under (18.6), the error is uncorrelated with current and past z, but it may be correlated
with future z; this allows zt to be a variable that follows policy rules that depend on
past y. Sometimes, (18.6) is sufficient to estimate the �j; we explain this in the next
subsection.
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Q U E S T I O N  1 8 . 1

Suppose that zs � 0 for s � 0 and that z0 � 1, z1 � 1, and zs � 0
for s � 1. Find E(y�1), E(y0), and E(yh) for h 	 1. What happens as
h * �?
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One thing to remember is that neither (18.5) nor (18.6) says anything about the ser-
ial correlation properties of {ut}. (This is just as in finite distributed lag models.) If any-
thing, we might expect the {ut} to be serially correlated because (18.1) is not generally
dynamically complete in the sense discussed in Section 11.4. We will study the serial
correlation problem later.

How do we interpret the lag coefficients and the LRP if (18.6) holds but (18.5) does
not? The answer is: the same way as before. We can still do the previous thought (or
counterfactual) experiment, even though the data we observe are generated by some
feedback between yt and future z. For example, we can certainly ask about the long-run
effect of a permanent increase in money supply growth on inflation, even though the
data on money supply growth cannot be characterized as strictly exogenous.

The Geometric (or Koyck) Distributed Lag

Because there are generally an infinite number of �j, we cannot consistently estimate
them without some restrictions. The simplest version of (18.1), which still makes the
model depend on an infinite number of lags, is the geometric (or Koyck) distributed
lag. In this model, the �j depend on only two parameters:

�j � 
� j, ��� � 1, j � 0,1,2, …. (18.7)

The parameters 
 and � may be positive or negative, but � must be less than one in
absolute value. This ensures that �j * 0 as j * 0. In fact, this convergence happens at
a very fast rate. (For example, with � � .5 and j � 10, � j � 1/1024 � .001.)

The impact propensity in the GDL is simply �0 � 
, and so the sign of the IP is
determined by the sign of 
. If 
 � 0, say, and � � 0, then all lag coefficients are pos-
itive. If � � 0, the lag coefficients alternate in sign (� j is negative for odd j). The long
run propensity is more difficult to obtain, but we can use a standard result on the sum
of a geometric series: for ��� � 1, 1 � � � �2 � … � � j � … � 1/(1 � �), and so

LRP � 
/(1 � �).

The LRP has the same sign as 
.
If we plug (18.7) into (18.1), we still have a model that depends on the z back to the

indefinite past. Nevertheless, a simple subtraction yields an estimable model. Write the
IDL at times t and t � 1 as:

yt � � � 
zt � 
�zt�1 � 
�2zt�2 � … � ut (18.8)

and

yt�1 � � � 
zt�1 � 
�zt�2 � 
�2zt�3 � … � ut�1. (18.9)

If we multiply the second equation by � and subtract it from the first, all but a few of
the terms cancel:

yt � �yt�1 � (1 � �)� � 
zt � ut � �ut�1,
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which we can write as

yt � �0 � 
zt � �yt�1 � ut � �ut�1, (18.10)

where �0 � (1 � �)�. This equation looks like a standard model with a lagged depen-
dent variable, where zt appears contemporaneously. Because 
 is the coefficient on zt

and � is the coefficient on yt�1, it appears that we can estimate these parameters. [If, for
some reason, we are interested in �, we can always obtain �̂ � �̂0/(1 � �̂ ) after esti-
mating � and �0.]

The simplicity of (18.10) is somewhat misleading. The error term in this equation,
ut � �ut�1, is generally correlated with yt�1. From (18.9), it is pretty clear that ut�1 and
yt�1 are correlated. Therefore, if we write (18.10) as

yt � �0 � 
zt � �yt�1 � vt, (18.11)

where vt � ut � �ut�1, then we generally have correlation between vt and yt�1. Without
further assumptions, OLS estimation of (18.11) produces inconsistent estimates of 

and �.

One case where vt must be correlated with yt�1 occurs when ut is independent of zt

and all past values of z and y. Then, (18.8) is dynamically complete, and ut is uncorre-
lated with yt�1. From (18.9), the covariance between vt and yt�1 is ��Var(ut�1) �
��u

2, which is zero only if � � 0. We can easily see that vt is serially correlated:
because {ut} is serially uncorrelated, E(vtvt�1) � E(utut�1) � �E(ut

2
�1) � �E(utut�2) �

�2E(ut�1ut�2) � ��u
2. For j � 1, E(vtvt�j) � 0. Thus, {vt} is a moving average process

of order one (see Section 11.1). This gives an example of a model—which is derived
from the original model of interest—that has a lagged dependent variable and a partic-
ular kind of serial correlation.

If we make the strict exogeneity assumption (18.5), then zt is uncorrelated with ut

and ut�1, and therefore with vt. Thus, if we can find a suitable instrumental variable for
yt�1, then we can estimate (18.11) by IV. What is a good IV candidate for yt�1? By
assumption, ut and ut�1 are both uncorrelated with zt�1, and so vt is uncorrelated with
zt�1. If 
 � 0, zt�1 and yt�1 are correlated, even after partialling out zt. Therefore, we
can use instruments (zt,zt�1) to estimate (18.11). Generally, the standard errors need to
be adjusted for serial correlation in the {vt}, as we discussed in Section 15.7.

An alternative to IV estimation exploits the fact that {ut} may contain a specific
kind of serial correlation. In particular, in addition to (18.6), suppose that {ut} follows
the AR(1) model

ut � �ut�1 � et (18.12)

E(et�zt,yt�1,zt�1,…) � 0. (18.13)

It is important to notice that the � appearing in (18.12) is the same parameter multiply-
ing yt�1 in (18.11). If (18.12) and (18.13) hold, we can write

yt � �0 � 
zt � �yt�1 � et, (18.14)
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which is a dynamically complete model under (18.13). From Chapter 11, we can obtain
consistent, asymptotically normal estimators of the parameters by OLS. This is very
convenient, as there is no need to deal with serial correlation in the errors. If et satisfies
the homoskedasticity assumption Var(et�zt,yt�1) � e

2, the usual inference applies. Once
we have estimated 
 and �, we can easily estimate the LRP: LR̂P � 
̂/(1 � �̂).

The simplicity of this procedure relies on the potentially strong assumption that {ut}
follows an AR(1) process with the same � appearing in (18.7). This is usually no worse
than assuming the {ut} are serially uncorrelated. Nevertheless, because consistency of
the estimators relies heavily on this assumption, it is a good idea to test it. A simple test
begins by specifying {ut} as an AR(1) process with a different parameter, say ut �
�ut�1 � et. McClain and Wooldridge (1995) devise a simple Lagrange multiplier test
of H0: � � � that can be computed after OLS estimation of (18.14).

The geometric distributed lag model extends to multiple explanatory variables—so
that we have an infinite DL in each explanatory variable—but then we must be able to
write the coefficient on zt�j,h as 
h�

j. In other words, while 
h is different for each
explanatory variable, � is the same. Thus, we can write

yt � �0 � 
1zt1 � … � 
kztk � �yt�1 � vt. (18.15)

The same issues that arose in the case with one z arise in the case with many z. Under
the natural extension of (18.12) and (18.13)—just replace zt with zt � (zt1, …, ztk)—
OLS is consistent and asymptotically normal. Or, an IV method can be used.

Rational Distributed Lag Models

The geometric DL implies a fairly restrictive lag distribution. When 
 � 0 and � � 0,
the �j are positive and monotonically declining to zero. It is possible to have more gen-
eral infinite distributed lag models. The GDL is a special case of what is generally
called a rational distributed lag (RDL) model. A general treatment is beyond our
scope—Harvey (1990) is a good reference—but we can cover one simple, useful exten-
sion.

Such an RDL model is most easily described by adding a lag of z to equation
(18.11):

yt � �0 � 
0zt � �yt�1 � 
1zt�1 � vt, (18.16)

where vt � ut � �ut�1, as before. By repeated substitution, it can be shown that (18.16)
is equivalent to the infinite distributed lag model

yt � � � 
0(zt � �zt�1 � �2zt�2 � …)
� 
1(zt�1 � �zt�2 � �2zt�3 � …) � ut

� � � 
0zt � (�
0 � 
1)zt�1 � �(�
0 � 
1)zt�2

� �2(�
0 � 
1)zt�3 � … � ut,

where we again need the assumption ��� � 1. From this last equation, we can read off
the lag distribution. In particular, the impact propensity is 
0, while the coefficient on
zt�h is �h�1(�
0 � 
1) for h 	 1. Therefore, this model allows the impact propensity to
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differ in sign from the other lag coefficients, even if � � 0. However, if � � 0, the �h

have the same sign as (�
0 � 
1) for all h 	 1. The lag distribution is plotted in Figure
18.1 for � � .5, 
0 � �1, and 
1 � 1.

The easiest way to compute the long run propensity is to set y and z at their long-
run values for all t, say y* and z*, and then find the change in y* with respect to z* (see
also Problem 10.3). We have y* � �0 � 
0z* � �y* � 
1z*, and solving gives y* �
�0/(1 � �) � (
0 � 
1)/(1 � �)z*. Now, we use the fact that LRP � �y*/�z*:

LRP � (
0 � 
1)/(1 � �).

Because ��� � 1, the LRP has the same sign as 
0 � 
1, and the LRP is zero if and only
if 
0 � 
1 � 0, as in Figure 18.1.

E X A M P L E  1 8 . 1
( H o u s i n g  I n v e s t m e n t  a n d  R e s i d e n t i a l  P r i c e  I n f l a t i o n )

We estimate both the basic geometric and the rational distributed lag models by applying
OLS to (18.14) and (18.16), respectively. The dependent variable is log(invpc) after a linear
time trend has been removed [that is, we linearly detrend log(invpc)]. For zt, we use the
growth in the price index. This allows us to estimate how residential price inflation affects
movements in housing investment around its trend. The results of the estimation, using the
data in HSEINV.RAW, are given in Table 18.1.
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Lag distribution for the rational distributed lag (18.16) with � � .5, 
0 � �1, and 
1 � 1.

coefficient .5
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0
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The geometric distributed lag model is clearly rejected by the data, as gprice�1 is very sig-
nificant. The adjusted R-squareds also show that the RDL model fits much better.

The two models give very different estimates of the long run propensity. If we incor-
rectly use the GDL, the estimated LRP is almost five: a permanent one percentage point
increase in residential price inflation increases long-term housing investment by 4.7%
(above its trend value). Economically, this seems implausible. The LRP estimated from the
rational distributed lag model is below one. In fact, we cannot reject the null hypothesis H0:

0 � 
1 � 0 at any reasonable significance level (p-value � .83), so there is no evidence
that the LRP is different from zero. This is a good example of how misspecifying the dynam-
ics of a model by omitting relevant lags can lead to erroneous conclusions.

18.2 TESTING FOR UNIT ROOTS

We now turn to the important problem of testing for unit roots. In Chapter 11, we gave
some vague, necessarily informal guidelines to decide whether a series is I(1) or not. In
many cases, it is useful to have a formal test for a unit root. As we will see, such tests
must be applied with caution.
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Table 18.1

Distributed Lag Models for Housing Investment

Dependent Variable: log(invpc), detrended

Independent Geometric Rational
Variables DL DL

gprice 3.108 3.256
(0.933) (0.970)

y�1 .340 .547
(.132) (.152)

gprice�1 — �2.936
(0.973)

constant �.001 �.578
(.018) (.307)

Long Run Propensity 4.688 .706

Sample Size 41 40
Adjusted R-Squared .375 .504
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The simplest approach to testing for a unit root begins with an AR(1) model:

yt � � � �yt�1 � et, t � 1,2, …, (18.17)

where y0 is the observed initial value. Throughout this section, we let {et} denote a
process that has zero mean, given past observed y:

E(et�yt�1,yt�2,…, y0) � 0. (18.18)

[Under (18.18), {et} is said to be a martingale difference sequence with respect to
{yt�1,yt�2,…}. If {et} is assumed to be i.i.d. with zero mean and is independent of y0,
then it also satisfies (18.18).]

If {yt} follows (18.17), it has a unit root if and only if � � 1. If � � 0 and � � 1,
{yt} follows a random walk without drift [with the innovations et satisfying (18.18)]. If
� � 0 and � � 1, {yt} is a random walk with drift, which means that E(yt) is a linear
function of t. A unit root process with drift behaves very differently from one without
drift. Nevertheless, it is common to leave � unspecified under the null hypothesis, and
this is the approach we take. Therefore, the null hypothesis is that {yt} has a unit root:

H0: � � 1. (18.19)

In almost all cases, we are interested in the one-sided alternative

H1: � � 1. (18.20)

(In practice, this means 0 � � � 1, as � � 0 for a series that we suspect has a unit root
would be very rare.) The alternative H1: � � 1 is not usually considered, since it
implies that yt is explosive. In fact, if � � 0, yt has an exponential trend in its mean
when � � 1.

When ��� � 1, {yt} is a stable AR(1) process, which means it is weakly dependent
or asymptotically uncorrelated. Recall from Chapter 11 that Corr(yt,yt�h) � �h

* 0
when ��� � 1. Therefore, testing (18.19) in model (18.17), with the alternative given by
(18.20), is really a test of whether {yt} is I(1) against the alternative that {yt} is I(0).
[The reason we do not take the null to be I(0) in this setup is that {yt} is I(0) for any
value of � strictly between �1 and 1, something that classical hypothesis testing does
not handle easily. There are tests where the null hypothesis is I(0) against the alterna-
tive of I(1), but these take a different approach. See, for example, Kwiatkowski,
Phillips, Schmidt, and Shin (1992).]

A convenient equation for carrying out the unit root test is to subtract yt�1 from both
sides of (18.17) and to define � � � � 1:

�yt � � � �yt�1 � et. (18.21)

Under (18.18), this is a dynamically complete model, and so it seems straightforward
to test H0: � � 0 against H1: � � 0. The problem is that, under H0, yt�1 is I(1), and so
the usual central limit theorem that underlies the asymptotic standard normal distribu-
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tion for the t statistic does not apply: the t statistic does not have an approximate stan-
dard normal distribution even in large sample sizes. The asymptotic distribution of the
t statistic under H0 has come to be known as the Dickey-Fuller distribution after
Dickey and Fuller (1979).

While we cannot use the usual critical values, we can use the usual t statistic for �̂
in (18.21), at least once the appropriate critical values have been tabulated. The result-
ing test is known as the Dickey-Fuller (DF) test for a unit root. The theory used to
obtain the asymptotic critical values is rather complicated and is covered in advanced
texts on time series econometrics. [See, for example, Banerjee, Dolado, Galbraith, and
Hendry (1993), or BDGH for short.] By contrast, using these results is very easy. The
critical values for the t statistic have been tabulated by several authors, beginning with
the original work by Dickey and Fuller (1979). Table 18.2 contains the large sample
critical values for various significance levels, taken from BDGH (1993, Table 4.2).
(Critical values adjusted for small sample sizes are available in BDGH.)
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Table 18.2

Asymptotic Critical Values for Unit Root t Test: No Time Trend

Significance Level 1% 2.5% 5% 10%

Critical Value �3.43 �3.12 �2.86 �2.57

We reject the null hypothesis H0: � � 0 against H1: � � 0 if t�̂ � c, where c is one of
the negative values in Table 18.2. For example, to carry out the test at the 5% signifi-
cance level, we reject if t�̂ � �2.86. This requires a t statistic with a much larger mag-
nitude than if we used the standard normal critical value, which would be �1.65. If we
use the standard normal critical value to test for a unit root, we would reject H0 much
more often than 5% of the time when H0 is true.

E X A M P L E  1 8 . 2
( U n i t  R o o t  T e s t  f o r  T h r e e - M o n t h  T - B i l l  R a t e s )

We use the quarterly data in INTQRT.RAW to test for a unit root in three-month T-bill rates.
When we estimate (18.20), we obtain

�r̂3t �(.625)�(.091)r3t�1

�r̂3t �(.261)�(.037)r3t�1

n � 123, R2 � .048,

(18.22)

where we keep with our convention of reporting standard errors in parentheses below the
estimates. We must remember that these standard errors cannot be used to construct usual
confidence intervals or to carry out traditional t tests because these do not behave in the
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usual ways when there is a unit root. The coefficient on r3t�1 shows that the estimate of �
is �̂ � 1 � �̂ � .909. While this is less than unity, we do not know whether it is statistically
less than one. The t statistic on r3t�1 is �.091/.037 � �2.46. From Table 18.2, the 10%
critical value is �2.57; therefore, we fail to reject H0: � � 1 against H1: � � 1 at the 10%
level.

As with other hypotheses tests, when we fail to reject H0, we do not say that we
accept H0. Why? Suppose we test H0: � � .9 in the previous example using a standard
t test—which is asymptotically valid, because yt is I(0) under H0. Then, we obtain t �
.001/.037, which is very small and provides no evidence against � � .9. Yet, it makes
no sense to accept � � 1 and � � .9.

When we fail to reject a unit root, as in the previous example, we should only con-
clude that the data do not provide strong evidence against H0. In this example, the test
does provides some evidence against H0 because the t statistic is close to the 10% crit-
ical value. (Ideally, we would compute a p-value, but this requires special software
because of the nonnormal distribution.) In addition, while �̂ � .91 implies a fair amount
of persistence in {r3t}, the correlation between observations which are 10 periods apart
for an AR(1) model with � � .9 is about .35, rather than almost one if � � 1.

What happens if we now want to use r3t as an explanatory variable in a regression
analysis? The outcome of the unit root test implies we should be extremely cautious: if
r3t does have a unit root, the usual asymptotic approximations need not hold (as we dis-
cussed in Chapter 11). One solution is to use the first difference of r3t in any analysis.
As we will see in Section 18.4, that is not the only possibility.

We also need to test for unit roots in models with more complicated dynamics. If
{yt} follows (18.17) with � � 1, then �yt is serially uncorrelated. We can easily allow
{�yt} to follow an AR model model by augmenting equation (18.21) with additional
lags. For example,

�yt � � � �yt�1 � 
1�yt�1 � et, (18.23)

where �
1� � 1. This ensures that, under H0: � � 0, {�yt} follows a stable AR(1) model.
Under the alternative H1: � � 0, it can be shown that {yt} follows a stable AR(2) model.

More generally, we can add p lags of �yt to the equation to account for the dynam-
ics in the process. The way we test the null hypothesis of a unit root is very similar: we
run the regression of

�yt on yt�1, �yt�1, …, �yt�p (18.24)

and carry out the t test on �̂, the coefficient on yt�1, just as before. This extended ver-
sion of the Dickey-Fuller test is usually called the augmented Dickey-Fuller test
because the regression has been augmented with the lagged changes, �yt�h. The criti-
cal values and rejection rule are the same as before. The inclusion of the lagged changes
in (18.24) is intended to clean up any serial correlation in �yt. The more lags we include
in (18.24), the more initial observations we lose. If we include too many lags, the small

Chapter 18 Advanced Time Series Topics

581

d  7/14/99 8:36 PM  Page 581



sample power of the test generally suffers. But if we include too few lags, the size of
the test will be incorrect, even asymptotically, because the validity of the critical values
in Table 18.2 relies on the dynamics being completely modeled. Often the lag length is
dictated by the frequency of the data (as well as the sample size). For annual data, one
or two lags usually suffice. For monthly data, we might include twelve lags. But there
are no hard rules to follow in any case.

Interestingly, the t statistics on the lagged changes have approximate t distributions.
The F statistics for joint significance of any group of terms �yt�h are also asymptoti-
cally valid. (These maintain the homoskedasticity assumption discussed in Section
11.5.) Therefore, we can use standard tests to determine whether we have enough
lagged changes in (18.24).

E X A M P L E  1 8 . 3
( U n i t  R o o t  T e s t  f o r  A n n u a l  U . S .  I n f l a t i o n )

We use annual data on U.S. inflation, based on the CPI, to test for a unit root in inflation
(see PHILLIPS.RAW). The series spans the years from 1948 through 1996. Allowing for one
lag of �inft in the augmented Dickey-Fuller regression gives

�in̂ft �(1.36)0�(.310)inft�1 �(.138)�inft�1

�in̂ft �0(.261)�(.103)inft�1 �(.126)�inft�1

n � 47, R2 � .172.

The t statistic for the unit root test is �.310/.103 � �3.01. Because the 5% critical value
is �2.86, we reject the unit root hypothesis at the 5% level. The estimate of � is about .690.
Together, this is reasonably strong evidence against a unit root in inflation. The lag �inft�1

has a t statistic of about 1.10, so we do not need to include it, but we could not know this
ahead of time. If we drop �inft�1, the evidence against a unit root is slightly stronger: �̂ �

�.335 (�̂ � .665), and t�̂ � �3.13.

For series that have clear time trends, we need to modify the test for unit roots. A
trend-stationary process—which has a linear trend in its mean but is I(0) about its
trend—can be mistaken for a unit root process if we do not control for a time trend in
the Dickey-Fuller regression. In other words, if we carry out the usual DF or augmented
DF test on a trending but I(0) series, we will probably have little power for rejecting a
unit root.

To allow for series with time trends, we change the basic equation to

�yt � � � �t � �yt�1 � et, (18.25)

where again the null hypothesis is H0: � � 0, and the alternative is H1: � � 0. Under
the alternative, {yt} is a trend-stationary process. If yt has a unit root, then �yt � � �
�t � et, and so the change in yt has a mean linear in t unless � � 0. [It can be shown
that E(yt) is actually a quadratic in t.] It is unusual for the first difference of an eco-
nomic series to have a linear trend, and so a more appropriate null hypothesis is prob-
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ably H0: � � 0, � � 0. While it is possible to test this joint hypothesis using an F test—
but with modified critical values—it is common to only test H0: � � 0 using a t test. We
follow that approach here. [See BDGH (1993, Section 4.4) for more details on the joint
test.]

When we include a time trend in the regression, the critical values of the test
change. Intuitively, this is because detrending a unit root process tends to make it look
more like an I(0) process. Therefore, we require a larger magnitude for the t statistic in
order to reject H0. The Dickey-Fuller critical values for the t test that includes a time
trend are given in Table 18.3; they are taken from BDGH (1993, Table 4.2).

Table 18.3

Asymptotic Critical Values for Unit Root t Test: Linear Time Trend

Significance Level 1% 2.5% 5% 10%

Critical Value �3.96 �3.66 �3.41 �3.12

For example, to reject a unit root at the 5% level, we need the t statistic on �̂ to be less
than �3.41, as compared with �2.86 without a time trend.

We can augment equation (18.25) with lags of �yt to account for serial correlation,
just as in the case without a trend. This does not change how we carry out the test.

E X A M P L E  1 8 . 4
( U n i t  R o o t  i n  t h e  L o g  o f  U . S .  R e a l  G r o s s  D o m e s t i c  P r o d u c t )

We can apply the unit root test with a time trend to the U.S. GDP data in INVEN.RAW.
These annual data cover the years from 1959 through 1995. We test whether log(GDPt)
has a unit root. This series has a pronounced trend that looks roughly linear. We include a
single lag of �log(GDPt), which is simply the growth in GDP (in decimal form), to account
for dynamics:

gGD̂Pt �(1.65)�(.0059)t �(.210)log(GDPt�1) �(.264)gDGPt�1

gGD̂Pt �0(.67)�(.0027)t �(.087)log(GDPt�1) �(.165)gDGPt�1

n � 35, R2 � .268.
(18.26)

From this equation, we get �̂ � 1 � .21 � .79, which is clearly less than one. But we can-
not reject a unit root in the log of GDP: the t statistic on log(GDPt�1) is �.210/.087 �

�2.41, which is well-above the 10% critical value of �3.12. The t statistic on gGDPt�1 is
1.60, which is almost significant at the 10% level against a two-sided alternative.

What should we conclude about a unit root? Again, we cannot reject a unit root, but
the point estimate of � is not especially close to one. When we have a small sample size—
and n � 35 is considered to be pretty small—it is very difficult to reject the null hypothesis
of a unit root if the process has something close to a unit root. Using more data over longer
time periods, many researchers have concluded that there is little evidence against the unit
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root hypothesis for log(GDP). This has led most of them to assume that the growth in GDP
is I(0), which means that log(GDP) is I(1). Unfortunately, given currently available sample
sizes, we cannot have much confidence in this conclusion.

If we omit the time trend, there is much less evidence against H0, as �̂ � �.023 and
t�̂ � �1.92. Here, the estimate of � is much closer to one, but this can be misleading due
to the omitted time trend.

It is tempting to compare the t statistic on the time trend in (18.26), with the criti-
cal value from a standard normal or t distribution, to see whether the time trend is sig-
nificant. Unfortunately, the t statistic on the trend does not have an asymptotic standard
normal distribution (unless ��� � 1). The asymptotic distribution of this t statistic is
known, but it is rarely used. Typically, we rely on intuition (or plots of the time series)
to decide whether to include a trend in the DF test.

There are many other variants on unit root tests. In one version that is only applic-
able to series that are clearly not trending, the intercept is omitted from the regression;
that is, � is set to zero in (18.21). This variant of the Dickey-Fuller test is rarely used
because of biases induced if � � 0. Also, we can allow for more complicated time
trends, such as quadratic. Again, this is seldom used.

Another class of tests attempts to account for serial correlation in �yt in a different
manner than by including lags in (18.21) or (18.25). The approach is related to the ser-
ial correlation-robust standard errors for the OLS estimators that we discussed in
Section 12.5. The idea is to be as agnostic as possible about serial correlation in �yt. In
practice, the (augmented) Dickey-Fuller test has held up pretty well. [See BDGH (1993,
Section 4.3) for a discussion on other tests.]

18.3 SPURIOUS REGRESSION

In a cross-sectional environment, we use the phrase “spurious correlation” to describe
a situation where two variables are related through their correlation with a third vari-
able. In particular, if we regress y on x, we find a significant relationship. But when we
control for another variable, say z, the partial effect of x on y becomes zero. Naturally,
this can also happen in time series contexts with I(0) variables.

As we discussed in Section 10.5, it is possible to find a spurious relationship
between time series that have increasing or decreasing trends. Provided the series are
weakly dependent about their time trends, the problem is effectively solved by includ-
ing a time trend in the regression model.

When we are dealing with processes that are integrated of order one, there is an
additional complication. Even if the two series have means that are not trending, a sim-
ple regression involving two independent I(1) series will often result in a significant t
statistic.

To be more precise, let {xt} and {yt} be random walks generated by

xt � xt�1 � at (18.27)
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and

yt � yt�1 � et, t � 1,2, …, (18.28)

where {at} and {et} are independent, identically distributed innovations, with mean zero
and variances a

2 and e
2, respectively. For concreteness, take the initial values to be

x0 � y0 � 0. Assume further that {at} and {et} are independent processes. This implies
that {xt} and {yt} are also independent. But what if we run the simple regression

ŷ t � �̂0 � �̂1xt (18.29)

and obtain the usual t statistic for �̂1 and the usual R-squared? Because yt and xt are
independent, we would hope that plim �̂1 � 0. Even more importantly, if we test H0:
�1 � 0 against H1: �1 � 0 at the 5% level, we hope that the t statistic for �̂1 is insignif-
icant 95% of the time. Through a simulation, Granger and Newbold (1974) showed that
this is not the case: even though yt and xt are independent, the regression of yt on xt

yields a statistically significant t statistic a large percentage of the time, much larger
than the nominal significance level. Granger and Newbold called this the spurious
regression problem: there is no sense in which y and x are related, but an OLS regres-
sion using the usual t statistics will often indicate a relationship.

Recent simulation results are given by Davidson and MacKinnon (1993, Table
19.1), where at and et are generated as
independent, identically distributed normal
random variables, and 10,000 different
samples are generated. For a sample size
of n � 50 at the 5% significance level, the
standard t statistic for H0: �1 � 0 against
the two-sided alternative rejects H0 about
66.2% of the time under H0, rather than 5%

of the time. As the sample size increases, things get worse: with n � 250, the null is
rejected 84.7% of the time!

Here is one way to see what is happening when we regress the level of y on the level
of x. Write the model underlying (18.27) as

yt � �0 � �1xt � ut. (18.30)

For the t statistic of �̂1 to have an approximate standard normal distribution in large
samples, at a minimum, {ut} should be a mean zero, serially uncorrelated process. But
under H0: �1 � 0, yt � �0 � ut, and because {yt} is a random walk starting at y0 � 0,

equation (18.30) holds under H0 only if �0 � 0 and, more importantly, if ut � yt ��
t

j�1
ej.

In other words, {ut} is a random walk under H0. This clearly violates even the asymp-
totic version of the Gauss-Markov assumptions from Chapter 11.

Including a time trend does not really change the conclusion. If yt or xt is a random
walk with drift and a time trend is not included, the spurious regression problem is even
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Q U E S T I O N  1 8 . 2

Under the preceding setup, where {xt} and { yt} are generated by
(18.27) and (18.28) and {et} and {at} are i.i.d. sequences, what is the
plim of the slope coefficient, say 
̂1, from the regression of �yt on
�xt? Describe the behavior of the t statistic of 
̂1.

d  7/14/99 8:36 PM  Page 585



worse. The same qualitative conclusions hold if {at} and {et} are general I(0) processes,
rather than i.i.d. sequences.

In addition to the usual t statistic not having a limiting standard normal distribu-
tion—in fact, it increases to infinity as n * �—the behavior of R-squared is nonstan-
dard. In cross-sectional contexts or in regressions with I(0) time series variables, the
R-squared converges in probability to the population R-squared: 1 � u

2/y
2. This is not

the case in spurious regressions with I(1) processes. Rather than the R-squared having
a well-defined plim, it actually converges to a random variable. Formalizing this notion
is well-beyond the scope of this course. [A discussion of the asymptotic properties of
the t statistic and the R-squared can be found in BDGH (Section 3.1).] The implication
is that the R-squared is large with high probability, even though {yt} and {xt} are inde-
pendent time series processes.

The same considerations arise with multiple independent variables, each of which
may be I(1) or some of which may be I(0). If {yt} is I(1) and at least some of the
explanatory variables are I(1), the regression results may be spurious.

The possibility of spurious regression with I(1) variables is quite important and has
led economists to reexamine many aggregate time series regressions whose t statistics
were very significant and whose R-squareds were extremely high. In the next section,
we show that regressing an I(1) dependent variable on an I(1) independent variable can
be informative, but only if these variables are related in a precise sense.

18.4 COINTEGRATION AND ERROR 
CORRECTION MODELS

The discussion of spurious regression in the previous section certainly makes one wary
of using the levels of I(1) variables in regression analysis. In earlier chapters, we sug-
gested that I(1) variables should be differenced before they are used in linear regression
models, whether they are estimated by OLS or instrumental variables. This is certainly
a safe course to follow, and it is the approach used in many time series regressions after
Granger and Newbold’s original paper on the spurious regression. Unfortunately,
always differencing I(1) variables limits the scope of the questions that we can answer.

Cointegration

The notion of cointegration, which was given a formal treatment in Engle and Granger
(1987), makes regressions involving I(1) variables potentially meaningful. A full treat-
ment of cointegration is mathematically involved, but we can describe the basic issues
and methods that are used in many applications.

If {yt: t � 0,1,…} and {xt: t � 0,1,…} are two I(1) processes, then, in general, yt �
�xt is an I(1) process for any number �. Nevertheless, it is possible that for some � �

0, yt � �xt is an I(0) process, which means
it has constant mean, constant variance,
autocorrelations that depend only on the
time distance between any two variables in
the series, and it is asymptotically uncorre-
lated. If such a � exists, we say that y and
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Q U E S T I O N  1 8 . 3

Let {(yt,xt): t � 1,2,…} be a bivariate time series where each series is
I(1) without drift. Explain why, if yt and xt are cointegrated, yt and
xt�1 are also cointegrated.
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x are cointegrated, and we call � the cointegration parameter. [Alternatively, we could
look at xt � 
yt for 
 � 0: if yt � �xt is I(0), then xt � (1/�)yt is I(0). Therefore, the
linear combination of yt and xt is not unique, but if we fix the coefficient on yt at unity,
then � is unique. See Problem 18.3. For concreteness, we consider linear combinations
of the form yt � �xt.]

For the sake of illustration, take � � 1, suppose that y0 � x0 � 0, and write yt �
yt�1 � rt, xt � xt�1 � vt, where {rt} and {vt} are two I(0) processes with zero means.
Then, yt and xt have a tendency to wander around and not return to the initial value of
zero with any regularity. By contrast, if yt � xt is I(0), it has zero mean and does return
to zero with some regularity.

As a specific example, let r6t be the annualized interest rate for six-month, T-bills
(at the end of quarter t) and let r3t be the annualized interest rate for three-month,
T-bills. (These are typically called bond equivalent yields, and they are reported in the
financial pages.) In Example 18.2, using the data in INTQRT.RAW, we found little evi-
dence against the hypothesis that r3t has a unit root; the same is true of r6t. Define the
spread between six- and three-month, T-bill rates as sprt � r6t � r3t. Then, using equa-
tion (18.21), the Dickey-Fuller t statistic for sprt is �7.71 (with �̂ � �.67 or �̂ � .33).
Therefore, we strongly reject a unit root for sprt in favor of I(0). The upshot of this is
that while r6t and r3t each appear to be unit root processes, the difference between them
is an I(0) process. In other words, r6 and r3 are cointegrated.

Cointegration in this example, as in many examples, has an economic interpretation.
If r6 and r3 were not cointegrated, the difference between interest rates could become
very large, with no tendency for them to come back together. Based on a simple arbi-
trage argument, this seems unlikely. Suppose that the spread sprt continues to grow for
several time periods, making six-month T-bills a much more desirable investment.
Then, investors would shift away from three-month and toward six-month T-bills, dri-
ving up the price of six-month T-bills, while lowering the price of three-month T-bills.
Since interest rates are inversely related to price, this would lower r6 and increase r3,
until the spread is reduced. Therefore, large deviations between r6 and r3 are not
expected to continue: the spread has a tendency to return to its mean value. (The spread
actually has a slightly positive mean because long-term investors are more rewarded rel-
ative to short-term investors.)

There is another way to characterize the fact that sprt will not deviate for long peri-
ods from its average value: r6 and r3 have a long-run relationship. To describe what we
mean by this, let � � E(sprt) denote the expected value of the spread. Then, we can
write

r6t � r3t � � � et,

where {et} is a zero mean, I(0) process. The equilibrium or long-run relationship occurs
when et � 0, or r6* � r3* � �. At any time period, there can be deviations from equi-
librium, but they will be temporary: there are economic forces that drive r6 and r3 back
toward the equilibrium relationship.

In the interest rate example, we used economic reasoning to tell us the value of � if
yt and xt are cointegrated. If we have a hypothesized value of �, then testing whether
two series are cointegrated is easy: we simply define a new variable, st � yt � �xt, and
apply either the usual DF or augmented DF test to {st}. If we reject a unit root in {st}
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in favor of the I(0) alternative, then we find that yt and xt are cointegrated. In other
words, the null hypothesis is that yt and xt are not cointegrated.

Testing for cointegration is more difficult when the (potential) cointegration param-
eter � is unknown. Rather than test for a unit root in {st}, we must first estimate �. If yt

and xt are cointegrated, it turns out that the OLS estimator �̂ from the regression

yt ��̂ � �̂xt (18.31)

is consistent for �. The problem is that the null hypothesis states that the two series are
not cointegrated, which means that, under H0, we are running a spurious regression.
Fortunately, it is possible to tabulate critical values even when � is estimated, where we
apply the Dickey-Fuller or augmented Dickey-Fuller test to the residuals, say û t � yt �
�̂ � �̂xt, from (18.31). The only difference is that the critical values account for esti-
mation of �. The asymptotic critical values are given in Table 18.4. These are taken
from Davidson and MacKinnon (1993, Table 20.2).

Table 18.4

Asymptotic Critical Values for Cointegration Test: No Time Trend

Significance Level 1% 2.5% 5% 10%

Critical Value �3.90 �3.59 �3.34 �3.04

In the basic test, we run the regression of �û t on û t�1 and compare the t statistic on û t�1

to the desired critical value in Table 18.4. If the t statistic is below the critical value, we
have evidence that yt � �xt is I(0) for some �; that is, yt and xt are cointegrated. We can
add lags of �û t to account for serial correlation. If we compare the critical values in
Table 18.4 with those in Table 18.2, we must get a t statistic much larger in magnitude
to find cointegration than if we used the usual DF critical values. This is because OLS,
which minimizes the sum of squared residuals, tends to produce residuals that look like
an I(0) sequence even if yt and xt are not cointegrated.

If yt and xt are not cointegrated, a regression of yt on xt is spurious and tells us noth-
ing meaningful: there is no long-run relationship between y and x. We can still run a
regression involving the first differences, �yt and �xt, including lags. But we should
interpret these regressions for what they are: they explain the difference in y in terms of
the difference in x and have nothing necessarily to do with a relationship in levels.

If yt and xt are cointegrated, we can use this to specify more general dynamic mod-
els, as we will see in the next subsection.

The previous discussion assumes that neither yt nor xt has a drift. This is reasonable
for interest rates but not for other time series. If yt and xt contain drift terms, E(yt) and
E(xt) are linear (usually increasing) functions of time. The strict definition of cointe-
gration requires yt � �xt to be I(0) without a trend. To see what this entails, write yt �
�t � gt and xt � �t � ht, where {gt} and {ht} are I(1) processes, � is the drift in yt
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[� � E(�yt)], and � is the drift in xt [� � E(�xt)]. Now, if yt and xt are cointegrated,
there must exist � such that gt � �ht is I(0). But then

yt � �xt � (� � ��)t � (gt � �ht),

which is generally a trend-stationary process. The strict form of cointegration requires
that there not be a trend, which means � � ��. For I(1) processes with drift, it is pos-
sible that the stochastic parts—that is, gt and ht—are cointegrated, but that the parame-
ter � which causes gt � �ht to be I(0) does not eliminate the linear time trend.

We can test for cointegration between gt and ht, without taking a stand on the trend
part, by running the regression

ŷt � �̂ � �̂t � �̂xt (18.32)

and applying the usual DF or augmented DF test to the residuals û t. The asymptotic crit-
ical values are given in Table 18.5 [from Davidson and MacKinnon (1993, Table 20.2)].

Table 18.5

Asymptotic Critical Values for Cointegration Test: Linear Time Trend

Significance Level 1% 2.5% 5% 10%

Critical Value �4.32 �4.03 �3.78 �3.50

A finding of cointegration in this case leaves open the possibility that yt � �xt has a lin-
ear trend. But at least it is not I(1).

E X A M P L E  1 8 . 5
( C o i n t e g r a t i o n  B e t w e e n  F e r t i l i t y  a n d  P e r s o n a l  E x e m p t i o n )

In Chapters 10 and 11, we studied various models to estimate the relationship between the
general fertility rate (gfr) and the real value of the personal tax exemption (pe) in the United
States. The static regression results in levels and first differences are notably different. The
regression in levels, with a time trend included, gives an OLS coefficient on pe equal to .187
(se � .035) and R2 � .500. In first differences (without a trend), the coefficient on �pe is
�.043 (se � .028), and R2 � .032. While there are other reasons for these differences—
such as misspecified distributed lag dynamics—the discrepancy between the levels and
changes regressions suggests that we should test for cointegration. Of course, this pre-
sumes that gfr and pe are I(1) processes. This appears to be the case: the augmented DF
tests, with a single lagged change and a linear time trend, each yield t statistics of about
�1.47, and the estimated rhos are close to one.

When we obtain the residuals from the regression of gfr on t and pe and apply the aug-
mented DF test with one lag, we obtain a t statistic on ût�1 of �2.43, which is nowhere near
the 10% critical value, �3.50. Therefore, we must conclude that there is little evidence of
cointegration between gfr and pe, even allowing for separate trends. It is very likely that the
earlier regression results we obtained in levels suffer from the spurious regression problem.
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The good news is that, when we used first differences and allowed for two lags—
see equation (11.27)—we found an overall positive and significant long-run effect of �pe
on �gfr.

If we think two series are cointegrated, we often want to test hypotheses about the
cointegrating parameter. For example, a theory may state that the cointegrating para-
meter is one. Ideally, we could use a t statistic to test this hypothesis.

We explicitly cover the case without time trends, although the extension to the lin-
ear trend case is immediate. When yt and xt are I(1) and cointegrated, we can write

yt � � � �xt � ut, (18.33)

where ut is a zero mean, I(0) process. Generally, {ut} contains serial correlation, but we
know from Chapter 11 that this does not affect consistency of OLS. As mentioned ear-
lier, OLS applied to (18.33) consistently estimates � (and �). Unfortunately, because xt

is I(1), the usual inference procedures do not necessarily apply: OLS is not asymptoti-
cally normally distributed, and the t statistic for �̂ does not necessarily have an approx-
imate t distribution. We do know from Chapter 10 that, if {xt} is strictly
exogenous—see Assumption TS.2—and the errors are homoskedastic, serially uncor-
related, and normally distributed the OLS estimator is also normally distributed (con-
ditional on the explanatory variables), and the t statistic has an exact t distribution.
Unfortunately, these assumptions are too strong to apply to most situations. The notion
of cointegration implies nothing about the relationship between {xt} and {ut} and,
except for requiring that ut is I(0), does not restrict the serial dependence in ut.

Fortunately, the feature of (18.33) that makes inference the most difficult—the lack
of strict exogeneity of {xt}—can be fixed. Because xt is I(1), the proper notion of strict
exogeneity is that ut is uncorrelated with �xs, for all t and s. We can always arrange this
for a new set of errors, at least approximately, by writing ut as a function of the �xs for
all s close to t. For example,

ut � � � �0�xt � �1�xt�1 � �2�xt�2

� 
1�xt�1 � 
2�xt�2 � et,
(18.34)

where, by construction, et is uncorrelated with each �xs appearing in the equation. The
hope is that et is uncorrelated with further lags and leads of �xs. We know that, as �s � t�
gets large, the correlation between et and �xs approaches zero, because these are I(0)
processes. Now, if we plug (18.34) into (18.33), we obtain

yt � �0 � �xt � �0�xt � �1�xt�1 � �2�xt�2

� 
1�xt�1 � 
2�xt�2 � et.
(18.35)

This equation looks a bit strange because future �xs appear with both current and
lagged �xt. The key is that the coefficient on xt is still �, and, by construction, xt is now
strictly exogenous in this equation. The strict exogeneity assumption is the important
condition needed to obtain an approximately normal t statistic for �̂.
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The OLS estimator of � from (18.35) is called the leads and lags estimator of �
because of the way it employs �x. [See, for example, Stock and Watson (1991).] The
only issue we must worry about in (18.35) is the possibility of serial correlation in {et}.
This can be dealt with by computing a serial correlation-robust standard error for �̂ (as
described in Section 12.5) or by using a standard AR(1) correction (such as Cochrane-
Orcutt).

E X A M P L E  1 8 . 6
( C o i n t e g r a t i n g  P a r a m e t e r  f o r  I n t e r e s t  R a t e s )

Earlier, we tested for cointegration between r6 and r3—six- and three-month, T-bill rates—
by assuming that the cointegrating parameter was equal to one. This led us to find cointe-
gration and, naturally, to conclude that the cointegrating parameter is equal to unity.
Nevertheless, let us estimate the cointegrating parameter directly and test H0: � � 1. We
apply the leads and lags estimator with two leads and two lags of �r3, as well as the con-
temporaneous change. The estimate of � is �̂ � 1.038, and the usual OLS standard error is
.0081. Therefore, the t statistic for H0: � � 1 is (1.038 � 1)/.0081 � 4.69, which is a strong
statistical rejection of H0. (Of course, whether 1.038 is economically different from one is a
relevant consideration.) There is little evidence of serial correlation in the residuals, and so
we can use this t statistic as having an approximate normal distribution. [For comparison,
the OLS estimate of � without the �r3 terms—and using four more observations—is 1.026
(se � .0077). But the t statistic from (18.33) is not necessarily valid.]

There are many other estimators of cointegrating parameters, and this continues to
be a very active area of research. The notion of cointegration applies to more than two
processes, but the interpretation, testing, and estimation are much more complicated.
One issue is that, even after we normalize a coefficient to be one, there can be many
cointegrating relationships. BDGH provide some discussion and several references.

Error Correction Models

In addition to learning about a potential long-run relationship between two series, the
concept of cointegration enriches the kinds of dynamic models at our disposal. If yt and
xt are I(1) processes and are not cointegrated, we might estimate a dynamic model in
first differences. As an example, consider the equation

�yt � �0 � �1�yt�1 � 
0�xt � 
1�xt�1 � ut, (18.36)

where ut has zero mean given �xt, �yt�1, �xt�1, and further lags. This is essentially
equation (18.16), but in first differences rather than in levels. If we view this as a ration-
al distributed lag model, we can find the impact propensity, long run propensity, and lag
distribution for �y as a distributed lag in �x.

If yt and xt are cointegrated with parameter �, then we have additional I(0) variables
which we can include in (18.36). Let st � yt � �xt, so that st is I(0), and assume for the
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sake of simplicity that st has zero mean. Now, we can include lags of st in the equation.
In the simplest case, we include one lag of st:

�yt � �0 � �1�yt�1 � 
0�xt � 
1�xt�1 � �st�1 � ut

� �0 � �1�yt�1 � 
0�xt � 
1�xt�1 � �(yt�1 � �xt�1) � ut,
(18.37)

where E(ut�It�1) � 0, and It�1 contains information on �xt and all past values of x and
y. The term �(yt�1 � �xt�1) is called the error correction term, and (18.37) is an exam-
ple of an error correction model. (In some error correction models, the contempora-
neous change in x, �xt, is omitted. Whether it is included or not depends partly on the
purpose of the equation. In forecasting, �xt is rarely included, for reasons we will see
in Section 18.5.)

An error correction model allows us to study the short-run dynamics in the relation-
ship between y and x. For simplicity, consider the model without lags of �yt and �xt:

�yt � �0 � 
0�xt � �(yt�1 � �xt�1) � ut, (18.38)

where � � 0. If yt�1 � �xt�1, then y in the previous period has overshot the equilib-
rium; because � � 0, the error correction term works to push y back towards the equi-
librium. Similarly, if yt�1 � �xt�1, the error correction term induces a positive change
in y back towards the equilibrium.

How do we estimate the parameters of an error correction model? If we know �,
this is easy. For example, in (18.38), we simply regress �yt on �xt and st�1, where
st�1 � (yt�1 � �xt�1).

E X A M P L E  1 8 . 7
( E r r o r  C o r r e c t i o n  M o d e l  f o r  H o l d i n g  Y i e l d s )

In Problem 11.6, we regressed hy6t, the three-month holding yield (in percent) from buy-
ing a six-month T-bill at time t � 1 and selling it at time t as a three-month T-bill, on hy3t�1,
the three-month holding yield from buying a three-month T-bill at time t � 1. The expec-
tations hypothesis implies that the slope coefficient should not be statistically different from
one. It turns out that there is evidence of a unit root in {hy3t}, which calls into question the
standard regression analysis. We will assume that both holding yields are I(1) processes. The
expectations hypothesis implies, at a minimum, that hy6t and hy3t�1 are cointegrated with
� equal to one, which appears to be the case (see Exercise 18.14). Under this assumption,
an error correction model is

�hy6t � �0 � 
0�hy3t�1 � �(hy6t�1 � hy3t�2) � ut,

where ut has zero mean, given all hy3 and hy6 dated at time t � 1 and earlier. The lags on
the variables in the error correction model are dictated by the expectations hypothesis.

Using the data in INTQRT.RAW gives

�hŷ6t �(.090)�(1.218)�hy3t�1 �(.840)(hy6t�1 � hy3t�2)
�hŷ6t �(.043)�1(.264)�hy3t�1 �(.244)(hy6t�1 � hy3t�2)

n � 122, R2 � .790.

(18.39)
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The error correction coefficient is negative
and very significant. For example, if the hold-
ing yield on six-month bills is above that for
three-month bills by one point, hy6 falls by
.84 points on average in the next quarter.

Interestingly, �̂ � �.84 is not statistically different from �1, as is easily seen by computing
the 95% confidence interval.

In many other examples, the cointegrating parameter must be estimated. Then, we
replace st�1 with ŝt�1 � yt�1 � �̂xt�1, where �̂ can be various estimators of �. We have
covered the standard OLS estimator as well as the leads and lags estimator. This raises
the issue about how sampling variation in �̂ affects inference on the other parameters
in the error correction model. Fortunately, as shown by Engle and Granger (1987), we
can ignore the preliminary estimation of � (asymptotically). This is very convenient.
The procedure of replacing � with �̂ is called the Engle-Granger two-step procedure.

18.5 FORECASTING

Forecasting economic time series is very important in some branches of economics,
and it is an area that continues to be actively studied. In this section, we focus on 
regression-based forecasting methods. Diebold (1998) provides a comprehensive intro-
duction to forecasting, including recent developments.

We assume in this section that the primary focus is on forecasting future values of
a time series process and not necessarily on estimating causal or structural economic
models.

It is useful to first cover some fundamentals of forecasting that do not depend on a
specific model. Suppose that at time t we want to forecast the outcome of y at time t �
1, or yt�1. The time period could correspond to a year, a quarter, a month, a week, or
even a day. Let It denote information that we can observe at time t. This information
set includes yt, earlier values of y, and often other variables dated at time t or earlier.
We can combine this information in innumerable ways to forecast yt�1. Is there one best
way?

The answer is yes, provided we specify the loss associated with forecast error. Let
ft denote the forecast of yt�1 made at time t. We call ft a one-step-ahead forecast. The
forecast error is et�1 � yt�1 � ft, which we observe once the outcome on yt�1 is
observed. The most common measure of loss is the same one that leads to ordinary
least squares estimation of a multiple linear regression model: the squared error, et

2
�1.

The squared forecast error treats positive and negative prediction errors symmetri-
cally, and larger forecast errors receive relatively more weight. For example, errors of
�2 and �2 yield the same loss, and the loss is four times as great as forecast errors
of �1 or �1. The squared forecast error is an example of a loss function. Another
popular loss function is the absolute value of the prediction error, �et�1�. For reasons
to be seen shortly, we focus now on squared error loss.
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Given the squared error loss function, we can determine how to best use the infor-
mation at time t to forecast yt�1. But we must recognize that at time t, we do not know
et�1: it is a random variable, because yt�1 is a random variable. Therefore, any useful
criterion for choosing ft must be based on what we know at time t. It is natural to choose
the forecast to minimize the expected squared forecast error, given It:

E(e t
2
�1�It) � E[(yt�1 � ft)

2�It]. (18.40)

A basic fact from probability (see Property CE.6 in Appendix B) is that the conditional
expectation, E(yt�1�It), minimizes (18.40). In other words, if we wish to minimize the
expected squared forecast error given information at time t, our forecast should be
the expected value of yt�1 given variables we know at time t.

For many popular time series processes, the conditional expectation is easy to
obtain. Suppose that {yt: t � 0,1,…} is a martingale difference sequence (MDS) and
take It to be {yt,yt�1, …, y0}, the observed past of y. By definition, E(yt�1�It) � 0 for all
t; the best prediction of yt�1 at time t is always zero! Recall from Section 18.2 that an
i.i.d. sequence with zero mean is a martingale difference sequence.

A martingale difference sequence is one in which the past is not useful for predict-
ing the future. Stock returns are widely thought to be well-approximated as an MDS or,
perhaps, with a positive mean. The key is that E(yt�1�yt,yt�1,…) � E(yt�1): the condi-
tional mean is equal to the unconditional mean, in which case, past y do not help to pre-
dict future y.

A process {yt} is a martingale if E(yt�1�yt,yt�1, …, y0) � yt for all t 	 0. [If {yt} is
a martingale, then {�yt} is a martingale difference sequence, which is where the latter
name comes from.] The predicted value of y for the next period is always the value of
y for this period.

A more complicated example is

E(yt�1�It) � �yt � �(1 � �)yt�1 � … � �(1 � �)ty0, (18.41)

where 0 � � � 1 is a parameter that we must choose. This method of forecasting is
called exponential smoothing because the weights on the lagged y decline to zero
exponentially.

The reason for writing the expectation as in (18.41) is that it leads to a very simple
recurrence relation. Set f0 � y0. Then, for t 	 1, the forecasts can be obtained as

ft � �yt � (1 � �)ft�1.

In other words, the forecast of yt�1 is a weighted average of yt and the forecast of yt

made at time t � 1. Exponential smoothing is suitable only for very specific time series
and requires choosing �. Regression methods, which we turn to next, are more flexible.

The previous discussion has focused on forecasting y only one period ahead. The
general issues that arise in forecasting yt�h at time t, where h is any positive integer, are
similar. In particular, if we use expected squared forecast error as our measure of loss,
the best predictor is E(yt�h�It). When dealing with a multiple-step-ahead-forecast, we
use the notation ft,h to indicate the forecast of yt�h made at time t.
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Types of Regression Models Used for Forecasting

There are many different regression models that we can use to forecast future values of
a time series. The first regression model for time series data from Chapter 10 was the
static model. To see how we can forecast with this model, assume that we have a single
explanatory variable:

yt � �0 � �1zt � ut. (18.42)

Suppose, for the moment, that the parameters �0 and �1 are known. Write this equation
at time t � 1 as yt�1 � �0 � �1zt�1 � ut�1. Now, if zt�1 is known at time t, so that it is
an element of It and E(ut�1�It) � 0, then

E(yt�1�It) � �0 � �1zt�1,

where It contains zt�1, yt, zt, …, y1, z1. The right-hand side of this equation is the fore-
cast of yt�1 at time t. This kind of forecast is usually called a conditional forecast
because it is conditional on knowing the value of z at time t � 1.

Unfortunately, at any time, we rarely know the value of the explanatory variables in
future time periods. Exceptions include time trends and seasonal dummy variables,
which we cover explicitly below, but otherwise knowledge of zt�1 at time t is rare.
Sometimes, we wish to generate conditional forecasts for several values of zt�1.

Another problem with (18.42) as a model for forecasting is that E(ut�1�It) � 0
means that {ut} cannot contain serial correlation, something we have seen to be false in
most static regression models. [Problem 18.8 asks you to derive the forecast in a sim-
ple distributed lag model with AR(1) errors.]

If zt�1 is not known at time t, we cannot include it in It. Then, we have

E(yt�1�It) � �0 � �1E(zt�1�It).

This means that in order to forecast yt�1, we must first forecast zt�1, based on the same
information set. This is usually called an unconditional forecast because we do not
assume knowledge of zt�1 at time t. Unfortunately, this is somewhat of a misnomer, as
our forecast is still conditional on the information in It. But the name is entrenched in
forecasting literature.

For forecasting, unless we are wedded to the static model in (18.42) for other rea-
sons, it makes more sense to specify a model that depends only on lagged values of y
and z. This saves us the extra step of having to forecast a right-hand side variable before
forecasting y. The kind of model we have in mind is

yt � �0 � �1yt�1 � 
1zt�1 � ut

E(ut�It�1) � 0,
(18.43)

where It�1 contains y and z dated at time t � 1 and earlier. Now, the forecast of yt�1 at
time t is �0 � �1yt � 
1zt; if we know the parameters, we can just plug in the values of
yt and zt.

If we only want to use past y to predict future y, then we can drop zt�1 from (18.43).
Naturally, we can add more lags of y or z and lags of other variables. Especially for fore-
casting one step ahead, such models can be very useful.
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One-Step-Ahead Forecasting

Obtaining a forecast one period after the sample ends is relatively straightforward using
models such as (18.43). As usual, let n be the sample size. The forecast of yn�1 is

f̂n � �̂0 � �̂1yn � 
̂1zn, (18.44)

where we assume that the parameters have been estimated by OLS. We use a hat on fn
to emphasize that we have estimated the parameters in the regression model. (If we
knew the parameters, there would be no estimation error in the forecast.) The forecast
error—which we will not know until time n � 1—is

ên�1 � yn�1 � f̂n. (18.45)

If we add more lags of y or z to the forecasting equation, we simply lose more obser-
vations at the beginning of the sample.

The forecast f̂n of yn�1 is usually called a point forecast. We can also obtain a fore-
cast interval. A forecast interval is essentially the same as a prediction interval, which
we studied in Section 6.4. There we showed how, under the classical linear model
assumptions, to obtain an exact 95% prediction interval. A forecast interval is obtained
in exactly the same way. If the model does not satisfy the classical linear model assump-
tions—for example, if it contains lagged dependent variables, as in (18.44)—the fore-
cast interval is still approximately valid, provided ut given It�1 is normally distributed
with zero mean and constant variance. (This ensures that the OLS estimators are approx-
imately normally distributed with the usual OLS variances and that un�1 is independent
of the OLS estimators with mean zero and variance 2.) Let se( f̂n) be the standard error
of the forecast and let ̂ be the standard error of the regression. [From Section 6.4, we
can obtain f̂n and se( f̂n) as the intercept and its standard error from the regression of yt

on (yt�1 � yn) and (zt�1 � zn), t � 1,2, …, n; that is, we subtract the time n value of y
from each lagged y, and similarly for z, before doing the regression.] Then,

se(ên�1) � {[se( f̂n)]
2 � ̂ 2}1/ 2, (18.46)

and the (approximate) 95% forecast interval is

f̂n � 1.96�se(ên�1). (18.47)

Because se( f̂n) is roughly proportional to 1/��n, se( f̂n) is usually small relative to the
uncertainty in the error un�1, as measured by ̂ . [Some econometrics packages com-
pute forecast intervals routinely, but others require some simple manipulations to obtain
(18.47).]

E X A M P L E  1 8 . 8
( F o r e c a s t i n g  t h e  U . S .  U n e m p l o y m e n t  R a t e )

We use the data in PHILLIPS.RAW, which is for the years 1948 through 1996, to forecast
the U.S. civilian unemployment rate for 1997. We use two models. The first is a simple
AR(1) model for unem:
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unêmt �(1.572)�(.732)unemt�1

unêmt �1(.577)�(.097)unemt�1

n � 48, R̄2 � .544, ̂ � 1.049.

(18.48)

In a second model, we add inflation with a lag of one year:

unêmt �(1.304)�(.647)unemt�1 �(.184)inft�1

unêmt �1(.490)�(.084)unemt�1 �(.041)inft�1

n � 48, R̄2 � .677, ̂ � .883.

(18.49)

The lagged inflation rate is very significant in (18.49) (t � 4.5), and the adjusted R-squared
from the second equation is much higher than that from the first. Nevertheless, this does
not necessarily mean that the second equation will produce a better forecast for 1997. All
we can say so far is that, using the data up through 1996, a lag of inflation helps to explain
variation in the unemployment rate.

To obtain the forecasts for 1997, we need to know unem and inf in 1996. These are 5.4
and 3.0, respectively. Therefore, the forecast of unem1997 from equation (18.48) is 1.572 �
.732(5.4), or about 5.52. The forecast from equation (18.49) is 1.304 � .647(5.4) �

.184(3.0), or about 5.35. The actual civilian unemployment rate for 1997 was 4.9, and so
both equations over-predict the actual rate. The second equation does provide a somewhat
better forecast.

We can easily obtain a 95% forecast interval. When we regress unemt on (unemt�1 �

5.4) and (inft�1 � 3.0), we obtain 5.35 as the intercept—which we already computed as the
forecast—and se(f̂n) � .137. Therefore, because ̂ � .883, we have se(ên�1) � [(.137)2 �

(.883)2]1/2 � .894. The 95% forecast interval from (18.47) is 5.35 � 1.96(.894), or about
[3.6,7.1]. This is a wide interval, and the realized 1997 value, 4.9, is well within the interval.
As expected, the standard error of un�1, which is .883, is a very large fraction of se(ên�1).

A professional forecaster must usually produce a forecast for every time period. For
example, at time n, she or he produces a forecast of yn�1. Then, when yn�1 and zn�1

become available, he or she must forecast yn�2. Even if the forecaster has settled on
model (18.43), there are two choices for forecasting yn�2. The first is to use �̂0 �
�̂1yn�1 � 
̂1zn�1, where the parameters are estimated using the first n observations. The
second possibility is to reestimate the parameters using all n � 1 observations and then
to use the same formula to forecast yn�2. To forecast in subsequent time periods, we can
generally use the parameter estimates obtained from the initial n observations, or we
can update the regression parameters each time we obtain a new data point. While the
latter approach requires more computation, the extra burden is relatively minor, and it
can (although it need not) work better because the regression coefficients adjust at least
somewhat to the new data points.

As a specific example, suppose we wish to forecast the unemployment rate for
1998, using the model with a single lag of unem and inf. The first possibility is to just
plug the 1997 values of unemployment and inflation into the right-hand side of (18.49).

Chapter 18 Advanced Time Series Topics

597

d  7/14/99 8:36 PM  Page 597



With unem � 4.9 and inf � 2.3 in 1997, we have a forecast for unem1998 of about 4.9.
(It is just a coincidence that this is the same as the 1997 unemployment rate.) The sec-
ond possibility is to reestimate the equation by adding the 1997 observation and then
using this new equation (see Exercise 18.15).

The model in equation (18.43) is one equation in what is known as a vector autore-
gressive (VAR) model. We know what an autoregressive model is from Chapter 11: we
model a single series, {yt}, in terms of its own past. In vector autoregressive models, we
model several series—which, if you are familiar with linear algebra, is where the word
“vector” comes from—in terms of their own past. If we have two series, yt and zt, a vec-
tor autoregression consists of equations that look like

yt � �0 � �1yt�1 � 
1zt�1 � �2yt�2 � 
2zt�2 � … (18.50)

and

zt � �0 � �1yt�1 � �1zt�1 � �2yt�2 � �2zt�2 � …,

where each equation contains an error that has zero expected value given past informa-
tion on y and z. In equation (18.43)—and in the example estimated in (18.49)—we
assumed that one lag of each variable captured all of the dynamics. (An F test for joint
significance of unemt�2 and inft�2 confirms that only one lag of each is needed.)

As Example 18.8 illustrates, VAR equations can be useful for forecasting. In many
cases, we are interested in forecasting only one variable, y, in which case we only need
to estimate and analyze the equation for y. Nothing prevents us from adding other lagged
variables, say wt�1, wt�2, …, to equation (18.50). Such equations are efficiently esti-
mated by OLS, provided we have included enough lags of all variables and the equation
satisfies the homoskedasticity assumption for time series regressions.

Equations such as (18.50) allow us to test whether, after controlling for past y, past
z help to forecast yt. Generally, we say that z Granger causes y if

E(yt�It�1) � E(yt�Jt�1), (18.51)

where It�1 contains past information on y and z, and Jt�1 contains only information on
past y. When (18.51) holds, past z is useful, in addition to past y, for predicting yt. The
term “causes” in “Granger causes” should be interpreted with caution. The only sense
in which z “causes” y is given in (18.51). In particular, it has nothing to say about con-
temporaneous causality between y and z, so it does not allow us to determine whether
zt is an exogenous or endogenous variable in an equation relating yt to zt. (This is also
why the notion of Granger causality does not apply in pure cross-sectional contexts.)

Once we assume a linear model and decide how many lags of y should be included
in E(yt�yt�1,yt�2,…), we can easily test the null hypothesis that z does not Granger cause
y. To be more specific, suppose that E(yt�yt�1,yt�2,…) depends on only three lags:

yt � �0 � �1yt�1 � �2yt�2 � �3yt�3 � ut

E(ut�yt�1,yt�2,…) � 0.
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Now, under the null hypothesis that z does not Granger cause y, any lags of z that we
add to the equation should have zero population coefficients. If we add zt�1, then we
can simply do a t test on zt�1. If we add two lags of z, then we can do an F test for joint
significance of zt�1 and zt�2 in the equation

yt � �0 � �1yt�1 � �2yt�2 � �3yt�3 � 
1zt�1 � 
2zt�2 � ut.

(If there is heteroskedasticity, we can use a robust form of the test. There cannot be ser-
ial correlation under H0 because the model is dynamically complete.)

As a practical matter, how do we decide on which lags of y and z to include? First,
we start by estimating an autoregressive model for y and performing t and F tests to
determine how many lags of y should appear. With annual data, the number of lags is
typically small, say one or two. With quarterly or monthly data, there are usually many
more lags. Once an autoregressive model for y has been chosen, we can test for lags of
z. The choice of lags of z is less important because, when z does not Granger cause y,
no set of lagged z’s should be significant. With annual data, one or two lags are typi-
cally used; with quarterly data, usually four or eight; and with monthly data, perhaps
six, 12, or maybe even 24, given enough data.

We have already done one example of testing for Granger causality in equation
(18.49). The autoregressive model that best fits unemployment is an AR(1). In equation
(18.49), we added a single lag of inflation, and it was very significant. Therefore, infla-
tion Granger causes unemployment.

There is an extended definition of Granger causality that is often useful. Let {wt}
be a third series (or, it could represent several additional series). Then, z Granger causes
y conditional on w if (18.51) holds, but now It�1 contains past information on y, z, and
w, while Jt�1 contains past information on y and w. It is certainly possible that z Granger
causes y, but z does not Granger cause y conditional on w. A test of the null that z does
not Granger cause y conditional on w is obtained by testing for significance of lagged
z in a model for y that also depends on lagged y and lagged w. For example, to test
whether growth in the money supply Granger causes growth in real GDP, conditional
on the change in interest rates, we would regress gGDPt on lags of gGDP, �int, and gM
and do significance tests on the lags of gM. [See, for example, Stock and Watson
(1989).]

Comparing One-Step-Ahead Forecasts

In almost any forecasting problem, there are several competing methods for forecast-
ing. Even when we restrict attention to regression models, there are many possibilities.
Which variables should be included, and with how many lags? Should we use logs, lev-
els of variables, or first differences?

In order to decide on a forecasting method, we need a way to choose which one is
most suitable. Broadly, we can distinguish between in-sample criteria and out-
of-sample criteria. In a regression context, in-sample criteria include R-squared and
especially adjusted R-squared. There are many other model selection statistics, but we
will not cover those here [see, for example, Ramanathan (1995, Chapter 4)].

For forecasting, it is better to use out-of-sample criteria, as forecasting is essentially
an out-of-sample problem. A model might provide a good fit to y in the sample used to
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estimate the parameters. But this need not translate to good forecasting performance.
An out-of-sample comparison involves using the first part of a sample to estimate the
parameters of the model and saving the latter part of the sample to gauge its forecast-
ing capabilities. This mimics what we would have to do in practice if we did not yet
know the future values of the variables.

Suppose that we have n � m observations, where we use the first n observations to
estimate the parameters in our model and save the last m observations for forecasting.
Let f̂n�h be the one-step-ahead forecast of yn�h�1 for h � 0,1, …, m � 1. The m forecast
errors are ên�h�1 � yn�h�1 � f̂n�h. How should we measure how well our model fore-
casts y when it is out of sample? Two measures are most common. The first is the root
mean squared error (RMSE):

RMSE � �m�1 �
m�1

h�0
ên

2
�h�1 �1/2

. (18.52)

This is essentially the sample standard deviation of the forecast errors (without any
degrees of freedom adjustment). If we compute RMSE for two or more forecasting
methods, then we prefer the method with the smallest out-of-sample RMSE.

A second common measure is the mean absolute error (MAE), which is the aver-
age of the absolute forecast errors:

MAE � m�1 �
m�1

h�0
�ên�h�1�. (18.53)

Again, we prefer a smaller MAE. Other possible criteria include minimizing the largest
of the absolute values of the forecast errors.

E X A M P L E  1 8 . 9
( O u t - o f - S a m p l e  C o m p a r i s o n s o f  U n e m p l o y m e n t  F o r e c a s t s )

In Example 18.8, we found that equation (18.49) fit better in our sample than (18.48) did,
and, at least for forecasting 1997, the model with lagged inflation worked better. Now,
we estimate both models using data through 1989, saving 1990 through 1996 for out-
of-sample comparisons. This leaves seven out-of-sample observations (n � 41 and m � 7,
to be precise). For the AR(1) model, RMSE � .632, and MAE � .515. For the model that
adds lagged inflation, RMSE � .550, and MAE � .362. Thus, by either measure, the model
that includes inft�1 produces better out-of-sample forecasts for the 1990s. In this case, the
in-sample and out-of-sample criteria both choose the same model.

Rather than using only the first n observations to estimate the parameters of the
model, we can reestimate the models each time we add a new observation and use the
new model to forecast the next time period.
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Multiple-Step-Ahead Forecasts

Forecasting more than one period ahead is generally more difficult than forecasting one
period ahead. We can formalize this as follows. Suppose we consider forecasting yt�1

at time t and at an earlier time period s (so that s � t). Then Var[yt�1 � E(yt�1�It)] �
Var[yt�1 � E(yt�1�Is)], where the inequality is usually strict. We will not prove this
result generally, but, intuitively, it makes sense: the forecast error variance in predicting
yt�1 is larger when we make that forecast based on less information.

If {yt} follows an AR(1) model (which includes a random walk, possibly with drift),
we can easily show that the error variance increases with the forecast horizon. The
model is

yt � � � �yt�1 � ut

E(ut�It�1) � 0, It�1 � {yt�1,yt�2,…},

and {ut} has constant variance 2 conditional on It�1. At time t � h � 1, our fore-
cast of yt�h is � � �yt�h�1, and the forecast error is simply ut�h. Therefore, the one-
step-ahead forecast variance is simply 2. To find multiple-step-ahead forecasts, we
have, by repeated substitution,

yt�h � (1 � � � … � �h�1)� � �hyt

� �h�1ut�1 � �h�2ut�2 � … � ut�h.

At time t, the expected value of ut�j, for all j 	 1, is zero. So

E(yt�h�It) � (1 � � � … � �h�1)� � �hyt, (18.54)

and the forecast error is et,h � �h�1ut�1 � �h�2ut�2 � … � ut�h. This is a sum of
uncorrelated random variables, and so the variance of the sum is the sum of the vari-
ances: Var(et,h) � 2[�2(h�1) � �2(h�2) � … � �2 � 1]. Because �2 � 0, each term mul-
tiplying 2 is positive, and so the forecast error variance increases with h. When �2 � 1,
the forecast variance converges to 2/(1 � �2), which is just the unconditional variance
of yt. In the case of a random walk (� � 1), ft,h � �h � yt, and Var(et,h) � 2h: the fore-
cast variance grows without bound as the horizon h increases. This demonstrates that it
is very difficult to forecast a random walk, with or without drift, far out into the future.
For example, forecasts of interest rates farther into the future become less precise.

Equation (18.54) shows that using the AR(1) model for multi-step forecasting is
easy, once we have estimated � by OLS. The forecast of yn�h at time n is

f̂n,h � (1 � �̂ � … � �̂ h�1)�̂ � �̂ hyn. (18.55)

Obtaining forecast intervals is harder, unless h � 1, because obtaining the standard error
of f̂n,h is difficult. Nevertheless, the standard error of f̂n,h is usually small, compared with
the standard deviation of the error term, and the latter can be estimated as
̂ [�̂ 2(h�1) � �̂ 2(h�2) � … � �̂ 2 � 1]1/2, where ̂ is the standard error of the regression
from the AR(1) estimation. We can use this to obtain an approximate confidence inter-
val. For example, when h � 2, an approximate 95% confidence interval (for large n) is
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f̂n,2 � 1.96̂ (1 � �̂ 2)1/2. (18.56)

Because we are underestimating the standard deviation of yn�h, this interval is too nar-
row, but perhaps not by much, especially if n is large.

A less traditional, but useful, approach is to estimate a different model for each fore-
cast horizon. For example, suppose we wish to forecast y two periods ahead. If It

depends only on y up through time t, we might assume that E(yt�2�It) � �0 � 
1yt

[which, as we saw earlier, holds if {yt} follows an AR(1) model]. We can estimate �0

and 
1 by regressing yt on an intercept and on yt�2. Even though the errors in this equa-
tion contain serial correlation—errors in adjacent periods are correlated—we can obtain
consistent and approximately normal estimators of �0 and 
1. The forecast of yn�2

at time n is simply f̂n,2 � �̂0 � 
̂1yn. Further, and very importantly, the standard error
of the regression is just what we need for computing a confidence interval for the fore-
cast. Unfortunately, to get the standard error of f̂n,2, using the trick for a one-step-ahead
forecast requires us to obtain a serial correlation-robust standard error of the kind
described in Section 12.5. This standard error goes to zero as n gets large while the vari-
ance of the error is constant. Therefore, we can get an approximate interval by using
(18.56) and by putting the SER from the regression of yt on yt�2 in place of ̂ (1 �
�̂ 2)1/2. But we should remember that this still ignores the estimation error in �̂0 and 
̂1.

We can also compute multi-step-ahead forecasts with more complicated autore-
gressive models. For example, suppose {yt} follows an AR(2) model and that at time n,
we wish to forecast yn�2. Now, yn�2 � � � �1yn�1 � �2yn � un�2, and so

E(yn�2�In) � � � �1E(yn�1�In) � �2yn.

We can write this as

fn,2 � � � �1 fn,1 � �2yn,

so that the two-step-ahead forecast at time n can be obtained, once we get the one-
step-ahead forecast. If the parameters of the AR(2) model have been estimated by OLS,
then we operationalize this as

f̂n,2 � �̂ � �̂1 f̂n,1 � �̂2yn. (18.57)

Now, f̂n,1 � �̂ � �̂1yn � �̂2yn�1, which we can compute at time n. Then, we plug
this into (18.57), along with yn, to obtain f̂n,2. For any h � 2, obtaining any h-
step-ahead forecast for an AR(2) model is easy to find in a recursive manner: f̂n,h �
�̂ � �̂1 f̂n,h�1 � �̂2 f̂n,h�2.

Similar reasoning can be used to obtain multi-step-ahead forecasts for VAR models.
To illustrate, suppose we have

yt � �0 � �1yt�1 � 
1zt�1 � ut (18.58)

and

zt � �0 � �1yt�1 � �1zt�1 � vt.
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Now, if we wish to forecast yn�1 at time n, we simply use f̂n,1 � �̂0 � �̂1yn � 
̂1zn.
Likewise, the forecast of zn�1 at time n is (say) ĝn,1 � �̂0 � �̂1yn � �̂1zn. Now, suppose
we wish to obtain a two-step-ahead forecast of y at time n. From (18.58), we have

E(yn�2�In) � �0 � �1E(yn�1�In) � 
1E(zn�1�In)

[because E(un�2�In) � 0], and so we can write the forecast as

f̂n,2 � �̂0 � �̂1 f̂n,1 � 
̂1ĝn,1. (18.59)

This equation shows that the two-step-ahead forecast for y depends on the one-
step-ahead forecasts for y and z. Generally, we can build up multi-step-ahead forecasts
of y by using the recursive formula

f̂n,h � �̂0 � �̂1 f̂n,h�1 � 
̂1ĝn,h�1, h 	 2.

E X A M P L E  1 8 . 1 0
( T w o - Y e a r - A h e a d  F o r e c a s t  f o r  t h e  U n e m p l o y m e n t  R a t e )

To use equation (18.49) to forecast unemployment two years out—say, the 1998 rate using
the data through 1996—we need a model for inflation. The best model for inf in terms of
lagged unem and inf appears to be a simple AR(1) model (unem�1 is not significant when
added to the regression):

in̂ft �(1.277)�(.665)inft�1

in̂ft �0(.558)�(.107)inft�1

n � 48, R2 � .457, R̄2 � .445.

If we plug the 1996 value of inf into this equation, we get the forecast of inf for 1997:
in̂f1997 � 3.27. Now, we can plug this, along with unêm1997 � 5.35 (which we obtained
earlier) into (18.59) to forecast unem1998:

unêm1998 � 1.304 � .647(5.35) � .184(3.27) � 5.37.

Remember, this forecast uses information only through 1996. The one-step-ahead forecast
of unem1998, obtained by plugging the 1997 values of unem and inf into (18.48), was
about 4.90. You can find the actual civilian unemployment rate for 1998 in a recent
Economic Report of the President. You will see that the one-step-ahead forecast turns out
to be much closer than the two-step-ahead forecast.

Just as with one-step-ahead forecasting, an out-of-sample root mean squared error
or a mean absolute error can be used to choose among multi-step-ahead forecasting
methods.

Forecasting Trending, Seasonal, and 
Integrated Processes

We now turn to forecasting series that either exhibit trends, have seasonality, or have
unit roots. Recall from Chapters 10 and 11 that one approach to handling trending
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dependent or independent variables in regression models is to include time trends, the
most popular being a linear trend. Trends can be included in forecasting equations as
well, although they must be used with caution.

In the simplest case, suppose that {yt} has a linear trend but is unpredictable around
that trend. Then, we can write

yt � � � �t � ut, E(ut�It�1) � 0, t � 1,2, …, (18.60)

where, as usual, It�1 contains information observed through time t � 1 (which includes
at least past y). How do we forecast yn�h at time n for any h 	 1? This is simple because
E(yn�h�In) � � � �(n � h). The forecast error variance is simply 2 � Var(ut) (assum-
ing a constant variance over time). If we estimate � and � by OLS using the first n
observations, then our forecast for yn�h at time n is f̂n,h � �̂ � �̂(n � h). In other words,
we simply plug the time period corresponding to y into the estimated trend function. For
example, if we use the n � 131 observations in BARIUM.RAW to forecast monthly
Chinese imports of barium chloride to the United States, we obtain �̂ � 249.56 and
�̂ � 5.15. The sample period ends in December 1988, so the forecast of Chinese
imports six months later is 249.56 � 5.15(137) � 955.11, measured as short tons. For
comparison, the December 1988 value is 1,087.81, so it is greater than the forecasted
value six months later. The series and its estimated trend line are shown in Figure 18.2.
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Chinese barium chloride imports into the United States (in short tons) and its estimated linear
trend line, 249.56 � 5.15t.
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As we discussed in Chapter 10, most economic time series are better characterized
as having, at least approximately, a constant growth rate, which suggests that log(yt)
follows a linear time trend. Suppose we use n observations to obtain the equation

lôg(yt) � �̂ � �̂t, t � 1,2, …, n. (18.61)

Then, to forecast log(y) at any future time period n � h, we just plug n � h into the
trend equation, as before. But this does not
allow us to forecast y, which is usually
what we want. It is tempting to simply
exponentiate �̂ � �̂(n � h) to obtain the
forecast for yn�h, but this is not quite
right, for the same reasons we gave in
Section 6.4. We must properly account for
the error implicit in (18.61). The simplest
way to do this is to use the n observations
to regress yt on exp(loĝyt) without an inter-

cept. Let 
̂ be the slope coefficient on exp(loĝyt). Then, the forecast of y in period
n � h is simply

f̂n,h � 
̂exp[�̂ � �̂(n � h)]. (18.62)

As an example, if we use the first 687 weeks of data on the New York stock
exchange index in NYSE.RAW, we obtain �̂ � 3.782 and �̂ � .0019 [by regressing
log( pricet) on a linear time trend]; this shows that the index grows about .2% per week,
on average. When we regress price on the exponentiated fitted values, we obtain 
̂ �
1.018. Now, we forecast price four weeks out, which is the last week in the sample,
using (18.62): 1.018�exp[3.782 � .0019(691)] � 166.12. The actual value turned out to
be 164.25, so we have somewhat over-predicted. But this result is much better than if
we estimate a linear time trend for the first 687 weeks: the forecasted value for week
691 is 152.23, which is a substantial under-prediction.

While trend models can be useful for prediction, they must be used with caution,
especially for forecasting far into the future integrated series that have drift. The poten-
tial problem can be seen by considering a random walk with drift. At time t � h, we can
write yt�h as

yt�h � �h � yt � ut�1 � … � ut�h,

where � is the drift term (usually � � 0), and each ut�j has zero mean given It and con-
stant variance 2. As we saw earlier, the forecast of yt�h at time t is E(yt�h�It) �
�h � yt, and the forecast error variance is 2h. What happens if we use a linear trend
model? Let y0 be the initial value of the process at time zero, which we take as nonran-
dom. Then, we can also write

yt�h � y0 � �(t � h) � u1 � u2 � … � ut�h

� y0 � �(t � h) � vt�h.
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Suppose you model { yt: t � 1,2, …, 46} as a linear time trend, where
data are annual starting in 1950 and ending in 1995. Define the
variable yeart as ranging from 50 when t � 1 to 95 when t � 46. If
you estimate the equation ŷt � 
̂ � �̂yeart, how do 
̂ and �̂ com-
pare with �̂ and �̂ in ŷt � �̂ � �̂t? How will forecasts from the two
equations compare?
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This looks like a linear trend model with the intercept � � y0. But the error, vt�h, while
having mean zero, has variance 2(t � h). Therefore, if we use the linear trend
y0 � �(t � h) to forecast yt�h at time t, the forecast error variance is 2(t � h), as com-
pared with 2h when we use �h � yt. The ratio of the forecast variances is (t � h)/h,
which can be big for large t. The bottom line is that we should not use a linear trend to
forecast a random walk with drift. (Problem 18.17 asks you to compare forecasts from
a cubic trend line and those from the simple random walk model for the general fertil-
ity rate in the United States.)

Deterministic trends can also produce poor forecasts if the trend parameters are esti-
mated using old data and the process has a subsequent shift in the trend line.
Sometimes, exogenous shocks—such as the oil crises of the 1970s—can change the tra-
jectory of trending variables. If an old trend line is used to forecast far into the future,
the forecasts can be way off. This problem can be mitigated by using the most recent
data available to obtain the trend line parameters.

Nothing prevents us from combining trends with other models for forecasting. For
example, we can add a linear trend to an AR(1) model, which can work well for fore-
casting series with linear trends but which are also stable AR processes around the trend.

It is also straightforward to forecast processes with deterministic seasonality
(monthly or quarterly series). For example, the file BARIUM.RAW contains the
monthly production of gasoline in the United States from 1978 through 1988. This
series has no obvious trend, but it does have a strong seasonal pattern. (Gasoline pro-
duction is higher in the summer months and in December.) In the simplest model, we
would regress gas (measured in gallons) on eleven month dummies, say for February
through December. Then, the forecast for any future month is simply the intercept plus
the coefficient on the appropriate month dummy. (For January, the forecast is just the
intercept in the regression.) We can also add lags of variables and time trends to allow
for general series with seasonality.

Forecasting processes with unit roots also deserves special attention. Earlier, we
obtained the expected value of a random walk conditional on information through time
n. To forecast a random walk, with possible drift �, h periods into the future at time n,
we use f̂n,h � �̂h � yn, where �̂ is the sample average of the �yt up through t � n. (If
there is no drift, we set �̂ � 0.) This approach imposes the unit root. An alternative
would be to estimate an AR(1) model for {yt} and to use the forecast formula (18.55).
This approach does not impose a unit root, but if one is present, �̂ converges in proba-
bility to one as n gets large. Nevertheless, �̂ can be substantially different than one,
especially if the sample size is not very large. The matter of which approach produces
better out-of-sample forecasts is an empirical issue. If in the AR(1) model, � is less than
one, even slightly, the AR(1) model will tend to produce better long-run forecasts.

Generally, there are two approaches to producing forecasts for I(1) processes. The
first is to impose a unit root. For a one-step-ahead forecast, we obtain a model to fore-
cast the change in y, �yt�1, given information up through time t. Then, because yt�1 �
�yt�1 � yt, E(yt�1�It) � E(�yt�1�It) � yt. Therefore, our forecast of yn�1 at time n is just

f̂n � ĝn � yn,

where ĝn is the forecast of �yn�1 at time n. Typically, an AR model (which is necessar-
ily stable) is used for �yt, or a vector autoregression.
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This can be extended to multi-step-ahead forecasts by writing yn�h as

yn�h � (yn�h � yn�h�1) � (yn�h�1 � yn�h�2) � … � (yn�1 � yn) � yn,

or

yn�h � �yn�h � �yn�h�1 � … � �yn�1 � yn.

Therefore, the forecast of yn�h at time n is

f̂n,h � ĝn,h � ĝn,h�1 � … � ĝn,1 � yn, (18.63)

where ĝn,j is the forecast of �yn�j at time n. For example, we might model �yt as a sta-
ble AR(1), obtain the multi-step-ahead forecasts from (18.55) (but with �̂ and �̂
obtained from �yt on �yt�1, and yn replaced with �yn), and then plug these into (18.63).

The second approach to forecasting I(1) variables is to use a general AR or VAR
model for {yt}. This does not impose the unit root. For example, if we use an AR(2)
model,

yt � � � �1yt�1 � �2yt�2 � ut, (18.64)

then �1 � �2 � 1. If we plug in �1 � 1 � �2 and rearrange, we obtain �yt � � �
�2�yt�1 � ut, which is a stable AR(1) model in the difference that takes us back to the
first approach described earlier. Nothing prevents us from estimating (18.64) directly by
OLS. One nice thing about this regression is that we can use the usual t statistic on �̂2

to determine if yt�2 is significant. (This assumes that the homoskedasticity assumption
holds; if not, we can use the heteroskedasticity-robust form.) We will not show this
formally, but, intuitively, it follows by rewriting the equation as yt � � � 
yt�1 �
�2�yt�1 � ut, where 
 � �1 � �2. Even if 
 � 1, �2 is minus the coefficient on a sta-
tionary, weakly dependent process {�yt�1}. Because the regression results will be iden-
tical to (18.64), we can use it directly.

As an example, let us estimate an AR(2) model for the general fertility rate in FER-
TIL3.RAW, using the observations up through 1979. (In Exercise 18.17 you are asked
to use this model for forecasting, which is why we save some observations at the end
of the sample.)

gf̂rt �(3.22)�(1.272)gfrt�1 �(.311)gfrt�2

gf̂rt �(2.92)�1(.120)gfrt�1 �(.121)gfrt�2

n � 65, R2 � .949, R̄2 � .947.

(18.65)

The t statistic on the second lag is about �2.57, which is statistically different from zero
at about the 1% level. (The first lag also has a very significant t statistic, which has an
approximate t distribution by the same reasoning used for �̂2.) The R-squared, adjusted
or not, is not especially informative as a goodness-of-fit measure because gfr apparently
contains a unit root, and it makes little sense to ask how much of the variance in gfr we
are explaining.

The coefficients on the two lags in (18.65) add up to .961, which is close to and not
statistically different from one (as can be verified by applying the augmented Dickey-
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Fuller test to the equation �gfrt � � � �gfrt�1 � ��gfrt�1 � ut). Even though we have
not imposed the unit root restriction, we can still use (18.65) for forecasting, as we dis-
cussed earlier.

Before ending this section, we point out one potential improvement in forecasting
in the context of vector autoregressive models with I(1) variables. Suppose {yt} and {zt}
are each I(1) processes. One approach for obtaining forecasts of y is to estimate a bivari-
ate autoregression in the variables �yt and �zt and then to use (18.63) to generate one-
or multi-step-ahead forecasts; this is essentially the first approach we described earlier.
However, if yt and zt are cointegrated, we have more stationary, stable variables in the
information set that can be used in forecasting �y: namely, lags of yt � �zt, where � is
the cointegrating parameter. A simple error correction model is

�yt � �0 � �1�yt�1 � 
1�zt�1 � �1(yt�1 � �zt�1) � et,

E(et�It�1) � 0.
(18.66)

To forecast yn�1, we use observations up through n to estimate the cointegrating para-
meter, �, and then estimate the parameters of the error correction model by OLS, as
described in Section 18.4. Forecasting �yn�1 is easy: we just plug �yn, �zn, and yn �
�̂zn into the equation. Having obtained the forecast of �yn�1, we add it to yn.

By rearranging the error correction model, we can write

yt � �0 � �1yt�1 � �2yt�2 � �1zt�1 � �2zt�2 � ut, (18.67)

where �1 � 1 � �1 � �, �2 � ��1, and so on, which is the first equation in a VAR model
for yt and zt. Notice that this depends on five parameters, just as many as in the error cor-
rection model. The point is that, for the purposes of forecasting, the VAR model in the
levels and the error correction model are essentially the same. This is not the case in
more general error correction models. For example, suppose that �1 � 
1 � 0 in (18.66),
but we have a second error correction term, �2(yt�2 � �zt�2). Then, the error correction
model involves only four parameters, whereas (18.67)—which has the same order of
lags for y and z—contains five parameters. Thus, error correction models can economize
on parameters, that is, they are generally more parsimonious than VARs in levels.

If yt and zt are I(1) but not cointegrated, the appropriate model is (18.66) without
the error correction term. This can be used to forecast �yn�1, and we can add this to yn

to forecast yn�1.

SUMMARY

The time series topics covered in this chapter are used routinely in empirical macro-
economics, empirical finance, and a variety of other applied fields. We began by show-
ing how infinite distributed lag models can be interpreted and estimated. These can
provide flexible lag distributions with fewer parameters than a similar finite distributed
lag model. The geometric distributed lag and, more generally, rational distributed lag
models, are the most popular. They can be estimated using standard econometric pro-
cedures on simple dynamic equations.
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Testing for a unit root has become very common in time series econometrics. If a
series has a unit root, then, in many cases, the usual large sample normal approxima-
tions are no longer valid. In addition, a unit root process has the property that an inno-
vation has a long-lasting effect, which is of interest in its own right. While there are
many tests for unit roots, the Dickey-Fuller t test—and its extension, the augmented
Dickey-Fuller test—is probably the most popular and easiest to implement. We can
allow for a linear trend when testing for unit roots by adding a trend to the Dickey-
Fuller regression.

When an I(1) series, yt, is regressed on another I(1) series, xt, there is serious con-
cern about spurious regression, even if the series do not contain obvious trends. This
has been studied thoroughly in the case of a random walk: even if the two random walks
are independent, the usual t test for significance of the slope coefficient, based on the
usual critical values, will reject much more than the nominal size of the test. In addi-
tion, the R2 tends to a random variable, rather than to zero (as would be the case if we
regress the difference in yt on the difference in xt).

In one important case, a regression involving I(1) variables is not spurious, and that
is when the series are cointegrated. This means that a linear function of the two I(1)
variables is I(0). If yt and xt are I(1) but yt � xt is I(0), yt and xt cannot drift arbitrarily
far apart. There are simple tests of the null of no cointegration against the alternative of
cointegration, one of which is based on applying a Dickey-Fuller unit root test to the
residuals from a static regression. There are also simple estimators of the cointegrating
parameter that yield t statistics with approximate standard normal distributions (and
asymptotically valid confidence intervals). We covered the leads and lags estimator in
Section 18.4.

Cointegration between yt and xt implies that error correction terms may appear in a
model relating �yt to �xt; the error correction terms are lags in yt � �xt, where � is the
cointegrating parameter. A simple two-step estimation procedure is available for esti-
mating error correction models. First, � is estimated using a static regression (or the
leads and lags regression). Then, OLS is used to estimate a simple dynamic model in
first differences which includes the error correction terms.

Section 18.5 contained an introduction to forecasting, with emphasis on regression-
based forecasting methods. Static models or, more generally, models that contain
explanatory variables dated contemporaneously with the dependent variable, are lim-
ited because then the explanatory variables need to be forecasted. If we plug in hypoth-
esized values of unknown future explanatory variables, we obtain a conditional
forecast. Unconditional forecasts are similar to simply modeling yt as a function of past
information we have observed at the time the forecast is needed. Dynamic regression
models, including autoregressions and vector autoregressions, are used routinely. In
addition to obtaining one-step-ahead point forecasts, we also discussed the construction
of forecast intervals, which are very similar to prediction intervals.

Various criteria are used for choosing among forecasting methods. The most com-
mon performance measures are the root mean squared error and the mean absolute
error. Both estimate the size of the average forecast error. It is most informative to com-
pute these measures using out-of-sample forecasts.

Multi-step-ahead forecasts present new challenges and are subject to large forecast
error variances. Nevertheless, for models such as autoregressions and vector autore-
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gressions, multi-step-ahead forecasts can be computed, and approximate forecast inter-
vals can be obtained.

Forecasting trending and I(1) series requires special care. Processes with determin-
istic trends can be forecasted by including time trends in regression models, possibly
with lags of variables. A potential drawback is that deterministic trends can provide
poor forecasts for long-horizon forecasts: once it is estimated, a linear trend continues
to increase or decrease. The typical approach to forecasting an I(1) process is to fore-
cast the difference in the process and to add the level of the variable to that forecasted
difference. Alternatively, vector autoregressive models can be used in the levels of the
series. If the series are cointegrated, error correction models can be used instead.

KEY TERMS
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Augmented Dickey-Fuller Test
Cointegration
Conditional Forecast
Dickey-Fuller Distribution
Dickey-Fuller (DF) Test
Engle-Granger Two-Step Procedure
Error Correction Model
Exponential Smoothing
Forecast Error
Forecast Interval
Geometric (or Koyck) Distributed Lag
Granger Causality
In-Sample Criteria
Infinite Distributed Lag (IDL) Model
Information Set

Leads and Lags Estimator
Loss Function
Martingale
Martingale Difference Sequence
Mean Absolute Error (MAE)
Multiple-Step-Ahead Forecast
One-Step-Ahead Forecast
Out-of-Sample Criteria
Point Forecast
Rational Distributed Lag (RDL) Model
Root Mean Squared Error (RMSE)
Spurious Regression Problem
Unconditional Forecast
Unit Roots
Vector Autoregressive (VAR) Model

PROBLEMS

18.1 Consider equation (18.15) with k � 2. Using the IV approach to estimating the 
h

and �, what would you use as instruments for yt�1?

18.2 An interesting economic model that leads to an econometric model with a lagged
dependent variable relates yt to the expected value of xt, say x t*, where the expectation
is based on all observed information at time t � 1:

yt � �0 � �1x t* � ut. (18.68)

A natural assumption on {ut} is that E(ut�It�1) � 0, where It�1 denotes all information
on y and x observed at time t � 1; this means that E(yt�It�1) � �0 � �1x t*. To complete
this model, we need an assumption about how the expectation x t* is formed. We saw a
simple example of adaptive expectations in Section 11.2, where x t* � xt�1. A more com-
plicated adaptive expectations scheme is
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x t* � x t*�1 � �(xt�1 � x t*�1), (18.69)

where 0 � � � 1. This equation implies that the change in expectations reacts to
whether last period’s realized value was above or below its expectation. The assump-
tion 0 � � � 1 implies that the change in expectations is a fraction of last period’s error.

(i) Show that the two equations imply that

yt � ��0 � (1 � �)yt�1 � ��1xt�1 � ut � (1 � �)ut�1.

[Hint: Lag equation (18.68) one period, multiply it by (1 � �), and sub-
tract this from (18.68). Then, use (18.69).]

(ii) Under E(ut�It�1) � 0, {ut} is serially uncorrelated. What does this imply
about the errors, vt � ut � (1 � �)ut�1?

(iii) If we write the equation from part (i) as

yt � �0 � �1yt�1 � �2xt�1 � vt,

how would you consistently estimate the �j?
(iv) Given consistent estimators of the �j, how would you consistently esti-

mate � and �1?

18.3 Suppose that {yt} and {zt} are I(1) series, but yt � �zt is I(0) for some � � 0.
Show that for any � � �, yt � �zt must be I(1).

18.4 Consider the error correction model in equation (18.37). Show that if you add
another lag of the error correction term, yt�2 � �xt�2, the equation suffers from perfect
collinearity. [Hint: Show that yt�2 � �xt�2 is a perfect linear function of yt�1 � �xt�1,
�xt�1, and �yt�1.]

18.5 Suppose the process {(xt,yt): t � 0,1,2,…} satisfies the equations

yt � �xt � ut

and

�xt � 
�xt�1 � vt,

where E(ut�It�1) � E(vt�It�1) � 0, It�1 contains information on x and y dated at time
t � 1 and earlier, � � 0, and �
� � 1 [so that xt, and therefore yt, is I(1)]. Show that
these two equations imply an error correction model of the form

�yt � 
1�xt�1 � �(yt�1 � �xt�1) � et,

where 
1 � �
, � � �1, and et � ut � �vt. (Hint: First subtract yt�1 from both sides
of the first equation. Then, add and subtract �xt�1 from the right-hand side and
rearrange. Finally, use the second equation to get the error correction model that con-
tains �xt�1.)

18.6 Using the monthly data in VOLAT.RAW, the following model was estimated:

pcîp �(1.54)�(.344)pcip�1 �(.074)pcip�2 �(.073)pcip�3 �(.031)pcsp�1

pcîp �0(.56)�(.042)pcip�1 �(.045)pcip�2 �(.042)pcip�3 �(.013)pcsp�1

n � 554, R2 � .174, R̄2 � .168,
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where pcip is the percentage change in monthly industrial production, at an annualized
rate, and pcsp is the percentage change in the Standard & Poors 500 Index, also at an
annualized rate.

(i) If the past three months of pcip are zero, and pcsp�1 � 0, what is the
predicted growth in industrial production for this month? Is it statisti-
cally different from zero?

(ii) If the past three months of pcip are zero, but pcsp�1 � 10, what is the
predicted growth in industrial production?

(iii) What do you conclude about the effects of the stock market on real eco-
nomic activity?

18.7 Let gMt be the annual growth in the money supply and let unemt be the unem-
ployment rate. Assuming that unemt follows a stable AR(1) process, explain in detail
how you would test whether gM Granger causes unem.

18.8 Suppose that yt follows the model

yt � � � �1zt�1 � ut

ut � �ut�1 � et

E(et�It�1) � 0,

where It�1 contains y and z dated at t � 1 and earlier.
(i) Show that E(yt�1�It) � (1 � �)� � �yt � �1zt � ��1zt�1. (Hint: Write

ut�1 � yt�1 � � � �1zt�2 and plug this into the second equation; then,
plug the result into the first equation and take the conditional expecta-
tion.)

(ii) Suppose that you use n observations to estimate �, �1, and �. Write the
equation for forecasting yn�1.

(iii) Explain why the model with one lag of z and AR(1) serial correlation is
a special case of the model

yt � �0 � �yt�1 � 
1zt�1 � 
2zt�2 � et.

(iv) What does part (iii) suggest about using models with AR(1) serial cor-
relation for forecasting?

18.9 Let {yt} be an I(1) sequence. Suppose that ĝn is the one-step-ahead forecast of
�yn�1 and let f̂n � ĝn � yn be the one-step-ahead forecast of yn�1. Explain why the fore-
cast errors for forecasting �yn�1 and yn�1 are identical.

COMPUTER EXERCISES

18.10 Use the data in WAGEPRC.RAW for this exercise. Problem 11.5 gives estimates
of a finite distributed lag model of gprice on gwage, where 12 lags of gwage are used.

(i) Estimate a simple geometric DL model of gprice on gwage. In particu-
lar, estimate equation (18.11) by OLS. What are the estimated impact
propensity and LRP? Sketch the estimated lag distribution.

(ii) Compare the estimated IP and LRP to those obtained in Problem 11.5.
How do the estimated lag distributions compare?
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(iii) Now, estimate the rational distributed lag model from (18.16). Sketch
the lag distribution and compare the estimated IP and LRP to those
obtained in part (ii).

18.11 Use the data in HSEINV.RAW for this exercise.
(i) Test for a unit root in log(invpc), including a linear time trend and two

lags of �log(incpct). Use a 5% significance level.
(ii) Use the approach from part (i) to test for a unit root in log(price).
(iii) Given the outcomes in parts (i) and (ii), does it make sense to test for

cointegration between log(invpc) and log(price)?

18.12 Use the data in VOLAT.RAW for this exercise.
(i) Estimate an AR(3) model for pcip. Now, add a fourth lag and verify that

it is very insignificant.
(ii) To the AR(3) model from part (i), add three lags of pcsp to test whether

pcsp Granger causes pcip. Carefully, state your conclusion.
(iii) To the model in part (ii), add three lags of the change in i3, the three-

month T-bill rate. Does pcsp Granger cause pcip conditional on past
�i3?

18.13 In testing for cointegration between gfr and pe in Example 18.5, add t2 to equa-
tion (18.32) to obtain the OLS residuals. Include one lag in the augmented DF test. The
5% critical value for the test is �4.15.

18.14 Use INTQRT.RAW for this exercise.
(i) Estimate the equation

hy6t � � � �hy3t�1 � �0�hy3t � �1�hy3t�1 � �1�hy3t�2 � et

and report the results in equation form. Test H0: � � 1 against a two-
sided alternative. Assume that the lead and lag are sufficient so that
{hy3t�1} is strictly exogenous in this equation and do not worry about
serial correlation.

(ii) To the error correction model in (18.39), add �hy3t�2 and (hy6t�2 �
hy3t�3). Are these terms jointly significant? What do you conclude
about the appropriate error correction model?

18.15 Use the data in PHILLIPS.RAW, adding the 1997 values for unem and inf: 4.9 and
2.3, respectively.

(i) Estimate the models in (18.48) and (18.49) using the data up through
1997. Do the parameter estimates change much compared with (18.48)
and (18.49)?

(ii) Use the new equations to forecast unem1998; round to two places after
the decimal. Use the Economic Report of the President (1999 or later)
to obtain unem1998. Which equation produces a better forecast?

(iii) As we discussed in the text, the forecast for unem1998 using (18.49) is
4.90. Compare this with the forecast obtained using the data through
1997. Does using the extra year of data to obtain the parameter esti-
mates produce a better forecast?
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(iv) Use the model estimated in (18.48) to obtain a two-step-ahead forecast
of unem. That is, forecast unem1998 using equation (18.55) with �̂ �
1.572, �̂ � .732, and h � 2. Is this better or worse than the one-
step-ahead forecast obtained by plugging unem1997 � 4.9 into (18.48)?

18.16 Use the data in BARIUM.RAW for this exercise.
(i) Estimate the linear trend model chnimpt � � � �t � ut, using the first

119 observations (this excludes the last twelve months of observations
for 1988). What is the standard error of the regression?

(ii) Now, estimate an AR(1) model for chnimp, again using all data but the
last twelve months. Compare the standard error of the regression with
that from part (i). Which model provides a better in-sample fit?

(iii) Use the models from parts (i) and (ii) to compute the one-step-ahead
forecast errors for the twelve months in 1988. (You should obtain
twelve forecast errors for each method.) Compute and compare the
RMSEs and the MAEs for the two methods. Which forecasting method
works better out-of-sample for one-step-ahead forecasts?

(iv) Add monthly dummy variables to the regression from part (i). Are these
jointly significant? (Do not worry about the slight serial correlation in
the errors from this regression when doing the joint test.)

18.17 Use the data in FERTIL3.RAW for this exercise.
(i) Graph gfr against time. Does it contain a clear upward or downward

trend over the entire sample period?
(ii) Using the data up through 1979, estimate a cubic time trend model for

gfr (that is, regress gfr on t, t2, and t3, along with an intercept).
Comment on the R-squared of the regression.

(iii) Using the model in part (ii), compute the mean absolute error of the
one-step-ahead forecast errors for the years 1980 through 1984.

(iv) Using the data through 1979, regress �gfrt on a constant only. Is the con-
stant statistically different from zero? Does it make sense to assume that
any drift term is zero, if we assume that gfrt follows a random walk?

(v) Now, forecast gfr for 1980 through 1984, using a random walk model:
the forecast of gfrn�1 is simply gfrn. Find the MAE. How does it com-
pare with the MAE from part (iii)? Which method of forecasting do you
prefer?

(vi) Now, estimate an AR(2) model for gfr, again using the data only
through 1979. Is the second lag significant?

(vii) Obtain the MAE for 1980 through 1984, using the AR(2) model. Does
this more general model work better out-of-sample than the random
walk model?

18.18 Use CONSUMP.RAW for this exercise.
(i) Let yt be real per capita disposable income. Use the data up through

1989 to estimate the model

yt � � � �t � �yt�1 � ut

and report the results in the usual form.
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(ii) Use the estimated equation from part (i) to forecast y in 1990. What is
the forecast error?

(iii) Compute the mean absolute error of the one-step-ahead forecasts for the
1990s, using the parameters estimated in part (i).

(iv) Now, compute the MAE over the same period, but drop yt�1 from the
equation. Is it better to include yt�1 in the model or not?

18.19 Use the data in INTQRT.RAW for this exercise.
(i) Using the data from all but the last four years (16 quarters), estimate an

AR(1) model for �r6t. (We use the difference because it appears that r6t

has a unit root.) Find the RMSE of the one-step-ahead forecasts for
�r6, using the last 16 quarters.

(ii) Now, add the error correction term sprt�1 � r6t�1 � r3t�1 to the equa-
tion from part (i). (This assumes that the cointegrating parameter is
one.) Compute the RMSE for the last 16 quarters. Does the error cor-
rection term help with out-of-sample forecasting in this case?

(iii) Now, estimate the cointegrating parameter, rather than setting it to one.
Use the last 16 quarters again to produce the out-of-sample RMSE.
How does this compare with the forecasts from parts (i) and (ii)?

(iv) Would your conclusions change if you wanted to predict r6 rather than
�r6? Explain.
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In this chapter, we discuss the ingredients of a successful empirical analysis, with
emphasis on completing a term project. In addition to reminding you of the impor-
tant issues that have arisen throughout the text, we emphasize recurring themes that

are important for applied research. We also provide suggestions for topics as a way of
stimulating your imagination. Several sources of economic research and data are given
as references.

19.1 POSING A QUESTION

The importance of posing a very specific question cannot be overstated. Without being
explicit about the goal of your analysis, you cannot know where to even begin. The
widespread availability of rich data sets makes it tempting to launch into data collection
based on half-baked ideas, but this is often counterproductive. It is likely that, without
carefully formulating your hypotheses and the kind of model you will need to estimate,
you will forget to collect information on important variables, obtain a sample from the
wrong population, or collect data for the wrong time period.

This does not mean that you should pose your question in a vacuum. Especially for
a one-term project, you cannot be too ambitious. Therefore, when choosing a topic, you
should be reasonably sure that data sources exist that will allow you to answer your
question in the allotted time.

You need to decide what areas of economics or other social sciences interest you
when selecting a topic. For example, if you have taken a course in labor economics, you
have probably seen theories that can be tested empirically or relationships that have
some policy relevance. Labor economists are constantly coming up with new variables
that can explain wage differentials. Examples include quality of high school [Card and
Krueger (1992) and Betts (1995)], amount of math and science taken in high school
[Levine and Zimmerman (1995)], and physical appearance [Hamermesh and Biddle
(1994), Averett and Korenman (1996), and Biddle and Hamermesh (1998)].
Researchers in state and local public finance study how local economic activity depends
on economic policy variables, such as property taxes, sales taxes, level and quality of
services (such as schools, fire, and police), and so on. [See, for example, White (1986),
Papke (1987), Bartik (1991), and Netzer (1992).]
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Economists that study education issues are interested in how spending affects per-
formance [Hanushek (1986)], whether attending certain kinds of schools improves per-
formance [for example, Evans and Schwab (1995)], and in determining factors that
affect where private schools choose to locate [Downes and Greenstein (1996)].

Macroeconomists are interested in relationships between various aggregate time
series, such as the link between growth in gross domestic product and growth in fixed
investment or machinery [see De Long and Summers (1991)] or the effect of taxes on
interest rates [for example, Peek (1982)].

There are certainly reasons for estimating models that are mostly descriptive. For
example, property tax assessors use models (called hedonic price models—see
Example 4.8) to estimate housing values for homes that have not been sold recently.
This involves a regression model relating the price of a house to its characteristics (size,
number of bedrooms, number of bathrooms, and so on). As a topic for a term paper, this
is not very exciting: we are unlikely to learn much that is surprising, and such an analy-
sis has no obvious policy implications. Adding the crime rate in the neighborhood as an
explanatory variable would allow us to determine how important a factor crime is on
housing prices, something that would be useful in estimating the costs of crime.

Several relationships have been estimated using macroeconomic data that are
mostly descriptive. For example, an aggregate saving function can be used to estimate
the aggregate marginal propensity to save, as well as the response of saving to asset
returns (such as interest rates). Such an analysis could be made more interesting by
using time series data on a country that has a history of political upheavals and deter-
mining whether savings rates decline during times of political uncertainty.

Once you decide on an area of research, there are a variety of ways to locate spe-
cific papers on the topic. The Journal of Economic Literature (JEL) has a detailed clas-
sification system so that each paper is given a set of identifying codes that places it
within certain subfields of economics. The JEL also contains a list of articles published
in a wide variety of journals, organized by topic, and it even contains short abstracts of
some articles.

Especially convenient for finding published papers on various topics are Internet
services, such as EconLit, which is subscribed to by many universities. EconLit allows
users to do a comprehensive search of almost all economics journals by author, subject,
words in the title, and so on. The Social Science Citation Index is useful for finding
papers on a broad range of topics in the social sciences, including popular papers that
have been cited often in other published works.

In thinking about a topic, there are some things to keep in mind. First, for a ques-
tion to be interesting, it does not need to have broad-based policy implications; rather,
it can be of local interest. For example, you might be interested in knowing whether liv-
ing in a fraternity at your university causes students to have lower or higher grade point
averages. This may or may not be of interest to people outside of your university, but it
is probably of concern to at least some people within the university. On the other hand,
you might study a problem that starts out being of local interest but turns out to have
widespread interest, such as determining which factors affect, and which university
policies can stem, alcohol abuse on college campuses.

Second, it is very difficult, especially for a quarter or semester project, to do truly
original research using the standard macroeconomic aggregates on the U.S. economy.
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For example, the question of whether money growth, government spending growth, and
so on, affect economic growth has been and continues to be studied by professional
macroeconomists. The question of whether stock or other asset returns can be system-
atically predicted using known information has, for obvious reasons, been studied
pretty carefully. This does not mean that you should avoid estimating macroeconomic
or empirical finance models, as even just using more recent data can add constructively
to a debate. In addition, you can sometimes find a new variable that has an important
effect on economic aggregates or financial returns; such a discovery can be exciting.

The point is that exercises such as using a few additional years to estimate a stan-
dard Phillips curve or an aggregate consumption function for the U.S. economy, or
some other large economy, are unlikely to yield additional insights, although they can
be instructive for the student. Instead, you might use data on a smaller country to esti-
mate a static or dynamic Phillips curve, or to test the efficient markets hypothesis, and
so on.

At the nonmacroeconomic level, there are also plenty of questions that have been
studied extensively. For example, labor economists have published many papers on esti-
mating the return to education. This question is still studied because it is very impor-
tant, and new data sets, as well as new econometric approaches, continue to be
developed. For example, as we saw in Chapter 9, certain data sets have better proxy
variables for unobserved ability than other data sets. (Compare WAGE1.RAW and
WAGE2.RAW.) In other cases, we can obtain panel data or data from a natural experi-
ment—see Chapter 13—which allow us to approach an old question from a different
perspective.

As another example, criminologists are interested in studying the effects of various
laws on crimes. The question of whether capital punishment has a deterrent effect has
long been debated. Similarly, economists have been interested in whether taxes on cig-
arettes and alcohol reduce consumption (as always, in a ceteris paribus sense). As more
years of data at the state level become available, a richer panel data set can be created,
and this can help us better answer major policy questions. Plus, there are fairly recent
crime-fighting innovations—such as the advent of community policing—whose effec-
tiveness can be evaluated empiricially.

While you are formulating your question, it is helpful to discuss your ideas with
your classmates, instructor, and friends. You should be able to convince people that the
answer to your question is of some interest. (Of course, whether you can persuasively
answer your question is another issue, but you need to begin with an interesting ques-
tion.) If someone asks you about your paper and you respond with “I’m doing my paper
on crime” or “I’m doing my paper on interest rates,” chances are you have only decided
on a general area without formulating a true question. You should be able to say some-
thing like “I’m studying the effects of community policing on city crime rates in the
United States” or “I’m looking at how inflation volatility affects short-term interest
rates in Brazil.”

19.2 LITERATURE REVIEW

All papers, even if they are relatively short, should contain a review of relevant litera-
ture. It is rare that one attempts an empirical project where there is not some published
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precedent. If you search through journals or use on-line search services such as
EconLit to come up with a topic, you are already well on your way to a literature review.
If you select a topic on your own—such as studying the effects of drug usage on col-
lege performance at your university—then you will probably have to work a little
harder. But on-line search services make that work a lot easier, as you can search by
keywords, by words in the title, by author, and so on. You can then read abstracts of
papers to see how relevant they are to your own work.

When doing your literature search, you should think of related topics that might not
show up in a search using a handful of key words. For example, if you are studying the
effects of drug usage on wages or grade point average, you should probably look at the
literature on how alcohol usage affects such factors. Knowing how to do a thorough liter-
ature search is an acquired skill, but you can get a long way by thinking before searching.

Researchers differ on how a literature review should be incorporated into a paper.
Some like to have a separate section called “literature review,” while others like to
include the literature review as part of the introduction. This is largely a matter of taste,
although an extensive literature review probably deserves its own section. If the term
paper is the focus of the course—say, in a senior seminar or an advanced econometrics
course—your literature review probably will be lengthy. Term papers at the end of a
first course are typically shorter, and the literature reviews are briefer.

19.3 DATA COLLECTION

Deciding on the Appropriate Data Set

Collecting data for a term paper can be educational, exciting, and sometimes even frus-
trating. You must first decide on the kind of data needed to answer your posed question.
As we discussed in the introduction and have covered throughout this text, data sets
come in a variety of forms. The most common kinds are cross-sectional, time series,
pooled cross sections, and panel data sets.

Many questions can be addressed using any of the data structures we have
described. For example, to study whether more law enforcement lowers crime, we
could use a cross section of cities, a time series for a given city, or a panel data set of
cities—which consists of data on the same cities over two or more years.

Deciding on which kind of data to collect often depends on the nature of the analy-
sis. To answer questions at the individual or family level, we often only have access to
a single cross section; typically, these are obtained via surveys. Then, we must ask
whether we can obtain a rich enough data set to do a convincing ceteris paribus analy-
sis. For example, suppose we want to know whether families who save through indi-
vidual retirement accounts (IRAs)—which have certain tax advantages—have less
non-IRA savings. In other words, does IRA saving simply crowd out other forms of
saving? There are data sets, such as the Survey of Consumer Finances, which contain
information on various kinds of saving for a different sample of families each year.
There are several issues that arise in using such a data set. Perhaps the most important
is whether there are enough controls—including income, demographics, and proxies for
saving tastes—to do a reasonable ceteris paribus analysis. If these are the only kinds of
data available, we must do what we can with them.
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The same issues arise with cross-sectional data on firms, cities, states, and so on. In
most cases, it is not obvious that we will be able to do a ceteris paribus analysis with a
single cross section. For example, any study of the the effects of law enforcement on
crime must recognize the endogeneity of law enforcement expenditures. When using
standard regression methods, it may be very hard to complete a convincing ceteris
paribus analysis, no matter how many controls we have. (See Section 19.4 for more dis-
cussion.)

If you have read the advanced chapters on panel data methods, you know that hav-
ing the same cross-sectional units at two or more different points in time can allow us
to control for time-constant unobserved effects that would normally confound regres-
sion on a single cross section. Panel data sets are relatively hard to obtain for individu-
als or families—although some important ones exist, such as the Panel Study of Income
Dynamics—but they can be used in very convincing ways. Panel data sets on firms also
exist. For example, CompuStat and the Center for Research on Securities Prices
(CRSP) manage very large panel data sets of financial information on firms. Easier to
obtain are panel data sets on larger units, such as schools, cities, counties, and states, as
these tend not to disappear over time, and government agencies are responsible for col-
lecting information on the same variables each year. For example, the Federal Bureau
of Investigation collects and reports detailed information on crime rates at the city level.
Sources of data are listed in the chapter appendix.

Data come in a variety of forms. Some data sets, especially historical ones, are
available only in printed form. For small data sets, entering the data yourself from the
printed source is manageable and convenient. Sometimes, articles are published with
small data sets—especially time series applications. These can be used in an empirical
study, perhaps by supplementing the data with more recent years.

Many data sets are available on computer diskettes or magnetic tapes. The former
are especially easy to work with. Currently, very large data sets can be put on small
diskettes. Various government agencies sell data diskettes, as do private firms. Authors
of papers are often willing to provide their data sets in diskette form.

More and more data sets are available on the worldwide web. The web is a vast
resource of on-line data bases. Numerous web sites containing economic and related
data sets have recently been created. Several other web sites contain links to data sets
that are of interest to economists; some of these are listed in the chapter appendix.
Generally, searching the Internet for data sources is fairly easy and will become even
more convenient in the future.

Entering and Storing Your Data

Once you have decided on a data type and have located a data source, you must put the
data into usable form. If the data came on diskette, they are already in some form, hope-
fully one in widespread use. The most flexible way to obtain data in diskette form is as
a standard text (ASCII) file. All statistics and econometrics software packages allow
raw data to be stored this way. Typically, it is straightforward to read a text file directly
into an econometrics package, provided the file is properly structured. The data files we
have used throughout the text provide several examples of how cross-sectional, time
series, pooled cross sections, and panel data sets are usually stored. As a general rule,
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the data should have a tabular form, with each observation representing a different row;
the columns in the data set represent different variables. Occasionally, you might
encounter a data set stored with each column representing an observation and each row
a different variable. This is not ideal, but most software packages allow data to be read
in this form, and then reshaped. Naturally, it is crucial to know how the data are orga-
nized before reading them into your econometrics package.

For time series data sets, there is only one sensible way to enter and store the data:
namely, chronologically, with the earliest time period listed as the first observation and
the most recent time period as the last observation. It is often useful to include variables
indicating year and, if relevant, quarter or month. This facilitates estimation of a vari-
ety of models later on, including allowing for seasonality and breaks at different time
periods. For cross sections pooled over time, it is usually best to have the cross section
for the earliest year fill the first block of observations, followed by the cross section for
the second year, and so on. (See FERTIL1.RAW as an example.) This arrangement is
not crucial, but it is very important to have a variable stating the year attached to each
observation.

For panel data, as we discussed in Section 13.5, it is best if all the years for each
cross-sectional observation are adjacent and in chronological order. With this ordering
we can use all of the panel data methods from Chapters 13 and 14. With panel data, it
is important to include a unique identifier for each cross-sectional unit, along with a
year variable.

If you obtain your data in printed form, you have several options for entering it into
a computer. First, you can create a text file using a standard text editor. (This is how
several of the raw data sets included with the text were initially created.) Typically, it is
required that each row starts a new observation, that each row contains the same order-
ing of the variables—in particular, each row should have the same number of entries—
and that the values are separated by at least one space. Sometimes, a different separator,
such as a comma, is better, but this depends on the software you are using. If you have
missing observations on some variables, you must decide on how to denote that; sim-
ply leaving a blank does not generally work. Many regression packages accept a period
as the missing value symbol. Some people prefer to use a number—presumably an
impossible value for the variable of interest—to denote missing values. If you are not
careful, this can be dangerous; we discuss this further later.

If you have nonnumerical data—for example, you want to include the names in a
sample of colleges or the names of cities—then you should check the econometrics
package you will use to see the best way to enter such variables (often called strings).
Typically, strings are put between double or single quotations. Or, the text file can fol-
low a rigid formatting, which usually requires a small program to read in the text file.
But you need to check your econometrics package for details.

Another generally available option is to use a spreadsheet to enter your data, such
as Excel. This has a couple of advantages over a text file. First, because each observa-
tion on each variable is a cell, it is less likely that numbers will be run together (as
would happen if you forget to enter a space in a text file). Secondly, spreadsheets allow
manipulation of data, such as sorting, computing averages, and so on. This second ben-
efit is less important if you use a software package that allows for sophisticated data
management; many software packages, including Eviews and Stata, fall into this cate-
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gory. If you use a spreadsheet for initial data entry, then you must often export the data
in a form that can be read by your econometrics package. This is usually straightfor-
ward, as spreadsheets export to text files using a variety of formats.

A third alternative is to enter the data directly into your econometrics package.
While this obviates the need for a text editor or a spreadsheet, it is more awkward
because you cannot freely move across different observations to make corrections or
additions.

Data downloaded from the Internet may come in a variety of forms. Often data
come as text files, but different conventions are used for separating variables; for panel
data sets, the conventions on how to order the data may differ. Some Internet data sets
come as spreadsheet files, in which case you must use an appropriate spreadsheet to
read them.

Inspecting, Cleaning, and Summarizing Your Data

It is extremely important to become familiar with any data set you will use in an empir-
ical analysis. If you enter the data yourself, you will be forced to know everything about
it. But if you obtain data from an outside source, you should still spend some time
understanding its structure and conventions. Even data sets that are widely used and
heavily documented can contain glitches. If you are using a data set obtained from the
author of a paper, you must be aware that methods of data set construction can be for-
gotten.

Earlier, we reviewed the standard ways that various data sets are stored. You also
need to know how missing values are coded. Preferably, missing values are indicated
with a nonnumeric character, such as a period. If a number is used as a missing value
code, such as “999” or “�1”, you must be very careful when using these observations
in computing any statistics. Your econometrics package will probably not know that a
certain number really represents a missing value: it is likely that such observations will
be used as if they are valid, and this can produce rather misleading results. The best
approach is to set any numerical codes for missing values to some other character (such
as a period) that cannot be mistaken for real data.

You must also know the nature of the variables in the data set. Which are binary
variables? Which are ordinal variables (such as a credit rating)? What are the units of
measurement of the variables? For example, are monetary values expressed in dollars,
thousands of dollars, millions of dollars, or so on? Are variables representing a rate—
such as school dropout rates, inflation rates, unionization rates, or interest rates—
measured as a percent or a proportion?

Especially for time series data, it is crucial to know if monetary values are in nom-
inal (current) or real (constant) dollars. If the values are in real terms, what is the base
year or period?

If you receive a data set from an author, some variables may already be transformed
in certain ways. For example, sometimes only the log of a variable (such as wage or
salary) is reported in the data set.

Detecting mistakes in a data set is necessary for preserving the integrity of any data
analysis. It is always useful to find minimums, maximums, means, and standard devia-
tions of all, or at least the most significant, variables in the analysis. For example, if you
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find that the minimum value of education in your sample is �99, you know that at least
one entry on education needs to be set to a missing value. If, upon further inspection,
you find that several observations have �99 as the level of education, you can be con-
fident that you have stumbled onto the missing value code for education. As another
example, if you find that an average murder conviction rate across a sample of cities is
.632, you know that conviction rate is measured as a proportion, not a percent. Then, if
the maximum value is above one, this is likely a typographical error. (It is not uncom-
mon to find data sets where most of the entries on a rate variable were entered as a per-
cent, but where some were entered as a proportion, and vice versa. Such data coding
errors can be difficult to detect, but it is important to try.)

We must also be careful in using time series data. If we are using monthly or quar-
terly data, we must know which variables, if any, have been seasonally adjusted.
Transforming data also requires great care. Suppose we have a monthly data set and
we want to create the change in a variable from one month to the next. To do this, we
must be sure that the data are ordered chronologically, from earliest period to latest.
If for some reason this is not the case, the differencing will result in garbage. To be
sure the data are properly ordered, it is useful to have a time period indicator. With
annual data, it is sufficient to know the year, but then we should know whether the
year is entered as four digits or two digits (for example, 1998 versus 98). With
monthly or quarterly data, it is also useful to have a variable or variables indicating
month or quarter. With monthly data, we may have a set of dummy variables (11 or
12) or one variable indicating the month (1 through 12 or a string variable, such as
jan, feb, and so on).

With or without yearly, monthly, or quarterly indicators, we can easily construct
time trends in all econometrics software packages. Creating seasonal dummy variables
is easy if the month or quarter is indicated; at a minimum, we need to know the month
or quarter of the first observation.

Manipulating panel data can be even more challenging. In Chapter 13, we discussed
pooled OLS on the differenced data as one general approach to controlling for unob-
served effects. In constructing the differenced data, we must be careful not to create
phantom observations. Suppose we have a balanced panel on cities from 1992 through
1997. Even if the data are ordered chronologically within each cross-sectional unit—
something that should be done before proceeding—a mindless differencing will create
an observation for 1992 for all cities except the first in the sample. This observation will
be the 1992 value for city i, minus the 1997 value for city i � 1; this is clearly nonsense.
Thus, we must make sure that 1992 is missing for all differenced variables.

With an unbalanced panel, things become much trickier because no single com-
mand works for all cross-sectional units. It is usually easier to use fixed effects estima-
tion on unbalanced panels.

19.4 ECONOMETRIC ANALYSIS

This text has focused on econometric analysis, and we are not about to provide a review
of econometric methods in this section. Nevertheless, we can give some general guide-
lines about the sorts of issues that need to be considered in an empirical analysis.
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As we discussed earlier, after deciding on a topic, we must collect an appropriate
data set. Assuming that this has also been done, we must next decide on the appropri-
ate econometric methods.

If your course has focused on ordinary least squares estimation of a multiple linear
regression model, using either cross-sectional or time series data, the econometric
approach has pretty much been decided for you. This is not necessarily a weakness, as
OLS is still the most widely used econometric method. Of course, you still have to
decide whether any of the variants of OLS—such as weighted least squares or correct-
ing for serial correlation in a time series regression—are required.

In order to justify OLS, you must also make a convincing case that the key OLS
assumptions are satisfied for your model. As we have discussed at some length, the first
issue is whether the error term is uncorrelated with the explanatory variables. Ideally,
you have been able to control for enough other factors to assume that those that are left
in the error are unrelated to the regressors. Especially when dealing with individual,
family, or firm-level cross-sectional data, the self-selection problem—which we dis-
cussed in Chapters 7 and 15—is often relevant. For instance, in the IRA example from
Section 19.3, it may be that families with unobserved taste for saving are also the ones
that open IRAs. You should also be able to argue that the other potential sources of
endogeneity—namely, measurement error and simultaneity—are not a serious problem.

When specifying your model you must also make functional form decisions. Should
some variables appear in logarithmic form? (In econometric applications, the answer is
often yes.) Should some variables be included in levels and squares, to possibly capture
a diminishing effect? How should qualitative factors appear? Is it enough to just include
binary variables for different attributes or groups? Or, do these need to be interacted
with quantitative variables? (See Chapter 7 for details.)

For cross-sectional analysis, a secondary, but nevertheless important issue, is
whether there is heteroskedasticity. In Chapter 8, we explained how this can be dealt
with. The simplest way is to compute heteroskedasticity-robust statistics.

As we emphasized in Chapters 10, 11, and 12, time series applications require addi-
tional care. Should the equation be estimated in levels? If levels are used, are time
trends needed? Is differencing the data more appropriate? If the data are monthly or
quarterly, does seasonality have to be accounted for? If you are allowing for dynamics—
for example, distributed lag dynamics—how many lags should be included? You must
start with some lags based on intuition or common sense, but eventually it is an empir-
ical matter.

If your model has some potential misspecification, such as omitted variables, and
you use OLS, you should attempt some sort of misspecification analysis of the kinds
we discussed in Chapters 3 and 5. Can you determine, based on reasonable assump-
tions, the direction of any bias in the estimators?

If you have studied the method of instrumental variables, you know that it can be
used to solve various forms of endogeneity, including omitted variables (Chapter 15),
errors-in-variables (Chapter 15), and simultaneity (Chapter 16). Naturally, you need to
think hard about whether the instrumental variables you are considering are likely to be
valid.

Good papers in the empirical social sciences contain sensitivity analysis. Broadly,
this means you estimate your original model and modify it in ways that seem reason-
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able. Hopefully, the important conclusions do not change. For example, if you use as an
explanatory variable a measure of alcohol consumption (say, in a grade point average
equation), do you get qualitatively similar results if you replace the quantitative mea-
sure with a dummy variable indicating alcohol usage? If the binary usage variable is
significant but the alcohol quantity variable is not, it could be that usage reflects some
unobserved attribute that affects GPA and is also correlated with alcohol usage. But this
needs to be considered on a case-by-case basis.

If some observations are much different from the bulk of the sample—say, you
have a few firms in a sample that are much larger than the other firms—do your
results change much when those observations are excluded from the estimation? If so,
you may have to alter functional forms to allow for these observations or argue that
they follow a completely different model. The issue of outliers was discussed in
Chapter 9.

Using panel data raises some additional econometric issues. Suppose you have col-
lected two periods. There are at least four ways to use two periods of panel data with-
out resorting to instrumental variables. You can pool the two years in a standard OLS
analysis, as discussed in Chapter 13. While this might increase the sample size relative
to a single cross section, it does not control for time-constant unobservables. In addi-
tion, the errors in such an equation are almost always serially correlated because of an
unobserved effect. Random effects estimation corrects the serial correlation problem
and produces asymptotically efficient estimators, provided the unobserved effect has
zero mean given values of the explanatory variables in all time periods.

Another possibility is to include a lagged dependent variable in the equation for the
second year. In Chapter 9, we presented this as a way to at least mitigate the omitted
variables problem, as we are in any event holding fixed the initial outcome of the depen-
dent variable. This often leads to similar results as differencing the data, as we covered
in Chapter 13.

With more years of panel data, we have the same options, plus an additional choice.
We can use the fixed effects transformation to eliminate the unobserved effect. (With
two years of data, this is the same as differencing.) In Chapter 15, we showed how
instrumental variables techniques can be combined with panel data transformations to
relax exogeneity assumptions even more. As a general rule, it is a good idea to apply
several reasonable econometric methods and compare the results. This often allows us
to determine which of our assumptions are likely to be false.

Even if you are very careful in devising your topic, postulating your model, col-
lecting your data, and carrying out the econometrics, it is quite possible that you will
obtain puzzling results—at least some of the time. When that happens, the natural incli-
nation is to try different models, different estimation techniques, or perhaps different
subsets of data until the results correspond more closely to what was expected. Virtually
all applied researchers search over various models before finding the “best” model.
Unfortunately, this practice of data mining violates the assumptions we have made in
our econometric analysis. The results on unbiasedness of OLS and other estimators, as
well as the t and F distributions we derived for hypothesis testing, assume that we
observe a sample following the population model and we estimate that model once.
Estimating models that are variants of our original model violates that assumption
because we are using the same set of data in a specification search. In effect, we use the
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outcome of tests by using the data to respecify our model. The estimates and tests from
different model specifications are not independent of one another.

Some specification searches have been programmed into standard software pack-
ages. A popular one is known as stepwise regression, where different combinations of
explanatory variables are used in multiple regression analysis in an attempt to come up
with the best model. There are various ways that stepwise regression can be used, and
we have no intention of reviewing them here. The general idea is to either start with a
large model and keep variables whose p-values are below a certain significance level or
to start with a simple model and add variables that have significant p-values.
Sometimes, groups of variables are tested with an F test. Unfortunately, the final model
often depends on the order in which variables were dropped or added. [For more on
stepwise regression, see Draper and Smith (1981).] In addition, this is a severe form of
data mining, and it is difficult to interpret t and F statistics in the final model. One might
argue that stepwise regression simply automates what researchers do anyway in search-
ing over various models. However, in most applications, one or two explanatory vari-
ables are of primary interest, and then the goal is to see how robust the coefficients on
those variables are to either adding or dropping other variables, or to changing func-
tional form.

In principle, it is possible to incorporate the effects of data mining into our statisti-
cal inference; in practice, this is very difficult and is rarely done, especially in sophis-
ticated empirical work. [See Leamer (1983) for an engaging discussion of this
problem.] But we can try to minimize data mining by not searching over numerous
models or estimation methods until a significant result is found and then reporting only
that result. If a variable is statistically significant in only a small fraction of the models
estimated, it is quite likely that the variable has no effect in the population.

19.5 WRITING AN EMPIRICAL PAPER

Writing a paper that uses econometric analysis is very challenging, but it can also be
rewarding. A successful paper combines a careful, convincing data analysis with good
explanations and exposition. Therefore, you must have a good grasp of your topic, good
understanding of econometric methods, and solid writing skills. Do not be discouraged
if you find writing an empirical paper difficult; most professional researchers have
spent many years learning how to craft an empirical analysis and to write the results in
a convincing form.

While writing styles vary, many papers follow the same general outline. The fol-
lowing paragraphs include ideas for section headings and explanations about what each
section should contain. These are only suggestions and hardly need to be strictly fol-
lowed. In the final paper, each section would be given a number, usually starting with
one for the introduction.

Introduction

The introduction states the basic objectives of the study and explains why it is impor-
tant. It generally entails a review of the literature, indicating what has been done and
how previous work can be improved upon. (As discussed in Section 19.2, an extensive
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literature review can be put in a separate section.) Presenting simple statistics or graphs
that reveal a seemingly paradoxical relationship is a useful way to introduce the paper’s
topic. For example, suppose that you are writing a paper about factors affecting fertil-
ity in a developing country, with the focus on education levels of women. An appealing
way to introduce the topic would be to produce a table or a graph showing that fertility
has been falling (say) over time and a brief explanation of how you hope to examine the
factors contributing to the decline. At this point, you may already know that, ceteris
paribus, more highly educated women have fewer children and that average education
levels have risen over time.

Most researchers like to summarize the findings of their paper in the introduction.
This can be a useful device for grabbing the reader’s attention. For example, you might
state that your best estimate of the effect of missing 10 hours of lecture during a thirty-
hour term is about one-half of a grade point. But the summary should not be too
involved because neither the methods nor the data used to obtain the estimates have yet
been introduced.

Conceptual (or Theoretical) Framework

This is the section where you describe the general approach to answering the question
you have posed. It can be formal economic theory, but in many cases, it is an intuitive
discussion about what conceptual problems arise in answering your question.

As an example, suppose you are studying the effects of economic opportunities and
severity of punishment on criminal behavior. One approach to explaining participation
in crime is to specify a utility maximization problem where the individual chooses the
amount of time spent in legal and illegal activities, given wage rates in both kinds of
activities, as well as variable measuring probability and severity of punishment for
criminal activity. The usefulness of such an exercise is that it suggests which variables
should be included in the empirical analysis; it gives guidance (but rarely specifics) as
to how the variables should appear in the econometric model.

Often there is no need to write down an economic theory. For econometric policy
analysis, common sense usually suffices for specifying a model. For example, suppose
you are interested in estimating the effects of participation in Aid for Families with
Dependent Children (AFDC) on the effects of child performance in school. AFDC pro-
vides supplemental income, but participation also makes it easier to receive Medicaid
and other benefits. The hard part of such an analysis is deciding on the set of variables
that should be controlled for. In this example, we could control for family income
(including AFDC and any other welfare income), mother’s education, whether the fam-
ily lives in an urban area, and other variables. Then, the inclusion of an AFDC partici-
pation indicator (hopefully) measures the nonincome benefits of AFDC participation. A
discussion of which factors should be controlled for and the mechanisms through which
AFDC participation might improve school performance substitute for formal economic
theory.

Econometric Models and Estimation Methods

It is very useful to have a section that contains a few equations of the sort you estimate
and present in the results section of the paper. This allows you to fix ideas about what
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the key explanatory variable is and what other factors you will control for. Writing
equations containing error terms allows you to discuss whether a method such as OLS
will be appropriate.

The distinction between a model and an estimation method should be made in this
section. A model represents a population relationship (broadly defined to allow for time
series equations). For example, we should write

colGPA � �0 � �1alcohol � �2hsGPA � �3SAT � �4 female � u (19.1)

to describe the relationship between college GPA and alcohol consumption, with some
other controls in the equation. Presumably, this equation represents a population, such
as all undergraduates at a university. There are no “hats” (ˆ) on the �j or on colGPA
because this is a model, not an estimated equation. We do not put in numbers for the �j

because we do not know (and never will know) these numbers. Later, we will estimate
them. In this section, do not anticipate the presentation of your empirical results. In
other words, do not start with a general model and then say that you omitted certain
variables because they turned out to be insignificant. Such discussions should be left for
the results section.

A time series model to relate city-level car thefts to the unemployment rate (and
other controls) could look like

theftst � �0 � �1unemt � �2unemt�1 � �3carst �
�4convratet � �5convratet�1 � ut,

(19.2)

where the t subscript is useful for emphasizing any dynamics in the equation (in this
case, allowing for unemployment and the automobile theft conviction rate to have
lagged effects).

After specifying a model or models, it is appropriate to discuss estimation methods.
In most cases, this will be OLS, but, for example, in a time series equation, you might
use feasible GLS to do a serial correlation correction (as in Chapter 12). However, the
method for estimating a model is quite distinct from the model itself. It is not mean-
ingful, for instance, to talk about “an OLS model.” Ordinary least squares is a method
of estimation, and so are weighted least squares, Cochrane-Orcutt, and so on. There are
usually many ways to estimate any model. You should explain why the method you are
choosing is warranted.

Any assumptions that are used in obtaining an estimable econometric model from
an underlying economic model should be clearly discussed. For example, in the quality
of high school example mentioned in Section 19.1, the issue of how to measure school
quality is central to the analysis. Should it be based on average SAT scores, percentage
of graduates attending college, student-teacher ratios, average education level of teach-
ers, some combination of these, or possibly other measures?

We always have to make assumptions about functional form whether or not a theo-
retical model has been presented. As you know, constant elasticity and constant semi-
elasticity models are attractive because the coefficients are easy to interpret (as
percentages). There are no hard rules on how to choose functional form, but the guide-
lines discussed in Section 6.2 seem to work well in practice. You do not need an exten-
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sive discussion of functional form, but it is useful to mention whether you will be esti-
mating elasticities or a semi-elasticity. For example, if you are estimating the effect of
some variable on wage or salary, the dependent variable will almost surely be in loga-
rithmic form, and you might as well include this in any equations from the beginning.
You do not have to present every, or even most, of the functional form variations that
you will report later in the results section.

Often the data used in empirical economics are at the city or county level. For exam-
ple, suppose that for the population of small to mid-size cities, you wish to test the
hypothesis that having a minor league baseball team causes a city to have a lower
divorce rate. In this case, you must account for the fact that larger cities will have more
divorces. One way to account for the size of the city is to scale divorces by the city or
adult population. Thus, a reasonable model is

log(div/pop) � �0 � �1mlb � �2 perCath � �3log(inc/pop)
� other factors,

(19.3)

where mlb is a dummy variable equal to one if the city has a minor league baseball
team, perCath is the percentage of the population which is Catholic (so it is a number
such as 34.6 to mean 34.6%). Note that div/pop is a divorce rate, which is generally eas-
ier to interpret than the absolute number of divorces.

Another way to control for population is to estimate the model

log(div) � �0 � �1mlb � �2 perCath � �3log(inc) � �4log(pop)
� other factors.

(19.4)

The parameter of interest, �1, when multiplied by 100, gives the percentage difference
between divorce rates, holding population, percent Catholic, income, and whatever else
is in “other factors” constant. In equation (19.3), �1 measures the percentage effect of
minor league baseball on div/pop, which can change either because the number of
divorces or the population changes. Using the fact that log(div/pop) � log(div) �
log(pop) and log(inc/pop) � log(inc) � log(pop), we can rewrite (19.3) as

log(div) � �0 � �1mlb � �2perccath � �3log(inc) � (1 � �3)log(pop)
� other factors,

which shows that (19.3) is a special case of (19.4) with �4 � (1 � �3) and �j � �j,
j � 0,1,2, and 3. Alternatively, (19.4) is equivalent to adding log(pop) as an additional
explanatory variable to (19.3). This makes it easy to test for a separate population effect
on the divorce rate.

If you are using a more advanced estimation method, such as two stage least
squares, you need to provide some reasons for why you are doing so. If you use 2SLS,
you must provide a careful discussion on why your IV choices for the endogenous
explanatory variable (or variables) are valid. As we mentioned in Chapter 15, there are
two requirements for a variable to be considered a good IV. First, it must be omitted
from and exogenous to the equation of interest (structural equation). This is something
we must assume. Second, it must have some partial correlation with the endogenous
explanatory variable. This we can test. For example, in equation (19.1), you might use
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a binary variable for whether a student lives in a dormitory (dorm) as an IV for alcohol
consumption. This requires that living situation has no direct impact on colGPA—so
that it is omitted from (19.1)—and that it is uncorrelated with unobserved factors in u
that have an effect on colGPA. We would also have to verify that dorm is partially cor-
related with alcohol by regressing alcohol on dorm, hsGPA, SAT, and female. (See
Chapter 15 for details.)

You might account for the omitted variable problem (or omitted heterogeneity) by
using panel data. Again, this is easily described by writing an equation or two. In fact,
it is useful to show how to difference the equations over time to remove time-constant
unobservables; this gives an equation that can be estimated by OLS. Or, if you are using
fixed effects estimation instead, you simply state so.

As a simple example, suppose you are testing whether higher county tax rates
reduce economic activity, as measured by per capita manufacturing output. Suppose
that for the years 1982, 1987, and 1992, the model is

log(manufit) � �0 � �1d87t � �2d92t � �1taxit � … � ai � uit,

where d87t and d92t are year dummy variables, and taxit is the tax rate for county i at
time t (in percent form). We would have other variables that change over time in the
equation, including measures for costs of doing business (such as average wages), mea-
sures of worker productivity (as measured by average education), and so on. The term
ai is the fixed effect, containing all factors that do not vary over time, and uit is the idio-
syncratic error term. To remove ai, we can either difference across the years or use time-
demeaning (the fixed effects transformation).

The Data

You should always have a section that carefully describes the data used in the empiri-
cal estimation. This is particularly important if your data are nonstandard or have not
been widely used by other researchers. Enough information should be presented so that
a reader could, in principle, obtain the data and redo your analysis. In particular, all
applicable public data sources should be included in the references, and short data sets
can be listed in an appendix. If you used your own survey to collect the data, a copy of
the questionaire should be presented in an appendix.

Along with a discussion of the data sources, be sure to discuss the units of each of
the variables (for example, is income measured in hundreds or thousands of dollars?).
Including a table of variable definitions is very useful to the reader. The names in the
table should correspond to the names used in describing the econometric results in the
following section.

It is also very informative to present a table of summary statistics, such as mini-
mum and maximum values, means, and standard deviations for each variable. Having
such a table makes it easier to interpret the coefficient estimates in the next section,
and it emphasizes the units of measurement of the variables. For binary variables, the
only necessary summary statistic is the fraction of ones in the sample (which is the
same as the sample mean). For trending variables, things like means are less interest-
ing. It is often useful to compute the average growth rate in a variable over the years
in your sample.
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You should always clearly state how many observations you have. For time series
data sets, identify the years that you are using in the analysis, including a description of
any special periods in history (such as World War II). If you use a pooled cross section
or a panel data set, be sure to report how many cross-sectional units (people, cities, and
so on) you have for each year.

Results

The results section should include your estimates of any models formulated in the mod-
els section. You might start with a very simple analysis. For example, suppose that per-
cent of students attending college from the graduating class (percoll) is used as a measure
of the quality of the high school a person attended. Then, an equation to estimate is

log(wage) � �0 � �1 percoll � u.

Of course, this does not control for several other factors that may determine wages and
that may be correlated with percoll. But a simple analysis can draw the reader into the
more sophisticated analysis and reveal the importance of controlling for other factors.

If only a few equations are estimated, you can present the results in equation form
with standard errors in parentheses below estimated coefficients. If your model has sev-
eral explanatory variables and you are presenting several variations on the general
model, it is better to report the results in tabular rather than equation form. Most of you
should have at least one table, which should always include at least the R-squared and
the number of observations for each equation. Other statistics, such as the adjusted
R-squared, can also be listed.

The most important thing is to discuss the interpretation and strength of your empir-
ical results. Do the coefficients have the expected signs? Are they statistically signifi-
cant? If a coefficient is statistically significant but has a counterintuitive sign, why
might this be true? It might be revealing a problem with the data or the econometric
method (for example, OLS may be inappropriate due to omitted variables problems).

Be sure to describe the magnitudes of the coefficients on the major explanatory vari-
ables. Often there are one or two policy variables that are central to the study. Their
signs, magnitudes, and statistical significance should be treated in detail. Remember to
distinguish between economic and statistical significance. If a t statistic is small, is it
because the coefficient is practically small or because its standard error is large?

In addition to discussing estimates from the most general model, you can provide
interesting special cases, especially those needed to test certain multiple hypotheses.
For example, in a study to determine wage differentials across industries, you might
present the equation without the industry dummies; this allows the reader to easily test
whether the industry differentials are statistically significant (using the R-squared form
of the F test). Do not worry too much about dropping various variables to find the
“best” combination of explanatory variables. As we mentioned earlier, this is a difficult
and not even very well-defined task. Only if eliminating a set of variables substantially
alters the magnitudes and/or significance of the coefficients of interest is this important.
Dropping a group of variables to simplify the model—such as quadratics or interac-
tions—can be justified via an F test.

If you have used at least two different methods—such as OLS and 2SLS, or levels
and differencing for a time series, or pooled OLS versus differencing with a panel data
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set—then you should comment on any critical differences. In particular, if OLS gives
counterintuitive results, did using 2SLS or panel data methods improve the estimates?

Conclusions

This can be a short section that summarizes what you have learned. For example, you
might want to present the magnitude of a coefficient that was of particular interest. The
conclusion should also discuss caveats to the conclusions drawn, and it might even sug-
gest directions for further research. It is useful to imagine readers turning first to the
conclusion in order to decide whether to read the rest of the paper.

Style Hints

You should give your paper a title that reflects its topic. Papers should be typed and
double-spaced. All equations should begin on a new line, and they should be centered
and numbered consecutively, that is, (1), (2), (3), and so on. Large graphs and tables
may be included after the main body. In the text, refer to papers by author and date, for
example, White (1980). The reference section at the end of the paper should be done in
standard format. Several examples are given in the references at the back of the text.

When you introduce an equation in the “Econometric Models” section, you should
describe the important variables: the dependent variable and the key independent vari-
able or variables. To focus on a single independent variable, you can write an equation,
such as

GPA � �0 � �1alcohol � x� � u

or

log(wage) � �0 � �1educ � x� � u,

where the notation x� is shorthand for several other explanatory variables. At this point,
you need only describe them generally; they can be described specifically in the data
section in a table. For example, in a study of the factors affecting chief executive offi-
cer salaries, you might include the following table in the data section:
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Table 1: Variable Descriptions

salary: annual salary (including bonuses) in 1990 (in thousands)

sales: firm sales in 1990 (in millions)

roe: average return on equity from 1988–1990 (in percent)

pcsal: percentage change in salary from 1988–1990

pcroe: percentage change in roe from 1988–1990

continued
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A table of summary statistics using the data set 401K.RAW, which we used for studying
the factors that affect participation in 401(k) pension plans, might be set up as follows:
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indust: � 1 if an industrial company, 0 otherwise

finance: � 1 if a financial company, 0 otherwise

consprod: � 1 if a consumer products company, 0 otherwise

util: � 1 if a utility company, 0 otherwise

ceoten: number of years as CEO of the company

Table 2: Summary Statistics

Standard
Variable Mean Deviation Minimum Maximum

prate .869 .167 .023 1

mrate .746 .844 .011 5

employ 4,621.01 16,299.64 53 443,040

age 13.14 9.63 4 76

sole .415 .493 0 1

Number of Observations � 3,784

In the results section, you can either write the estimates in equation form, as we
often have done, or in a table. Especially when several models have been estimated with
different sets of explanatory variables, tables are very useful. If you write out the esti-
mates as an equation, for example,

log(sal̂ary) �(2.45)�(.236)log(sales) �(.008)roe �(.061)ceoten
log(sal̂ary) �(0.93)�(.115)log(sales) �(.003)roe �(.028)ceoten

n � 204, R2 � .351,

be sure to state near the first equation that standard errors are in parentheses. It is
acceptable to report the t statistics for testing H0: �j � 0, or their absolute values, but it
is most important to state what you are doing.

Table 1: (concluded )
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If you report your results in tabular form, make sure the dependent and independent
variables are clearly indicated. Again, state whether standard errors or t statistics are
below the coefficients (with the former preferred). Some authors like to use asterisks to
indicate statistical significance at different significance levels (for example, one star
means significant at 5%, two stars mean significant at 10% but not 5% and so on). This
is not necessary if you carefully discuss the significance of the explanatory variables in
the text.

A sample table of results follows:
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Table 3: OLS Results

Dependent Variable: Participation Rate

Independent Variables

mrate .156 .239 .218
(.012) (.042) (.342)

mrate2 — �.087 �.096
(.043) (.073)

log(emp) �.112 �.112 �.098
(.014) (.014) (.111)

log(emp)2 .0057 .0057 .0052
(.0009) (.0009) (.0007)

age .0060 .0059 .0050
(.0010) (.0010) (.0021)

age2 �.00007 �.00007 �.00006
(.00002) (.00002) (.00002)

sole �.0001 .0008 .0006
(.0058) (.0058) (.0061)

constant 1.213 .198 .085
(0.051) (.052) (.041)

industry dummies? no no yes

Observations: 3,784 3,784 3,784
R-Squared: .143 .152 .152

Note: The quantities in parentheses below the estimates are the standard errors.
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Your results will be easier to read and interpret if you choose the units of both your
dependent and independent variables so that coefficients are not too large or too small.
You should never report numbers such as 1.051e-007 or 3.524e+006 for your coeffi-
cients or standard errors, and you should not use scientific notation. If coefficients are
either extremely small or large, rescale the dependent or independent variables, as we
discussed in Chapter 6. You should limit the number of digits reported after the decimal
point. For example, if your regression package estimates a coefficient to be .54821059,
you should report this as .548, or even .55, in the paper.

As a general rule, the commands that your particular econometrics package uses to
produce results should not appear in the paper; only the results are important. If some
special command was used to carry out a certain estimation method, this can be given
in an appendix. An appendix is also a good place to include extra results that support
your analysis but are not central to it.

SUMMARY

In this chapter, we have discussed the ingredients of a successful empirical study and
have provided hints that can improve the quality of an analysis. Ultimately, the success
of any study depends crucially on the care and effort put into it.

KEY TERMS
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Data Mining
Internet
On-Line Data Bases
On-Line Search Services

Sensitivity Analysis
Spreadsheet
Text Editor
Text (ASCII) File

SAMPLE EMPIRICAL PROJECTS

Throughout the text, we have seen examples of econometric analysis that either came
from or were motivated by published works. Hopefully, these have given you a good
idea about the scope of empirical analysis. We include the following list as additional
examples of questions that others have found or are likely to find interesting. These are
intended to stimulate your imagination; no attempt is made to fill in all of the details of
specific models, data requirements, or alternative estimation methods. It should be pos-
sible to complete these projects in one term.

1. Do your own campus survey to answer a question of interest at your university.
For example: What is the effect of working, on college GPA? You can ask stu-
dents about high school GPA, college GPA, ACT or SAT scores, hours worked
per week, participation in athletics, major, gender, race, and so on. Then, use
these variables to create a model that explains GPA. How much of an effect, if
any, does another hour worked per week have on GPA? One issue of concern is
that hours worked might be endogenous: it might be correlated with unob-
served factors that affect college GPA, or lower GPAs might cause students to
work more.
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A better approach would be to collect cumulative GPA prior to the semes-
ter and then to obtain GPA for the most recent semester, along with amount
worked during that semester, and the other variables. Now, cumulative GPA
could be used as a control (explanatory variable) in the equation.

2. There are many variants on the preceding topic. You can study the effects of
drug or alcohol usage, or of living in a fraternity, on grade point average. You
would want to control for many family background variables, as well as previ-
ous performance variables.

3. Do gun control laws at the city level reduce violent crimes? Such questions can
be difficult to answer with a single cross section because city and state laws are
often endogenous. [See Kleck and Patterson (1993) for an example. They used
cross-sectional data and instrumental variables methods, but their IVs are ques-
tionable.] Panel data can be very useful for inferring causality in these contexts.
At a minimum, you could control for a previous year’s violent crime rate.

4. Low and McPheters (1983) used city cross-sectional data on wage rates and
estimates of risk of death for police officers, along with other controls. The idea
is to determine whether police officers are compensated for working in cities
with a higher risk of on-the-job injury or death.

5. Do parental consent laws increase the teenage birth rate? You can use state-
level data for this: either a time series for a given state or, even better, a panel
data set of states. Do the same laws reduce abortion rates among teenagers? The
Statistical Abstract of the United States contains all kinds of state-level data.
Levine, Trainor, and Zimmerman (1996) studied the effects of abortion funding
restrictions on similar outcomes. Other factors, such as access to abortions,
may affect teen birth and abortion rates.

6. Do changes in traffic laws affect traffic fatalities? McCarthy (1994) contains an
analysis of monthly time series data for the state of California. A set of dummy
variables can be used to indicate the months in which certain laws were in
effect. The file TRAFFIC2.RAW contains the data used by McCarthy. An alter-
native is to obtain a panel data set on states in the United States, where you can
exploit variation in laws across states, as well as across time. (See the file
TRAFFIC1.RAW.)

Mullahy and Sindelar (1994) used individual-level data matched with state
laws and taxes on alcohol to estimate the effects of laws and taxes on the prob-
ability of driving drunk.

7. Are blacks discriminated against in the lending market? Hunter and Walker
(1996) looked at this question; in fact, we used their data in Exercises 7.16 and
17.9.

8. Is there a marriage premium for professional athletes? Korenman and Neumark
(1991) found a significant wage premium for married men after using a variety
of econometric methods. Professional athletes—such as National Basketball
Association players, major league baseball players, and professional golfers—
provide an interesting group in which to study the marriage premium because
we can observe several productivity measures. With players in individual
sports, such as golf or tennis, earnings directly reflect productivity. In team
sports, salary may not entirely reflect productivity—for example, years in the
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league might matter. So we can include a marriage indicator in an equation with
something like scoring as the dependent variable, as well as in a regression
where log(salary) is the dependent variable and several productivity controls
are among the independent variables.

9. Answer the question: Are cigarette smokers less productive? A variant on this
is: Do workers who smoke take more sick days (everything else being equal)?
Mullahy and Portney (1990) use individual-level data to evaluate this ques-
tion. You could use data at, say, the metropolitan level. Something like aver-
age productivity in manufacturing can be related to percent of manufacturing
workers who smoke. Other variables, such as average worker education, cap-
ital per worker, and size of the city (you can think of more) should be con-
trolled for.

10. Do minimum wages alleviate poverty? You can use state or county data to
answer this question. The idea is that the minimum wage varies across state
because some states have higher minimums than the federal minimum. Further,
there are changes over time in the nominal minimum within a state, some due
to changes at the federal level and some because of changes at the state level.
Neumark and Wascher (1995) used a panel data set on states to estimate the
effects of the minimum wage on the employment rates of young workers, as
well as on school enrollment rates.

11. What factors affect student performance at public schools? It is fairly easy to
get school-level or at least district-level data in most states. Does spending per
student matter? Do student-teacher ratios have any effects? It is difficult to esti-
mate ceteris paribus effects because spending is related to other factors, such as
family incomes or poverty rates. The data set MEAP93.RAW, for Michigan
high schools, contains a measure of the poverty rates. Another possibility is to
use panel data, or to at least control for a previous year’s performance measure
(such as average test score or percentage of students passing an exam).

You can look at less obvious factors that affect student performance. For
example, after controlling for income, does family structure matter? Perhaps
families with two parents, but only one working for a wage, have a positive
effect on performance. (There could be at least two channels: parents spend
more time with the children, and they might also volunteer at school.) What
about the effect of single-parent households, controlling for income and other
factors? You can merge census data for one or two years with school district
data.

Do public schools with more private schools nearby better educate their stu-
dents because of competition? There is a tricky simultaneity issue here because
private schools are probably located in areas where the public schools are
already poor. Hoxby (1994) used an instrumental variables approach, where
population proportions of various religions were IVs for the number of private
schools.

Rouse (1998) studied a different question: Did students who were able to
attend a private school due to the Milwaukee voucher program perform better
than those who did not? She used panel data and was able to control for an
unobserved student effect.
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12. Can excess returns on a stock, or a stock index, be predicted by the lagged
price/dividend ratio? Or, by lagged interest rates or weekly monetary policy? It
would be interesting to pick a foreign stock index, or one of the less well-
known U.S. indexes. Cochrane (1997) contains a nice survey of recent theories
and empirical results for explaining excess stock returns.

13. Is there racial discrimination in the market for baseball cards? This involves
relating the prices of baseball cards to factors that should affect their prices,
such as career statistics, whether the player is in the Hall of Fame, and so on.
Holding other factors fixed, do cards of black or Hispanic players sell at a dis-
count?

14. You can test whether the market for gambling on sports is efficient. For exam-
ple, does the spread on football or basketball games contain all usable infor-
mation for picking against the spread? The data set PNTSPRD.RAW contains
information on men’s college basketball games. The outcome variable is binary.
Was the spread covered or not? Then, you can try to find information that was
known prior to each game’s being played in order to predict whether the spread
is covered. (Good luck!)

15. What effect, if any, does success in college athletics have on other aspects of
the university (applications, quality of students, quality of nonathletic depart-
ments)? McCormick and Tinsley (1987) looked at the effects of athletic success
at major colleges on changes in SAT scores of entering freshman. Timing is
important here: presumably, it is recent past success that affects current appli-
cations and student quality. One must control for many other factors—such as
tuition and measures of school quality—to make the analysis convincing
because, without controlling for other factors, there is a negative correlation
between academics and athletic performance.

A variant is to match up natural rivals in football or men’s basketball and
to look at differences across school as a function of which school won the
football game or one or more basketball games. ATHLET1.RAW and
ATHLET2.RAW are small data sets that could be expanded and updated.

16. Collect murder rates for a sample of cities or counties (say, from the FBI uni-
form crime reports) for two years. Make the latter year such that economic and
demographic variables are easy to obtain from the County and City Data Book.
From the Statistical Abstract of the United States, you can obtain the total num-
ber of people on death row, plus executions for intervening years at the state
level. If the years are 1990 and 1985, you might estimate

mrdrte90 � �0 � �1mrdrte85 � �2executions � other factors,

where interest is in the coefficient on executions. The lagged murder rate and
other factors serve as controls.

Other factors may also act as a deterrent to crime. For example, Cloninger
(1991) presented a cross-sectional analysis of the effects of lethal police
response on crime rates.

As a different twist, what factors affect crime rates on college campuses?
Does the fraction of students living in fraternities or sororities have an effect?
Does the size of the police force matter, or the kind of policing used? (Be care-
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ful about inferring causality here.) Does having an escort program help reduce
crime? What about crime rates in nearby communities? Recently, colleges and
universities have been required to report crime statistics; in previous years,
reporting was voluntary.

17. What factors affect manufacturing productivity at the state level? In addition to
levels of capital and worker education, you could look at degree of unioniza-
tion. A panel data analysis would be most convincing here, using two census
years (say 1980 and 1990). Clark (1984) provides an analysis of how union-
ization affects firm performance and productivity. What other variables might
explain productivity?

Firm-level data can be obtained from Compustat. For example, other fac-
tors being fixed, do changes in unionization affect stock price of a firm?

18. Use state- or county-level data or, if possible, school district-level data to look
at the factors that affect education spending per pupil. An interesting question
is: Other things being equal (such as income and education levels of residents),
do districts with a larger percentage of elderly people spend less on schools?
Census data can be matched with school district spending data to obtain a very
large cross section. The U.S. Department of Education compiles such data.

19. What are the effects of state regulations, such as motorcycle helmet laws, on
motorcycle fatalities? Or, do differences in boating laws—such as minimum
operating age—help to explain boating accident rates? The U.S. Department of
Transportation compiles such information. This can be merged with data from
the Statistical Abstract of the United States. A panel data analysis seems to be
warranted here.

20. What factors affect output growth? Two factors of interest are inflation and
investment [for example, Blomström, Lipsey, and Zejan (1996)]. You might use
time series data on a country you find interesting. Or, you could use a cross sec-
tion of countries, as in De Long and Summers (1991). Friedman and Kuttner
(1992) found evidence that, at least in the 1980s, the spread between the com-
mercial paper rate and the treasury bill rate affects real output.

21. What is the behavior of mergers in the U.S. economy (or some other economy)?
Shughart and Tollison (1984) characterize (the log of) annual mergers in the
U.S. economy as a random walk by showing that the difference in logs—
roughly, the growth rate—is unpredictable given past growth rates. Does this
still hold? Does it hold across various industries? What past measures of eco-
nomic activity can be used to forecast mergers?

22. What factors might explain racial and gender differences in employment and
wages? For example, Holzer (1991) reviewed the evidence on the “spatial mis-
match hypothesis” to explain differences in employment rates between blacks
and whites. Korenman and Neumark (1992) examined the effects of childbear-
ing on women’s wages, while Hersch and Stratton (1997) looked at the effects
of household responsibilities on men’s and women’s wages.

23. Obtain monthly or quarterly data on teenage employment rates, the minimum
wage, and factors that affect teen employment, to estimate the effects of the
minimum wage on teen employment. Solon (1985) used quarterly U.S. data,
while Castillo-Freeman and Freeman (1992) used annual data on Puerto Rico.
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It might be informative to analyze time series data on a low-wage state in the
United States—where changes in the minimum wage are likely to have the
largest effect.

24. At the city level, estimate a time series model for crime. An example is
Cloninger and Sartorius (1979). As a recent twist, you might estimate the
effects of community policing or midnight basketball programs, relatively new
innovations in fighting crime. Inferring causality is tricky. Including a lagged
dependent variable might be helpful. Because you are using time series data,
you should be aware of the spurious regression problem.

Grogger (1990) used data on daily homicide counts to estimate the deter-
rent effects of capital punishment. Might there be other factors—such as news
on lethal response by police—that have an effect on daily crime counts?

25. Are there aggregate productivity effects of computer usage? You would need to
obtain time series data, perhaps at the national level, on productivity, percent-
age of employees using computers, and other factors. What about spending
(probably as a fraction of total sales) on research and development? What soci-
ological factors might affect productivity? alcohol usage? divorce rates?

26. What factors affect chief executive officer salaries? The files CEOSAL1.RAW
and CEOSAL2.RAW are data sets that have various firm performance mea-
sures, as well as information such as tenure and education. You can certainly
update these data files and look for other interesting factors. Rose and Shepard
(1997) considered firm diversification as one important determinant of CEO
compensation.

27. Do differences in tax codes across states affect the amount of foreign direct
investment? Hines (1996) studied the effects of state corporate taxes, along
with the ability to apply foreign tax credits, on investment from outside the
United States.

28. What factors affect election outcomes? Does spending matter? Do votes on spe-
cific issues matter? Does the state of the local economy matter? See, for exam-
ple, Levitt (1994) and the data sets VOTE1.RAW and VOTE2.RAW. Fair
(1996) performed a time series analysis of U.S. presidential elections.

LIST OF JOURNALS

The following is a partial list of popular journals containing research in empirical busi-
ness, economics, and other social sciences. A complete set of journals can be found on
the Internet.

American Economic Review
American Journal of Agricultural Economics
American Political Science Review
Applied Economics
Brookings Papers on Economic Activity
Canadian Journal of Economics
Demography
Economic Inquiry
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Economica
Economics Letters
Empirical Economics
Federal Reserve Bulletin
International Economic Review
Journal of Applied Econometrics
Journal of Business and Economic Statistics
Journal of Development Economics
Journal of Economic Education
Journal of Empirical Finance
Journal of Environmental Economics and Management
Journal of Finance
Journal of Health Economics
Journal of Human Resources
Journal of Industrial Economics
Journal of International Economics
Journal of Labor Economics
Journal of Political Economy
Journal of Public Economics
Journal of Monetary Economics
Journal of Money, Credit, and Banking
Journal of Quantitative Criminology
Journal of Urban Economics
National Bureau of Economic Research Working Paper Series
National Tax Journal
Public Finance Quarterly
Quarterly Journal of Economics
Regional Science & Urban Economics
Review of Economic Studies
Review of Economics and Statistics

DATA SOURCES

There are numerous data sources available throughout the world. Governments of most
countries compile a wealth of data; some general and easily accessible data sources for
the United States, such as the Economic Report of the President, the Statistical Abstract
of the United States, and the County and City Data Book, have already been mentioned.
International financial data on many countries are published annually in International
Financial Statistics. Various magazines, like Business Week and U.S. News and World
Report, often publish statistics—such as CEO salaries and firm performance, or rank-
ing of academic programs—that are novel and can be used in an econometric analysis.

Rather than attempting to provide a list here, we instead give some Internet
addresses that are comprehensive sources for economists. A very useful site for econo-
mists, called Resources for Economists on the Internet, is maintained by Bill Goffe at
the University of Southern Mississippi. The address is
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http://econwpa.wustl.edu/EconFAQ/EconFAQ.html.

This site provides links to journals, data sources, and lists of professional and academic
economists. It is quite simple to use.

The Business and Economic Statistics section of the American Statistical
Association contains an extremely detailed list of data sources and provides links to
them. The address is

http://www.econ-datalinks.org.

In addition, the Journal of Applied Econometrics and the Journal of Business and
Economics Statistics have data archives that contain data sets used in most papers pub-
lished in the journals over the past several years. If you find a data set that interests you,
this is a good way to go, as much of the cleaning and formatting of the data have already
been done. The downside is that some of these data sets are used in econometric analy-
ses that are more advanced than we have learned about in this text. On the other hand,
it is often useful to estimate simpler models using standard econometric methods for
comparison.

Many universities, such as the University of California, Berkeley, the University of
Michigan, and the University of Maryland, maintain very extensive data sets as well as
links to a variety of data sets. Your own library possibly contains an extensive set of
links to data bases in business, economics, and the other social sciences. The regional
federal reserve banks, such as the one in St. Louis, manage a variety of data. The
National Bureau of Economic Research posts data sets used by some of its researchers.
Naturally, state and federal governments now publish a wealth of data that can be
accessed via the Internet. Census data are publicly available from the Department of
Census. (Two useful publications are the Census of Manufacturing, published in years
ending with two and seven, and the Census of the Population, published at the begin-
ning of each decade.) Other agencies, such as the Department of Justice, also make data
available to the public.
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This appendix covers some basic mathematics that are used in econometric analy-
sis. We summarize various properties of the summation operator, study properties
of linear and certain nonlinear equations, and review proportions and percents.

We also present some special functions that often arise in applied econometrics, includ-
ing quadratic functions and the natural logarithm. The first four sections require only
basic algebra skills. Section A.5 contains a brief review of differential calculus; while a
knowledge of calculus is not necessary to understand most of the text, it is used in some
end-of-chapter appendices and in several of the more advanced chapters in Part III.

A.1 THE SUMMATION OPERATOR AND DESCRIPTIVE
STATISTICS

The summation operator is a useful shorthand for manipulating expressions involving
the sums of many numbers, and it plays a key role in statistics and econometric analy-
sis. If {xi: i � 1, …, n} denotes a sequence of n numbers, then we write the sum of these
numbers as

�
n

i�1
xi � x1 � x2 � … � xn. (A.1)

With this definition, the summation operator is easily shown to have the following prop-
erties:

PROPERTY SUM. 1: For any constant c,

�
n

i�1
c � nc. (A.2)

PROPERTY SUM. 2: For any constant c,

�
n

i�1
cxi � c�

n

i�1
xi. (A.3)
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PROPERTY SUM. 3: If {(xi,yi): i � 1,2, …, n} is a set of n pairs of numbers, and a and
b are constants, then

�
n

i�1
(axi � byi) � a �

n

i�1
xi � b �

n

i�1
yi. (A.4)

It is also important to be aware of some things that cannot be done with the sum-
mation operator. Let {(xi,yi): i � 1,2, …, n} again be a set of n pairs of numbers with
yi � 0 for each i. Then,

�
n

i�1
(xi/yi) � ��

n

i�1
xi����

n

i�1
yi�.

In other words, the sum of the ratios is not the ratio of the sums. In the n � 2 case, the
application of familiar elementary algebra also reveals this lack of equality: x1/y1 �
x2/y2 � (x1 � x2)/(y1 � y2). Similarly, the sum of the squares is not the square of the

sum: �
n

i�1
x2

i � ��
n

i�1
xi�2

, except in special cases. That these two quantities are not gener-

ally equal is easiest to see when n � 2: x2
1 � x2

2 � (x1 � x2)
2 � x2

1 � 2x1x2 � x2
2.

Given n numbers {xi: i � 1, …, n}, we compute their average or mean by adding
them up and dividing by n:

x̄ � (1/n) �
n

i�1
xi. (A.5)

When the xi are a sample of data on a particular variable (such as years of education),
we often call this the sample average (or sample mean) to emphasize that it is com-
puted from a particular set of data. The sample average is an example of a descriptive
statistic; in this case, the statistic describes the central tendency of the set of points xi.

There are some basic properties about averages that are important to understand.
First, suppose we take each observation on x and subtract off the average: di � xi � x̄
(the “d” here stands for deviation from the average). Then the sum of these deviations
is always zero:

�
n

i�1
di � �

n

i�1
(xi � x̄) � �

n

i�1
xi � �

n

i�1
x̄ � �

n

i�1
xi � nx̄ � nx̄ � nx̄ � 0.

We summarize this as

�
n

i�1
(xi � x̄) � 0. (A.6)

A simple numerical example shows how this works. Suppose n � 5 and x1 � 6, x2 �
1, x3 � �2, x4 � 0, and x5 � 5. Then x̄ � 2, and the demeaned sample is
{4,�1,�4,�2,3}. Adding these up gives zero, which is just what equation (A.6) says.

In our treatment of regression analysis in Chapter 2, we need to know some addi-
tional algebraic facts involving deviations from sample averages. An important one is
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that the sum of squared deviations is the sum of the squared xi minus n times the square
of x̄:

�
n

i�1
(xi � x̄)2 � �

n

i�1
xi

2 � n(x̄)2. (A.7)

This can be shown using basic properties of the summation operator:

�
n

i�1
(xi � x̄)2 � �

n

i�1
(xi

2 � 2xix̄ � x̄2)

� �
n

i�1
xi

2 � 2x̄ �
n

i�1
xi � n(x̄)2

� �
n

i�1
xi

2 � 2n(x̄)2 � n(x̄)2 � �
n

i�1
xi

2 � n(x̄)2.

Given a data set on two variables, {(xi,yi): i � 1,2, …, n}, it can also be shown that

�
n

i�1
(xi � x̄)(yi � ȳ) � �

n

i�1
xi(yi � ȳ)

� �
n

i�1
(xi � x̄)yi � �

n

i�1
xiyi � n(x̄�ȳ);

(A.8)

this is a generalization of equation (A.7) (there, yi � xi for all i).
The average is the measure of central tendency that we will focus on in most of this

text. However, it is sometimes informative to use the median (or sample median) to
describe the central value. To obtain the median of the n numbers {x1, …, xn}, we first
order the values of the xi from smallest to largest. Then, if n is odd, the sample median
is the middle number of the ordered observations. For example, given the numbers
{�4,8,2,0,21,�10,18}, the median value is 2 (since the ordered sequence is
{�10,�4,0,2,8,18,21}). If we change the largest number in this list, 21, to twice its
value, 42, the median is still 2. By contrast, the sample average would increase from 5
to 8, a sizable change. Generally, the median is less sensitive than the average to
changes in the extreme values (large or small) in a list of numbers. This is why “median
incomes” or “median housing values” are often reported, rather than averages, when
summarizing income or housing values in a city or county.

If n is even, there is no unique way to define the median because there are two num-
bers at the center. Usually the median is defined to be the average of the two middle val-
ues (again, after ordering the numbers from smallest to largest). Using this rule, the
median for the set of numbers {4,12,2,6} would be (4 � 6)/2 � 5.

A.2 PROPERTIES OF LINEAR FUNCTIONS

Linear functions play an important role in econometrics because they are simple to
interpret and manipulate. If x and y are two variables related by
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y � �0 � �1x, (A.9)

then we say that y is a linear function of x, and �0 and �1 are two parameters (num-
bers) describing this relationship. The intercept is �0, and the slope is �1.

The defining feature of a linear function is that the change in y is always �1 times
the change in x:

�y � �1�x, (A.10)

where � denotes “change.” In other words, the marginal effect of x on y is constant and
equal to �1.

E X A M P L E  A . 1
( L i n e a r  H o u s i n g  E x p e n d i t u r e  F u n c t i o n )

Suppose that the relationship between monthly housing expenditure and monthly in-
come is

housing � 164 � .27 income. (A.11)

Then, for each additional dollar of income, 27 cents is spent on housing. If family income
increases by $200, then housing expenditure increases by (.27)200 � $54. This function is
graphed in Figure A.1.

According to equation (A.11), a family with no income spends $164 on housing, which
of course cannot be literally true. For low levels of income, this linear function would not
describe the relationship between housing and income very well, which is why we will
eventually have to use other types of functions to describe such relationships.

In (A.11), the marginal propensity to consume (MPC) housing out of income is .27. This
is different from the average propensity to consume (APC), which is

� 164/income � .27.

The APC is not constant, it is always larger than the MPC, and it gets closer to the MPC as
income increases.

Linear functions are easily defined for more than two variables. Suppose that y is
related to two variables, x1 and x2, in the general form

y � �0 � �1x1 � �2x2. (A.12)

It is rather difficult to envision this function because its graph is three-dimensional.
Nevertheless, �0 is still the intercept (the value of y when x1 � 0 and x2 � 0), and �1

and �2 measure particular slopes. From (A.12), the change in y, for given changes in x1

and x2, is

housing
income
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�y � �1�x1 � �2�x2. (A.13)

If x2 does not change, that is, �x2 � 0, then we have

�y � �1�x1 if �x2 � 0,

so that �1 is the slope of the relationship in the direction of x1:

�1 � if �x2 � 0.

Because it measures how y changes with x1, holding x2 fixed, �1 is often called the par-
tial effect of x1 on y. Since the partial effect involves holding other factors fixed, it is
closely linked to the notion of ceteris paribus. The parameter �2 has a similar interpre-
tation: �2 � �y/�x2 if �x1 � 0, so that �2 is the partial effect of x2 on y.

E X A M P L E  A . 2
( D e m a n d  f o r  C o m p a c t  D i s c s )

For college students, suppose that the monthly quantity demanded of compact discs is
related to the price of compact discs and monthly discretionary income by

�y
�x1
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quantity � 120 � 9.8 price � .03 income,

where price is dollars per disk and income is measured in dollars. The demand curve is the
relationship between quantity and price, holding income (and other factors) fixed. This is
graphed in two dimensions in Figure A.2 at an income level of $900. The slope of the
demand curve, �9.8, is the partial effect of price on quantity: holding income fixed, if the
price of compact discs increases by one dollar, then the quantity demanded falls by 9.8. (We
abstract from the fact that CDs can only be purchased in discrete units.) An increase in
income simply shifts the demand curve up (changes the intercept), but the slope remains
the same.

A.3 PROPORTIONS AND PERCENTAGES

Proportions and percentages play such an important role in applied economics that it is
necessary to become very comfortable in working with them. Many quantities reported
in the popular press are in the form of percentages; a few examples include interest
rates, unemployment rates, and high school graduation rates.
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An important skill is being able to convert between proportions and percentages. A
percentage is easily obtained by multiplying a proportion by 100. For example, if the
proportion of adults in a county with a high school degree is .82, then we say that 82%
(82 percent) of adults have a high school degree. Another way to think of percents and
proportions is that a proportion is the decimal form of a percent. For example, if the
marginal tax rate for a family earning $30,000 per year is reported as 28%, then the pro-
portion of the next dollar of income that is paid in income taxes is .28 (or 28 cents).

When using percentages, we often need to convert them to decimal form. For exam-
ple, if a state sales tax is 6% and $200 is spent on a taxable item, then the sales tax paid
is 200(.06) � 12 dollars. If the annual return on a certificate of deposit (CD) is 7.6%
and we invest $3,000 in such a CD at the beginning of the year, then our interest income
is 3,000(.076) � 228 dollars. As much as we would like it, the interest income is not
obtained by multiplying 3,000 by 7.6.

We must be wary of proportions that are sometimes incorrectly reported as per-
centages in the popular media. If we read, “The percentage of high school students who
drink alcohol is .57,” we know that this really means 57% (not just over one-half of a
percent, as the statement literally implies). College volleyball fans are probably famil-
iar with press clips containing statements such as “Her hitting percentage was .372.”
This really means that her hitting percentage was 37.2%.

In econometrics, we are often interested in measuring the changes in various quan-
tities. Let x denote some variable, such as an individual’s income, the number of crimes
committed in a community, or the profits of a firm. Let x0 and x1 denote two values for
x: x0 is the initial value, and x1 is the subsequent value. For example, x0 could be the
annual income of an individual in 1994 and x1 the income of the same individual in
1995. The proportionate change in x in moving from x0 to x1 is simply

(x1 � x0)/x0 � �x/x0, (A.14)

assuming, of course, that x0 � 0. In other words, to get the proportionate change, we
simply divide the change in x by its initial value. This is a way of standardizing the
change so that it is free of units. For example, if an individual’s income goes from
$30,000 per year to $36,000 per year, then the proportionate change is 6,000/30,000 �
.20.

It is more common to state changes in terms of percentages. The percentage
change in x in going from x0 to x1 is simply 100 times the proportionate change:

%�x � 100(�x/x0); (A.15)

the notation “%�x” is read as “the percentage change in x.” For example, when income
goes from $30,000 to $33,750, income has increased by 12.5%; to get this, we simply
multiply the proportionate change, .125, by 100.

Again, we must be on guard for proportionate changes that are reported as percent-
age changes. In the previous example, for instance, reporting the percentage change in
income as .125 is incorrect and could lead to confusion.

When we look at changes in things like dollar amounts or population, there is no
ambiguity about what is meant by a percentage change. By contrast, interpreting per-
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centage change calculations can be tricky when the variable of interest is itself a per-
centage, something that happens often in economics and other social sciences. To illus-
trate, let x denote the percentage of adults in a particular city having a college
education. Suppose the initial value is x0 � 24 (24% have a college education), and the
new value is x1 � 30. There are two quantities we can compute to describe how the per-
centage of college-educated people has changed. The first is the change in x, �x. In this
case, �x � x1 � x0 � 6: the percentage of people with a college education has increased
by six percentage points. On the other hand, we can compute the percentage change in
x using equation (A.15): %�x � 100[(30 � 24)/24] � 25.

In this example, the percentage point change and the percentage change are very
different. The percentage point change is just the change in the percentages. The per-
centage change is the change relative to the initial value. Generally, we must pay close
attention to which number is being computed. The careful researcher makes this dis-
tinction perfectly clear; unfortunately, in the popular press as well as in academic
research, the type of reported change is often unclear.

E X A M P L E  A . 3
( M i c h i g a n  S a l e s  T a x  I n c r e a s e )

In March 1994, Michigan voters approved a sales tax increase from 4% to 6%. In political
advertisements, supporters of the measure referred to this as a two percentage point
increase, or an increase of two cents on the dollar. Opponents to the tax increase called it
a 50% increase in the sales tax rate. Both claims are correct; they are simply different ways
of measuring the increase in the sales tax. Naturally, each group reported the measure that
made their position most favorable.

For a variable such as salary, it makes no sense to talk of a “percentage point change
in salary” because salary is not measured as a percentage. We can describe a change in
salary either in dollar or percentage terms.

A.4 SOME SPECIAL FUNCTIONS AND THEIR
PROPERTIES

In Section A.2, we reviewed the basic properties of linear functions. We already indi-
cated one important feature of functions like y � �0 � �1x: a one-unit change in x
results in the same change in y, regardless of the initial value of x. As we noted earlier,
this is the same as saying the marginal effect of x on y is constant, something that is not
realistic for many economic relationships. For example, the important economic notion
of diminishing marginal returns is not consistent with a linear relationship.

In order to model a variety of economic phenomena, we need to study several non-
linear functions. A nonlinear function is characterized by the fact that the change in y
for a given change in x depends on the starting value of x. Certain nonlinear functions
appear frequently in empirical economics, so it is important to know how to interpret
them. A complete understanding of nonlinear functions takes us into the realm of cal-

Appendix A Basic Mathematical Tools

650

xd  7/14/99 8:51 PM  Page 650



culus. Here, we simply summarize the most significant aspects of the functions, leav-
ing the details of some derivations for Section A.5.

Quadratic Functions

One simple way to capture diminishing returns is to add a quadratic term to a linear
relationship. Consider the equation

y � �0 � �1x � �2x
2, (A.16)

where �0, �1, and �2 are parameters. When �1 	 0 and �2 
 0, the relationship between
y and x has the parabolic shape given in Figure A.3, where �0 � 6, �1 � 8, and �2 � �2.

When �1 	 0 and �2 
 0, it can be shown (using calculus in the next section) that
the maximum of the function occurs at the point

x* � �1/(�2�2). (A.17)

For example, if y � 6 � 8x � 2x2 (so �1 � 8, �2 � �2), then the largest value of y
occurs at x* � 8/4 � 2, and this value is 6 � 8(2) � 2(2)2 � 14 (see Figure A.3).
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The fact that equation (A.16) implies a diminishing marginal effect of x on y is
easily seen from its graph. Suppose we start at a low value of x and then increase x by
some amount, say c. This has a larger effect on y than if we start at a higher value of x
and increase x by the same amount c. In fact, once x 	 x*, an increase in x actually
decreases y.

The statement that x has a diminishing marginal effect on y is the same as saying
that the slope of the function in Figure A.3 decreases as x increases. While this is clear
from looking at the graph, we usually want to quantify how quickly the slope is chang-
ing. An application of calculus gives the approximate slope of the quadratic function as

slope � � �1 � 2�2x, (A.18)

for “small” changes in x. [The right-hand side of equation (A.18) is the derivative of
the function in equation (A.16) with respect to x.] Another way to write this is

�y � (�1 � 2�2x)�x for “small” �x. (A.19)

To see how well this approximation works, consider again the function y � 6 � 8x �
2x2. Then, according to equation (A.19), �y � (8 � 4x)�x. Now, suppose we start at
x � 1 and change x by �x � .1. Using (A.19), �y � (8 � 4)(.1) � .4. Of course, we
can compute the change exactly by finding the values of y when x � 1 and x � 1.1:
y0 � 6 � 8(1) � 2(1)2 � 12 and y1 � 6 � 8(1.1) � 2(1.1)2 � 12.38, and so the exact
change in y is .38. The approximation is pretty close in this case.

Now, suppose we start at x � 1 but change x by a larger amount: �x � .5. Then, the
approximation gives �y � 4(.5) � 2. The exact change is determined by finding the dif-
ference in y when x � 1 and x � 1.5. The former value of y was 12, and the latter value
is 6 � 8(1.5) � 2(1.5)2 � 13.5, so the actual change is 1.5 (not 2). The approximation
is worse in this case because the change in x is larger.

For many applications, equation (A.19) can be used to compute the approximate
marginal effect of x on y for any initial value of x and small changes. And, we can
always compute the exact change if necessary.

E X A M P L E  A . 4
( A  Q u a d r a t i c  W a g e  F u n c t i o n )

Suppose the relationship between hourly wages and years in the work force (exper) is
given by

wage � 5.25 � .48 exper � .008 exper2. (A.20)

This function has the same general shape as the one in Figure A.3. Using equation (A.17),
exper has a positive effect on wage up to the turning point, exper* � .48/[2(.008)] � 30.
The first year of experience is worth approximately .48, or 48 cents [see (A.19) with x �

0, �x � 1]. Each additional year of experience increases wage by less than the previous

�y
�x
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year—reflecting a diminishing marginal return to experience. At 30 years, an additional
year of experience would actually lower the wage. This is not very realistic, but it is one
of the consequences of using a quadratic function to capture a diminishing marginal
effect: at some point, the function must reach a maximum and curve downward. For
practical purposes, the point at which this happens is often large enough to be inconse-
quential, but not always.

The graph of the quadratic function in (A.16) has a U-shape if �1 
 0 and �2 	 0,
in which case there is an increasing marginal return. The minimum of the function is at
the point ��1/(2�2).

The Natural Logarithm

The nonlinear function that plays the most important role in econometric analysis is the
natural logarithm. In this text, we denote the natural logarithm, which we often refer
to simply as the log function, as

y � log(x). (A.21)

You might remember learning different symbols for the natural log; ln(x) or loge(x) are
the most common. These different notations are useful when logarithms with several
different bases are being used. For our purposes, only the natural logarithm is impor-
tant, and so log(x) denotes the natural logarithm throughout this text. This corresponds
to the notation usage in many statistical packages, although some use ln(x) [and most
calculators use ln(x)]. Economists use both log(x) and ln(x), which is useful to know
when you are reading papers in applied economics.

The function y � log(x) is defined only for x 	 0, and it is plotted in Figure A.4. It
is not very important to know how the values of log(x) are obtained. For our purposes,
the function can be thought of as a black box: we can plug in any x 	 0 and obtain
log(x) from a calculator or a computer.

Several things are apparent from Figure A.4. First, when y � log(x), the relationship
between y and x displays diminishing marginal returns. One important difference
between the log and the quadratic function in Figure A.3 is that when y � log(x), the
effect of x on y never becomes negative: the slope of the function gets closer and closer
to zero as x gets large, but the slope never quite reaches zero and certainly never
becomes negative.

The following are also apparent from Figure A.4:

log(x) 
 0 for 0 
 x 
 1

log(1) � 0

log(x) 	 0 for x 	 1.

In particular, log(x) can be positive or negative. Some useful algebraic facts about the
log function are
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log(x1�x2) � log(x1) � log(x2), x1, x2 	 0

log(x1/x2) � log(x1) � log(x2), x1, x2 	 0

log(xc) � clog(x), x 	 0, c any number.

Occasionally, we will need to rely on these properties.
The logarithm can be used for various approximations that arise in econometric

applications. First, log(1 � x) � x for x � 0. You can try this with x � .02, .1, and .5
to see how the quality of the approximation deteriorates as x gets larger. Even more use-
ful is the fact that the difference in logs can be used to approximate proportionate
changes. Let x0 and x1 be positive values. Then, it can be shown (using calculus) that

log(x1) � log(x0) � (x1 � x0)/x0 � �x/x0 (A.22)

for small changes in x. If we multiply equation (A.22) by 100 and write �log(x) �
log(x1) � log(x0), then

100��log(x) � %�x (A.23)

for small changes in x. The meaning of small depends on the context, and we will
encounter several examples throughout this text.

Why should we approximate the percentage change using (A.23) when the exact
percentage change is so easy to compute? Momentarily, we will see why the approxi-
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Graph of y � log(x).
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mation in (A.23) is useful in econometrics. First, let us see how good the approxima-
tion is in two examples.

First, suppose x0 � 40 and x1 � 41. Then, the percentage change in x in moving
from x0 to x1 is 2.5%, using 100(x1 � x0)/x0. Now, log(41) � log(40) � .0247 to four
digits, which when multiplied by 100 is very close to 2.5. The approximation works
pretty well. Now, consider a much bigger change: x0 � 40 and x1 � 60. The exact per-
centage change is 50%. However, log(60) � log(40) � .4055, so the approximation
gives 40.55%, which is much farther off.

Why is the approximation in (A.23) useful if it is only satisfactory for small
changes? To build up to the answer, we first define the elasticity of y with respect to
x as

� � . (A.24)

In other words, the elasticity of y with respect to x is the percentage change in y, when
x increases by 1%. This notion should be familiar from introductory economics.

If y is a linear function of x, y � �0 � �1x, then the elasticity is

� � �1� � �1� , (A.25)

which clearly depends on the value of x. (This is a generalization of the well-known
result from basic demand theory: the elasticity is not constant along a straight-line
demand curve.)

Elasticities are of critical importance in many areas of applied economics—not just
in demand theory. It is convenient in many situations to have constant elasticity mod-
els, and the log function allows us to specify such models. If we use the approximation
(A.23) for both x and y, then the elasticity is approximately equal to �log(y)/�log(x).
Thus, a constant elasticity model is approximated by the equation

log(y) � �0 � �1log(x), (A.26)

and �1 is the elasticity of y with respect to x (assuming that x, y 	 0).

E X A M P L E  A . 5
( C o n s t a n t  E l a s t i c i t y  D e m a n d  F u n c t i o n )

If q is quantity demanded and p is price, and these variables are related by

log(q) � 4.7 � 1.25 log(p),

then the price elasticity of demand is �1.25. Roughly, a 1% increase in price leads to a
1.25% fall in the quantity demanded.

x
�0 � �1x

x
y

x
y

�y
�x

%�y
%�x

x
y

�y
�x
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For our purposes, the fact that �1 in (A.26) is only close to the elasticity is not impor-
tant. In fact, when the elasticity is defined using calculus—as in Section A.5—the defi-
nition is exact. For the purposes of econometric analysis, (A.26) defines a constant
elasticity model. Such models play a large role in empirical economics.

There are other possibilities for using the log function that often arise in empirical
work. Suppose that y 	 0, and

log(y) � �0 � �1x. (A.27)

Then �log(y) � �1�x, so 100��log(y) � (100��1)�x. It follows that, when y and x are
related by equation (A.27),

%�y � (100��1)�x. (A.28)

E X A M P L E  A . 6
( L o g a r i t h m i c  W a g e  E q u a t i o n )

Suppose that hourly wage and years of education are related by

log(wage) � 2.78 � .094 educ.

Then, using equation (A.28),

%�wage � 100(.094) �educ � 9.4 �educ.

It follows that one more year of education increases hourly wage by about 9.4%.

Generally, the quantity %�y/�x is called the semi-elasticity of y with respect to x.
The semi-elasticity is the percentage change in y when x increases by one unit. What
we have just shown is that, in model (A.27), the semi-elasticity is constant and equal to
100��1. In Example A.6, we can conveniently summarize the relationship between
wages and education by saying that one more year of education—starting from any
amount of education—increases the wage by about 9.4%. This is why such models play
an important role in economics.

Another relationship of some interest in applied economics is:

y � �0 � �1log(x), (A.29)

where x 	 0. How can we interpret this equation? If we take the change in y, we get
�y � �1�log(x), which can be rewritten as �y � (�1/100)[100��log(x)]. Thus, using
the approximation in (A.23), we have

�y � (�1/100)(%�x). (A.30)

In other words, �1/100 is the unit change in y when x increases by 1%.
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E X A M P L E  A . 7
( L a b o r  S u p p l y  F u n c t i o n )

Assume that the labor supply of a worker can be described by

hours � 33 � 45.1 log(wage),

where wage is hourly wage and hours is hours worked per week. Then, from (A.30),

�hours � (45.1/100)(%�wage) � .451 %�wage.

In other words, a 1% increase in wage increases the weekly hours worked by about .45, or
slightly less than one-half of an hour. If the wage increases by 10%, then �hours �

.451(10) � 4.51, or about four and one-half hours. We would not want to use this approx-
imation for much larger percentage changes in wages.

The Exponential Function

Before leaving this section, we need to discuss one more special function, one that is
related to the log. As motivation, consider equation (A.27). There, log(y) is a linear
function of x. But how do we find y itself as a function of x? The answer is given by the
exponential function.

We will write the exponential function as y � exp(x), which is graphed in Figure A.5.
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From Figure A.5, we see that exp(x) is defined for any value of x and is always
greater than zero. Sometimes the exponential function is written as y � e x, but we
will not use this notation. Two important values of the exponential function are exp(0)
� 1 and exp(1) � 2.7183 (to four decimals).

The exponential function is the inverse of the log function in the following sense:
log[exp(x)] � x for all x, and exp[log(x)] � x for x 	 0. In other words, the log
“undoes” the exponential, and vice versa. (This is why the exponential function is
sometimes called the anti-log function.) In particular, note that log(y) � �0 � �1x is
equivalent to

y � exp(�0 � �1x).

If �1 	 0, the relationship between x and y has the same shape as in Figure A.5. Thus,
if log(y) � �0 � �1x with �1 	 0, then x has an increasing marginal effect on y. In
Example A.6, this means that another year of education leads to a larger change in wage
than the previous year of education.

Two useful facts about the exponential function are exp(x1 � x2) � exp(x1)exp(x2)
and exp[c�log(x)] � xc.

A.5 DIFFERENTIAL CALCULUS

In the previous section, we asserted several approximations that have foundations in
calculus. Let y � f (x) for some function f. Then, for small changes in x,

�y � ��x, (A.31)

where df/dx is the derivative of the function f, evaluated at the initial point x0. We also
write the derivative as dy/dx.

For example, if y � log(x), then dy/dx � 1/x. Using (A.31), with dy/dx evaluated at
x0, we have �y � (1/x0)�x, or �log(x) � �x/x0, which is the approximation given in
(A.22).

In applying econometrics, it helps to recall the derivatives of a handful of functions
because we use the derivative to define the slope of a function at a given point. We can
then use (A.31) to find the approximate change in y for small changes in x. In the lin-
ear case, the derivative is simply the slope of the line, as we would hope: if y � �0 �
�1x, then dy/dx � �1.

If y � xc, then dy/dx � cxc�1. The derivative of a sum of two functions is the
sum of the derivatives: d[ f (x) � g(x)]/dx � df(x)/dx � dg(x)/dx. The derivative of a
constant times any function is that same constant times the derivative of the function:
d[cf(x)]/dx � c[df (x)/dx]. These simple rules allow us to find derivatives of more com-
plicated functions. Other rules, such as the product, quotient, and chain rules will be
familiar to those who have taken calculus, but we will not review those here.

Some functions that are often used in economics, along with their deriva-
tives, are

df
dx
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y � �0 � �1x � �2x2; dy/dx � �1 � 2�2x

y � �0 � �1/x; dy/dx � ��1/(x
2)

y � �0 � �1��x ; dy/dx � (1/2)x�1/2

y � �0 � �1log(x); dy/dx � �1/x

y � exp(�0 � �1x); dy/dx � �1exp(�0 � �1x).

If �0 � 0 and �1 � 1 in this last expression, we get dy/dx � exp(x), when y � exp(x).
In Section A.4, we noted that equation (A.26) defines a constant elasticity model

when calculus is used. The calculus definition of elasticity is � . It can be shown 

using properties of logs and exponentials that, when (A.26) holds, � � �1.

When y is a function of multiple variables, the notion of a partial derivative
becomes important. Suppose that

y � f (x1,x2). (A.32)

Then, there are two partial derivatives, one with respect to x1 and one with respect to x2.

The partial derivative of y with respect to x1, denoted here by , is just the usual deriv-

ative of (A.32) with respect to x1, where x2 is treated as a constant. Similarly, is just
the derivative of (A.32) with respect to x2, holding x1 fixed.

Partial derivatives are useful for much the same reason as ordinary derivatives. We
can approximate the change in y as

�y � ��x1, holding x2 fixed. (A.33)

Thus, calculus allows us to define partial effects in nonlinear models just as we could
in linear models. In fact, if

y � �0 � �1x1 � �2x2,

then

� �1, � �2.

These can be recognized as the partial effects defined in Section A.2.
A more complicated example is

y � 5 � 4x1 � x1
2 � 3x2 � 7x1�x2. (A.34)

Now, the derivative of (A.34), with respect to x1 (treating x2 as a constant), is simply

� 4 � 2x1 � 7x2;
�y

�x1

�y

�x2

�y

�x1

�y

�x1

�y

�x2

�y

�x1

x
y

dy
dx

x
y

dy
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note how this depends on x1 and x2. The derivative of (A.34), with respect to x2, is 
� �3 � 7x1, so this depends only on x1.

E X A M P L E  A . 8
( W a g e  F u n c t i o n  w i t h  I n t e r a c t i o n )

A function relating wages to years of education and experience is

wage � 3.10 � .41 educ � .19 exper � .004 exper2

� .007 educ�exper.
(A.35)

The partial effect of exper on wage is the partial derivative of (A.35):

� .19 � .008 exper � .007 educ.

This is the approximate change in wage due to increasing experience by one year. Notice that
this partial effect depends on the initial level of exper and educ. For example, for a worker
who is starting with educ � 12 and exper � 5, the next year of experience increases wage by
about .19 � .008(5) � .007(12) � .234, or 23.4 cents per hour. The exact change can be cal-
culated by computing (A.35) at exper � 5, educ � 12 and at exper � 6, educ � 12, and then
taking the difference. This turns out to be .23, which is very close to the approximation.

Differential calculus plays an important role in minimizing and maximizing func-
tions of one or more variables. If f(x1,x2, …, xk) is a differentiable function of k vari-
ables, then a necessary condition for x1*, x2*, …, xk* to either minimize or maximize f over
all possible values of xj is

(x1*,x2*, …, xk*) � 0, j � 1,2, …, k. (A.36)

In other words, all of the partial derivatives of f must be zero when they are evaluated
at the xh*. These are called the first order conditions for minimizing or maximizing a
function. Practically, we hope to solve equation (A.36) for the xh*. Then, we can use
other criteria to determine whether we have minimized or maximized the function. We
will not need those here. [See Sydsaeter and Hammond (1995) for a discussion of mul-
tivariable calculus and its use in optimizing functions.]

SUMMARY

The math tools reviewed here are crucial for understanding regression analysis and the
probability and statistics that are covered in Appendices B and C. The material on non-
linear functions—especially quadratic, logarithmic, and exponential functions—is crit-
ical for understanding modern applied economic research. The level of comprehension

�f

�xj

�wage

�exper

�y

�x2

Appendix A Basic Mathematical Tools

660

xd  7/14/99 8:51 PM  Page 660



required of these functions does not include a deep knowledge of calculus, although
calculus is needed for certain derivations.

KEY TERMS
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Average
Ceteris Paribus
Constant Elasticity Model
Derivative
Descriptive Statistic
Diminishing Marginal Effect
Elasticity
Exponential Function
Intercept
Linear Function
Log Function
Marginal Effect

Median
Natural Logarithm
Nonlinear Function
Partial Derivative
Partial Effect
Percentage Change
Percentage Point Change
Proportionate Change
Semi-Elasticity
Slope
Summation Operator

PROBLEMS

A.1 The following table contains monthly housing expenditures for 10 families.

Monthly Housing
Family Expenditures

(Dollars)

1 300

2 440

3 350

4 1,100

5 640

6 480

7 450

8 700

9 670

10 530
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(i) Find the average monthly housing expenditure.
(ii) Find the median monthly housing expenditure.
(iii) If monthly housing expenditures were measured in hundreds of dollars,

rather than in dollars, what would be the average and median expendi-
tures?

(iv) Suppose that family number 8 increases its monthly housing expendi-
ture to $900 dollars, but the expenditures of all other families remain
the same. Compute the average and median housing expenditures.

A.2 Suppose the following equation describes the relationship between the average
number of classes missed during a semester (missed) and the distance from school (dis-
tance, measured in miles):

missed � 3 � 0.2 distance.

(i) Sketch this line, being sure to label the axes. How do you interpret the
intercept in this equation?

(ii) What is the average number of classes missed for someone who lives
five miles away?

(iii) What is the difference in the average number of classes missed for
someone who lives 10 miles away and someone who lives 20 miles
away?

A.3 In Example A.2, quantity of compact disks was related to price and income by
quantity � 120 � 9.8 price � .03 income. What is the demand for CDs if price � 15
and income � 200? What does this suggest about using linear functions to describe
demand curves?

A.4 Suppose the unemployment rate in the United States goes from 6.4% in one year
to 5.6% in the next.

(i) What is the percentage point decrease in the unemployment rate?
(ii) By what percent has the unemployment rate fallen?

A.5 Suppose that the return from holding a particular firm’s stock goes from 15% in
one year to 18% in the following year. The majority shareholder claims that “the stock
return only increased by 3%,” while the chief executive officer claims that “the return
on the firm’s stock has increased by 20%.” Reconcile their disagreement.

A.6 Suppose that Person A earns $35,000 per year and Person B earns $42,000.
(i) Find the exact percent by which Person B’s salary exceeds Person A’s.
(ii) Now use the difference in natural logs to find the approximate percent-

age difference.

A.7 Suppose the following model describes the relationship between annual salary
(salary) and the number of previous years of labor market experience (exper):

log(salary) � 10.6 � .027 exper.

(i) What is salary when exper � 0? when exper � 5? (Hint: You will need
to exponentiate.)
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(ii) Use equation (A.28) to approximate the percentage increase in salary
when exper increases by five years.

(iii) Use the results of part (i) to compute the exact percentage difference in
salary when exper � 5 and exper � 0. Comment on how this compares
with the approximation in part (ii).

A.8 Let grthemp denote the proportionate growth in employment, at the county level,
from 1990 to 1995, and let salestax denote the county sales tax rate, stated as a pro-
portion. Interpret the intercept and slope in the equation

grthemp � .043 � .78 salestax.

A.9 Suppose the yield of a certain crop (in bushels per acre) is related to fertilizer
amount (in pounds per acre) as

yield � 120 � .19 ��fertilizer.

(i) Graph this relationship by plugging in several values for fertilizer.
(ii) Describe how the shape of this relationship compares with a linear

function between yield and fertilizer.
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This appendix covers key concepts from basic probability. Appendices B and C
are primarily for review; they are not intended to replace a course in probability
and statistics. Nevertheless, all of the probability and statistics concepts that we

use in the text are covered in these appendices.
Probability is of interest in its own right for students in business, economics, and

other social sciences. For example, consider the problem of an airline trying to decide
how many reservations to accept for a flight that has 100 available seats. If fewer than
100 people want reservations, then these should all be accepted. But what if more than
100 people request reservations? A safe solution is to accept at most 100 reservations.
However, since some people book reservations and then do not show up for the flight,
there is some chance that the plane will not be full even if 100 reservations are booked.
This results in lost revenue to the airline. A different strategy is to book more than 100
reservations and to hope that some people do not show up, and so the final number of
passengers is as close to 100 as possible. This policy runs the risk of the airline having
to compensate people who are necessarily bumped from an overbooked flight.

A natural question in this context is: Can we decide on the optimal (or best) num-
ber of reservations the airline should make? This is a nontrivial problem. Nevertheless,
given certain information (on airline costs and how frequently people show up for reser-
vations), we can use basic probability to arrive at a solution.

B.1 RANDOM VARIABLES AND THEIR PROBABILITY
DISTRIBUTIONS

Suppose that we flip a coin 10 times and count the number of times the coin turns up
heads. This is an example of an experiment. Generally, an experiment is any procedure
that can, at least in theory, be infinitely repeated, and has a well-defined set of out-
comes. We could, in principle, carry out the coin-flipping procedure again and again.
Before we flip the coin, we know that the number of heads appearing is an integer from
0 to 10, so the outcomes of the experiment are well-defined.

A random variable is one that takes on numerical values and has an outcome that
is determined by an experiment. In the coin-flipping example, the number of heads
appearing in 10 flips of a coin is an example of a random variable. Before we flip the
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coin 10 times, we do not know how many times the coin will come up heads. Once we
flip the coin 10 times and count the number of heads, we obtain the outcome of the ran-
dom variable for this particular trial of the experiment. Another trial can produce a dif-
ferent outcome.

In the airline reservation example mentioned earlier, the number of people showing
up for their flight is a random variable: before any particular flight, we do not know how
many people will show up.

To analyze data collected in business and the social sciences, it is important to have
a basic understanding of random variables and their properties. Following the usual
conventions in probability and statistics throughout Appendices B and C, we denote
random variables by upper case letters, usually W, X, Y, and Z; particular outcomes of
random variables are denoted by the corresponding lower case letters, w, x, y, and z. For
example, in the coin-flipping experiment, let X denote the number of heads appearing
in 10 flips of a coin. Then, X is not associated with any particular value, but we know
X will take on a value in the set {0,1,2, …, 10}. A particular outcome is, say, x � 6.

We indicate large collections of random variables by using subscripts. For example,
if we record last year’s income of 20 randomly chosen households in the United States,
we might denote these random variables by X1, X2, …, X20; the particular outcomes
would be denoted x1, x2, …, x20.

As stated in the definition, random variables are always defined to take on numeri-
cal values, even when they describe qualitative events. For example, consider tossing a
single coin, where the two outcomes are heads and tails. We can define a random vari-
able as follows: X � 1 if the coin turns up heads, and X � 0 if the coin turns up tails.

A random variable that can only take on the values zero and one is called a
Bernoulli (or binary) random variable. In basic probability, it is traditional to call the
event X � 1 a “success” and the event X � 0 a “failure.” For a particular application,
the success-failure nomenclature might not correspond to our notion of a success or
failure, but it is a useful terminology that we will adopt.

Discrete Random Variables

A discrete random variable is one that takes on only a finite or countably infinite
number of values. The notion of “countably infinite” means that even though an infinite
number of values can be taken on by a random variable, those values can be put in a
one-to-one correspondence with the positive integers. Because the distinction between
“countably infinite” and “uncountably infinite” is somewhat subtle, we will concentrate
on discrete random variables that take on only a finite number of values. Larsen and
Marx (1986, Chapter 3) contains a detailed treatment.

A Bernoulli random variable is the simplest example of a discrete random variable.
The only thing we need to completely describe the behavior of a Bernoulli random vari-
able is the probability that it takes on the value one. In the coin-flipping example, if the
coin is “fair,” then P(X � 1) � 1/2 (read as “the probability that X equals one is one-
half”). Because probabilities must sum to one, P(X � 0) � 1/2, also.

Social scientists are interested in more than flipping coins, so we must allow for
more general situations. Again, consider the example where the airline must decide how
many people to book for a flight with 100 available seats. This problem can be analyzed
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in the context of several Bernoulli random variables as follows: for a randomly selected
customer, define a Bernoulli random variable as X � 1 if the person shows up for the
reservation, and X � 0 if not.

There is no reason to think that the probability of any particular customer showing
up is 1/2; in principle, the probability can be any number between zero and one. Call
this number �, so that

P(X � 1) � � (B.1)

P(X � 0) � 1 � �. (B.2)

For example, if � � .75, then there is a 75% chance that a customer shows up after mak-
ing a reservation, and a 25% chance that the customer does not show up. Intuitively, the
value of � is crucial in determining the airline’s strategy for booking reservations.
Methods for estimating �, given historical data on airline reservations, is a subject of
mathematical statistics, something we turn to in Appendix C.

More generally, any discrete random variable is completely described by listing its
possible values and the associated probability that it takes on each value. If X takes on
the k possible values {x1, …, xk}, then the probabilities p1, p2, …, pk are defined by

pj � P(X � xj), j � 1,2, …, k, (B.3)

where each pj is between 0 and 1, and

p1 � p2 � … � pk � 1. (B.4)

Equation (B.3) is read as: “The probability that X takes on the value xj is equal to pj.”
Equations (B.1) and (B.2) show that the probabilities of success and failure for a

Bernoulli random variable are determined entirely by the value of �. Because Bernoulli
random variables are so prevalent, we have a special notation for them: X ~ Bernoulli(�)
is read as “X has a Bernoulli distribution with probability of success equal to �.”

The probability density function (pdf) of X summarizes the information concern-
ing the possible outcomes of X and the corresponding probabilities:

f(xj) � pj, j � 1,2,…,k, (B.5)

with f(x) � 0 for any x not equal to xj for some j. In other words, for any real number
x, f (x) is the probability that the random variable X takes on the particular value x. When
dealing with more than one random variable, it is sometimes useful to subscript the pdf
in question: fX is the pdf of X, fY is the pdf of Y, and so on.

Given the pdf of any discrete random variable, it is simple to compute the proba-
bility of any event involving that random variable. For example, suppose that X is the
number of free throws made by a basketball player out of two attempts, so that X can
take on the three values {0,1,2}. Assume that the pdf of X is given by

f(0) � .20, f(1) � .44, and f(2) � .36.

Appendix B Fundamentals of Probability

666

xd  7/14/99 8:57 PM  Page 666



The three probabilities sum to one, as they must. Using this pdf, we can calculate the
probability that the player makes at least one free throw: P(X � 1) � P(X � 1) �
P(X � 2) � .44 � .36 � .80. The pdf of X is shown in Figure B.1.

Continuous Random Variables

A variable X is a continuous random variable if it takes on any real value with zero
probability. This definition is somewhat counterintuitive, since in any application, we
eventually observe some outcome for a random variable. The idea is that a continuous
random variable X can take on so many possible values that we cannot count them or
match them up with the positive integers, so logical consistency dictates that X can take
on each value with probability zero. While measurements are always discrete in prac-
tice, random variables that take on numerous values are best treated as continuous. For
example, the most refined measure of the price of a good is in terms of cents. We can
imagine listing all possible values of price in order (even though the list may continue
indefinitely), which technically makes price a discrete random variable. However, there
are so many possible values of price that using the mechanics of discrete random vari-
ables is not feasible.

We can define a probability density function for continuous random variables, and,
as with discrete random variables, the pdf provides information on the likely outcomes
of the random variable. However, because it makes no sense to discuss the probability
that a continuous random variable takes on a particular value, we use the pdf of a con-
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tinuous rv only to compute events involving a range of values. For example, if a and b
are constants where a � b, the probability that X lies between the numbers a and b,
P(a � X � b), is the area under the pdf between points a and b, as shown in Figure B.2.
If you are familiar with calculus, you recognize this as the integral of the function f
between the points a and b. The entire area under the pdf must always equal one.

When computing probabilities for continuous random variables, it is easiest to work
with the cumulative distribution function (cdf). If X is any random variable, then its
cdf is defined for any real number x by

F(x) � P(X � x). (B.6)

For discrete random variables, (B.6) is obtained by summing the pdf over all values xj

such that xj � x. For a continuous random variable, F(x) is the area under the pdf, f, to
the left of the point x. Since F(x) is simply a probability, it is always between 0 and 1.
Further, if x1 � x2, then P(X � x1) � P(X � x2), that is, F(x1) � F(x2). This means that
a cdf is an increasing (or at least nondecreasing) function of x.

Two important properties of cdfs that are useful for computing probabilities are the
following:
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For any number c, P(X � c) � 1 � F(c). (B.7)

For any numbers a � b, P(a � X � b) � F(b) � F(a). (B.8)

In our study of econometrics, we will use cdfs to compute probabilities only for con-
tinuous random variables, in which case it does not matter whether inequalities in prob-
ability statements are strict or not. That is, for a continuous random variable X,

P(X � c) � P(X � c), (B.9)

and

P(a � X � b) � P(a � X � b) � P(a � X � b) � P(a � X � b). (B.10)

Combined with (B.7) and (B.8), equations (B.9) and (B.10) greatly expand the proba-
bility calculations that can be done using continuous cdfs.

Cumulative distribution functions have been tabulated for all of the important
continuous distributions in probability and statistics. The most well-known of these
is the normal distribution, which we cover along with some related distributions in
Section B.5.

B.2 JOINT DISTRIBUTIONS, CONDITIONAL
DISTRIBUTIONS, AND INDEPENDENCE

In economics, we are usually interested in the occurrence of events involving more than
one random variable. For example, in the airline reservation example referred to earlier,
the airline might be interested in the probability that a person who makes a reservation
shows up and is a business traveler; this is an example of a joint probability. Or, the air-
line might be interested in the following conditional probability: conditional on the per-
son being a business traveler, what is the probability of he or she showing up? In the
next two subsections, we formalize the notions of joint and conditional distributions
and the important notion of independence of random variables.

Joint Distributions and Independence

Let X and Y be discrete random variables. Then, (X,Y ) have a joint distribution, which
is fully described by the joint probability density function of (X,Y ):

fX,Y (x,y) � P(X � x,Y � y), (B.11)

where the right-hand side is the probability that X � x and Y � y. When X and Y are
continuous, a joint pdf can also be defined, but we will not cover such details because
joint pdfs for continuous random variables are not used explicitly in this text.

In one case, it is easy to obtain the joint pdf if we are given the pdfs of X and Y. In
particular, random variables X and Y are said to be independent if and only if
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fX,Y (x,y) � fX(x)fY (y) (B.12)

for all x and y, where fX is the pdf of X, and fY is the pdf of Y. In the context of more
than one random variable, the pdfs fX and fY are often called marginal probability den-
sity functions to distinguish them from the joint pdf fX,Y. This definition of indepen-
dence is valid for discrete and continuous random variables.

To understand the meaning of (B.12), it is easiest to deal with the discrete case. If
X and Y are discrete, then (B.12) is the same as

P(X � x,Y � y) � P(X � x)P(Y � y); (B.13)

in other words, the probability that X � x and Y � y is the product of the two proba-
bilities P(X � x) and P(Y � y). One implication of (B.13) is that joint probabilities are
fairly easy to compute, since they only require knowledge of P(X � x) and P(Y � y).

If random variables are not independent, then they are said to be dependent.

E X A M P L E  B . 1
( F r e e  T h r o w  S h o o t i n g )

Consider a basketball player shooting two free throws. Let X be the Bernoulli random vari-
able equal to one if she or he makes the first free throw, and zero otherwise. Let Y be a
Bernoulli random variable equal to one if he or she makes the second free throw. Suppose
that she or he is an 80% free-throw shooter, so that P(X � 1) � P(Y � 1) � .8. What is
the probability of the player making both free throws?

If X and Y are independent, we can easily answer this question: P(X � 1,Y � 1) �

P(X � 1)P(Y � 1) � (.8)(.8) � .64. Thus, there is a 64% chance of making both free throws.
If the chance of making the second free throw depends on whether the first was made—
that is, X and Y are not independent—then this simple calculation is not valid.

Independence of random variables is a very important concept. In the next subsec-
tion, we will show that if X and Y are independent, then knowing the outcome of X does
not change the probabilities of the possible outcomes of Y, and vice versa. One useful
fact about independence is that if X and Y are independent and we define new random
variables g(X ) and h(Y ) for any functions g and h, then these new random variables are
also independent.

There is no need to stop at two random variables. If X1, X2, …, Xn are discrete ran-
dom variables, then their joint pdf is f(x1,x2, …, xn) � P(X1 � x1, X2 � x2, …, Xn � xn).
The random variables X1, X2, …, Xn are independent random variables if and only if
their joint pdf is the product of the individual pdfs for any (x1,x2, …, xn). This definition
of independence also holds for continuous random variables.

The notion of independence plays an important role in obtaining some of the clas-
sic distributions in probability and statistics. Earlier we defined a Bernoulli random
variable as a zero-one random variable indicating whether or not some event occurs.
Often, we are interested in the number of successes in a sequence of independent
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Bernoulli trials. A standard example of independent Bernoulli trials is flipping a coin
again and again. Since the outcome on any particular flip has nothing to do with the
outcomes on other flips, independence is an appropriate assumption.

Independence is often a reasonable approximation in more complicated situations.
In the airline reservation example, suppose that the airline accepts n reservations for a
particular flight. For each i � 1,2, …, n, let Yi denote the Bernolli random variable indi-
cating whether customer i shows up: Yi � 1 if customer i appears, and Yi � 0 other-
wise. Letting � again denote the probability of success (using reservation), each Yi has
a Bernoulli(�) distribution. As an approximation, we might assume that the Yi are inde-
pendent of one another, although this is not exactly true in reality: some people travel
in groups, which means that whether or not a person shows up is not truly independent
of whether all others show up. Modeling this kind of dependence is complex, however,
so we might be willing to use independence as an approximation.

The variable of primary interest is the total number of customers showing up out of
the n reservations; call this variable X. Since each Yi is unity when a person shows up,
we can write X � Y1 � Y2 � … � Yn. Now, assuming that each Yi has probability of
success � and that the Yi are independent, X can be shown to have a binomial distri-
bution. That is, the probability density function of X is

f(x) � � �� x(1 � �)n�x, x � 0,1,2, …, n, (B.14)

where � � � , and for any integer n, n! (read “n factorial”) is defined as

n! � n	(n � 1)	(n � 2)			1. By convention, 0! � 1. When a random variable X has the
pdf given in (B.14), we write X ~ Binomial(n,�). Equation (B.14) can be used to com-
pute P(X � x) for any value of x from 0 to n.

If the flight has 100 available seats, the airline is interested in P(X � 100). Suppose,
initially, that n � 120, so that the airline accepts 120 reservations, and the probability
that each person shows up is � � .80. Then, P(X � 100) � P(X � 101) � P(X � 102)
� … � P(X � 120), and each of the probabilities in the sum can be found from equa-
tion (B.14) with n � 120, � � .80, and the appropriate value of x (101 to 120). This is
a difficult hand calculation, but many statistical packages have commands for comput-
ing this kind of probability. In this case, the probability that more than 100 people will
show up is about .659, which is probably more risk of overbooking than the airline
wants to tolerate. If, instead, the number of reservations is 110, the probability of more
than 100 passengers showing up is only about .024.

Conditional Distributions

In econometrics, we are usually interested in how one random variable, call it Y, is
related to one or more other variables. For now, suppose that there is only variable
whose effects we are interested in, call it X. The most we can know about how X affects
Y is contained in the conditional distribution of Y given X. This information is sum-
marized by the conditional probability density function, defined by

n!
x!(n � x)!

n
x

n
x
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fY�X(y�x) � fX,Y(x,y)/fX(x) (B.15)

for all values of x such that fX(x) � 0. The interpretation of (B.15) is most easily seen
when X and Y are discrete. Then,

fY�X(y�x) � P(Y � y�X � x), (B.16)

where the right-hand side is read as “the probability that Y � y given that X � x.” When
Y is continuous, fY�X(y�x) is not interpretable directly as a probability, for the reasons dis-
cussed earlier, but conditional probabilities are found by computing areas under the
conditional pdf.

An important feature of conditional distributions is that, if X and Y are independent
random variables, knowledge of the value taken on by X tells us nothing about the prob-
ability that Y takes on various values (and vice versa). That is, fY�X(y�x) � fY(y), and
fX�Y(x�y) � fX(x).

E X A M P L E  B . 2
( F r e e  T h r o w  S h o o t i n g )

Consider again the basketball-shooting example, where two free throws are to be
attempted. Assume that the conditional density is

fY�X(1�1) � .85, fY�X(0�1) � .15

fY�X(1�0) � .70, fY�X(0�0) � .30.

This means that the probability of the player making the second free throw depends on
whether the first free throw was made: if the first free throw is made, the chance of mak-
ing the second is .85; if the first free throw is missed, the chance of making the second is
.70. This implies that X and Y are not independent; they are dependent.

We can still compute P(X � 1,Y � 1), provided we know P(X � 1). Assume that the
probability of making the first free throw is .8, that is, P(X � 1) � .8. Then, from (B.15), we
have

P(X � 1,Y � 1) � P(Y � 1�X � 1)	P(X � 1) � (.85)(.8) � .68.

B.3 FEATURES OF PROBABILITY DISTRIBUTIONS

For many purposes, we will be interested in only a few aspects of the distributions of
random variables. The features of interest can be put into three categories: measures of
central tendency, measures of variability or spread, and measures of association
between two random variables. We cover the last of these in Section B.4.

A Measure of Central Tendency: The Expected Value

The expected value is one of the most important probabilistic concepts that we will
encounter in our study of econometrics. If X is a random variable, the expected value
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(or expectation) of X, denoted E(X) and sometimes 
X or simply 
, is a weighted aver-
age of all possible values of X. The weights are determined by the probability density
function. Sometimes, the expected value is called the population mean, especially when
we want to emphasize that X represents some variable in a population.

The precise definition of expected value is simplest in the case that X is a discrete
random variable taking on a finite number of values, say {x1, …, xk}. Let f (x) denote the
probability density function of X. The expected value of X is the weighted average

E(X ) � x1 f(x1) � x2 f (x2) � … � xk f(xk) � �
k

j�1
xj f(xj). (B.17)

This is easily computed given the values of the pdf at each possible outcome of X.

E X A M P L E  B . 3
( C o m p u t i n g  a n  E x p e c t e d  V a l u e )

Suppose that X takes on the values �1, 0, and 2 with probabilities 1/8, 1/2, and 3/8, respec-
tively. Then,

E(X ) � (�1)	(1/8) � 0	(1/2) � 2	(3/8) � 5/8.

This example illustrates something curious about expected values: the expected value
of X can be a number that is not even a possible outcome of X. We know that X takes
on the value �1, 0, or 2, yet its expected value is 5/8. This makes the expected value
deficient for summarizing the central tendency of certain discrete random variables, but
calculations such as those just mentioned can be useful, as we will see later.

If X is a continuous random variable, then E(X ) is defined as an integral:

E(X) � �
�

��

xf(x)dx, (B.18)

which we assume is well-defined. This can still be interpreted as a weighted average.
Unlike in the discrete case, E(X ) is always a number that is a possible outcome of X. In
this text, we will not need to compute expected values using integration, although we
will draw on some well-known results from probability for expected values of special
random variables.

Given a random variable X and a function g(	), we can create a new random vari-
able g(X ). For example, if X is a random variable, then so is X2 and log(X ) (if X � 0).
The expected value of g(X ) is, again, simply a weighted average:

E[g(X)] � �
k

j�1
g(xj) fX(xj) (B.19)

or, for a continuous random variable,
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E[g(X)] � �
�

��

g(x)fX(x)dx. (B.20)

E X A M P L E  B . 4
( E x p e c t e d  V a l u e  o f  X 2 )

For the random variable in Example B.3, let g(X ) � X2. Then,

E(X2) � (�1)2(1/8) � (0)2(1/2) � (2)2(3/8) � 13/8.

In Example B.3, we computed E(X ) � 5/8, so that [E(X )]2 � 25/64. This shows that
E(X2) is not the same as [E(X )]2. In fact, for a nonlinear function g(X ), E[g(X )] �
g[E(X )] (except in very special cases).

If X and Y are random variables, then g(X,Y ) is a random variable for any function
g, and so we can define its expectation. When X and Y are both discrete, taking on val-
ues {x1,x2, …, xk} and {y1,y2, …, ym}, respectively, the expected value is

E[g(X,Y )] � �
k

h�1 
�

m

j�1
g(xh,yj)fX,Y(xh,yj),

where fX,Y is the joint pdf of (X,Y ). The definition is more complicated for continuous
random variables since it involves integration; we do not need it here. The extension to
more than two random variables is straightforward.

Properties of Expected Value

In econometrics, we are not so concerned with computing expected values from vari-
ous distributions; the major calculations have been done many times, and we will
largely take these on faith. We will need to manipulate some expected values using a
few simple rules. These are so important that we give them labels:

PROPERTY E.1
For any constant c, E(c) � c.

PROPERTY E.2
For any constants a and b, E(aX � b) � aE(X ) � b.

One useful implication of E.2 is that, if 
 � E(X ), and we define a new random vari-
able as Y � X � 
, then E(Y ) � 0; in E.2, take a � 1 and b � �
.

As an example of Property E.2, let X be the temperature measured in Celsius,
at noon on a particular day at a given location; suppose the expected temperature
is E(X) � 25. If Y is the temperature measured in Fahrenheit, then Y � 32 �
(9/5)X. From Property E.2, the expected temperature in Fahrenheit is E(Y ) � 32 �
(9/5)	E(X ) � 32 � (9/5)	25 � 77.

Generally, it is easy to compute the expected value of a linear function of many ran-
dom variables.
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PROPERTY E.3
If {a1,a2, …, an} are constants and {X1,X2, …, Xn} are random variables, then

E(a1X1 � a2X2 � … � anXn) � a1E(X1) � a2E(X2) � … � anE(Xn).

Or, using summation notation,

E(�
n

i�1
aiXi) � �

n

i�1
aiE(Xi). (B.21)

As a special case of this, we have (with each ai � 1)

E(�
n

i�1
Xi) � �

n

i�1
E(Xi), (B.22)

so that the expected value of the sum is the sum of expected values. This property is
used often for derivations in mathematical statistics.

E X A M P L E  B . 5
( F i n d i n g  E x p e c t e d  R e v e n u e )

Let X1, X2, and X3 be the numbers of small, medium, and large pizzas, respectively, sold dur-
ing the day at a pizza parlor. These are random variables with expected values E(X1) � 25,
E(X2) � 57, and E(X3) � 40. The prices of small, medium, and large pizzas are $5.50, $7.60,
and $9.15. Therefore, the expected revenue from pizza sales on a given day is

E(5.50 X1 � 7.60 X2 � 9.15 X3) � 5.50 E(X1) � 7.60 E(X2) � 9.15 E(X3)
� 5.50(25) � 7.60(57) � 9.15(40) � 936.70,

that is, $936.70. The actual revenue on any particular day will generally differ from this
value, but this is the expected revenue.

We can also use Property E.3 to show show that if X ~ Binomial(n,�), then E(X ) �
n�. That is, the expected number of successes in n Bernoulli trials is simply the num-
ber of trials times the probability of success on any particular trial. This is easily seen
by writing X as X � Y1 � Y2 � … � Yn, where each Yi ~ Bernoulli(�). Then,

E(X ) � �
n

i�1
E(Yi) � �

n

i�1
� � n�.

We can apply this to the airline reservation example, where the airline makes n � 120
reservations, and the probability of showing up is � � .85. The expected number of peo-
ple showing up is 120(.85) � 102. Therefore, if there are 100 seats available, the
expected number of people showing up is too large; this has some bearing on whether
it is a good idea for the airline to make 120 reservations.

Actually, what the airline should do is define a profit function that accounts for the
net revenue earned per seat sold and the cost per passenger bumped from the flight. This
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profit function is random because the actual number of people showing up is random.
Let r be the net revenue from each passenger. (You can think of this as the price of the
ticket for simplicity.) Let c be the compensation owed to any passenger bumped from
the flight. Neither r nor c is random; these are assumed to be known to the airline. Let
Y denote profits for the flight. Then, with 100 seats available,

Y � rX if X � 100

� 100r � c(X � 100) if X � 100.

The first equation gives profit if no more than 100 people show up for the flight; the
second equation is profit if more than 100 people show up. (In the latter case, the net
revenue from ticket sales is 100r, since all 100 seats are sold, and then c(X � 100) is
the cost of making more than 100 reservations.) Using the fact that X has a
Binomial(n,.85) distribution, where n is the number of reservations made, expected
profits, E(Y ), can be found as a function of n (and r and c). Computing E(Y ) directly
would be quite difficult, but it can be found quickly using a computer. Once values for
r and c are given, the value of n that maximizes expected profits can be found by search-
ing over different values of n.

Another Measure of Central Tendency: The Median

The expected value is only one possibility for defining the central tendency of a random
variable. Another measure of central tendency is the median. A general definition of
median is too complicated for our purposes. If X is continuous, then the median of X,
say m, is the value such that one-half of the area under pdf is to the left of m, and one-
half of the area is to the right of m.

When X is discrete and takes on a finite number of odd values, the median is
obtained by ordering the possible values of X and then selecting the value in the middle.
For example, if X can take on the values {�4,0,2,8,10,13,17}, then the median value of
X is 8. If X takes on an even number of values, there are really two median values;
sometimes these are averaged to get a unique median value. Thus, if X takes on the val-
ues {�5,3,9,17}, then the median values are 3 and 9; if we average these, we get a
median equal to 6.

In general, the median, sometimes denoted Med(X ), and the expected value, E(X ),
are different. Neither is “better” than the other as a measure of central tendency; they
are both valid ways to measure the center of the distribution of X. In one special case,
the median and expected value (or mean) are the same. If the probability distribution of
X is symmetrically distributed about the value 
, then 
 is both the expected value and
the median. Mathematically, the condition is f(
 � x) � f(
 � x) for all x. This case is
illustrated in Figure B.3.

Measures of Variability: Variance and
Standard Deviation

While the central tendency of a random variable is valuable, it does not tell us every-
thing we want to know about the distribution of a random variable. Figure B.4 shows
the pdfs of two random variables with the same mean. Clearly, the distribution of X is
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more tightly centered about its mean than is the distribution of Y. We would like to have
a simple way of summarizing this.

Variance

For a random variable X, let 
 � E(X ). There are various ways to measure how far X
is from its expected value, but the simplest one to work with algebraically is the squared
difference, (X � 
)2. (The squaring serves to eliminate the sign from the distance mea-
sure; the resulting positive value corresponds to our intuitive notion of distance.) This
distance is itself a random variable since it can change with every outcome of X. Just as
we needed a number to summarize the central tendency of X, we need a number that
tells us how far X is from 
, on average. One such number is the variance, which tells
us the expected distance from X to its mean:

Var(X ) � E[(X � 
)2]. (B.23)

Variance is sometimes denoted  2
X, or simply 2, when the context is clear. From

(B.23), it follows that the variance is always nonnegative.
As a computational device, it is useful to observe that
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2 � E(X2 � 2X
 � 
2) � E(X2) � 2
2 � 
2 � E(X2) � 
2. (B.24)

In using either (B.23) or (B.24), we need not distinguish between discrete and continu-
ous random variables: the definition of variance is the same in either case. Most often,
we first compute E(X ), then E(X2), and then we use the formula in (B.24). For exam-
ple, if X ~ Bernoulli(�), then E(X) � �, and, since X2 � X, E(X2) � �. It follows from
equation (B.24) that Var(X ) � E(X2) � 
2 � � � �2 � �(1 � �).

Two important properties of the variance follow.

PROPERTY VAR.1
Var(X ) � 0 if and only if there is a constant c, such that P(X � c) � 1, in which case,
E(X) � c.

This first property says that the variance of any constant is zero and if a random vari-
able has zero variance, then it is essentially constant.

PROPERTY VAR.2
For any constants a and b, Var(aX � b) � a2Var(X ).
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This means that adding a constant to a random variable does not change the variance,
but multiplying a random variable by a constant increases the variance by a factor equal
to the square of that constant. For example, if X denotes temperature in Celsius and
Y � 32 � (9/5)X is temperature in Fahrenheit, then Var(Y ) � (9/5)2Var(X) �
(81/25)Var(X).

Standard Deviation

The standard deviation of a random variable, denoted sd(X), is simply the positive
square root of the variance: sd(X ) � ��Var(X ). The standard deviation is sometimes
denoted X, or simply , when the random variable is understood. Two standard devi-
ation properties immediately follow from Properties VAR.1 and VAR.2.

PROPERTY SD.1
For any constant c, sd(c) � 0.

PROPERTY SD.2
For any constants a and b,

sd(aX � b) � �a�sd(X ).

In particular, if a � 0, then sd(aX ) � a	sd(X ).

This last property makes the standard deviation more natural to work with than the
variance. For example, suppose that X is a random variable measured in thousands
of dollars, say income. If we define Y � 1,000X, then Y is income measured in dol-
lars. Suppose that E(X ) � 20, and sd(X ) � 6. Then E(Y ) � 1,000E(X ) � 20,000, and
sd(Y ) � 1,000	sd(X ) � 6,000, so that the expected value and standard deviation both
increase by the same factor, 1,000. If we worked with variance, we would have Var(Y )
� (1,000)2Var(X ), so that the variance of Y is one million times larger than the vari-
ance of X.

Standardizing a Random Variable

As an application of the properties of variance and standard deviation—and a topic of
practical interest in its own right—suppose that given a random variable X, we define a
new random variable by subtracting off its mean 
 and dividing by its standard devia-
tion :

Z � , (B.25)

which we can write as Z � aX � b, where a � (1/), and b � �(
/). Then, from
Property E.2,

E(Z ) � aE(X ) � b � (
/) � (
/) � 0.

From Property VAR.2,

X � 
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Var(Z ) � a2Var(X ) � (2/2) � 1.

Thus, the random variable Z has a mean of zero and a variance (and therefore a stan-
dard deviation) equal to one. This procedure is sometimes known as standardizing the
random variable X, and Z is called a standardized random variable. (In introductory
statistics courses, it is sometimes called the z-transform of X.) It is important to remem-
ber that the standard deviation, not the variance, appears in the denominator of (B.25).
As we will see, this transformation is frequently used in statistical inference.

As a specific example, suppose that E(X ) � 2, and Var(X ) � 9. Then Z � (X � 2)/3
has expected value zero and variance one.

B.4 FEATURES OF JOINT AND CONDITIONAL
DISTRIBUTIONS

Measures of Association: Covariance and Correlation

While the joint pdf of two random variables completely describes the relationship
between them, it is useful to have summary measures of how, on average, two random
variables vary with one another. As with the expected value and variance, this is simi-
lar to using a single number to summarize something about an entire distribution, which
in this case is a joint distribution of two random variables.

Covariance

Let 
X � E(X ) and 
Y � E(Y ) and consider the random variable (X � 
X)(Y � 
Y).
Now, if X is above its mean and Y is above its mean, then (X � 
X)(Y � 
Y) � 0. This
is also true if X � 
X and Y � 
Y. On the other hand, if X � 
X and Y � 
Y, or vice
versa, then (X � 
X)(Y � 
Y) � 0. How, then, can this product tell us anything about
the relationship between X and Y?

The covariance between two random variables X and Y, sometimes called the
population covariance to emphasize that it concerns the relationship between two vari-
ables describing a population, is defined as the expected value of the product (X �

X)(Y � 
Y):

Cov(X,Y ) � E[(X � 
X)(Y � 
Y)], (B.26)

which is sometimes denoted XY. If XY � 0, then, on average, when X is above its
mean, Y is also above its mean. If XY � 0, then, on average, when X is above its mean,
Y is below its mean.

Several expressions useful for computing Cov(X,Y ) are as follows:

Cov(X,Y) � E[(X � 
X)(Y � 
Y)] � E[(X � 
X)Y]

� E[X(Y � 
Y)] � E(XY) � 
X
Y.
(B.27)

It follows from (B.27), that if E(X) � 0 or E(Y ) � 0, then Cov(X,Y ) � E(XY ).
Covariance measures the amount of linear dependence between two random vari-

ables. A positive covariance indicates that two random variables move in the same
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direction, while a negative covariance indicates they move in opposite directions.
Interpreting the magnitude of a covariance can be a little tricky, as we will see shortly.

Since covariance is a measure of how two random variables are related, it is natural
to ask how covariance is related to the notion of independence. This is given by the fol-
lowing property.

PROPERTY COV.1
If X and Y are independent, then Cov(X,Y ) � 0.

This property follows from equation (B.27) and the fact that E(XY ) � E(X)E(Y ) when
X and Y are independent. It is important to remember that the converse of COV.1 is not
true: zero covariance between X and Y does not imply that X and Y are independent. In
fact, there are random variables X such that, if Y � X2, Cov(X,Y ) � 0. (Any random
variable with E(X) � 0 and E(X3) � 0 has this property.) If Y � X2, then X and Y are
clearly not independent: once we know X, we know Y. It seems rather strange that X and
X2 could have zero covariance, and this reveals a weakness of covariance as a general
measure of association between random variables. The covariance is useful in contexts
when relationships are at least approximately linear.

The second major property of covariance involves covariances between linear func-
tions.

PROPERTY COV.2
For any constants a1, b1, a2, and b2,

Cov(a1X � b1,a2Y � b2) � a1a2Cov(X,Y ). (B.28)

An important implication of COV.2 is that the covariance between two random vari-
ables can be altered simply by multiplying one or both of the random variables by a
constant. This is important in economics since monetary variables, inflation rates,
and so on, can be defined with different units of measurement without changing their
meaning.

Finally, it is useful to know that the absolute value of the covariance between any
two random variables is bounded by the product of their standard deviations; this is
known as the Cauchy-Schwartz inequality.

PROPERTY COV.3
�Cov(X,Y )� � sd(X )sd(Y ).

Correlation Coefficient

Suppose we want to know the relationship between amount of education and annual
earnings in the working population. We could let X denote education and Y denote earn-
ings and then compute their covariance. But the answer we get will depend on how we
choose to measure education and earnings. Property COV.2 implies that the covariance
between education and earnings depends on whether earnings are measured in dollars
or thousands of dollars, or whether education is measured in months or years. It is pretty
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clear that how we measure these variables has no bearing on how strongly they are
related. But the covariance between them does depend on the units of measurement.

The fact that the covariance depends on units of measurement is a deficiency that is
overcome by the correlation coefficient between X and Y:

Corr(X,Y ) � � ; (B.29)

the correlation coefficient between X and Y is sometimes denoted �XY (and is sometimes
called the population correlation).

Because X and Y are positive, Cov(X,Y ) and Corr(X,Y) always have the same
sign, and Corr(X,Y ) � 0 if and only if Cov(X,Y) � 0. Some of the properties of covari-
ance carry over to correlation. If X and Y are independent, then Corr(X,Y ) � 0, but zero
correlation does not imply lack of independence. (The correlation coefficient is also a
measure of linear dependence.) However, the magnitude of the correlation coefficient
is easier to interpret than the size of the covariance due to the following property.

PROPERTY CORR.1
�1 � Corr(X,Y) � 1.

If Corr(X,Y) � 0, or equivalently Cov(X,Y) � 0, then there is no linear relationship
between X and Y, and X and Y are said to be uncorrelated; otherwise, X and Y are cor-
related. Corr(X,Y) � 1 implies a perfect positive linear relationship, which means that
we can write Y � a � bX, for some constant a and some constant b � 0. Corr(X,Y ) �
�1 implies a perfect negative relationship, so that Y � a � bX, for some b � 0. The
extreme cases of positive or negative one rarely occur. Values of �XY closer to 1 or �1
indicate stronger linear relationships.

As mentioned earlier, the correlation between X and Y is invariant to the units of
measurement of either X or Y. This is stated more generally as follows.

PROPERTY CORR.2
For constants a1, b1, a2, and b2, with a1a2 � 0,

Corr(a1X � b1,a2Y � b2) � Corr(X,Y ).

If a1a2 � 0, then

Corr(a1X � b1,a2Y � b2) � �Corr(X,Y ).

As an example, suppose that the correlation between earnings and education in the
working population is .15. This measure does not depend on whether earnings are mea-
sured in dollars, thousands of dollars, or any other unit; it also does not depend on
whether education is measured in years, quarters, months, and so on.

Variance of Sums of Random Variables

Now that we have defined covariance and correlation, we can complete our list of major
properties of the variance.

XY

XY

Cov(X,Y )

sd(X)	sd(Y)
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PROPERTY VAR.3
For constants a and b,

Var(aX � bY ) � a2Var(X) � b2Var(Y ) � 2abCov(X,Y ).

It follows immediately that, if X and Y are uncorrelated—so that Cov(X,Y) � 0—then

Var(X � Y ) � Var(X ) � Var(Y ) (B.30)

and

Var(X � Y) � Var(X) � Var(Y). (B.31)

In the latter case, note how the variance of the difference is the sum, not the difference,
in the variances.

As an example of (B.30), let X denote profits earned by a restaurant during a Friday
night and let Y be profits earned on the following Saturday night. Then, Z � X � Y is
profits for the two nights. Suppose X and Y each have an expected value of $300 and a
standard deviation of $15 (so that the variance is 225). Expected profits for the two
nights is E(Z) � E(X ) � E(Y ) � 2	(300) � 600 dollars. If X and Y are independent,
and therefore uncorrelated, then the variance of total profits is the sum of the variances:
Var(Z ) � Var(X ) � Var(Y ) � 2	(225) � 450. It follows that the standard deviation of
total profits is ��450 or about $21.21.

Expressions (B.30) and (B.31) extend to more than two random variables. To state
this extension, we need a definition. The random variables {X1, …, Xn} are pairwise
uncorrelated random variables if each variable in the set is uncorrelated with every
other variable in the set. That is, Cov(Xi,Xj) � 0, for all i � j.

PROPERTY VAR.4
If {X1, …, Xn} are pairwise uncorrelated random variables and {ai: i � 1, …, n} are
constants, then

Var(a1X1 � … � anXn) � a2
1Var(X1) � … � a2

nVar(Xn).

In summation notation, we can write

Var(�
n

i�1
aiXi) � �

n

i�1
ai

2Var(Xi). (B.32)

A special case of Property VAR.4 occurs when we take ai � 1 for all i. Then, for pair-
wise uncorrelated random variables, the variance of the sum is the sum of the variances:

Var(�
n

i�1
Xi) � �

n

i�1
Var(Xi). (B.33)

Since independent random variables are uncorrelated (see Property COV.1), the vari-
ance of a sum of independent random variables is the sum of the variances.
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If the Xi are not pairwise uncorrelated, then the expression for Var(�
n

i�1
aiXi) is much

more complicated; it depends on each covariance, as well as on each variance. We will
not need the more general formula for our purposes.

We can use (B.33) to derive the variance for a binomial random variable. Let X ~
Binomial(n,�) and write X � Y1 � … � Yn, where the Yi are independent Bernoulli(�)
random variables. Then, by (B.33), Var(X ) � Var(Y1) � … � Var(Yn) � n�(1 � �).

In the airline reservations example with n � 120 and � � .85, the variance of the
number of passengers arriving for their reservations is 120(.85)(.15) � 15.3, and so the
standard deviation is about 3.9.

Conditional Expectation

Covariance and correlation measure the linear relationship between two random vari-
ables and treat them symmetrically. More often in the social sciences, we would like to
explain one variable, called Y, in terms of another variable, say X. Further, if Y is related
to X in a nonlinear fashion, we would like to know this. Call Y the explained variable
and X the explanatory variable. For example, Y might be hourly wage, and X might be
years of formal education.

We have already introduced the notion of the conditional probability density func-
tion of Y given X. Thus, we might want to see how the distribution of wages changes
with education level. However, we usually want to have a simple way of summarizing
this distribution. A single number will no longer suffice, since the distribution of Y,
given X � x, generally depends on the value of x. Nevertheless, we can summarize the
relationship between Y and X by looking at the conditional expectation of Y given X,
sometimes called the conditional mean. The idea is this. Suppose we know that X has
taken on a particular value, say x. Then, we can compute the expected value of Y, given
that we know this outcome of X. We denote this expected value by E(Y �X � x), or some-
times E(Y �x) for shorthand. Generally, as x changes, so does E(Y �x).

When Y is a discrete random variable taking on values {y1, …, ym}, then

E(Y �x) � �
m

j�1
yj fY�X(yj�x).

When Y is continuous, E(Y �x) is defined by integrating yfY�X(y�x) over all possible val-
ues of y. As with unconditional expectations, the conditional expectation is a weighted
average of possible values of Y, but now the weights reflect the fact that X has taken on
a specific value. Thus, E(Y �x) is just some function of x, which tells us how the expected
value of Y varies with x.

As an example, let (X,Y ) represent the population of all working individuals, where
X is years of education, and Y is hourly wage. Then, E(Y �X � 12) is the average hourly
wage for all people in the population with 12 years of education (roughly a high school
education). E(Y �X � 16) is the average hourly wage for all people with 16 years of edu-
cation. Tracing out the expected value for various levels of education provides impor-
tant information on how wages and education are related. See Figure B.5 for an
illustration.
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In principle, the expected value of hourly wage can be found at each level of edu-
cation, and these expectations can be summarized in a table. Since education can vary
widely—and can even be measured in fractions of a year—this is a cumbersome way
to show the relationship between average wage and amount of education. In economet-
rics, we typically specify simple functions that capture this relationship. As an exam-
ple, suppose that the expected value of WAGE given EDUC is the linear function

E(WAGE�EDUC) � 1.05 � .45 EDUC.

If this relationship holds in the population of working people, the average wage for peo-
ple with eight years of education is 1.05 � .45(8) � 4.65, or $4.65. The average wage
for people with 16 years of education is 8.25, or $8.25. The coefficient on EDUC
implies that each year of education increases the expected hourly wage by .45, or 45
cents.

Conditional expectations can also be nonlinear functions. For example, suppose that
E(Y �x) � 10/x, where X is a random variable that is always greater than zero. This func-
tion is graphed in Figure B.6. This could represent a demand function, where Y is quan-
tity demanded, and X is price. If Y and X are related in this way, an analysis of linear
association, such as correlation analysis, would be inadequate.
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Properties of Conditional Expectation

Several basic properties of conditional expectations are useful for derivations in econo-
metric analysis.

PROPERTY CE.1:
E[c(X )�X] � c(X ), for any function c(X ).

This first property means that functions of X behave as constants when we compute
expectations conditional on X. For example, E(X2�X ) � X2. Intuitively, this simply
means that if we know X, then we also know X2.

PROPERTY CE.2
For functions a(X ) and b(X ),

E[a(X )Y � b(X )�X] � a(X)E(Y �X ) � b(X ).

For example, we can easily compute the conditional expectation of a function such as
XY � 2X2: E(XY � 2X2�X ) � XE(Y �X ) � 2X2.

The next property ties together the notions of independence and conditional expec-
tations.

PROPERTY CE.3
If X and Y are independent, then E(Y �X ) � E(Y ).
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This property means that, if X and Y are independent, then the expected value of Y given
X does not depend on X, in which case, E(Y �X ) always equals the (unconditional)
expected value of Y. In the wage and education example, if wages were independent of
education, then the average wages of high school and college graduates would be the
same. Since this is almost certainly false, we cannot assume that wage and education
are independent.

A special case of Property CE.3 is the following: if U and X are independent and
E(U ) � 0, then E(U�X ) � 0.

There are also properties of the conditional expectation that have to do with the fact
that E(Y �X ) is a function of X, say E(Y �X ) � 
(X ). Since X is a random variable, 
(X )
is also a random variable. Furthermore, 
(X) has a probability distribution and there-
fore an expected value. Generally, the expected value of 
(X) could be very difficult to
compute directly. The law of iterated expectations says that the expected value of

(X) is simply equal to the expected value of Y. We write this as follows.

PROPERTY CE.4
E[E(Y �X )] � E(Y ).

This property is a little hard to grasp at first. It means that, if we first obtain E(Y �X ) as
a function of X and take the expected value of this (with respect to the distribution of
X, of course), then we end up with E(Y ). This is hardly obvious, but it can be derived
using the definition of expected values.

Suppose Y � WAGE and X � EDUC, where WAGE is measured in hours, and
EDUC is measured in years. Suppose the expected value of WAGE given EDUC is
E(WAGE�EDUC ) � 4 � .60 EDUC. Further, E(EDUC ) � 11.5. Then, the law of iter-
ated expectations implies that E(WAGE ) � E(4 � .60 EDUC ) � 4 � .60 E(EDUC ) �
4 � .60(11.5) � 10.90, or $10.90 an hour.

The next property states a more general version of the law of iterated expectations.

PROPERTY CE.4�

E(Y �X ) � E[E(Y �X,Z )�X ].

In other words, we can find E(Y �X ) in two steps. First, find E(Y �X,Z ) for any other ran-
dom variable Z. Then, find the expected value of E(Y �X,Z ), conditional on X.

PROPERTY CE.5
If E(Y �X) � E(Y ), then Cov(X,Y ) � 0 (and so Corr(X,Y ) � 0). In fact, every function
of X is uncorrelated with Y.

This property means that, if knowledge of X does not change the expected value of Y,
then X and Y must be uncorrelated, which implies that if X and Y are correlated, then
E(Y �X ) must depend on X. The converse of Property CE.5 is not true: if X and Y are
uncorrelated, E(Y �X ) could still depend on X. For example, suppose Y � X2. Then,
E(Y �X ) � X2, which is clearly a function of X. However, as we mentioned in our dis-
cussion of covariance and correlation, it is possible that X and X2 are uncorrelated. The
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conditional expectation captures the nonlinear relationship between X and Y that corre-
lation analysis would miss entirely.

Properties CE.4 and CE.5 have two major implications: if U and X are random vari-
ables such that E(U�X ) � 0, then E(U ) � 0, and U and X are uncorrelated.

PROPERTY CE.6
If E(Y2) � � and E[g(X )2] � � for some function g, then E{[Y � 
(X )]2�X} �
E{[Y � g(X )]2�X} and E{[Y � 
(X )]2} � E{[Y � g(X )]2}.

This last property is very useful in predicting or forecasting contexts. The first inequal-
ity says that, if we measure prediction inaccuracy as the expected squared prediction
error, conditional on X, then the conditional mean is better than any other function of X
for predicting Y. The conditional mean also minimizes the unconditional expected
squared prediction error.

Conditional Variance

Given random variables X and Y, the variance of Y, conditional on X � x, is simply the
variance associated with the conditional distribution of Y, given X � x: E{[Y �
E(Y �x)]2�x}. The formula

Var(Y �X � x) � E(Y2�x) � [E(Y �x)]2

is often useful for calculations. Only occasionally will we have to compute a condi-
tional variance. But we will have to make assumptions about and manipulate con-
ditional variances for certain topics in regression analysis.

As an example, let Y � SAVING and X � INCOME (both of these measured annu-
ally for the population of all families). Suppose that Var(SAVING�INCOME) � 400 �
.25 INCOME. This says that, as income increases, the variance in saving levels also
increases. It is important to see that the relationship between the variance of SAVING
and INCOME is totally separate from that between the expected value of SAVING and
INCOME.

We state one useful property about the conditional variance.

PROPERTY CV.1
If X and Y are independent, then Var(Y �X ) � Var(Y ).

This property is pretty clear, since the distribution of Y given X does not depend on X,
and Var(Y �X ) is just one feature of this distribution.

B.5 THE NORMAL AND RELATED DISTRIBUTIONS

The Normal Distribution

The normal distribution, and those derived from it, are the most widely used distribu-
tions in statistics and econometrics. Assuming that random variables defined over pop-
ulations are normally distributed simplifies probability calculations. In addition, we will
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rely heavily on the normal and related distributions to conduct inference in statistics and
econometrics—even when the underlying population is not necessarily normal. We
must postpone the details, but be assured that these distributions will arise many times
throughout this text.

A normal random variable is a continuous random variable that can take on any
value. Its probability density function has the familiar bell shape graphed in Figure B.7.

Mathematically, the pdf of X can be written as

f(x) � exp[�(x � 
)2/22], �� � x � �, (B.34)

where 
 � E(X ), and 2 � Var(X ). We say that X has a normal distribution with
expected value 
 and variance 2, written as X ~ Normal(
,2). Because the normal
distribution is symmetric about 
, 
 is also the median of X. The normal distribution is
sometimes called the Gaussian distribution after the famous statistician C. F. Gauss.

Certain random variables appear to roughly follow a normal distribution. Human
heights and weights, test scores, and county unemployment rates have pdfs roughly the
shape in Figure B.7. Other distributions, such as income distributions, do not appear to
follow the normal probability function. In most countries, income is not symmetrically
distributed about any value; the distribution is skewed towards the upper tail. In some

1

��2�
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The general shape of the normal probability density function.
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cases, a variable can be transformed to achieve normality. A popular transformation is
the natural log, which makes sense for positive random variables. If X is a positive ran-
dom variable, such as income, and Y � log(X) has a normal distribution, then we say
that X has a lognormal distribution. It turns out that the lognormal distribution fits
income distribution pretty well in many countries. Other variables, such as prices of
goods, appear to be well-described as lognormally distributed.

The Standard Normal Distribution

One special case of the normal distribution occurs when the mean is zero and the vari-
ance (and, therefore, the standard deviation) is unity. If a random variable Z has a
Normal(0,1) distribution, then we say it has a standard normal distribution. The pdf
of a standard normal random variable is denoted �(z); from (B.34), with 
 � 0 and
2 � 1, it is given by

�(z) � exp(�z2/2), �� � z � �. (B.35)

The standard normal cumulative distribution function is denoted �(z) and is
obtained as the area under �, to the left of z; see Figure B.8. Recall that �(z) � P(Z �
z); since Z is continuous, �(z) � P(Z � z), as well.

There is no simple formula that can be used to obtain the values of �(z) [because
�(z) is the integral of the function in (B.35), and this intregral has no closed form].

1

��2�
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The standard normal cumulative distribution function.
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Nevertheless, the values for �(z) are easily tabulated; they are given for z between �3.1
and 3.1 in Table G.1. For z � �3.1, �(z) is less than .001, and for z � 3.1, �(z) is
greater than .999. Most statistics and econometrics software packages include simple
commands for computing values of the standard normal cdf, so we can often avoid
printed tables entirely and obtain the probabilities for any value of z.

Using basic facts from probability—and, in particular, properties (B.7) and (B.8)
concerning cdfs—we can use the standard normal cdf for computing the probability of
any event involving a standard normal random variable. The most important formulas
are

P(Z � z) � 1 � �(z), (B.36)

P(Z � �z) � P(Z � z), (B.37)

and

P(a � Z � b) � �(b) � �(a). (B.38)

Because Z is a continuous random variable, all three formulas hold whether or not the
inequalities are strict. Some examples include P(Z � .44) � 1 � .67 � .33,
P(Z � �.92) � P(Z � .92) � 1 � .821 � .179, and P(�1 � Z � .5) � .692 � .159
� .533.

Another useful expression is that, for any c � 0,

P(�Z � � c) � P(Z � c) � P(Z � �c)

� 2	P(Z � c) � 2[1 � �(c)].
(B.39)

Thus, the probability that the absolute value of Z is bigger than some positive constant
c is simply twice the probability P(Z � c); this reflects the symmetry of the standard
normal distribution.

In most applications, we start with a normally distributed random variable, X ~
Normal(
,2), where 
 is different from zero, and 2 � 1. Any normal random vari-
able can be turned into a standard normal using the following property.

PROPERTY NORMAL.1
If X ~ Normal(
,2), then (X � 
)/ ~ Normal(0,1).

Property Normal.1 shows how to turn any normal random variable into a standard nor-
mal. Thus, suppose X ~ Normal(3,4), and we would like to compute P(X � 1). The steps
always involve the normalization of X to a standard normal:

P(X � 1) � P(X � 3 � 1 � 3) � P � � �1�
� P(Z � �1) � �(�1) � .159.

X � 3
2
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E X A M P L E  B . 6
( P r o b a b i l i t i e s  f o r  a  N o r m a l  R a n d o m  V a r i a b l e )

First, let us compute P(2 � X � 6) when X ~ Normal(4,9) (whether we use � or � is irrel-
evant because X is a continuous random variable). Now,

P(2 � X � 6) � P � � � � � P(�2/3 � Z � 2/3)

� �(.67) � �(�.67) � .749 � .251 � .498.

Now, let us compute P(�X � � 2):

P(�X� � 2) � P(X � 2) � P(X � �2) � 2	P(X � 2)

� 2	P � � � � 2	P(Z � �.67)

� 2[1 � �(�.67)] � .772.

Additional Properties of the Normal Distribution

We end this subsection by collecting several other facts about normal distributions that
we will later use.

PROPERTY NORMAL.2
If X ~ Normal(
,2), then aX � b ~ Normal(a
 � b,a22).

Thus, if X ~ Normal(1,9), then Y � 2X � 3 is distributed as normal with mean
2E(X) � 3 � 5 and variance 22	9 � 36; sd(Y ) � 2sd(X ) � 2	3 � 6.

Earlier we discussed how, in general, zero correlation and independence are not the
same. In the case of normally distributed random variables, it turns out that zero corre-
lation suffices for independence.

PROPERTY NORMAL.3
If X and Y are jointly normally distributed, then they are independent if and only if
Cov(X,Y ) � 0.

PROPERTY NORMAL.4
Any linear combination of independent, identically distributed normal random vari-
ables has a normal distribution.

For example, let Xi, i � 1,2, and 3, be independent random variables distributed as
Normal(
,2). Define W � X1 � 2X2 � 3X3. Then, W is normally distributed; we must
simply find its mean and variance. Now,

E(W ) � E(X1) � 2E(X2) � 3E(X3) � 
 � 2
 � 3
 � 0.

2 � 4
3

X � 4
3

6 � 4
3

X � 4
3

2 � 4
3
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Also,

Var(W ) � Var(X1) � 4Var(X2) � 9Var(X3) � 142.

Property Normal.4 also implies that the average of independent, normally distrib-
uted random variables has a normal distribution. If Y1, Y2, …, Yn are independent ran-
dom variables and each is distributed as Normal(
,2), then

Y ~ Normal(
,2/n). (B.40)

This result is critical for statistical inference about the mean in a normal population.

The Chi-Square Distribution

The chi-square distribution is obtained directly from independent, standard normal ran-
dom variables. Let Zi, i � 1,2, …, n, be independent random variables, each distributed
as standard normal. Define a new random variable as the sum of the squares of the Zi:

X � �
n

i�1
Zi

2. (B.41)

Then, X has what is known as a chi-square distribution with n degrees of freedom (or
df for short). We write this as X ~ �n

2. The df in a chi-square distribution corresponds to
the number of terms in the sum (B.41). The concept of degrees of freedom will play an
important role in our statistical and econometric analyses.

The pdf for chi-square distributions with varying degrees of freedom is given in
Figure B.9; we will not need the formula for this pdf, and so we do not reproduce it
here. From equation (B.41), it is clear that a chi-square random variable is always non-
negative, and that, unlike the normal distribution, the chi-square distribution is not sym-
metric about any point. It can be shown that if X ~ �n

2, then the expected value of X is
n [the number of terms in (B.41)], and the variance of X is 2n.

The t Distribution

The t distribution is the workhorse in classical statistics and multiple regression analy-
sis. We obtain a t distribution from a standard normal and a chi-square random variable.

Let Z have a standard normal distribution and let X have a chi-square distribution
with n degrees of freedom. Further, assume that Z and X are independent. Then, the ran-
dom variable

T � (B.42)

has a t distribution with n degrees of freedom. We will denote this by T ~ tn. The t dis-
tribution gets its degrees of freedom from the chi-square random variable in the denom-
inator of (B.42).

The pdf of the t distribution has a shape similar to that of the standard normal dis-
tribution, except that it is more spread out and therefore has more area in the tails. The

Z

��X/n
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expected value of a t distributed random variable is zero (strictly speaking, the expected
value exists only for n � 1), and the variance is n/(n � 2) for n � 2. (The variance does
not exist for n � 2 because the distribution is so spread out.) The pdf of the t distribu-
tion is plotted in Figure B.10 for various degrees of freedom. As the degrees of freedom
gets large, the t distribution approaches the standard normal distribution.

The F Distribution

Another important distribution for statistics and econometrics is the F distribution. In
particular, the F distribution will be used for testing hypotheses in the context of mul-
tiple regression analysis.

To define an F random variable, let X1 ~ �2
k1

and X2 ~ �2
k2

and assume that X1 and X2

are independent. Then, the random variable

F � (B.43)

has an F distribution with (k1,k2) degrees of freedom. We denote this as F ~ Fk1,k2
. The

pdf of the F distribution with different degrees of freedom is given in Figure B.11.

(X1/k1)
(X2/k2)
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The chi-square distribution with various degrees of freedom.
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The order of the degrees of freedom in Fk1,k2
is critical. The integer k1 is often called

the numerator degrees of freedom because it is associated with the chi-square variable
in the numerator. Likewise, the integer k2 is called the denominator degrees of freedom
because it is associated with the chi-square variable in the denominator. This can be a
little tricky since (B.43) can also be written as (X1k2)/(X2k1), so that k1 appears in the
denominator. Just remember that the numerator df is the integer associated with the chi-
square variable in the numerator of (B.43), and similarly for the denominator df.

SUMMARY

In this appendix, we have reviewed the probability concepts that are needed in econo-
metrics. Most of the concepts should be familiar from your introductory course in prob-
ability and statistics. Some of the more advanced topics, such as features of conditional
expectations, do not need to be mastered now—there is time for that when these con-
cepts arise in the context of regression analysis in Part 1.

In an introductory statistics course, the focus is on calculating means, variances,
covariances, and so on, for particular distributions. In Part 1, we will not need such cal-
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culations: we mostly rely on the properties of expectations, variances, and so on, that
have been stated in this appendix.

KEY TERMS
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The Fk1
,k2

distribution for various degrees of freedom, k1 and k2.
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Bernoulli (or Binary) Random Variable
Binomial Distribution
Chi-Square Distribution
Conditional Distribution
Conditional Expectation
Continuous Random Variable
Correlation Coefficient
Covariance
Cumulative Distribution Function (cdf)
Degrees of Freedom
Discrete Random Variable
Expected Value
Experiment
F Distribution

Independent Random Variables
Joint Distribution
Law of Iterated Expectations
Median
Normal Distribution
Pairwise Uncorrelated Random Variables
Probability Density Function (pdf)
Random Variable
Standard Deviation
Standard Normal Distribution
Standardized Random Variable
t Distribution
Variance
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PROBLEMS

B.1 Suppose that a high school student is preparing to take the SAT exam. Explain
why his or her eventual SAT score is properly viewed as a random variable.

B.2 Let X be a random variable distributed as Normal(5,4). Find the probabilities of
the following events:

(i) P(X � 6)
(ii) P(X � 4)
(iii) P(�X � 5� � 1)

B.3 Much is made of the fact that certain mutual funds outperform the market year
after year (that is, the return from holding shares in the mutual fund is higher than the
return from holding a portfolio such as the S&P 500). For concreteness, consider a ten-
year period and let the population be the 4,170 mutual funds reported in the Wall Street
Journal on 1/6/95. By saying that performance relative to the market is random, we
mean that each fund has a 50–50 chance of outperforming the market in any year and
that performance is independent from year to year.

(i) If performance relative to the market is truly random, what is the
probability that any particular fund outperforms the market in all 10
years?

(ii) Find the probability that at least one fund out of 4,170 funds outper-
forms the market in all 10 years. What do you make of your answer?

(iii) If you have a statistical package that computes binomial probabilities,
find the probability that at least five funds outperform the market in all
10 years.

B.4 For a randomly selected county in the United States, let X represent the proportion
of adults over age 65 who are employed, or the elderly employment rate. Then, X is
restricted to a value between zero and one. Suppose that the cumulative distribution
function for X is given by F(x) � 3x2 � 2x3 for 0 � x � 1. Find the probability that the
elderly employment rate is at least .6 (60%).

B.5 Just prior to jury selection for O. J. Simpson’s murder trial in 1995, a poll found
that about 20% of the adult population believed Simpson was innocent (after much of
the physical evidence in the case had been revealed to the public). Ignore the fact that
this 20% is an estimate based on a subsample from the population; for illustration, take
it as the true percentage of people who thought Simpson was innocent prior to jury
selection. Assume that the 12 jurors were selected randomly and independently from
the population (although this turned out not to be true).

(i) Find the probability that the jury had at least one member who believed
in Simpson’s innocence prior to jury selection. (Hint: Define the
Binomial(12,.20) random variable X to be the number of jurors believ-
ing in Simpson’s innocence.)

(ii) Find the probability that the jury had at least two members who
believed in Simpson’s innocence. [Hint: P(X � 2) � 1 � P(X � 1), and
P(X � 1) � P(X � 0) � P(X � 1).]
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B.6 (Requires calculus) Let X denote the prison sentence, in years, for people con-
victed of auto theft in a particular state in the United States. Suppose that the pdf of X
is given by

f(x) � (1/9)x2, 0 � x � 3.

Use integration to find the expected prison sentence.

B.7 If a basketball player is a 74% free-throw shooter, then, on average, how many free
throws will he or she make in a game with eight free-throw attempts?

B.8 Suppose that a college student is taking three courses: a two-credit course, a three-
credit course, and a four-credit course. The expected grade in the two-credit course is
3.5, while the expected grade in the three- and four-credit courses is 3.0. What is the
expected overall grade point average for the semester? (Remember that each course
grade is weighted by its share of the total number of units.)

B.9 Let X denote the annual salary of university professors in the United States, mea-
sured in thousands of dollars. Suppose that the average salary is 52.3, with a standard
deviation of 14.6. Find the mean and standard deviation when salary is measured in
dollars.

B.10 Suppose that at a large university, college grade point average, GPA, and SAT
score, SAT, are related by the conditional expectation E(GPA�SAT ) � .70 � .002 SAT.

(i) Find the expected GPA when SAT � 800. Find E(GPA�SAT � 1,400).
Comment on the difference.

(ii) If the average SAT in the university is 1,100, what is the average GPA?
(Hint: Use Property CE.4.)
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C.1 POPULATIONS, PARAMETERS, AND
RANDOM SAMPLING

Statistical inference involves learning something about a population given the avail-
ability of a sample from that population. By population, we mean any well-defined
group of subjects, which could be individuals, firms, cities, or many other possibilities.
By “learning,” we can mean several things, which are broadly divided into the cate-
gories of estimation and hypothesis testing.

A couple of examples may help you understand these terms. In the population of all
working adults in the United States, labor economists are interested in learning about
the return to education, as measured by the average percentage increase in earnings
given another year of education. It would be impractical and costly to obtain informa-
tion on earnings and education for the entire working population in the United States,
but we can obtain data on a subset of the population. Using the data collected, a labor
economist may report that his or her best estimate of the return to another year of edu-
cation is 7.5%. This is an example of a point estimate. Or, she or he may report a range,
such as “the return to education is between 5.6% and 9.4%.” This is an example of an
interval estimate.

An urban economist might want to know whether neighborhood crime watch pro-
grams are associated with lower crime rates. After comparing crime rates of neighbor-
hoods with and without such programs in a sample from the population, he or she can
draw one of two conclusions: neighborhood watch programs do affect crime, or they do
not. This example falls under the rubric of hypothesis testing.

The first step in statistical inference is to identify the population of interest. This
may seem obvious, but it is important to be very specific. Once we have identified
the population, we can specify a model for the population relationship of interest.
Such models involve probability distributions or features of probability distribu-
tions, and these depend on unknown parameters. Parameters are simply constants
that determine the directions and strengths of relationships among variables. In the
labor economics example above, the parameter of interest is the return to education
in the population.
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Sampling

For reviewing statistical inference, we focus on the simplest possible setting. Let Y be
a random variable representing a population with a probability density function f (y;�),
which depends on the single parameter �. The probability density function (pdf) of Y is
assumed to be known except for the value of �; different values of � imply different
population distributions, and therefore we are interested in the value of �. If we can
obtain certain kinds of samples from the population, then we can learn something about
�. The easiest sampling scheme to deal with is random sampling.

RANDOM SAMPLING
If Y1, Y2, …, Yn are independent random variables with a common probability density
function f (y;�), then {Y1, …, Yn} is said to be a random sample from f (y;�) [or a ran-
dom sample from the population represented by f (y;�)].

When {Y1, …, Yn} is a random sample from the density f(y;�), we also say that the Yi

are independent, identically distributed (or i.i.d.) samples from f (y;�). In some cases,
we will not need to entirely specify what the common distribution is.

The random nature of Y1, Y2, …, Yn in the definition of random sampling reflects
the fact that many different outcomes are possible before the sampling is actually car-
ried out. For example, if family income is obtained for a sample of n � 100 families in
the United States, the incomes we observe will usually differ for each different sample
of 100 families. Once a sample is obtained, we have a set of numbers, say
{y1,y2, …, yn}, which constitute the data that we work with. Whether or not it is appro-
priate to assume the sample came from a random sampling scheme requires knowledge
about the actual sampling process.

Random samples from a Bernoulli distribution are often used to illustrate statistical
concepts, and they also arise in empirical applications. If Y1, Y2, …, Yn are independent
random variables and each is distributed as Bernoulli(�), so that P(Yi � 1) � � and
P(Yi � 0) � 1 � �, then {Y1,Y2, …, Yn} constitutes a random sample from the
Bernoulli(�) distribution. As an illustration, consider the airline reservation example
carried along in Appendix B. Each Yi denotes whether customer i shows up for his or
her reservation; Yi � 1 if passenger i shows up, and Yi � 0 otherwise. Here, � is the
probability that a randomly drawn person from the population of all people who make
airline reservations shows up for his or her reservation.

For many other applications, random samples can be assumed to be drawn from a
normal distribution. If {Y1, …, Yn} is a random sample from the Normal(�,�2) popula-
tion, then the population is characterized by two parameters, the mean � and the vari-
ance �2. Primary interest usually lies in �, but �2 is of interest in its own right because
making inferences about � often requires learning about �2.

C.2 FINITE SAMPLE PROPERTIES OF ESTIMATORS

In this section, we study what are called finite sample properties of estimators. The term
“finite sample” comes from the fact that the properties hold for a sample of any size, no
matter how large or small. Sometimes, these are called small sample properties. In
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Section C.3, we cover “asymptotic properties,” which have to do with the behavior of
estimators as the sample size grows without bound.

Estimators and Estimates

To study properties of estimators, we must define what we mean by an estimator. Given
a random sample {Y1,Y2, …, Yn} drawn from a population distribution that depends on
an unknown parameter �, an estimator of � is a rule that assigns each possible outcome
of the sample a value of �. The rule is specified before any sampling is carried out; in
particular, the rule is the same, regardless of the data actually obtained.

As an example of an estimator, let {Y1, …, Yn} be a random sample from a popula-
tion with mean �. A natural estimator of � is the average of the random sample:

Ȳ � n�1 �
n

i�1
Yi. (C.1)

Ȳ is called the sample average but, unlike in Appendix A where we defined the sam-
ple average of a set of numbers as a descriptive statistic, Ȳ is now viewed as an estima-
tor. Given any outcome of the random variables Y1, …, Yn, we use the same rule to
estimate �: we simply average them. For actual data outcomes {y1, …, yn}, the estimate
is just the average in the sample: ȳ � (y1 � y2 � … � yn)/n.

E X A M P L E  C . 1
( C i t y  U n e m p l o y m e n t  R a t e s )

Suppose we obtain the following sample of unemployment rates for 10 cities in the United
States:

City Unemployment Rate

1 5.1

2 6.4

3 9.2

4 4.1

5 7.5

6 8.3

7 2.6
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City Unemployment Rate

8 3.5

9 5.8

10 7.5

Our estimate of the average city unemployment rate in the United States is ȳ � 6.0. Each
sample  generally results in a different estimate. But the rule for obtaining the estimate is
the same, regardless of which cities appear in the sample, or how many.

More generally, an estimator W of a parameter � can be expressed as an abstract
mathematical formula:

W � h(Y1,Y2, …, Yn), (C.2)

for some known function h of the random variables Y1, Y2, …, Yn. As with the special
case of the sample average, W is a random variable because it depends on the random
sample: as we obtain different random samples from the population, the value of W can
change. When a particular set of numbers, say {y1,y2, …, yn}, is plugged into the func-
tion h, we obtain an estimate of �, denoted w � h(y1, …, yn). Sometimes, W is called a
point estimator and w a point estimate to distinguish these from interval estimators and
estimates, which we will come to in Section C.4.

For evaluating estimation procedures, we study various properties of the probabil-
ity distribution of the random variable W. The distribution of an estimator is often called
its sampling distribution, since this distribution describes the likelihood of various
outcomes of W across different random samples. Because there are unlimited rules for
combining data to estimate parameters, we need some sensible criteria for choosing
among estimators, or at least for eliminating some estimators from consideration.
Therefore, we must leave the realm of descriptive statistics, where we compute things
such as sample average to simply summarize a body of data. In mathematical statistics,
we study the sampling distributions of estimators.

Unbiasedness

In principle, the entire sampling distribution of W can be obtained given the probabil-
ity distribution of Yi and the function h. It is usually easier to focus on a few features of
the distribution of W in evaluating it as an estimator of �. The first important property
of an estimator involves its expected value.

UNBIASED ESTIMATOR
An estimator, W of �, is unbiased if
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E(W) � �, (C.3)

for all possible values of �.

If an estimator is unbiased, then its probability distribution has an expected value equal
to the parameter it is supposed to be estimating. Unbiasedness does not mean that the
estimate we get with any particular sample is equal to �, or even very close to �. Rather,
if we could indefinitely draw random samples on Y from the population, compute an
estimate each time, and then average these estimates over all random samples, we
would obtain �. This thought experiment is abstract, because in most applications, we
just have one random sample to work with.

For an estimator that is not unbiased, we define its bias as follows.

BIAS OF AN ESTIMATOR
If W is an estimator of �, its bias is defined as

Bias(W ) � E(W ) � �. (C.4)

Figure C.1 shows two estimators, the first of which is unbiased and the second of which
has a positive bias.
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The unbiasedness of an estimator and the size of any possible bias depend on the
distribution of Y and on the function h. The distribution of Y is usually beyond our con-
trol (although we often choose a model for this distribution): it may be determined by
nature or social forces. But the choice of the rule h is ours, and if we want an unbiased
estimator, then we must choose h accordingly.

Some estimators can be shown to be unbiased quite generally. We now show that
the sample average Ȳ is an unbiased estimator of the population mean �, regardless of
the underlying population distribution. We use the properties of expected values (E.1
and E.2) that we covered in Section B.3:

E(Ȳ ) � E �(1/n) �
n

i�1
Yi� � (1/n)E ��

n

i�1
Yi� � (1/n) ��

n

i�1
E(Yi)�

� (1/n) ��
n

i�1
�� � (1/n)(n�) � �.

For hypothesis testing, we will need to estimate the variance �2 from a population
with mean �. Letting {Y1, …, Yn} denote the random sample from the population with
E(Y ) � � and Var(Y) � �2, define the estimator as

S2 � �
n

i�1
(Yi � Ȳ )2, (C.5)

which is usually called the sample variance. It can be shown that S2 is unbiased for �2:
E(S2) � �2. The division by n � 1, rather than n, accounts for the fact that the mean �
is estimated rather than known. If � were known, an unbiased estimator of �2 would be

n�1 �
n

i�1
(Yi � �)2, but � is rarely known in practice.

Although unbiasedness has a certain appeal as a property for an estimator—indeed,
its antonym, “biased”, has decidedly negative connotations—it is not without its prob-
lems. One weakness of unbiasedness is that some reasonable, and even some very good
estimators, are not unbiased. We will see an example shortly.

Another important weakness of unbiasedness is that unbiased estimators exist that
are actually quite poor estimators. Consider estimating the mean � from a population.
Rather than using the sample average Ȳ to estimate �, suppose that, after collecting a
sample of size n, we discard all of the observations except the first. That is, our esti-
mator of � is simply W � Y1. This estimator is unbiased since E(Y1) � �. Hopefully,
you sense that ignoring all but the first observation is not a prudent approach to esti-
mation: it throws out most of the information in the sample. For example, with n � 100,
we obtain 100 outcomes of the random variable Y, but then we use only the first of these
to estimate E(Y ).

The Sampling Variance of Estimators

The example at the end of the previous subsection shows that we need additional crite-
ria in order to evaluate estimators. Unbiasedness only ensures that the probability dis-
tribution of an estimator has a mean value equal to the parameter it is supposed to be
estimating. This is fine, but we also need to know how spread out the distribution of an

1

n � 1
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estimator is. An estimator can be equal to �, on average, but it can also be very far away
with large probability. In Figure C.2, W1 and W2 are both unbiased estimators of �. But
the distribution of W1 is more tightly centered about �: the probability that W1 is greater
than any given distance from � is less than the probability that W2 is greater than that
same distance from �. Using W1 as our estimator means that it is less likely that we will
obtain a random sample that yields an estimate very far from �.

To summarize the situation shown in Figure C.2, we rely on the variance (or stan-
dard deviation) of an estimator. Recall that this gives a single measure of the disper-
sion in the distribution. The variance of an estimator is often called its sampling
variance, since it is the variance associated with a sampling distribution. Remember,
the sampling variance is not a random variable; it is a constant, but it might be
unknown.

We now obtain the variance of the sample average for estimating the mean � from
a population:

Var(Ȳ ) � Var �(1/n) �
n

i�1
Yi� � (1/n2)Var ��

n

i�1
Yi� � (1/n2) ��

n

i�1
Var(Yi)�

� (1/n2) ��
n

i�1
�2� � (1/n2)(n�2) � �2/n.

(C.6)
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Notice how we used the properties of variance from Sections B.3 and B.4 (VAR.2 and
VAR.4), as well as the independence of the Yi. To summarize: If {Yi: i � 1,2,…,n} is a
random sample from a population with mean � and variance �2, then Ȳ has the same
mean as the population, but its sampling variance equals the population variance, �2,
over the sample size.

An important implication of Var(Ȳ ) � �2/n is that it can be made very close to zero
by increasing the sample size n. This is a key feature of a reasonable estimator, and we
return to it in Section C.3.

As suggested by Figure C.2, among unbiased estimators, we prefer the estimator
with the smallest variance. This allows us to eliminate certain estimators from consid-
eration. For a random sample from a population with mean � and variance �2, we know
that Ȳ is unbiased, and Var(Ȳ ) � �2/n. What about the estimator Y1, which is just the
first observation drawn? Since Y1 is a random draw from the population, Var(Y1) � �2.
Thus, the difference between Var(Y1) and Var(Ȳ ) can be large even for small sample
sizes. If n � 10, then Var(Y1) is ten times as large as Var(Ȳ ) � �2/10. This gives us a
formal way of excluding Y1 as an estimator of �.

To emphasize this point, Table C.1 contains the outcome of a small simulation
study. Using the statistical package Stata, 20 random samples of size 10 were generated
from a normal distribution, with � � 2 and �2 � 1; we are interested in estimating �
here. For each of the 20 random samples, we compute two estimates, y1 and ȳ; these
values are listed in Table C.1. As can be seen from the table, the values for y1 are much
more spread out than those for ȳ: y1 ranges from �0.64 to 4.27, while ȳ ranges only
from 1.16 to 2.58. Further, in 16 out of 20 cases, ȳ is closer than y1 to � � 2. The aver-
age of y1 across the simulations is about 1.89, while that for ȳ is 1.96. The fact that these
averages are close to 2 illustrates the unbiasedness of both estimators (and we could get
these averages closer to 2 by doing more than 20 replications). But comparing just the
average outcomes across random draws masks the fact that the sample average Ȳ is far
superior to Y1 as an estimator of �.

Table C.1

Simulation of Estimators for a Normal(�,1) Distribution with � � 2

Replication y1 ȳ

1 �0.64 1.98

2 1.06 1.43

3 4.27 1.65

4 1.03 1.88

5 3.16 2.34
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Table C.1 (concluded)

Replication y1 ȳ

6 2.77 2.58

7 1.68 1.58

8 2.98 2.23

9 2.25 1.96

10 2.04 2.11

11 0.95 2.15

12 1.36 1.93

13 2.62 2.02

14 2.97 2.10

15 1.93 2.18

16 1.14 2.10

17 2.08 1.94

18 1.52 2.21

19 1.33 1.16

20 1.21 1.75

Efficiency

Comparing the variances of Ȳ and Y1 in the previous subsection is an example of a gen-
eral approach to comparing different unbiased estimators.

RELATIVE EFFICIENCY
If W1 and W2 are two unbiased estimators of �, W1 is efficient relative to W2 when
Var(W1) 	 Var(W2) for all �, with strict inequality for at least one value of �.

Earlier, we showed that, for estimating the population mean �, Var(Ȳ ) 
 Var(Y1) for any
value of �2 whenever n � 1. Thus, Ȳ is efficient relative to Y1 for estimating �. We can-
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not always choose between unbiased estimators based on the smallest variance crite-
rion: given two unbiased estimators of �, one can have smaller variance from some val-
ues of �, while the other can have smaller variance for other values of �.

If we restrict our attention to a certain class of estimators, we can show that the sam-
ple average has the smallest variance. Problem C.2 asks you to show that Ȳ has the
smallest variance among all unbiased estimators that are also linear functions of Y1,
Y2, …, Yn. The assumptions are that the Yi have common mean and variance, and they
are pairwise uncorrelated.

If we do not restrict our attention to unbiased estimators, then comparing variances
is meaningless. For example, when estimating the population mean �, we can use a triv-
ial estimator that is equal to zero, regardless of the sample that we draw. Naturally, the
variance of this estimator is zero (since it is the same value for every random sample).
But the bias of this estimator is ��, and so it is a very poor estimator when ��� is large.

One way to compare estimators that are not necessarily unbiased is to compute the
mean squared error (MSE) of the estimators. If W is an estimator of �, then the MSE
of W is defined as MSE(W ) � E[(W � �)2]. The MSE measures how far, on average,
the estimator is away from �. It can be shown that MSE(W ) � Var(W) � [Bias(W)]2,
so that MSE(W ) depends on the variance and bias (if any is present). This allows us to
compare two estimators when one or both are biased.

C.3 ASYMPTOTIC OR LARGE SAMPLE PROPERTIES
OF ESTIMATORS

In Section C.2, we encountered the estimator Y1 for the population mean �, and we saw
that, even though it is unbiased, it is a poor estimator because its variance can be much
larger than that of the sample mean. One notable feature of Y1 is that it has the same
variance for any sample size. It seems reasonable to require any estimation procedure
to improve as the sample size increases. For estimating a population mean �, Ȳ
improves in the sense that its variance gets smaller as n gets larger; Y1 does not improve
in this sense.

We can rule out certain silly estimators by studying the asymptotic or large sample
properties of estimators. In addition, we can say something positive about estimators
that are not unbiased and whose variances are not easily found.

Asymptotic analysis involves approximating the features of the sampling distribu-
tion of an estimator. These approximations depend on the size of the sample.
Unfortunately, we are necessarily limited in what we can say about how “large” a sam-
ple size is needed for asymptotic analysis to be appropriate; this depends on the under-
lying population distribution. But large sample approximations have been known to
work well for sample sizes as small as n � 20.

Consistency

The first asymptotic property of estimators concerns how far the estimator is likely to
be from the parameter it is supposed to be estimating as we let the sample size increase
indefinitely.
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CONSISTENCY
Let Wn be an estimator of � based on a sample Y1,Y2, …, Yn of size n. Then, Wn is a
consistent estimator of �, if for every � � 0,

P(�Wn � �� � �) * 0 as n * . (C.7)

If Wn is not consistent for �, then we say it is inconsistent.

When Wn is consistent, we also say that � is the probability limit of Wn, written as
plim(Wn) � �.

Unlike unbiasedness—which is a feature of an estimator for a given sample size—
consistency involves the behavior of the sampling distribution of the estimator as the
sample size n gets large. To emphasize this, we have indexed the estimator by the sam-
ple size in stating this definition, and we will continue with this convention throughout
this section.

Equation (C.7) looks technical, and it can be rather difficult to establish based on
fundamental probability principles. By contrast, interpreting (C.7) is straightforward. It
means that the distribution of Wn becomes more and more concentrated about �, which
roughly means that for larger sample sizes, Wn is less and less likely to be very far from
�. This tendency is illustrated in Figure C.3.
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If an estimator is not consistent, then it does not help us to learn about �, even with
an unlimited amount of data. For this reason, consistency is a minimal requirement of
an estimator used in statistics or econometrics. We will encounter estimators that are
consistent under certain assumptions and inconsistent when those assumptions fail.
When estimators are inconsistent, we can usually find their probability limits, and it
will be important to know how far these probability limits are from �.

As we noted earlier, unbiased estimators are not necessarily consistent, but those
whose variances shrink to zero as the sample size grows are consistent. This can be
stated formally: If Wn is an unbiased estimator of � and Var(Wn) * 0 as n * , then
plim(Wn) � �. Unbiased estimators that use the entire data sample will usually have a
variance that shrinks to zero as the sample size grows, thereby being consistent.

A good example of a consistent estimator is the average of a random sample drawn
from a population with � and variance �2. We have already shown that the sample aver-
age is unbiased for �. In equation (C.6), we derived Var(Ȳn) � �2/n for any sample size
n. Therefore, Var(Ȳn) * 0 as n * , and so Ȳn is a consistent estimator of � (in addi-
tion to being unbiased).

The conclusion that Ȳn is consistent for � holds even if Var(Ȳn) does not exist. This
classic result is known as the law of large numbers (LLN).

LAW OF LARGE NUMBERS
Let Y1, Y2, …, Yn be independent, identically distributed random variables with mean
�. Then,

plim(Ȳn) � �. (C.8)

The law of large numbers means that, if we are interested in estimating the population
average �, we can get arbitrarily close to � by choosing a sufficiently large sample.
This fundamental result can be combined with basic properties of plims to show that
fairly complicated estimators are consistent.

PROPERTY PLIM.1
Let � be a parameter and define a new parameter, � � g(�), for some continuous func-
tion g(�). Suppose that plim(Wn) � �. Define an estimator of � by Gn � g(Wn). Then,

plim(Gn) � �. (C.9)

This is often stated as

plim g(Wn) � g(plim Wn) (C.10)

for a continuous function g(�).

The assumption that g(�) is continuous is a technical requirement that has often been
described nontechnically as “a function that can be graphed without lifting your pencil
from the paper.” Since all of the functions we encounter in this text are continuous, we
do not provide a formal definition of a continuous function. Examples of continuous
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functions are g(�) � a � b� for constants a and b, g(�) � �2, g(�) � 1/�, g(�) � ���,
g(�) � exp(�), and many variants on these. We will not need to mention the continuity
assumption again.

As an important example of a consistent but biased estimator, consider estimating
the standard deviation, �, from a population with mean � and variance �2. We already

claimed that the sample variance Sn
2 � �

n

i�1
(Yi � Ȳ )2 is unbiased for �2. Using

the law of large numbers and some algebra, Sn
2 can also be shown to be consistent for

�2. The natural estimator of � � ���2 is Sn � ��Sn
2 (where the square root is always

the positive square root). Sn, which is called the sample standard deviation, is not
an unbiased estimator because the expected value of the square root is not the square
root of the expected value (see Section B.3). Nevertheless, by PLIM.1, plim Sn �
��plim Sn

2 � ���2 � �, so Sn is a consistent estimator of �.
Here are some other useful properties of the probability limit:

PROPERTY PLIM.2
If plim(Tn) � � and plim(Un) � �, then

(i) plim(Tn � Un) � � � �;
(ii) plim(TnUn) � ��;
(iii) plim(Tn/Un) � �/�, provided � � 0.

These three facts about probability limits allow us to combine consistent estimators in
a variety of ways to get other consistent estimators. For example, let {Y1, …, Yn} be a
random sample of size n on annual earnings from the population of workers with a high
school education and denote the population mean by �Y. Let {Z1, …, Zn} be a random
sample on annual earnings from the population of workers with a college education and
denote the population mean by �Z. We wish to estimate the percentage difference in
annual earnings between the two groups, which is � � 100�(�Z � �Y)/�Y. (This is the
percent by which average earnings for college graduates differs from average earnings
for high school graduates.) Since Ȳn is consistent for �Y, and Z̄n is consistent for �Z, it
follows from PLIM.1 and part (iii) of PLIM.2 that

Gn � 100�(Z̄n � Ȳn)/Ȳn

is a consistent estimator of �. Gn is just the percentage difference between Z̄n and Ȳn in
the sample, so it is a natural estimator. Gn is not an unbiased estimator of �, but it is still
a good estimator unless n is small.

Asymptotic Normality

Consistency is a property of point estimators. While it does tell us that the distribution
of the estimator is collapsing around the parameter as the sample size gets large, it tells
us essentially nothing about the shape of that distribution for a given sample size. For
constructing interval estimators and testing hypotheses, we need a way to approximate
the distribution of our estimators. Most econometric estimators have distributions that
are well-approximated by a normal distribution for large samples, which motivates the
following definition.

1

n � 1
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ASYMPTOTIC NORMALITY
Let {Zn: n � 1,2,…} be a sequence of random variables, such that for all numbers z,

P(Zn 	 z) * �(z) as n * , (C.11)

where �(z) is the standard normal cumulative distribution function. Then, Zn is said to
have an asymptotic standard normal distribution. In this case, we often write Zn ~ª
Normal(0,1). (The “a” above the tilda stands for “asymptotically” or “approximately.”)

Property (C.11) means that the cumulative distribution function for Zn gets closer
and closer to the cdf of the standard normal distribution, as the sample size n gets large.
When asymptotic normality holds, for large n, we have the approximation P(Zn 	 z)
� �(z). Thus, probabilities concerning Zn can be approximated by standard normal
probabilities.

The central limit theorem (CLT) is one of the most powerful results in probabil-
ity and statistics. It states that the average from a random sample for any population
(with finite variance), when standardized, has an asymptotic standard normal distribu-
tion.

CENTRAL LIMIT THEOREM
Let {Y1,Y2, …, Yn} be a random sample with mean � and variance �2. Then,

Zn � , (C.12)

has an asymptotic standard normal distribution.

The variable Zn in (C.12) is the standardized version of Ȳn: we have subtracted off
E(Ȳn) � � and divided by sd(Ȳn) � �/��n . Thus, regardless of the population distribu-
tion of Y, Zn has mean zero and variance one, which coincides with the mean and vari-
ance of the standard normal distribution. Remarkably, the entire distribution of Zn gets
arbitrarily close to the standard normal distribution as n gets large.

Most estimators encountered in statistics and econometrics can be written as func-
tions of sample averages, in which case, we can apply the law of large numbers and the
central limit theorem. When two consistent estimators have asymptotic normal distrib-
utions, we choose the estimator with the smallest asymptotic variance.

In addition to the standardized sample average in (C.12), many other statistics that
depend on sample averages turn out to be asymptotically normal. An important one is
obtained by replacing � with its consistent estimator Sn in equation (C.12):

(C.13)

also has an approximate standard normal distribution for large n. The exact (finite sam-
ple) distributions of (C.12) and (C.13) are definitely not the same, but the difference is
often small enough to be ignored for large n.

Ȳn � �

Sn /��n

Ȳn � �

�/��n
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Throughout this section, each estimator has been subscripted by n to emphasize the
nature of asymptotic or large sample analysis. Continuing this convention clutters the
notation without providing additional insight, once the fundamentals of asymptotic
analysis are understood. Henceforth, we drop the n subscript and rely on you to remem-
ber that estimators depend on the sample size, and properties such as consistency and
asymptotic normality refer to the growth of the sample size without bound.

C.4 GENERAL APPROACHES TO
PARAMETER ESTIMATION

Up to this point, we have used the sample average to illustrate the finite and large sam-
ple properties of estimators. It is natural to ask: Are there general approaches to esti-
mation that produce estimators with good properties, such as unbiasedness, consistency,
and efficiency?

The answer is yes. A detailed treatment of various approaches to estimation is
beyond the scope of this text; here, we provide only an informal discussion. A thorough
discussion is given in Larsen and Marx (1986, Chapter 5).

Method of Moments

Given a parameter � appearing in a population distribution, there are usually many ways
to obtain unbiased and consistent estimators of �. Trying all different possibilities and
comparing them on the basis of the criteria in Sections C.2 and C.3 is not practical.
Fortunately, some methods have been shown to have good general properties, and for
the most part, the logic behind them is intuitively appealing.

In the previous sections, we have seen some examples of method of moments pro-
cedures. Basically, method of moments estimation proceeds as follows. The parameter
� is shown to be related to some expected value in the distribution of Y, usually E(Y ) or
E(Y2) (although more exotic choices are sometimes used). Suppose, for example, that
the parameter of interest, �, is related to the population mean as � � g(�) for some
function g. Since the sample average Ȳ is an unbiased and consistent estimator of �, it
is natural to replace � with Ȳ, which gives us the estimator g(Ȳ ) of �. The estimator
g(Ȳ ) is consistent for �, and if g(�) is a linear function of �, then g(Ȳ ) is unbiased as
well. What we have done is replace the population moment, �, with its sample coun-
terpart, Ȳ. This is where the name “method of moments” comes from.

We cover two additional method of moments estimators that will be useful for our
discussion of regression analysis. Recall that the covariance between two random vari-
ables X and Y is defined as �XY � E[(X � �X)(Y � �Y)]. The method of moments

suggests estimating �XY by n�1 �
n

i�1
(Xi � X̄)(Yi � Ȳ ). This is a consistent estimator

of �XY, but it turns out to be biased for essentially the same reason that the sample vari-
ance is biased if n, rather than n � 1, is used as the divisor. The sample covariance is
defined as

SXY � �
n

i�1
(Xi � X̄)(Yi � Ȳ ). (C.14)

1

n � 1
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It can be shown that this is an unbiased estimator of �XY (and replacing n with n � 1
makes no difference as the sample size grows indefinitely, so this estimator is still con-
sistent).

As we discussed in Section B.4, the covariance between two variables is often dif-
ficult to interpret. Usually, we are more interested in correlation. Since the population
correlation is �XY � �XY/(�X�Y), the method of moments suggests estimating �XY as

RXY � � , (C.15)

which is called the sample correlation coefficient (or sample correlation for short).
Notice that we have canceled the division by n � 1 in the sample covariance and the
sample standard deviations. In fact, we could divide each of these by n, and we would
arrive at the same final formula.

It can be shown that the sample correlation coefficient is always in the interval
[�1,1], as it should be. Because SXY, SX, and SY are consistent for the corresponding
population parameter, RXY is a consistent estimator of the population correlation, �XY.
However, RXY is a biased estimator for two reasons. First, SX and SY are biased estima-
tors of �X and �Y, respectively. Second, RXY is a ratio of estimators, and so it would not
be unbiased, even if SX and SY were. For our purposes, this is not important, although
the fact that no unbiased estimator of �XY exists is a classical result in mathematical sta-
tistics.

Maximum Likelihood

Another general approach to estimation is the method of maximum likelihood, a topic
covered in many introductory statistics courses. A brief summary in the simplest case
will suffice here. Let {Y1,Y2, …, Yn} be a random sample from the population distribu-
tion f(y;�). Because of the random sampling assumption, the joint distribution of
{Y1,Y2, …, Yn} is simply the product of the densities: f (y1;�) f (y2;�) ��� f(yn;�). In the
discrete case, this is P(Y1 � y1,Y2 � y2, …, Yn � yn). Now, define the likelihood func-
tion as

L(�;Y1, …, Yn) � f(Y1;�) f (Y2;�)���f(Yn;�), (C.16)

which is a random variable because it depends on the outcome of the random sample
{Y1,Y2, …, Yn}. The maximum likelihood estimator of �, call it W, is the value of �
that maximizes the likelihood function (this is why we write L as a function of �, fol-
lowed by the random sample). Clearly, this value depends on the random sample. The
maximum likelihood principle says that, out of all the possible values for �, the value
that makes the likelihood of the observed data largest should be chosen. Intuitively, this
is a reasonable approach to estimating �.

Maximum likelihood estimation (MLE) is usually consistent and sometimes unbi-
ased. But so are many other estimators. The widespread appeal of MLE is that it is gen-

�
n

i�1
(Xi � X̄)(Yi � Ȳ )

��
n

i�1
(Xi � X̄)2�

1/2

��
n

i�1
(Yi � Ȳ )2�

1/2

SXY

SXSY
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erally the most asymptotically efficient estimator when the population model f(y;�) is
correctly specified. In addition, the MLE is sometimes the minimum variance unbi-
ased estimator; that is, it has the smallest variance among all unbiased estimators of �.
[See Larsen and Marx (1986, Chapter 5) for verification of these claims.] We only need
to rely on MLE for some of the advanced topics in Part 3 of the text.

Least Squares

A third kind of estimator, and one that plays a major role throughout the text, is called
a least squares estimator. We have already seen an example of least squares: the sam-
ple mean, Ȳ , is a least squares estimator of the population mean, �. We already know
Ȳ is a method of moments estimator. What makes it a least squares estimator? It can be
shown that the value of m which makes the sum of squared deviations

�
n

i�1
(Yi � m)2

as small as possible is m � Ȳ. Showing this is not difficult, but we omit the algebra.
For some important distributions, including the normal and the Bernoulli, the sam-

ple average Ȳ is also the maximum likelihood estimator of the population mean �. Thus,
the principles of least squares, method of moments, and maximum likelihood often
result in the same estimator. In other cases, the estimators are similar but not identical.

C.5 INTERVAL ESTIMATION AND CONFIDENCE
INTERVALS

The Nature of Interval Estimation

A point estimate obtained from a particular sample does not, by itself, provide enough
information for testing economic theories or for informing policy discussions. A point
estimate may be the researcher’s best guess at the population value, but, by its nature,
it provides no information about how close the estimate is “likely” to be to the popula-
tion parameter. As an example, suppose a researcher reports, on the basis of a random
sample of workers, that job training grants increase hourly wage by 6.4%. How are we
to know whether or not this is close to the effect in the population of workers who could
have been trained? Since we do not know the population value, we cannot know how
close an estimate is for a particular sample. However, we can make statements involv-
ing probabilities, and this is where interval estimation comes in.

We already know one way of assessing the uncertainty in an estimator: find its
sampling standard deviation. Reporting the standard deviation of the estimator, along
with the point estimate, provides some information on the accuracy of our estimate.
However, even if the problem of the standard deviation’s dependence on unknown
population parameters is ignored, reporting the standard deviation along with the point
estimate makes no direct statement about where the population value is likely to lie in
relation to the estimate. This limitation is overcome by constructing a confidence
interval.

We illustrate the concept of a confidence interval with an example. Suppose the
population has a Normal(�,1) distribution and let {Y1, …, Yn} be a random sample from
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this population. (We assume that the variance of the population is known and equal to
unity for the sake of illustration; we then show what to do in the more realistic case that
the variance is unknown.) The sample average, Ȳ, has a normal distribution with mean
� and variance 1/n: Ȳ ~ Normal(�,1/n). From this, we can standardize Ȳ, and since the
standardized version of Ȳ has a standard normal distribution, we have

P ��1.96 
 
 1.96� � .95.

The event in parentheses is identical to the event Ȳ � 1.96/��n 
 � 
 Ȳ � 1.96/��n ,
and so

P(Ȳ � 1.96/��n 
 � 
 Ȳ � 1.96/��n ) � .95. (C.17)

Equation (C.17) is interesting because it tells us that the probability that the random
interval [Ȳ � 1.96/��n ,Ȳ � 1.96/��n ] contains the population mean � is .95, or 95%.
This information allows us to construct an interval estimate of �, which is obtained by
plugging in the sample outcome of the average, ȳ. Thus,

[ ȳ � 1.96/��n,ȳ � 1.96/��n ] (C.18)

is an example of an interval estimate of �. It is also called a 95% confidence interval.
A shorthand notation for this interval is ȳ � 1.96/��n .

The confidence interval in equation (C.18) is easy to compute, once the sample data
{y1,y2, …, yn} are observed; ȳ is the only factor that depends on the data. For example,
suppose that n � 16 and the average of the 16 data points is 7.3. Then, the 95% confi-
dence interval for � is 7.3 � 1.96/��16 � 7.3 � .49, which we can write in interval
form as [6.81,7.79]. By construction, ȳ � 7.3 is in the center of this interval.

Unlike its computation, the meaning of a confidence interval is more difficult to
understand. When we say that equation (C.18) is a 95% confidence interval for �, we
mean that the random interval

[Ȳ � 1.96/��n ,Ȳ � 1.96/��n ] (C.19)

contains � with probability .95. In other words, before the random sample is drawn,
there is a 95% chance that (C.19) contains �. Equation (C.19) is an example of an in-
terval estimator. It is a random interval, since the endpoints change with different
samples.

A confidence interval is often interpreted as follows: “The probability that � is in
the interval (C.18) is .95.” This is incorrect. Once the sample has been observed and ȳ
has been computed, the limits of the confidence interval are simply numbers (6.81 and
7.79 in the example just given). The population parameter, �, while unknown, is also
just some number. Therefore, � either is or is not in the interval (C.18) (and we will
never know with certaintly which is the case). Probability plays no role, once the con-
fidence interval is computed for the particular data at hand. The probabilistic interpre-
tation comes from the fact that for 95% of all random samples, the constructed
confidence interval will contain �.

Ȳ � �

1/��n
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To emphasize the meaning of a confidence interval, Table C.2 contains calculations
for 20 random samples (or replications) from the Normal(2,1) distribution with sample
size n � 10. For each of the 20 samples, ȳ is obtained, and (C.18) is computed as ȳ �
1.96/��10 � ȳ � .62 (each rounded to two decimals). As you can see, the interval
changes with each random sample. Nineteen of the 20 intervals contain the population
value of �. Only for replication number 19 is � not in the confidence interval. In other
words, 95% of the samples result in a confidence interval that contains �. This did not
have to be the case with only 20 replications, but it worked out that way for this partic-
ular simulation.

Table C.2

Simulated Confidence Intervals from a Normal (�,1) Distribution with � � 2

Replication ȳ 95% Interval Contains �?

1 1.98 (1.36,2.60) Yes

2 1.43 (0.81,2.05) Yes

3 1.65 (1.03,2.27) Yes

4 1.88 (1.26,2.50) Yes

5 2.34 (1.72,2.96) Yes

6 2.58 (1.96,3.20) Yes

7 1.58 (0.96,2.20) Yes

8 2.23 (1.61,2.85) Yes

9 1.96 (1.34,2.58) Yes

10 2.11 (1.49,2.73) Yes

11 2.15 (1.53,2.77) Yes

12 1.93 (1.31,2.55) Yes

13 2.02 (1.40,2.64) Yes

14 2.10 (1.48,2.72) Yes

15 2.18 (1.56,2.80) Yes
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Table C.2 (concluded)

Replication ȳ 95% Interval Contains �?

16 2.10 (1.48,2.72) Yes

17 1.94 (1.32,2.56) Yes

18 2.21 (1.59,2.83) Yes

19 1.16 (0.54,1.78) No

20 1.75 (1.13,2.37) Yes

Confidence Intervals for the Mean from a Normally
Distributed Population

The confidence interval derived in equation (C.18) helps illustrate how to construct and
interpret confidence intervals. In practice, equation (C.18) is not very useful for the
mean of a normal population because it assumes that the variance is known to be unity.
It is easy to extend (C.18) to the case where the standard deviation � is known to be any
value: the 95% confidence interval is

[ ȳ � 1.96�/��n,ȳ � 1.96�/��n]. (C.20)

Therefore, provided � is known, a confidence interval for � is readily constructed. To
allow for unknown �, we must use an estimate. Let

s � � �
n

i�1
(yi � ȳ)2�1/2

(C.21)

denote the sample standard deviation. Then, we obtain a confidence interval that
depends entirely on the observed data by replacing � in equation (C.20) with its esti-
mate, s. Unfortunately, this does not preserve the 95% level of confidence because s
depends on the particular sample. In other words, the random interval [Ȳ � 1.96(S/��n)]
no longer contains � with probability .95 because the constant � has been replaced with
the random variable S.

How should we proceed? Rather than using the standard normal distribution, we
must rely on the t distribution. The t distribution arises from the fact that

~ tn�1, (C.22)
Ȳ � �

S/��n

1

n � 1
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where Ȳ is the sample average, and S is the sample standard deviation of the random
sample {Y1, …, Yn}. We will not prove (C.22); a careful proof can be found in a variety
of places [for example, Larsen and Marx (1988, Chapter 7)].

To construct a 95% confidence interval, let c denote the 97.5th percentile in the tn�1

distribution. In other words, c is the value such that 95% of the area in the tn�1 is
between �c and c: P(�c 
 tn�1 
 c) � .95. (The value of c depends on the degrees
of freedom n � 1, but we do not make this explicit.) The choice of c is illustrated in
Figure C.4. Once c has been properly chosen, the random interval [Y � c�S/��n,Y �
c�S/��n] contains � with probability .95. For a particular sample, the 95% confidence
interval is calculated as

[ ȳ � c�s/��n,ȳ � c�s/��n]. (C.23)

The values of c for various degrees of freedom can be obtained from Table G.2 in
Appendix G. For example, if n � 20, so that the df is n � 1 � 19, then c � 2.093. Thus,
the 95% confidence interval is [ ȳ � 2.093(s/��20)], where ȳ and s are the values
obtained from the sample. Even if s � � (which is very unlikely), the confidence inter-
val in (C.23) is wider than that in (C.20) because c � 1.96. For small degrees of free-
dom, (C.23) is much wider.
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More generally, let c� denote the 100(1 � �) percentile in the tn�1 distribution.
Then, a 100(1 � �)% confidence interval is obtained as

[ ȳ � c�/2s/��n,ȳ � c�/2s/��n]. (C.24)

Obtaining c�/2 requires choosing � and knowing the degrees of freedom n � 1; then,
Table G.2 can be used. For the most part, we will concentrate on 95% confidence inter-
vals.

There is a simple way to remember how to construct a confidence interval for the
mean of a normal distribution. Recall that sd(Ȳ ) � �/��n. Thus, s/��n is the point esti-
mate of sd(Ȳ ). The associated random variable, S/��n, is sometimes called the stan-
dard error of Y. Since what shows up in formulas is the point estimate s/��n, we define
the standard error of ȳ as se(ȳ) � s/��n. Then, (C.24) can be written in shorthand as

[ ȳ � c�/2�se(ȳ)]. (C.25)

This equation shows why the notion of the standard error of an estimate plays an impor-
tant role in econometrics.

E X A M P L E  C . 2
( E f f e c t  o f  J o b  T r a i n i n g  G r a n t s  o n  W o r k e r  P r o d u c t i v i t y )

Holzer, Block, Cheatham, and Knott (1993) studied the effects of job training grants on
worker productivity by collecting information on “scrap rates” for a sample of Michigan
manufacturing firms receiving job training grants in 1988. Table C.3 lists the scrap rates—
measured as number of items per 100 produced that are not usable and therefore need to
be scrapped—for 20 firms. Each of these firms received a job training grant in 1988; there
were no grants awarded in 1987. We are interested in contructing a confidence interval for
the change in the scrap rate from 1987 to 1988 for the population of all manufacturing
firms that could have received grants.

Table C.3

Scrap Rates for 20 Michigan Manufacturing Firms

Firm 1987 1988 Change

1 10 3 �7

2 1 1 0

3 6 5 �1

4 .45 .5 .05
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Table C.3 (concluded)

Firm 1987 1988 Change

5 1.25 1.54 .29

6 1.3 1.5 .2

7 1.06 .8 �.26

8 3 2 �1

9 8.18 .67 �7.51

10 1.67 1.17 �.5

11 .98 .51 �.47

12 1 .5 �.5

13 .45 .61 .16

14 5.03 6.7 1.67

15 8 4 �4

16 9 7 �2

17 18 19 1

18 .28 .2 �.08

19 7 5 �2

20 3.97 3.83 �.14

Average 4.38 3.23 �1.15

We assume that the change in scrap rates has a normal distribution. Since n � 20, a 95%
confidence interval for the mean change in scrap rates � is [y � 2.093�se( ȳ)], where se( ȳ) �
s/��n. The value 2.093 is the 97.5th percentile in a t19 distribution. For the particular sample
values, ȳ � �1.15 and se( ȳ) � .54 (each rounded to two decimals), and so the 95% confi-
dence interval is [�2.28,�.02]. The value zero is excluded from this interval, so we conclude
that, with 95% confidence, the average change in scrap rates in the population is not zero.
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At this point, Example C.2 is mostly illustrative because it has some potentially
serious flaws as an econometric analysis. Most importantly, it assumes that any sys-
tematic reduction in scrap rates is due to the job training grants. But many things can
happen over the course of the year to change worker productivity. From this analysis,
we have no way of knowing whether the fall in average scrap rates is attributable to the
job training grants or if, at least partly, some external force is responsible.

A Simple Rule of Thumb for a 95% Confidence Interval

The confidence interval in (C.25) can be computed for any sample size and any confi-
dence level. As we saw in Section B.4, the t distribution approaches the standard nor-
mal distribution as the degrees of freedom gets large. In particular, for � � .05, c�/2 *

1.96 as n * , although c�/2 is always greater than 1.96 for each n. A rule of thumb for
an approximate 95% confidence interval is

[ ȳ � 2�se(ȳ)]. (C.26)

In other words, we obtain ȳ and its standard error and then compute ȳ plus and minus
twice its standard error to obtain the confidence interval. This is slightly too wide for
very large n, and it is too narrow for small n. As we can see from Example C.2, even
for n as small as 20, (C.26) is in the ballpark for a 95% confidence interval for the mean
from a normal distribution. This means we can get pretty close to a 95% confidence
interval without having to refer to t tables.

Asymptotic Confidence Intervals for Nonnormal
Populations

In some applications, the population is clearly nonnormal. A leading case is the
Bernoulli distribution, where the random variable takes on only the values zero and one.
In other cases, the nonnormal population has no standard distribution. This does not
matter, provided the sample size is sufficiently large for the central limit theorem to give
a good approximation for the distribution of the sample average Ȳ . For large n, an
approximate 95% confidence interval is

[ ȳ � 1.96�se( ȳ)], (C.27)

where the value 1.96 is the 97.5th percentile in the standard normal distribution.
Mechanically, computing an approximate confidence interval does not differ from the
normal case. A slight difference is that the number multiplying the standard error
comes from the standard normal distribution, rather than the t distribution, because
we are using asymptotics. Because the t distribution approaches the standard normal
as the df increases, equation (C.25) is also perfectly legitimate as an approximate
95% interval; some prefer this to (C.27) because the former is exact for normal pop-
ulations.
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E X A M P L E  C . 3
( R a c e  D i s c r i m i n a t i o n  i n  H i r i n g )

The Urban Institute conducted a study in 1988 in Washington D.C. to examine the extent
of race discrimination in hiring. Five pairs of people interviewed for several jobs. In each pair,
one person was black, and the other person was white. They were given resumes indicat-
ing that they were virtually the same in terms of experience, education, and other factors
that determine job qualification. The idea was to make individuals as similar as possible with
the exception of race. Each person in a pair interviewed for the same job, and the
researchers recorded which applicant  received a job offer. This is an example of a matched
pairs analysis, where each trial consists of data on two people (or two firms, two cities, and
so on) that are thought to be similar in many respects but different in one important char-
acteristic.

Let �B denote the probability that the black person is offered a job and let �W be the
probability that the white person is offered a job. We are primarily interested in the differ-
ence, �B � �W. Let Bi denote a Bernoulli variable equal to one if the black person gets a job
offer from employer i, and zero otherwise. Similarly, Wi � 1 if the white person gets a job
offer from employer i, and zero otherwise. Pooling across the five pairs of people, there
were a total of n � 241 trials (pairs of interviews with employees). Unbiased estimators of
�B and �W are B̄ and W̄, the fractions of interviews for which blacks and whites were offered
jobs, respectively.

To put this into the framework of computing a confidence interval for a population
mean, define a new variable Yi � Bi � Wi. Now, Yi can take on three values: �1 if the black
person did not get the job but the white person did, 0 if both people either did or did not
get the job, and 1 if the black person got the job and the white person did not. Then, � �
E(Yi) � E(Bi) � E(Wi) � �B � �W.

The distribution of Yi is certainly not normal—it is discrete and takes on only three val-
ues. Nevertheless, an approximate confidence interval for �B � �W can be obtained by using
large sample methods.

Using the 241 observed data points, b̄ � .224 and w̄ � .357, and so ȳ � .224 �

.357 � �.133. Thus, 22.4% of black applicants were offered jobs, while 35.7% of white
applicants were offered jobs. This is prima facie evidence of discrimination against blacks,
but we can learn much more by computing a confidence interval for �. To compute an
approximate 95% confidence interval, we need the sample standard deviation. This turns
out to be s � .482 [using equation (C.21)]. Using (C.27), we obtain a 95% CI for � �

�B � �W as �.133 � 1.96(.482/��241) � �.133 � .031 � [�.164,�.102]. The approximate
99% CI is �.133 � 2.58(.482/��241) � [�.213,�.053]. Naturally, this contains a wider
range of values than the 95% CI. But even the 99% CI does not contain the value zero.
Thus, we are very confident that the population difference �B � �W is not zero.

One final comment needs to be made before we leave confidence intervals. Because
the standard error for ȳ, se(ȳ) � s/��n , shrinks to zero as the sample size grows, we see
that—all else equal—a larger sample size means a smaller confidence interval. Thus, an
important benefit of a large sample size is that it results in smaller confidence intervals.
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C.6 HYPOTHESIS TESTING

So far, we have reviewed how to evaluate point estimators, and we have seen—in the
case of a population mean—how to construct and interpret confidence intervals. But
sometimes the question we are interested in has a definite yes or no answer. Here are
some examples: (1) Does a job training program effectively increase average worker
productivity? (see Example C.2); (2) Are blacks discriminated against in hiring? (see
Example C.3); (3) Do stiffer state drunk driving laws reduce the number of drunk dri-
ving arrests? Devising methods for answering such questions, using a sample of data,
is known as hypothesis testing.

Fundamentals of Hypothesis Testing

To illustrate the issues involved with hypothesis testing, consider an election example.
Suppose there are two candidates in an election, Candidates A and B. Candidate A is
reported to have received 42% of the popular vote, while Candidate B received 58%.
These are supposed to represent the true percentages in the voting population, and we
treat them as such.

Candidate A is convinced that more people must have voted for him, and so he would
like to investigate whether the election was rigged. Knowing something about statistics,
Candidate A hires a consulting agency to randomly sample 100 voters to record whether
or not each person voted for him. Suppose that, for the sample collected, 53 people voted
for Candidate A. This sample estimate of 53% clearly exceeds the reported population
value of 42%. Should Candidate A conclude that the election was indeed a fraud?

While it appears that the votes for Candidate A were undercounted, we cannot be
certain. Even if only 42% of the population voted for Candidate A, it is possible that, in
a sample of 100, we observe 53 people who did vote for Candidate A. The question is:
How strong is the sample evidence against the officially reported percentage of 42%?

One way to proceed is to set up a hypothesis test. Let � denote the true proportion
of the population voting for Candidate A. The hypothesis that the reported results are
accurate can be stated as

H0: � � .42. (C.28)

This is an example of a null hypothesis. We always denote the null hypothesis by H0.
In hypothesis testing, the null hypothesis plays a role similar to that of a defendent on
trial in many judicial systems: just as a defendent is presumed to be innocent until
proven guilty, the null hypothesis is presumed to be true until the data strongly suggest
otherwise. In the current example, Candidate A must present fairly strong evidence
against (C.28) in order to win a recount.

The alternative hypothesis in the election example is that the true proportion vot-
ing for Candidate A in the election is greater than .42:

H1: � � .42. (C.29)

In order to conclude that H0 is false and that H1 is true, we must have evidence “beyond
reasonable doubt” against H0. How many votes out of 100 would be needed before we
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feel the evidence is strongly against H0? Most would agree that observing 43 votes out
of a sample of 100 is not enough to overturn the original election results; such an out-
come is well within the expected sampling variation. On the other hand, we do not need
to observe 100 votes for Candidate A to cast doubt on H0. Whether 53 out of 100 is
enough to reject H0 is much less clear. The answer depends on how we quantify
“beyond reasonable doubt.”

In hypothesis testing, we can make two kinds of mistakes. First, we can reject the
null hypothesis when it is in fact true. This is called a Type I error. In the election
example, a Type I occurs if we reject H0 when the true proportion of people voting for
Candidate A is in fact .42. The second kind of error is failing to reject H0 when it is
actually false. This is called a Type II error. In the election example, a Type II error
occurs if � � .42 but we fail to reject H0.

After we have made the decision of whether or not to reject the null hypothesis, we
have either decided correctly or we have committed an error. We will never know with
certainty whether an error was committed. However, we can compute the probability of
making either a Type I or a Type II error. Hypothesis testing rules are constructed to
make the probability of committing a Type I error fairly small. Generally, we define the
significance level (or simply the level ) of a test as the probability of a Type I error; it
is typically denoted by �. Symbolically, we have

� � P(Reject H0�H0). (C.30)

The right-hand side is read as: “The probability of rejecting H0 given that H0 is true.”
Classical hypothesis testing requires that we initially specify a significance level for

a test. When we specify a value for �, we are essentially quantifying our tolerance for
a Type I error. Common values for � are .10, .05, and .01. If � � .05, then the researcher
is willing to falsely reject H0 5% of the time, in order to detect deviations from H0.

Once we have chosen the significance level, we would then like to minimize the
probability of a Type II error. Alternatively, we would like to maximize the power of a
test against all relevant alternatives. The power of a test is just one, minus the proba-
bility of a Type II error. Mathematically,

�(�) � P(Reject H0��) � 1 � P(Type II��),

where � denotes the actual value of the parameter. Naturally, we would like the power
to equal unity whenever the null hypothesis is false. But this is impossible to achieve
while keeping the significance level small. Instead, we choose our tests to maximize the
power for a given significance level.

Testing Hypotheses About the Mean in a
Normal Population

In order to test a null hypothesis against an alternative, we need to choose a test statis-
tic (or statistic, for short) and a critical value. The choices for the statistic and critical
value are based on convenience and on the desire to maximize power given a signifi-
cance level for the test. In this subsection, we review how to test hypotheses for the
mean of a normal population.
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A test statistic, denoted T, is some function of the random sample. When we com-
pute the statistic for a particular outcome, we obtain an outcome of the test statistic,
which we will denote t.

Given a test statistic, we can define a rejection rule that determines when H0 is
rejected in favor of H1. In this text, all rejection rules are based on comparing the value
of a test statistic, t, to a critical value, c. The values of t that result in rejection of the
null hypothesis are collectively known as the rejection region. In order to determine
the critical value, we must first decide on a significance level of the test. Then, given
�, the critical value associated with � is determined by the distribution of T, assuming
that H0 is true. We will write this critical value as c, suppressing the fact that it depends
on �.

Testing hypotheses about the mean � from a Normal(�,�2) population is straight-
forward. The null hypothesis is stated as

H0: � � �0, (C.31)

where �0 is a value that we specify. In the majority of applications, �0 � 0, but the gen-
eral case is no more difficult.

The rejection rule we choose depends on the nature of the alternative hypothesis.
The three alternatives of interest are

H1: � � �0, (C.32)

H1: � 
 �0, (C.33)

and

H1: � � �0. (C.34)

Equation (C.32) gives a one-sided alternative, as does (C.33). When the alternative
hypothesis is (C.32), the null is effectively H0: � 	 �0, since we reject H0 only when
� � �0. This is appropriate when we are interested in the value of � but only when �
is at least as large as �0. Equation (C.34) is a two-sided alternative. This is acceptable
when we are interested in any departure from the null hypothesis.

Consider first the alternative in (C.32). Intuitively, we should reject H0 in favor of
H1 when the value of the sample average, ȳ, is “sufficiently” greater than �0. But how
should we determine when ȳ is large enough for H0 to be rejected at the chosen signif-
icance level? This requires knowing the probability of rejecting the null hypothesis
when it is true. Rather than working directly with ȳ, we use its standardized version,
where � is replaced with the sample standard deviation, s:

t � ��n(ȳ � �0)/s � (ȳ � �0)/se(ȳ), (C.35)

where se(ȳ) � s/��n is the standard error of ȳ. Given the sample of data, it is easy to
obtain t. The reason we work with t is that, under the null hypothesis, the random vari-
able

T � ��n(Ȳ � �0)/S
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has a tn�1 distribution. Now, suppose we have settled on a 5% significance level. Then,
the critical value c is chosen so that P(T � c�H0) � .05; that is, the probability of a Type
I error is 5%. Once we have found c, the rejection rule is

t � c, (C.36)

where c is the 100(1 � �) percentile in a tn�1 distribution; as a percent, the significance
level is 100��%. This is an example of a one-tailed test because the rejection region is
in one tail of the t distribution. For a 5% significance level, c is the 95th percentile in the
tn�1 distribution; this is illustrated in Figure C.5. A different significance level leads to
a different critical value.

The statistic in equation (C.35) is often called the t statistic for testing H0: � � �0.
The t statistic measures the distance from ȳ to �0 relative to the standard error of ȳ, se(ȳ).

E X A M P L E  C . 4
( E f f e c t  o f  E n t e r p r i s e  Z o n e s  o n  B u s i n e s s  I n v e s t m e n t s )

In the population of cities granted enterprise zones in a particular state [see Papke (1994)
for Indiana], let Y denote the percentage change in investment from the year before to the
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year after a city became an enterprise zone. Assume that Y has a Normal(�,�2) distribution.
The null hypothesis that enterprise zones have no effect on business investment is H0: � �

0; the alternative that they have a positive effect is H1: � � 0 (we assume that they do not
have a negative effect). Suppose that we wish to test H0 at the 5% level. The test statistic
in this case is

t � � . (C.37)

Suppose that we have a sample of 36 cities which are granted enterprise zones. Then, the
critical value is c � 1.69 (see Table G.2), and we reject H0 in favor of H1 if t � 1.69. Suppose
that the sample yields ȳ � 8.2 and s � 23.9. Then, t � 2.06, and H0 is therefore rejected
at the 5% level. Thus, we conclude that, at the 5% significance level, enterprise zones have
an effect on average investment. The 1% critical value is 2.44, and so H0 is not rejected at
the 1% level. The same caveat holds here as in Example C.2: we have not controlled for
other factors that might affect investment in cities over time, and so we cannot claim that
the effect is causal.

The rejection rule is similar for the one-sided alternative (C.32). A test with a sig-
nificance level of 100��% rejects H0 against (C.33) whenever

t 
 �c; (C.38)

in other words, we are looking for negative values of the t statistic—which implies ȳ 

�0—that are sufficiently far from zero to reject H0.

For two-sided alternatives, we must be careful to choose the critical value so that
the significance level of the test is still �. If H1 is given by H1: � � �0, then we reject
H0 if ȳ is far from �0 in absolute value: a ȳ much larger or much smaller than �0 pro-
vides evidence against H0 in favor of H1. A 100��% level test is obtained from the rejec-
tion rule

�t� � c, (C.39)

where �t� is the absolute value of the t statistic in (C.35). This gives a two-tailed test. We
must now be careful in choosing the critical value: c is the 100(1 � �/2) percentile in
the tn�1 distribution. For example, if � � .05, then the critical value is the 97.5th per-
centile in the tn�1 distribution. This ensures that H0 is rejected only 5% of the time when
it is true (see Figure C.6). For example, if n � 22, then the critical value is c � 2.08,
the 97.5th percentile in a t21 distribution (see Table G.2). The absolute value of the t sta-
tistic must exceed 2.08 in order to reject H0 against H1 at the 5% level.

It is important to know the proper language of hypothesis testing. Sometimes, the
appropriate phrase “we fail to reject H0 in favor of H1 at the 5% significance level” is
replaced with “we accept H0 at the 5% significance level.” The latter wording is incor-
rect. With the same set of data there are usually many hypotheses that cannot be

ȳ

se(ȳ)

ȳ

s/��n
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rejected. In the earlier election example, it would be logically inconsistent to say that
H0: � � .42 and H0: � � .43 are both “accepted,” since only one of these can be true.
But it is entirely possible that neither of these hypotheses is rejected. For this reason,
we always say “fail to reject H0” rather than “accept H0.”

Asymptotic Tests for Nonnormal Populations

If the sample size is large enough to invoke the central limit theorem (see Section C.3),
the mechanics of hypothesis testing for population means are the same whether or not
the population distribution is normal. The theoretical justification comes from the fact
that, under the null hypothesis,

T � ��n(Ȳ � �0)/S ~ª Normal(0,1).

Therefore, with large n, we can compare the t statistic in (C.35) with the critical values
from a standard normal distribution. Since the tn�1 distribution converges to the stan-
dard normal distribution as n gets large, the t and standard normal critical values will
be very close for extremely large n. Since asymptotic theory is based on n increasing
without bound, it cannot tell us whether the standard normal or t critical values are bet-
ter. For moderate values of n, say between 30 and 60, it is traditional to use the t distri-
bution because we know this is correct for normal populations. For n � 120, the choice
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Rejection region for a 5% significance level test against the two-sided alternative H1: � � �0.
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between the t and standard normal distributions is largely irrelevant because the critical
values are practically the same.

Because the critical values chosen using either the standard normal or t distribution
are only approximately valid for nonnormal populations, our chosen significance levels
are also only approximate; thus, for nonnormal populations our significance levels are
really asymptotic significance levels. Thus, if we choose a 5% significance level, but
our population is nonnormal, then the actual significance level will be larger or smaller
than 5% (and we cannot know which is the case). When the sample size is large, the
actual significance level will be very close to 5%. Practically speaking, the distinction
is not important, and so we will now drop the qualifier “asymptotic.”

E X A M P L E  C . 5
( R a c e  D i s c r i m i n a t i o n  i n  H i r i n g )

In the Urban Institute study of discrimination in hiring (see Example C.3), we are primarily
interested in testing H0: � � 0 against H1: � 
 0, where � � �B � �W is the difference in
probabilities that blacks and whites receive job offers. Recall that � is the population mean
of the variable Y � B � W, where B and W are binary indicators. Using the n � 241 paired
comparisons, we obtained ȳ � �.133 and se(ȳ ) � .482/��241 � .031. The t statistic for
testing H0: � � 0 is t � �.133/.031 � �4.29. You will remember from Appendix B that
the standard normal distribution is, for practical purposes, indistinguishable from the t dis-
tribution with 240 degrees of freedom. The value �4.29 is so far out in the left tail of the
distribution that we reject H0 at any reasonable significance level. In fact, the .005 (one-half
of a percent) critical value (for the one-sided test) is about �2.58. A t value of �4.29 is very
strong evidence against H0 in favor of H1. Thus, we conclude that there is discrimination in
hiring.

Computing and Using p -Values

The traditional requirement of choosing a significance level ahead of time means that
different researchers, using the same data and same procedure to test the same hypoth-
esis, could wind up with different conclusions. Reporting the significance level at which
we are carrying out the test solves this problem to some degree, but it does not com-
pletely remove the problem.

To provide more information, we can ask the following question: What is the largest
significance level at which we could carry out the test and still fail to reject the null
hypothesis? This value is known as the p-value of a test (sometimes called the prob-
value). Compared with choosing a significance level ahead of time and obtaining a crit-
ical value, computing a p-value is somewhat more difficult. But with the advent of
quick and inexpensive computing, p-values are now fairly easy to obtain.

As an illustration, consider the problem of testing H0: � � 0 in a Normal(�,�2)
population. Our test statistic in this case is T � ��n�Ȳ/S, and we assume that n is large
enough to treat T as having a standard normal distribution under H0. Suppose that the
observed value of T for our sample is t � 1.52 (note how we have skipped the step of
choosing a significance level). Now that we have seen the value t, we can find the
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largest significance level at which we would fail to reject H0. This is the significance
level associated with using t as our critical value. Since our test statistic T has a stan-
dard normal distribution under H0, we have

p-value � P(T � 1.52�H0) � 1 � �(1.52) � .065, (C.40)

where �(�) denotes the standard normal cdf. In other words, the p-value in this exam-
ple is simply the area to the right of 1.52, the observed value of the test statistic, in a
standard normal distribution. See Figure C.7 for illustration.

Since p-value � .065, the largest significance level at which we can carry out
this test and fail to reject is 6.5%. If we carry out the test at a level below 6.5% (such
as at 5%), we fail to reject H0. If we carry out the test at a level larger than 6.5%
(such as 10%), we reject H0. With the p-value at hand, we can carry out the test at
any level.

The p-value in this example has another useful interpretation: it is the probability
that we observe a value of T as large as 1.52 when the null hypothesis is true. If the null
hypothesis is actually true, we would observe a value of T as large as 1.52 due to chance
only 6.5% of the time. Whether this is small enough to reject H0 depends on our toler-
ance for a Type I error. The p-value has a similar interpretation in all other cases, as we
will see.
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F i g u r e  C . 7

The p-value when t = 1.52 for the one-sided alternative � � �0.
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Generally, small p-values are evidence against H0, since they indicate that the
outcome of the data occurs with small probability if H0 is true. In the previous exam-
ple, if t had been a larger value, say t � 2.85, then the p-value would be 1 �
�(2.85) � .002. This means that, if the null hypothesis were true, we would observe
a value of T as large as 2.85 with probability .002. How do we interpret this? Either
we obtained a very unusual sample or the null hypothesis is false. Unless we have a
very small tolerance for Type I error, we would reject the null hypothesis. On the
other hand, a large p-value is weak evidence against H0. If we had gotten t � .47 in
the previous example, then p-value � 1 � �(.47) � .32. Observing a value of T
larger than .47 happens with probability .32, even when H0 is true; this is large
enough so that there is insufficient doubt about H0, unless we have a very high toler-
ance for Type I error.

For hypothesis testing about a population mean using the t distribution, we need
detailed tables in order to compute p-values. Table G.2 only allows us to put bounds on
p-values. Fortunately, many statistics and econometrics packages now compute p-values
routinely, and they also provide calculation of cdfs for the t and other distributions used
for computing p-values.

E X A M P L E  C . 6
( E f f e c t  o f  J o b  T r a i n i n g  G r a n t s  o n  W o r k e r  P r o d u c t i v i t y )

Consider again the Holzer et al. (1993) data in Example C.2. From a policy perspective,
there are two questions of interest. First, what is our best estimate of the mean change in
scrap rates, �? We have already obtained this for the sample of 20 firms listed in Table C.3:
the sample average of the change in scrap rates is �1.15. Relative to the initial average
scrap rate in 1987, this represents a fall in the scrap rate of about 26.3% (�1.15/4.38 �
�.263), which is a nontrivial effect.

We would also like to know whether the sample provides strong evidence for an effect
in the population of manufacturing firms that could have received grants. The null hypoth-
esis is H0: � � 0, and we test this against H1: � 
 0, where � is the average change in scrap
rates. Under the null, the job training grants have no effect on average scrap rates. The
alternative states that there is an effect. We do not care about the alternative � � 0; the
null hypothesis is effectively H0: � � 0.

Since ȳ � �1.15 and se(ȳ ) � .54, t � �1.15/.54 � �2.13. This is below the 5% crit-
ical value of �1.73 (from a t19 distribution) but above the 1% critical value, �2.54. The
p-value in this case is computed as

p-value � P(T19 
 �2.13), (C.41)

where T19 represents a t distributed random variable with 19 degrees of freedom. The
inequality is reversed from (C.40) because the alternative has the form (C.33), not (C.32).
The probability in (C.41) is the area to the left of �2.13 in a t19 distribution (see Fig-
ure C.8).
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Using Table G.2, the most we can say is that the p-value is between .025 and .01, but
it is closer to .025 (since the 97.5th percentile is about 2.09). Using a statistical package,
such as Stata, we can compute the exact p-value. It turns out to be about .023, which is
reasonable evidence against H0. This is certainly enough evidence to reject the null hypoth-
esis that the training grants had no effect at the 2.5% significance level (and therefore at
the 5% level).

Computing a p-value for a two-sided test is similar, but we must account for the
two-sided nature of the rejection rule. For t testing about population means, the p-value
is computed as

P(�Tn�1� � �t�) � 2P(Tn�1 � �t�), (C.42)

where t is the value of the test statistic, and Tn�1 is a t random variable. (For large n,
replace Tn�1 with a standard normal random variable.) Thus, to compute the absolute
value of the t statistic, find the area to the right of this value in a tn�1 distribution and
multiply the area by two.
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The p-value when t � �2.13 with 19 degrees of freedom for the one-sided alternative � 
 0.
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For nonnormal populations, the exact p-value can be difficult to obtain.
Nevertheless, we can find asymptotic p-values by using the same calculations. These
p-values are valid for large sample sizes. For n larger than, say, 120, we might as well
use the standard normal distribution. Table G.1 is detailed enough to get accurate
p-values, but we can also use a statistics or econometrics program.

E X A M P L E  C . 7
( R a c e  D i s c r i m i n a t i o n  i n  H i r i n g )

Using the matched pair data from the Urban Institute (n � 241), we obtained t � �4.29.
If Z is a standard normal random variable, P(Z 
 �4.29) is, for practical purposes, zero. In
other words, the (asymptotic) p-value for this example is essentially zero. This is very strong
evidence against H0.

SUMMARY OF HOW TO USE p-VALUES
(i) Choose a test statistic T and decide on the nature of the alternative. This deter-

mines whether the rejection rule is t � c, t 
 �c, or �t� � c.
(ii) Use the observed value of the t statistic as the critical value and compute the cor-

responding significance level of the test. This is the p-value. If the rejection rule is of
the form t � c, then p-value � P(T � t). If the rejection rule is t 
 �c, then p-value �
P(T 
 t); if the rejection rule is �t� � c, then p-value � P(�T � � �t�).

(iii) If a significance level � has been chosen, then we reject H0 at the 100��% level
if p-value 
 �. If p-value � �, then we fail to reject H0 at the 100��% level. Thus, it is
a small p-value that leads to rejection.

The Relationship Between Confidence Intervals and
Hypothesis Testing

Since contructing confidence intervals and hypothesis tests both involve probability
statements, it is natural to think that they are somehow linked. It turns out that they are.
After a confidence interval has been constructed, we can carry out a variety of hypoth-
esis tests.

The confidence intervals we have discussed are all two-sided by nature. (In this text,
we will have no need to construct one-sided confidence intervals.) Thus, confidence
intervals can be used to test against two-sided alternatives. In the case of a population
mean, the null is given by (C.31), and the alternative is (C.34). Suppose we have con-
structed a 95% confidence interval for �. Then, if the hypothesized value of � under
H0, �0, is not in the confidence interval, then H0: � � �0 is rejected against H1: � �
�0 at the 5% level. If �0 lies in this interval, then we fail to reject H0 at the 5% level.
Notice how any value for �0 can be tested once a confidence interval is constructed, and
since a confidence interval contains more than one value, there are many null hypothe-
ses that will not be rejected.
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E X A M P L E  C . 8
( T r a i n i n g  G r a n t s  a n d  W o r k e r  P r o d u c t i v i t y )

In the Holzer et al. example, we constructed a 95% confidence interval for the mean
change in scrap rate � as [�2.28,�.02]. Since zero is excluded from this interval, we reject
H0: � � 0 against H1: � � 0 at the 5% level. This 95% confidence interval also means that
we fail to reject H0: � � �2 at the 5% level. In fact, there is a continuum of null hypothe-
ses that are not rejected given this confidence interval.

Practical Versus Statistical Significance

In the examples covered so far, we have produced three kinds of evidence concerning
population parameters: point estimates, confidence intervals, and hypothesis tests.
These tools for learning about population parameters are equally important. There is an
understandable tendency for students to focus on confidence intervals and hypothesis
tests because these are things to which we can attach confidence or significance levels.
But in any study, we must also interpret the magnitudes of point estimates.

Statistical significance depends on the size of the t statistic and not just on the size
of ȳ. For testing H0: � � 0, t � ȳ/se(ȳ). Thus, statistical significance depends on the
ratio of ȳ to its standard error. A t statistic can be large either because ȳ is large or
because se(ȳ) is small.

E X A M P L E  C . 9
( E f f e c t  o f  F r e e w a y  W i d t h  o n  C o m m u t e  T i m e )

Let Y denote the change in commute time, measured in minutes, for commuters in a met-
ropolitan area from before a freeway was widened to after the freeway was widened.
Assume that Y ~ Normal(�,�2). The null hypothesis that the widening did not reduce aver-
age commute time is H0: � � 0; the alternative that it reduced average commute time is
H1: � 
 0. Suppose a random sample of commuters of size n � 300 is obtained to deter-
mine the effectiveness of the freeway project. The average change in commute time is com-
puted to be ȳ � �3.6, and the sample standard deviation is s � 18.7; thus, se(ȳ ) �

18.7/��300 � 1.08. The t statistic is t � �3.6/1.08 � �3.33, which is very statistically sig-
nificant; the p-value is essentially zero. Thus, we conclude that the freeway widening had
a statistically significant effect on average commute time.

If the outcome of the hypothesis test is all that were reported from the study, it would
be misleading. Reporting only statistical significance masks the fact that the estimated
reduction in average commute time, 3.6 minutes, is pretty meager. To be up front, we
should report the point estimate of �3.6, along with the significance test.

While the magnitude and sign of the t statistic determine statistical significance, the
point estimate ȳ determines what we might call practical significance. An estimate can
be statistically significant without being especially large. We should always discuss the
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practical significance along with the statistical significance of point estimates; this
theme will arise often in the text.

Finding point estimates that are statistically significant without being practically
significant often occurs when we are working with large samples. To discuss why this
happens, it is useful to have the following definition.

TEST CONSISTENCY
A consistent test rejects H0 with probability approaching one as the sample size grows,
whenever H1 is true.

Another way to say that a test is consistent is that, as the sample size tends to infin-
ity, the power of the test gets closer and closer to unity, whenever H1 is true. All of the
tests we cover in this text have this property. In the case of testing hypotheses about a
population mean, test consistency follows because the variance of Ȳ converges to zero
as the sample size gets large. The t statistic for testing H0: � � 0 is T � Ȳ /(S/��n). Since
plim(Ȳ ) � � and plim(S ) � �, it follows that if, say, � � 0, then T gets larger and
larger (with high probability) as n * . In other words, no matter how close � is to
zero, we can be almost certain to reject H0: � � 0, given a large enough sample size.
This says nothing about whether � is large in a practical sense.

C.7 REMARKS ON NOTATION

In our review of probability and statistics here and in Appendix B, we have been care-
ful to use standard conventions to denote random variables, estimators, and test statis-
tics. For example, we have used W to indicate an estimator (random variable) and w to
denote a particular estimate (outcome of the random variable W ). Distinguishing
between an estimator and an estimate is important for understanding various concepts
in estimation and hypothesis testing. However, making this distinction quickly becomes
a burden in econometric analysis because the models are more complicated: many ran-
dom variables and parameters will be involved, and being true to the usual conventions
from probability and statistics requires many extra symbols.

In the main text, we use a simpler convention that is widely used in econometrics.
If � is a population parameter, the notation �̂ (“theta hat”) will be used to denote both
an estimator and an estimate of �. This notation is useful in that it provides a simple
way of attaching an estimator to the population parameter it is supposed to be estimat-
ing. Thus, if the population parameter is �, then �̂ denotes an estimator or estimate of
�; if the parameter is �2, �̂2 is an estimator or estimate of �2; and so on. Sometimes,
we will discuss two estimators of the same parameter, in which case, we will need a dif-
ferent notation, such as �̃ (“theta tilda”).

While dropping the conventions from probability and statistics to indicate estima-
tors, random variables, and test statistics puts additional responsibility on you, it is not
a big deal, once the difference between an estimator and an estimate is understood. If
we are discussing statistical properties of �̂—such as deriving whether or not it is unbi-
ased or consistent—then we are necessarily viewing �̂ as an estimator. On the other
hand, if we write something like �̂ � 1.73, then we are clearly denoting a point estimate
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from a given sample of data. The confusion that can arise by using �̂ to denote both
should be minimal, once you have a good understanding of probability and statistics.

SUMMARY

We have discussed topics from mathematical statistics that are heavily relied on in
econometric analysis. The notion of an estimator, which is simply a rule for combining
data to estimate a population parameter, is fundamental. We have covered various prop-
erties of estimators. The most important small sample properties are unbiasedness and
efficiency, the latter of which depends on comparing variances when estimators are
unbiased. Large sample properties concern the sequence of estimators obtained as the
sample size grows, and they are also heavily relied on in econometrics. Any useful esti-
mator is consistent. The central limit theorem implies that, in large samples, the sam-
pling distribution of most estimators is approximately normal.

The sampling distribution of an estimator can be used to construct confidence inter-
vals. We saw this for estimating the mean from a normal distribution and for comput-
ing approximate confidence intervals in nonnormal cases. Classical hypothesis testing,
which requires specifying a null hypothesis, an alternative hypothesis, and a signifi-
cance level, is carried out by comparing a test statistic to a critical value. Alternatively,
a p-value can be computed that allows us to carry out a test at any significance level.

KEY TERMS
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Alternative Hypothesis
Asymptotic Normality
Bias
Central Limit Theorem (CLT)
Confidence Interval
Consistent Estimator
Consistent Test
Critical Value
Estimate
Estimator
Hypothesis Test
Inconsistent
Interval Estimator
Law of Large Numbers (LLN)
Least Squares Estimator
Maximum Likelihood Estimator
Mean Squared Error (MSE)
Method of Moments
Minimum Variance Unbiased Estimator
Null Hypothesis
One-Sided Alternative
One-Tailed Test
Population

Power of a Test
Practical Significance
Probability Limit
p-Value
Random Sample
Rejection Region
Sample Average
Sample Correlation Coefficient
Sample Covariance
Sample Standard Deviation
Sample Variance
Sampling Distribution
Sampling Variance
Significance Level
Standard Error
t Statistic
Test Statistic
Two-Sided Alternative
Two-Tailed Test
Type I Error
Type II Error
Unbiasedness
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PROBLEMS

C.1 Let Y1, Y2, Y3, and Y4 be independent, identically distributed random variables

from a population with mean � and variance �2. Let Ȳ � (Y1 � Y2 � Y3 � Y4) denote

the average of these four random variables.
(i) What are the expected value and variance of Ȳ in terms of � and �2?
(ii) Now, consider a different estimator of �:

W � Y1 � Y2 � Y3 � Y4.

This is an example of a weighted average of the Yi. Show that W is also
an unbiased estimator of �. Find the variance of W.

(iii) Based on your answers to parts (i) and (ii), which estimator of � do you
prefer, Ȳ or W?

(iv) Now, consider a more general estimator of �, defined by

Wa � a1Y1 � a2Y2 � a3Y3 � a4Y4,

where the ai are constants. What condition is needed on the ai for Wa to
be an unbiased estimator of �?

(v) Compute the variance of the estimator Wa from part (iv).

C.2 This is a more general version of Problem C.1. Let Y1, Y2, …, Yn be n pairwise
uncorrelated random variables with common mean � and common variance �2. Let Ȳ
denote the sample average.

(i) Define the class of linear estimators of � by

Wa � a1Y1 � a2Y2 � … � anYn,

where the ai are constants. What restriction on the ai is needed for Wa to
be an unbiased estimator of �?

(ii) Find Var(Wa).
(iii) For any numbers a1, a2, …, an, the following inequality holds: (a1 �

a2 � … � an)2/n 	 a1
2 � a2

2 � … � an
2. Use this, along with parts (i)

and (ii), to show that Var(Wa) � Var(Ȳ ) whenever Wa is unbiased, so
that Ȳ is the best linear unbiased estimator. [Hint: What does the
inequality become when the ai satisfy the restriction from part (i)?]

C.3 Let Y denote the sample average from a random sample with mean � and variance
�2. Consider two alternative estimators of �: W1 � [(n � 1)/n]Ȳ and W2 � Ȳ/2.

(i) Show that W1 and W2 are both biased estimators of � and find the
biases. What happens to the biases as n * ? Comment on any impor-
tant differences in bias for the two estimators as the sample size gets
large.

(ii) Find the probability limits of W1 and W2. {Hint: Use properties PLIM.1
and PLIM.2; for W1, note that plim [(n � 1)/n] � 1.} Which estimator
is consistent?

(iii) Find Var(W1) and Var(W2).

1

2

1

4

1

8

1

8

1

4
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(iv) Argue that W1 is a better estimator than Ȳ if � is “close” to zero.
(Consider both bias and variance.)

C.4 For positive random variables X and Y, suppose the expected value of Y given X is
E(Y �X) � �X. The unknown parameter � shows how the expected value of Y changes
with X.

(i) Define the random variable Z � Y/X. Show that E(Z ) � �. [Hint: Use
Property CE.2 along with the law of iterated expectations, Property
CE.4. In particular, first show that E(Z�X) � � and then use CE.4.]

(ii) Use part (i) to prove that the estimator W � n�1 �
n

i�1
(Yi/Xi) is unbiased

for W, where {(Xi,Yi): i � 1,2, …, n} is a random sample.
(iii) The following table contains data on corn yields for several counties in

Iowa. The USDA predicts the number of hectares of corn in each county
based on satellite photos. Researchers count the number of “pixels” of
corn in the satellite picture (as opposed to, for example, the number of
pixels of soybeans or of uncultivated land) and use these to predict the
actual number of hectares. To develop a prediction equation to be used
for counties in general, the USDA surveyed farmers in selected coun-
ties to obtain corn yields in hectares. Let Yi � corn yield in county i and
let Xi � number of corn pixels in the satellite picture for county i. There
are n � 17 observations for eight counties. Use this sample to compute
the estimate of � devised in part (ii).

Plot Corn Yield Corn Pixels

1 165.76 374

2 96.32 209

3 76.08 253

4 185.35 432

5 116.43 367

6 162.08 361

7 152.04 288

8 161.75 369

9 92.88 206
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Plot Corn Yield Corn Pixels

10 149.94 316

11 64.75 145

12 127.07 355

13 133.55 295

14 77.70 223

15 206.39 459

16 108.33 290

17 118.17 307

C.5 Let Y denote a Bernoulli(�) random variable with 0 
 � 
 1. Suppose we are
interested in estimating the odds ratio, � � �/(1 � �), which is the probability of suc-
cess over the probability of failure. Given a random sample {Y1, …, Yn}, we know that
an unbiased and consistent estimator of � is Ȳ, the proportion of successes in n trials. A
natural estimator of � is G � {Ȳ/(1 � Ȳ )}, the proportion of successes over the pro-
portion of failures in the sample.

(i) Why is G not an unbiased estimator of �?
(ii) Use PLIM.2(iii) to show that G is a consistent estimator of �.

C.6 You are hired by the governor to study whether a tax on liquor has decreased aver-
age liquor consumption in your state. You are able to obtain, for a sample of individu-
als selected at random, the difference in liquor consumption (in ounces) for the years
before and after the tax. For person i who is sampled randomly from the population, Yi

denotes the change in liquor consumption. Treat these as a random sample from a
Normal(�,�2) distribution.

(i) The null hypothesis is that there was no change in average liquor con-
sumption. State this formally in terms of �.

(ii) The alternative is that there was a decline in liquor consumption; state
the alternative in terms of �.

(iii) Now, suppose your sample size is n � 900 and you obtain the estimates
ȳ � �32.8 and s � 466.4. Calculate the t statistic for testing H0 against
H1; obtain the p-value for the test. (Because of the large sample size,
just use the standard normal distribution tabulated in Table G.1.) Do
you reject H0 at the 5% level? at the 1% level?

(iv) Would you say that the estimated fall in consumption is large in mag-
nitude? Comment on the practical versus statistical significance of this
estimate.
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(v) What has been implicitly assumed in your analysis about other deter-
minants of liquor consumption over the two-year period in order to
infer causality from the tax change to liquor consumption?

C.7 The new management at a bakery claims that workers are now more productive
than they were under old management, which is why wages have “generally increased.”
Let Wi

b be Worker i’s wage under the old management and let Wi
a be Worker i’s wage

after the change. The difference is Di � Wi
a � Wi

b. Assume that the Di are a random
sample from a Normal(�,�2) distribution.

(i) Using the following data on 15 workers, construct an exact 95% confi-
dence interval for �.

(ii) Formally state the null hypothesis that there has been no change in aver-
age wages. In particular, what is E(Di) under H0? If you are hired to
examine the validity of the new management’s claim, what is the rele-
vant alternative hypothesis in terms of � � E(Di)?

(iii) Test the null hypothesis from part (ii) against the stated alternative at the
5% and 1% levels.

(iv) Obtain the p-value for the test in part (iii).

Worker Wage Before Wage After

1 8.30 9.25

2 9.40 9.00

3 9.00 9.25

4 10.50 10.00

5 11.40 12.00

6 8.75 9.50

7 10.00 10.25

8 9.50 9.50

9 10.80 11.50

10 12.55 13.10

11 12.00 11.50

12 8.65 9.00
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Worker Wage Before Wage After

13 7.75 7.75

14 11.25 11.50

15 12.65 13.00

C.8 The New York Times (2/5/90) reported three-point shooting performance for the
top ten three-point shooters in the NBA. The following table summarizes these data:

Player FGA-FGM

Mark Price 429-188

Trent Tucker 833-345

Dale Ellis 1,149-472

Craig Hodges 1,016-396

Danny Ainge 1,051-406

Byron Scott 676-260

Reggie Miller 416-159

Larry Bird 1,206-455

Jon Sundvold 440-166

Brian Taylor 417-157

Note: FGA � field goals attempted and FGM � field
goals made.

For a given player, the outcome of a particular shot can be modeled as a Bernoulli (zero-
one) variable: if Yi is the outcome of shot i, then Yi � 1 if the shot is made, and Yi � 0
if the shot is missed. Let � denote the probability of making any particular three-point
shot attempt. The natural estimator of � is Ȳ � FGM/FGA.

(i) Estimate � for Mark Price.
(ii) Find the standard deviation of the estimator Ȳ in terms of � and the

number of shot attempts, n.
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(iii) The asymptotic distribution of (Ȳ � �)/se(Ȳ ) is standard normal, where
se(Ȳ ) � ��Ȳ(1 � Ȳ )/n�. Use this fact to test H0: � � .5 against H1: � 

.5 for Mark Price. Use a 1% significance level.

C.9 Suppose that a military dictator in an unnamed country holds a plebiscite (a yes/no
vote of confidence) and claims that he was supported by 65% of the voters. A human
rights group suspects foul play and hires you to test the validity of the dictator’s claim.
You have a budget that allows you to randomly sample 200 voters from the country.

(i) Let X be the number of yes votes obtained from a random sample of 200
out of the entire voting population. What is the expected value of X if,
in fact, 65% of all voters supported the dictator?

(ii) What is the standard deviation of X, again assuming that the true frac-
tion voting yes in the plebiscite is .65?

(iii) Now, you collect your sample of 200, and you find that 115 people actu-
ally voted yes. Use the CLT to approximate the probability that you
would find 115 or fewer yes votes from a random sample of 200 if, in
fact, 65% of the entire population voted yes.

(iv) How would you explain the relevance of the number in part (iii) to
someone who does not having training in statistics?

C.10 Before a strike prematurely ended the 1994 major league baseball season, Tony
Gwynn of the San Diego Padres had 165 hits in 419 at bats, for a .394 batting average.
There was discussion about whether Gwynn was a potential .400 hitter that year. This
issue can be couched in terms of Gwynn’s probability of getting a hit on a particular at
bat, call it �. Let Yi be the Bernoulli(�) indicator equal to unity if Gwynn gets a hit dur-
ing his ith at bat, and zero otherwise. Then, Y1, Y2, …, Yn is a random sample from a
Bernoulli(�) distribution, where � is the probability of success, and n � 419.

Our best point estimate of � is Gwynn’s batting average, which is just the propor-
tion of successes: ȳ � .394. Using the fact that se(ȳ) � ��ȳ(1 � ȳ)/n� , construct an
approximate 95% confidence interval for �, using the standard normal distribution.
Would you say there is strong evidence against Gwynn’s being a potential .400 hitter?
Explain.
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This appendix summarizes the matrix algebra concepts, including the algebra of
probability, needed for the study of multiple linear regression models using
matrices in Appendix E. None of this material is used in the main text.

D.1 BASIC DEFINITIONS

DEFINITION D.1 (Matrix)
A matrix is a rectangular array of numbers. More precisely, an m � n matrix has m
rows and n columns. The positive integer m is called the row dimension, and n is called
the column dimension.

We use uppercase boldface letters to denote matrices. We can write an m � n matrix
generically as

A � [aij] � 

where aij represents the element in the ith row and the jth column. For example, a25

stands for the number in the second row and the fifth column of A. A specific example
of a 2 � 3 matrix is

A � (D.1)

where a13 � 7. The shorthand A � [aij] is often used to define matrix operations.

DEFINITION D.2 (Square Matrix)
A square matrix has the same number of rows and columns. The dimension of a square
matrix is its number of rows and columns.

�2 �1 7
�4 5 0�

�
a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

.

.

.
am1 am2 am3 . . . amn

�
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DEFINITION D.3 (Vectors)
(i) A 1 � m matrix is called a row vector (of dimension m) and can be written as x �
(x1,x2, …, xm).

(ii) An n � 1 matrix is called a column vector and can be written as

y � .

DEFINITION D.4 (Diagonal Matrix)
A square matrix A is a diagonal matrix when all of its diagonal elements are zero, that
is, aij � 0 for all i � j. We can always write a diagonal matrix as

A � .

DEFINITION D.5 (Identity and Zero Matrices)
(i) The n � n identity matrix, denoted I, or sometimes In to emphasize its dimension,
is the diagonal matrix with unity (one) in each diagonal position, and zero elsewhere:

I � In � .

(ii) The m � n zero matrix, denoted 0, is the m � n matrix with zero for all entries.
This need not be a square matrix.

D.2 MATRIX OPERATIONS

Matrix Addition

Two matrices A and B, each having dimension m � n, can be added element by ele-
ment: A � B � [aij � bij]. More precisely,

A � B � .�
a11 � b11 a12 � b12 . . . a1n � b1n

a21 � b21 a22 � b22 . . . a2n � b2n

.

.

.
am1 � bm1 am2 � bm2 . . . amn � bmn

�

�
1 0 0 . . . 0
0 1 0 . . . 0
. .
. .
. .
0 0 0 . . . 1

�

�
a11 0 0 . . . 0
0 a22 0 . . . 0
.
.
.
0 0 0 . . . ann

�

�
y1

y2

.

.

.
yn

�
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For example,

� � .

Matrices of different dimensions cannot be added.

Scalar Multiplication

Given any real number � (often called a scalar), scalar multiplication is defined as
�A � [�aij], or

�A � .

For example, if � � 2 and A is the matrix in equation (D.1), then

�A � .

Matrix Multiplication

To multiply matrix A by matrix B to form the product AB, the column dimension of A
must equal the row dimension of B. Therefore, let A be an m � n matrix and let B be
an n � p matrix. Then matrix multiplication is defined as

AB � �
n

k�1
aikbkj .

In other words, the (i, j)th element of the new matrix AB is obtained by multiplying each
element in the ith row of A by the corresponding element in the jth column of B and
adding these n products together. A schematic may help make this process more trans-
parent:

,�
AB

�
n

k�1
aikbkj

+

‹

‹

‹

‹

‹

(i, j)th element

���
B

b1j

b2j

b3j

.

.

.
bnj

+

‹

jth column

��
A

ai1 ai2 ai3 . . . ain�ith row *

��

�4 �2 14
�8 10 0�

�
�a11 �a12 . . . �a1n

�a21 �a22 . . . �a2n

.

.

.
�am1 �am2 . . . �amn

�

�3 �1 3
0 7 3��1 0 �4

4 2 3��2 �1 7
�4 5 0�
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where, by the definition of the summation operator in Appendix A,

�
n

k�1
aikbkj � ai1b1j � ai2b2 j � … � ainbnj.

For example,

� .

We can also multiply a matrix and a vector. If A is an n � m matrix and y is an m � 1
vector, then Ay is an n � 1 vector. If x is a 1 � n vector, then xA is a 1 � m vector.

Matrix addition, scalar multiplication, and matrix multiplication can be combined
in various ways, and these operations satisfy several rules that are familiar from basic
operations on numbers. In the following list of properties, A, B, and C are matrices with
appropriate dimensions for applying each operation, and � and 	 are real numbers.
Most of these properties are easy to illustrate from the definitions.

PROPERTIES OF MATRIX MULTIPLICATION: (1) (� � 	)A � �A � 	A; (2) �(A �
B) � �A � �B; (3) (�	)A � �(	A); (4) �(AB) � (�A)B; (5) A � B � B � A;
(6) (A � B) � C � A � (B � C); (7) (AB)C � A(BC); (8) A(B � C) � AB � AC;
(9) (A � B)C � AC � BC; (10) IA � AI � A; (11) A � 0 � 0 � A � A; (12) A �
A � 0; (13) A0 � 0A � 0; (14) AB � BA, even when both products are defined.

The last property deserves further comment. If A is n � m and B is m � p, then AB is
defined, but BA is defined only if n � p (the row dimension of A equals the column
dimension of B). If A is m � n and B is n � m, then AB and BA are both defined, but
they are not usually the same; in fact, they have different dimensions, unless A and B
are both square matrices. Even when A and B are both square, AB � BA, except under
special circumstances.

Transpose

DEFINITION D.6 (Transpose)
Let A � [aij] be an m � n matrix. The transpose of A, denoted A
 (called A prime), is
the n � m matrix obtained by interchanging the rows and columns of A. We can write
this as A
 � [aji].

For example,

A � , A
 � .

PROPERTIES OF TRANSPOSE: (1) (A
)
 � A; (2) (�A)
 � �A
 for any scalar �; (3)

(A � B)
 � A
+ B
; (4) (AB)
 � B
A
, where A is m � n and B is n � k; (5) x
x � �
n

i�1
xi

2,

�2 �4
�1 5

7 0��2 �1 7
�4 5 0�

�1 0 12 �1
�1 �2 �24 1��0 1 6 0

�1 2 0 1
3 0 0 0��2 �1 0

�4 1 0�
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where x is an n � 1 vector; (6) If A is an n � k matrix with rows given by the
1 � k vectors a1,a2, …, an, so that we can write

A � ,

then A
 � (a1
 a2
 . . . an
).

DEFINITION D.7 (Symmetric Matrix)
A square matrix A is a symmetric matrix if and only if A
 � A.

If X is any n � k matrix, then X
X is always defined and is a symmetric matrix, as can
be seen by applying the first and fourth transpose properties (see Problem D.3).

Partitioned Matrix Multiplication

Let A be an n � k matrix with rows given by the 1 � k vectors a1,a2, …, an, and let B
be an n � m matrix with rows given by 1 � m vectors b1,b2, …, bn:

A � , B � .

Then,

A
B � �
n

i�1
ai
bi,

where for each i, ai
bi is a k � m matrix. Therefore, A
B can be written as the sum of n
matrices, each of which is k � m. As a special case, we have

A
A � �
n

i�1
ai
ai,

where ai
ai is a k � k matrix for all i.

Trace

The trace of a matrix is a very simple operation defined only for square matrices.

DEFINITION D.8 (Trace)
For any n � n matrix A, the trace of a matrix A, denoted tr(A), is the sum of its diag-
onal elements. Mathematically,

�
b1

b2

.

.

.
bn

��
a1

a2

.

.

.
an

�

�
a1

a2

.

.

.
an

�
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tr(A) � �
n

i�1
aii.

PROPERTIES OF TRACE: (1) tr(In) � n; (2) tr(A
) � tr(A); (3) tr(A � B) � tr(A) �
tr(B); (4) tr(�A) � �tr(A), for any scalar �; (5) tr(AB) � tr(BA), where A is m � n and
B is n � m.

Inverse

The notion of a matrix inverse is very important for square matrices.

DEFINITION D.9 (Inverse)
An n � n matrix A has an inverse, denoted A�1, provided that A�1A � In and AA�1 �
In. In this case, A is said to be invertible or nonsingular. Otherwise, it is said to be non-
invertible or singular.

PROPERTIES OF INVERSE: (1) If an inverse exists, it is unique; (2) (�A)�1 �
(1/�)A�1, if � � 0 and A is invertible; (3) (AB)�1 � B�1A�1, if A and B are both
n � n and invertible; (4) (A
)�1 � (A�1)
.

We will not be concerned with the mechanics of calculating the inverse of a matrix. Any
matrix algebra text contains detailed examples of such calculations.

D.3 LINEAR INDEPENDENCE. RANK OF A MATRIX

For a set of vectors having the same dimension, it is important to know whether one
vector can be expressed as a linear combination of the remaining vectors.

DEFINITION D.10 (Linear Independence)
Let {x1,x2, …, xr} be a set of n � 1 vectors. These are linearly independent vectors if
and only if

�1x1 � �2x2 � … � �r xr � 0 (D.2)

implies that �1 � �2 � … � �r � 0. If (D.2) holds for a set of scalars that are not all
zero, then {x1,x2, …, xr} is linearly dependent.

The statement that {x1,x2, …, xr} is linearly dependent is equivalent to saying that at
least one vector in this set can be written as a linear combination of the others.

DEFINITION D.11 (Rank)
(i) Let A be an n � m matrix. The rank of a matrix A, denoted rank(A), is the maxi-
mum number of linearly independent columns of A.

(ii) If A is n � m and rank(A) � m, then A has full column rank.
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If A is n � m, its rank can be at most m. A matrix has full column rank if its columns
form a linearly independent set. For example, the 3 � 2 matrix

can have at most rank two. In fact, its rank is only one because the second column is
three times the first column.

PROPERTIES OF RANK: (1) rank(A
) � rank(A); (2) If A is n � k, then rank(A) �
min(n,k); (3) If A is k � k and rank(A) � k, then A is nonsingular.

D.4 QUADRATIC FORMS AND POSITIVE DEFINITE
MATRICES

DEFINITION D.12 (Quadratic Form)
Let A be an n � n symmetric matrix. The quadratic form associated with the matrix
A is the real-valued function defined for all n � 1 vectors x:

f(x) � x
Ax � �
n

i�1
aiix

2
i � 2 �

n

i�1 
�
j�i

aijxixj.

DEFINITION D.13 (Positive Definite and Positive Semi-Definite)
(i) A symmetric matrix A is said to be positive definite (p.d.) if

x
Ax � 0 for all n � 1 vectors x except x � 0.

(ii) A symmetric matrix A is positive semi-definite (p.s.d.) if

x
Ax  0 for all n � 1 vectors.

If a matrix is positive definite or positive semi-definite, it is automatically assumed to
be symmetric.

PROPERTIES OF POSITIVE DEFINITE AND POSITIVE SEMI-DEFINITE MATRICES:
(1) A positive definite matrix has diagonal elements that are strictly positive, while a
p.s.d. matrix has nonnegative diagonal elements; (2) If A is p.d., then A�1 exists and is
p.d.; (3) If X is n � k, then X
X and XX
 are p.s.d.; (4) If X is n � k and rank(X) � k,
then X
X is p.d. (and therefore nonsingular).

D.5 IDEMPOTENT MATRICES

DEFINITION D.14 (Idempotent Matrix)
Let A be an n � n symmetric matrix. Then A is said to be an idempotent matrix if and
only if AA � A.

For example,

�1 3
2 6
0 0�
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is an idempotent matrix, as direct multiplication verifies.

PROPERTIES OF IDEMPOTENT MATRICES: Let A be an n � n idempotent matrix.
(1) rank(A) � tr(A); (2) A is positive semi-definite.

We can construct idempotent matrices very generally. Let X be an n � k matrix with
rank(X) � k. Define

P � X(X
X)�1X


M � In � X(X
X)�1X
 � In � P.

Then P and M are symmetric, idempotent matrices with rank(P) � k and rank(M) �
n � k. The ranks are most easily obtained by using Property 1: tr(P) � tr[(X�X)�1X�X]
(from Property 5 for trace) � tr(Ik) � k (by Property 1 for trace). It easily follows that
tr(M) � tr(In) � tr(P) � n � k.

D.6 DIFFERENTIATION OF LINEAR AND QUADRATIC
FORMS

For a given n � 1 vector a, consider the linear function defined by

f(x) � a
x,

for all n � 1 vectors x. The derivative of f with respect to x is the 1 � n vector of
partial derivatives, which is simply

�f(x)/�x � a
.

For an n � n symmetric matrix A, define the quadratic form

g(x) � x
Ax.

Then,

�g(x)/�x � 2x
A,

which is a 1 � n vector.

D.7 MOMENTS AND DISTRIBUTIONS OF RANDOM
VECTORS

In order to derive the expected value and variance of the OLS estimators using matri-
ces, we need to define the expected value and variance of a random vector. As its name
suggests, a random vector is simply a vector of random variables. We also need to
define the multivariate normal distribution. These concepts are simply extensions of
those covered in Appendix B.

�1 0 0
0 0 0
0 0 1�
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Expected Value

DEFINITION D.15 (Expected Value)
(i) If y is an n � 1 random vector, the expected value of y, denoted E( y), is the vector
of expected values: E( y) � [E(y1),E(y2), …, E(yn)]
.

(ii) If Z is an n � m random matrix, E(Z) is the n � m matrix of expected values:
E(Z) � [E(zij)].

PROPERTIES OF EXPECTED VALUE: (1) If A is an m � n matrix and b is an n � 1
vector, where both are nonrandom, then E(Ay � b) � AE( y) � b; (2) If A is p � n and
B is m � k, where both are nonrandom, then E(AZB) � AE(Z)B.

Variance-Covariance Matrix

DEFINITION D.16 (Variance-Covariance Matrix)
If y is an n � 1 random vector, its variance-covariance matrix, denoted Var( y), is
defined as

Var( y) � ,

where � j
2 � Var(yj) and � ij � Cov(yi,yj). In other words, the variance-covariance matrix

has the variances of each element of y down its diagonal, with covariance terms in the
off diagonals. Because Cov(yi,yj) � Cov(yj,yi), it immediately follows that a variance-
covariance matrix is symmetric.

PROPERTIES OF VARIANCE: (1) If a is an n � 1 nonrandom vector, then Var(a
y) �
a
[Var(y)]a  0; (2) If Var(a
y) � 0 for all a � 0, Var(y) is positive definite; (3)
Var( y) � E[( y � �)(y � �)
], where � � E( y); (4) If the elements of y are uncorre-
lated, Var(y) is a diagonal matrix. If, in addition, Var(yj) � �2 for j � 1,2, …, n, then
Var(y) � � 2In; (5) If A is an m � n nonrandom matrix and b is an n � 1 nonrandom
vector, then Var(Ay � b) � A[Var(y)]A
.

Multivariate Normal Distribution

The normal distribution for a random variable was discussed at some length in
Appendix B. We need to extend the normal distribution to random vectors. We will not
provide an expression for the probability distribution function, as we do not need it. It
is important to know that a multivariate normal random vector is completely character-
ized by its mean and its variance-covariance matrix. Therefore, if y is an n � 1 multi-
variate normal random vector with mean � and variance-covariance matrix �, we write
y ~ Normal(�,�). We now state several useful properties of the multivariate normal
distribution.

�
�1

2 �12 . . . �1n

�21 �2
2 . . . �2n

.

.

.
�n1 �n2 . . . �n

2
�
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PROPERTIES OF THE MULTIVARIATE NORMAL DISTRIBUTION: (1) If y ~
Normal(�,�), then each element of y is normally distributed; (2) If y ~ Normal(�,�),
then yi and yj, any two elements of y, are independent if and only if they are uncorre-
lated, that is, � ij � 0; (3) If y ~ Normal(�,�), then Ay � b ~ Normal(A� � b,A�A
),
where A and b are nonrandom; (4) If y ~ Normal(0,�), then, for nonrandom matrices
A and B, Ay and By are independent if and only if A�B
 � 0. In particular, if � � �2In,
then AB
 � 0 is necessary and sufficient for independence of Ay and By; (5) If y ~
Normal(0,�2In), A is a k � n nonrandom matrix, and B is an n � n symmetric, idem-
potent matrix, then Ay and y
By are independent if and only if AB � 0; (6) If y ~
Normal(0,�2In) and A and B are nonrandom symmetric, idempotent matrices, then
y
Ay and y
By are independent if and only if AB � 0.

Chi-Square Distribution

In Appendix B, we defined a chi-square random variable as the sum of squared inde-
pendent standard normal random variables. In vector notation, if u ~ Normal(0,In), then
u
u ~ �n

2.

PROPERTIES OF THE CHI-SQUARE DISTRIBUTION: (1) If u ~ Normal(0,In) and A is
an n � n symmetric, idempotent matrix with rank(A) � q, then u
Au ~ �q

2; (2) If u ~
Normal(0,In) and A and B are n � n symmetric, idempotent matrices such that AB �
0, then u
Au and u
Bu are independent, chi-square random variables.

t Distribution

We also defined the t distribution in Appendix B. Now we add an important property.

PROPERTY OF THE t DISTRIBUTION: If u ~ Normal(0,In), c is an n � 1 nonrandom
vector, A is a nonrandom n � n symmetric, idempotent matrix with rank q, and Ac �
0, then {c
u/(c
c)1/2}/(u
Au)1/ 2 ~ tq.

F Distribution

Recall that an F random variable is obtained by taking two independent chi-square
random variables and finding the ratio of each standardized by degrees of freedom.

PROPERTY OF THE F DISTRIBUTION: If u ~ Normal(0,In) and A and B are n � n non-
random symmetric, idempotent matrices with rank(A) � k1, rank(B) � k2, and AB �
0, then (u
Au/k1)/(u
Bu/k2) ~ Fk1,k2

.

SUMMARY

This appendix contains a condensed form of the background information needed to
study the classical linear model using matrices. While the material here is self-
contained, it is primarily intended as a review for readers who are familiar with matrix
algebra and multivariate statistics, and it will be used extensively in Appendix E.
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KEY TERMS
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Chi-Square Random Variable
Column Vector
Diagonal Matrix
Expected Value
F Random Variable
Idempotent Matrix
Identity Matrix
Inverse
Linearly Independent Vectors
Matrix
Matrix Multiplication
Multivariate Normal Distribution
Positive Definite 

Positive Semi-Definite 
Quadratic Form
Random Vector
Rank of a Matrix
Row Vector
Scalar Multiplication
Square Matrix
Symmetric Matrix
t Distribution
Trace of a Matrix
Transpose
Variance-Covariance Matrix
Zero Matrix

PROBLEMS

D.1 i(i) Find the product AB using

A � , B � .

(ii) Does BA exist?

D.2 If A and B are n � n diagonal matrices, show that AB � BA.

D.3 Let X be any n � k matrix. Show that X
X is a symmetric matrix.

D.4 (i)i Use the properties of trace to argue that tr(A
A) � tr(AA
) for any n � m ma-
trix A.

(ii) For A � , verify that tr(A
A) � tr(AA
).

D.5 (i)i Use the definition of inverse to prove the following: if A and B are n � n
nonsingular matrices, then (AB)�1 � B�1A�1.

(ii) If A, B, and C are all n � n nonsingular matrices, find (ABC)�1 in terms of
A�1, B�1, and C�1.

D.6 (i)i Show that if A is an n � n symmetric, positive definite matrix, then A must
have strictly positive diagonal elements.

(ii) Write down a 2 � 2 symmetric matrix with strictly positive diagonal ele-
ments that is not positive definite.

D.7 Let A be an n � n symmetric, positive definite matrix. Show that if P is any
n � n nonsingular matrix, then P
AP is positive definite.

D.8 Prove Property 5 of variances for vectors, using Property 3.

�2 0 �1
0 3 0�

�0 1 6
1 8 0
3 0 0��2 �1 7

�4 5 0�
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This appendix derives various results for ordinary least squares estimation of the
multiple linear regression model using matrix notation and matrix algebra (see
Appendix D for a summary). The material presented here is much more ad-

vanced than that in the text.

E.1 THE MODEL AND ORDINARY LEAST SQUARES
ESTIMATION

Throughout this appendix, we use the t subscript to index observations and an n to
denote the sample size. It is useful to write the multiple linear regression model with k
parameters as follows:

yt � �1 � �2xt2 � �3xt3 � … � �kxtk � ut, t � 1,2, …, n, (E.1)

where yt is the dependent variable for observation t, and xtj, j � 2,3, …, k, are the inde-
pendent variables. Notice how our labeling convention here differs from the text: we
call the intercept �1 and let �2, …, �k denote the slope parameters. This relabeling is not
important, but it simplifies the matrix approach to multiple regression.

For each t, define a 1 � k vector, xt � (1,xt2, …, xtk), and let � � (�1,�2, …, �k)� be
the k � 1 vector of all parameters. Then, we can write (E.1) as

yt � xt� � ut, t � 1,2, …, n. (E.2)

[Some authors prefer to define xt as a column vector, in which case, xt is replaced
with xt� in (E.2). Mathematically, it makes more sense to define it as a row vector.] We
can write (E.2) in full matrix notation by appropriately defining data vectors and
matrices. Let y denote the n � 1 vector of observations on y: the t th element of y is yt.
Let X be the n � k vector of observations on the explanatory variables. In other
words, the t th row of X consists of the vector xt. Equivalently, the (t, j)th element of X
is simply xtj:
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n 
X
� k

� � .

Finally, let u be the n � 1 vector of unobservable disturbances. Then, we can write (E.2)
for all n observations in matrix notation:

y � X� � u. (E.3)

Remember, because X is n � k and � is k � 1, X� is n � 1.
Estimation of � proceeds by minimizing the sum of squared residuals, as in Section

3.2. Define the sum of squared residuals function for any possible k � 1 parameter vec-
tor b as

SSR(b) � �
n

t�1
(yt � xtb)2.

The k � 1 vector of ordinary least squares estimates, �̂ � (�̂1,�̂2, …, �̂k)�, minimizes
SSR(b) over all possible k � 1 vectors b. This is a problem in multivariable calculus.
For �̂ to minimize the sum of squared residuals, it must solve the first order condition

�SSR(�̂)/�b � 0. (E.4)

Using the fact that the derivative of (yt � xtb)2 with respect to b is the 1 � k vector
�2(yt � xtb)xt, (E.4) is equivalent to

�
n

t�1
xt�(yt � xt�̂) � 0. (E.5)

(We have divided by �2 and taken the transpose.) We can write this first order condi-
tion as

�
n

t�1
(yt � �̂1 � �̂2xt2 � … � �̂kxtk) � 0

�
n

t�1
xt2(yt � �̂1 � �̂2xt2 � … � �̂k xtk) � 0

.

.

.

�
n

t�1
xtk(yt � �̂1 � �̂2xt2 � … � �̂kxtk) � 0,

which, apart from the different labeling convention, is identical to the first order condi-
tions in equation (3.13). We want to write these in matrix form to make them more use-
ful. Using the formula for partitioned multiplication in Appendix D, we see that (E.5)
is equivalent to

�
1 x12 x13 . . . x1k

1 x22 x23 . . . x2k

.

.

.
1 xn2 xn3 . . . xnk

��
x1

x2

.

.

.
xn

�
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X�(y � X�̂) � 0 (E.6)

or

(X�X)�̂ � X�y. (E.7)

It can be shown that (E.7) always has at least one solution. Multiple solutions do not
help us, as we are looking for a unique set of OLS estimates given our data set.
Assuming that the k � k symmetric matrix X�X is nonsingular, we can premultiply both
sides of (E.7) by (X�X)�1 to solve for the OLS estimator �̂:

�̂ � (X�X)�1X�y. (E.8)

This is the critical formula for matrix analysis of the multiple linear regression model.
The assumption that X�X is invertible is equivalent to the assumption that rank(X) � k,
which means that the columns of X must be linearly independent. This is the matrix ver-
sion of MLR.4 in Chapter 3.

Before we continue, (E.8) warrants a word of warning. It is tempting to simplify the
formula for �̂ as follows:

�̂ � (X�X)�1X�y � X�1(X�)�1X�y � X�1y.

The flaw in this reasoning is that X is usually not a square matrix, and so it cannot be
inverted. In other words, we cannot write (X�X)�1 � X�1(X�)�1 unless n � k, a case
that virtually never arises in practice.

The n � 1 vectors of OLS fitted values and residuals are given by

ŷ � X�̂, û � y � ŷ � y � X�̂.

From (E.6) and the definition of û, we can see that the first order condition for �̂ is the
same as

X�û � 0. (E.9)

Because the first column of X consists entirely of ones, (E.9) implies that the OLS
residuals always sum to zero when an intercept is included in the equation and that the
sample covariance between each independent variable and the OLS residuals is zero.
(We discussed both of these properties in Chapter 3.)

The sum of squared residuals can be written as

SSR � �
n

t�1
û t

2 � û�û � ( y � X�̂)�(y � X�̂). (E.10)

All of the algebraic properties from Chapter 3 can be derived using matrix algebra. For
example, we can show that the total sum of squares is equal to the explained sum of
squares plus the sum of squared residuals [see (3.27)]. The use of matrices does not pro-
vide a simpler proof than summation notation, so we do not provide another derivation.
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The matrix approach to multiple regression can be used as the basis for a geometri-
cal interpretation of regression. This involves mathematical concepts that are even more
advanced than those we covered in Appendix D. [See Goldberger (1991) or Greene
(1997).]

E.2 FINITE SAMPLE PROPERTIES OF OLS

Deriving the expected value and variance of the OLS estimator �̂ is facilitated by
matrix algebra, but we must show some care in stating the assumptions.

A S S U M P T I O N  E . 1  ( L I N E A R  I N  P A R A M E T E R S )

The model can be written as in (E.3), where y is an observed n � 1 vector, X is an n � k
observed matrix, and u is an n � 1 vector of unobserved errors or disturbances.

A S S U M P T I O N  E . 2  ( Z E R O  C O N D I T I O N A L  M E A N )

Conditional on the entire matrix X, each error ut has zero mean: E(ut�X) � 0, t � 1,2, …, n.
In vector form,

E(u�X) � 0. (E.11)

This assumption is implied by MLR.3 under the random sampling assumption, MLR.2.
In time series applications, Assumption E.2 imposes strict exogeneity on the explana-
tory variables, something discussed at length in Chapter 10. This rules out explanatory
variables whose future values are correlated with ut; in particular, it eliminates lagged
dependent variables. Under Assumption E.2, we can condition on the xtj when we com-
pute the expected value of �̂.

A S S U M P T I O N  E . 3  ( N O  P E R F E C T  C O L L I N E A R I T Y )

The matrix X has rank k.

This is a careful statement of the assumption that rules out linear dependencies among
the explanatory variables. Under Assumption E.3, X�X is nonsingular, and so �̂ is
unique and can be written as in (E.8).

T H E O R E M  E . 1  ( U N B I A S E D N E S S  O F  O L S )

Under Assumptions E.1, E.2, and E.3, the OLS estimator �̂ is unbiased for �.

P R O O F : Use Assumptions E.1 and E.3 and simple algebra to write

�̂ � (X�X)�1X�y � (X�X)�1X�(X� � u)

� (X�X)�1(X�X)� � (X�X)�1X�u � � � (X�X)�1X�u,
(E.12)

where we use the fact that (X�X)�1(X�X) � Ik. Taking the expectation conditional on X gives
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E(�̂�X) � � � (X�X)�1X�E(u�X)

� � � (X�X)�1X�0 � �,

because E(u�X) � 0 under Assumption E.2. This argument clearly does not depend on the
value of �, so we have shown that �̂ is unbiased.

To obtain the simplest form of the variance-covariance matrix of �̂, we impose the
assumptions of homoskedasticity and no serial correlation.

A S S U M P T I O N  E . 4  ( H O M O S K E D A S T I C I T Y  A N D

N O  S E R I A L  C O R R E L A T I O N )

(i) Var(ut�X) � 	2, t � 1,2, …, n. (ii) Cov(ut,us�X) � 0, for all t 
 s. In matrix form, we can
write these two assumptions as

Var(u�X) � 	2In, (E.13)

where In is the n � n identity matrix.

Part (i) of Assumption E.4 is the homoskedasticity assumption: the variance of ut can-
not depend on any element of X, and the variance must be constant across observations,
t. Part (ii) is the no serial correlation assumption: the errors cannot be correlated across
observations. Under random sampling, and in any other cross-sectional sampling
schemes with independent observations, part (ii) of Assumption E.4 automatically
holds. For time series applications, part (ii) rules out correlation in the errors over time
(both conditional on X and unconditionally).

Because of (E.13), we often say that u has scalar variance-covariance matrix
when Assumption E.4 holds. We can now derive the variance-covariance matrix of
the OLS estimator.

T H E O R E M  E . 2  ( V A R I A N C E - C O V A R I A N C E

M A T R I X  O F  T H E  O L S  E S T I M A T O R )

Under Assumptions E.1 through E.4,

Var(�̂�X) � 	2(X�X)�1. (E.14)

P R O O F : From the last formula in equation (E.12), we have

Var(�̂�X) � Var[(X�X)�1X�u�X] � (X�X)�1X�[Var(u�X)]X(X�X)�1.

Now, we use Assumption E.4 to get

Var(�̂�X) � (X�X)�1X�(	2In)X(X�X)�1

� 	2(X�X)�1X�X(X�X)�1 � 	2(X�X)�1.
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Formula (E.14) means that the variance of �̂j (conditional on X) is obtained by multi-
plying 	2 by the jth diagonal element of (X�X)�1. For the slope coefficients, we gave an
interpretable formula in equation (3.51). Equation (E.14) also tells us how to obtain the
covariance between any two OLS estimates: multiply 	2 by the appropriate off diago-
nal element of (X�X)�1. In Chapter 4, we showed how to avoid explicitly finding
covariances for obtaining confidence intervals and hypotheses tests by appropriately
rewriting the model.

The Gauss-Markov Theorem, in its full generality, can be proven.

T H E O R E M  E . 3  ( G A U S S - M A R K O V  T H E O R E M )

Under Assumptions E.1 through E.4, �̂ is the best linear unbiased estimator.

P R O O F : Any other linear estimator of � can be written as

�̃ � A�y, (E.15)

where A is an n � k matrix. In order for �̃ to be unbiased conditional on X, A can consist
of nonrandom numbers and functions of X. (For example, A cannot be a function of y.) To
see what further restrictions on A are needed, write

�̃ � A�(X� � u) � (A�X)� � A�u. (E.16)

Then,

E(�̃�X) � A�X� � E(A�u�X)

� A�X� � A�E(u�X) since A is a function of X

� A�X� since E(u�X) � 0.

For �̃ to be an unbiased estimator of �, it must be true that E(�̃�X) � � for all k � 1 vec-
tors �, that is,

A�X� � � for all k � 1 vectors �. (E.17)

Because A�X is a k � k matrix, (E.17) holds if and only if A�X � Ik. Equations (E.15) and
(E.17) characterize the class of linear, unbiased estimators for �.

Next, from (E.16), we have

Var(�̃�X) � A�[Var(u�X)]A � 	2A�A,

by Assumption E.4. Therefore,

Var(�̃�X) � Var(�̂�X) � 	2[A�A � (X�X)�1]

� 	2[A�A � A�X(X�X)�1X�A] because A�X � Ik

� 	2A�[In � X(X�X)�1X�]A

� 	2A�MA,

where M � In � X(X�X)�1X�. Because M is symmetric and idempotent, A�MA is positive
semi-definite for any n � k matrix A. This establishes that the OLS estimator �̂ is BLUE. How
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is this significant? Let c be any k � 1 vector and consider the linear combination
c�� � c1�1 � c2�2 � … � ck�k, which is a scalar. The unbiased estimators of c�� are c��̂

and c��̃. But

Var(c�̃�X) � Var(c��̂�X) � c�[Var(�̃ �X) � Var(�̂�X)]c � 0,

because [Var(�̃�X) � Var(�̂ �X)] is p.s.d. Therefore, when it is used for estimating any linear
combination of �, OLS yields the smallest variance. In particular, Var(�̂j�X) � Var(�̃j�X) for
any other linear, unbiased estimator of �j.

The unbiased estimator of the error variance 	2 can be written as

	̂2 � û�û/(n � k),

where we have labeled the explanatory variables so that there are k total parameters,
including the intercept.

T H E O R E M  E . 4  ( U N B I A S E D N E S S O F  �̂ 2 )

Under Assumptions E.1 through E.4, 	̂2 is unbiased for 	2: E(	̂ 2�X) � 	 2 for all 	2  0.

P R O O F : Write û � y � X�̂ � y � X(X�X)�1X�y � My � Mu, where M � In �

X(X�X)�1X�, and the last equality follows because MX � 0. Because M is symmetric and
idempotent,

û�û � u�M�Mu � u�Mu.

Because u�Mu is a scalar, it equals its trace. Therefore,

� E(u�Mu�X) � E[tr(u�Mu)�X] � E[tr(Muu�)�X]

� tr[E(Muu�|X)] � tr[ME(uu�|X)]

� tr(M	2In) � 	2tr(M) � 	2(n � k).

The last equality follows from tr(M) � tr(In) � tr[X(X�X)�1X�] � n � tr[(X�X)�1X�X] � n �

tr(Ik) � n � k. Therefore,

E(	̂2�X) � E(u�Mu�X)/(n � k) � 	2.

E.3 STATISTICAL INFERENCE

When we add the final classical linear model assumption, �̂ has a multivariate normal
distribution, which leads to the t and F distributions for the standard test statistics cov-
ered in Chapter 4.

A S S U M P T I O N  E . 5  ( N O R M A L I T Y  O F  E R R O R S )

Conditional on X, the ut are independent and identically distributed as Normal(0,	2).
Equivalently, u given X is distributed as multivariate normal with mean zero and variance-
covariance matrix 	2In: u ~ Normal(0,	2In).
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Under Assumption E.5, each ut is independent of the explanatory variables for all t. In
a time series setting, this is essentially the strict exogeneity assumption.

T H E O R E M  E . 5  ( N O R M A L I T Y  O F  �̂ )

Under the classical linear model Assumptions E.1 through E.5, �̂ conditional on X is dis-
tributed as multivariate normal with mean � and variance-covariance matrix 	2(X�X)�1.

Theorem E.5 is the basis for statistical inference involving �. In fact, along with the
properties of the chi-square, t, and F distributions that we summarized in Appendix D,
we can use Theorem E.5 to establish that t statistics have a t distribution under
Assumptions E.1 through E.5 (under the null hypothesis) and likewise for F statistics.
We illustrate with a proof for the t statistics.

T H E O R E M  E . 6

Under Assumptions E.1 through E.5,

(�̂j � �j)/se(�̂j) ~ tn�k, j � 1,2, …, k.

P R O O F : The proof requires several steps; the following statements are initially
conditional on X. First, by Theorem E.5, (�̂j � �j)/sd(�̂ ) ~ Normal(0,1), where sd(�̂j) �

	��cjj, and cjj is the j th diagonal element of (X�X)�1. Next, under Assumptions E.1 through
E.5, conditional on X,

(n � k)	̂2/	2 ~ �2
n�k. (E.18)

This follows because (n � k)	̂2/	2 � (u/	)�M(u/	), where M is the n�n symmetric, idem-
potent matrix defined in Theorem E.4. But u/	 ~ Normal(0,In) by Assumption E.5. It follows
from Property 1 for the chi-square distribution in Appendix D that (u/	)�M(u/	) ~ �2

n�k

(because M has rank n � k).
We also need to show that �̂ and 	̂2 are independent. But �̂ � � � (X�X)�1X�u, and

	̂2 � u�Mu/(n � k). Now, [(X�X)�1X�]M � 0 because X�M � 0. It follows, from Property 5
of the multivariate normal distribution in Appendix D, that �̂ and Mu are independent.
Since 	̂2 is a function of Mu, �̂ and 	̂2 are also independent.

Finally, we can write

(�̂j � �j)/se(�̂j) � [(�̂j � �j)/sd(�̂j)]/(	̂
2/	2)1/2,

which is the ratio of a standard normal random variable and the square root of a
�2

n�k/(n � k) random variable. We just showed that these are independent, and so, by def-
inition of a t random variable, (�̂j � �j)/se(�̂j) has the tn�k distribution. Because this distri-
bution does not depend on X, it is the unconditional distribution of (�̂j � �j)/se(�̂j) as well.

From this theorem, we can plug in any hypothesized value for �j and use the t statistic
for testing hypotheses, as usual.

Under Assumptions E.1 through E.5, we can compute what is known as the Cramer-
Rao lower bound for the variance-covariance matrix of unbiased estimators of � (again
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conditional on X) [see Greene (1997, Chapter 4)]. This can be shown to be 	2(X�X)�1,
which is exactly the variance-covariance matrix of the OLS estimator. This implies that
�̂ is the minimum variance unbiased estimator of � (conditional on X): Var(�̃�X) �
Var(�̂�X) is positive semi-definite for any other unbiased estimator �̃; we no longer
have to restrict our attention to estimators linear in y.

It is easy to show that the OLS estimator is in fact the maximum likelihood estima-
tor of � under Assumption E.5. For each t, the distribution of yt given X is
Normal(xt�,	2). Because the yt are independent conditional on X, the likelihood func-
tion for the sample is obtained from the product of the densities:

�
n

t�1
(2�	2)�1/2exp[�(yt � xt�)2/(2	2)].

Maximizing this function with respect to � and 	2 is the same as maximizing its nat-
ural logarithm:

�
n

t�1
[�(1/2)log(2�	2) � (yt � xt�)2/(2	2)].

For obtaining �̂, this is the same as minimizing �
n

t�1
(yt � xt�)2—the division by 2	2

does not affect the optimization—which is just the problem that OLS solves. The esti-
mator of 	2 that we have used, SSR/(n � k), turns out not to be the MLE of 	2; the
MLE is SSR/n, which is a biased estimator. Because the unbiased estimator of 	2

results in t and F statistics with exact t and F distributions under the null, it is always
used instead of the MLE.

SUMMARY

This appendix has provided a brief discussion of the linear regression model using
matrix notation. This material is included for more advanced classes that use matrix
algebra, but it is not needed to read the text. In effect, this appendix proves some of the
results that we either stated without proof, proved only in special cases, or proved
through a more cumbersome method of proof. Other topics—such as asymptotic prop-
erties, instrumental variables estimation, and panel data models—can be given concise
treatments using matrices. Advanced texts in econometrics, including Davidson and
MacKinnon (1993), Greene (1997), and Wooldridge (1999), can be consulted for
details.

KEY TERMS
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PROBLEMS

E.1 Let xt be the 1 � k vector of explanatory variables for observation t. Show that the
OLS estimator �̂ can be written as

�̂ � 	�
n

t�1
xt�xt


�1

	�
n

t�1
xt�yt
 .

Dividing each summation by n shows that �̂ is a function of sample averages.

E.2 Let �̂ be the k � 1 vector of OLS estimates.
(i) Show that for any k � 1 vector b, we can write the sum of squared

residuals as

SSR(b) � û�û � (�̂ � b)�X�X(�̂ � b).

[Hint: Write (y � Xb)�(y � Xb) � [û � X(�̂ � b)]�[û � X(�̂ � b)]
and use the fact that X�û � 0.]

(ii) Explain how the expression for SSR(b) in part (i) proves that �̂
uniquely minimizes SSR(b) over all possible values of b, assuming X
has rank k.

E.3 Let �̂ be the OLS estimate from the regression of y on X. Let A be a k � k non-
singular matrix and define z t � xtA, t � 1, …, n. Therefore, zt is 1 � k and is a non-
singular linear combination of xt. Let Z be the n � k matrix with rows zt. Let �̃ denote
the OLS estimate from a regression of y on Z.

(i) Show that �̃ � A�1�̂.
(ii) Let ŷ t be the fitted values from the original regression and let ỹ t be the

fitted values from regressing y on Z. Show that ỹ t � ŷ t, for all t �
1,2, …, n. How do the residuals from the two regressions compare?

(iii) Show that the estimated variance matrix for �̃ is 	̂2A�1(X�X)�1A�1�,
where 	̂2 is the usual variance estimate from regressing y on X.

(iv) Let the �̂j be the OLS estimates from regressing yt on 1, xt2, …, xtk, and
let the �̃j be the OLS estimates from the regression of yt on 1,
a2xt2, …, akxtk, where aj 
 0, j � 2, …, k. Use the results from part (i)
to find the relationship between the �̃j and the �̂j.

(v) Assuming the setup of part (iv), use part (iii) to show that se(�̃j) �
se(�̂j)/�aj�.

(vi) Assuming the setup of part (iv), show that the absolute values of the t
statistics for �̃j and �̂j are identical.
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CHAPTER 2

QUESTION 2.1
When student ability, motivation, age, and other factors in u are not related to atten-
dance, (2.6) would hold. This seems unlikely to be the case.

QUESTION 2.2
About $9.64. To see this, from the average wages measured in 1976 and 1997 dollars,
we can get the CPI deflator as 16.64/5.90 � 2.82. When we multiply 3.42 by 2.82, we
obtain about 9.64.

QUESTION 2.3
59.26, as can be seen by plugging shareA � 60 into equation (2.28). This is not unrea-
sonable: if Candidate A spends 60% of the total money spent, he or she is predicted to
receive just over 59% of the vote.

QUESTION 2.4
The equation will be salâryhun � 9,631.91 � 185.01 roe, as is easily seen by multi-
plying equation (2.39) by 10.

QUESTION 2.5
Equation (2.58) can be written as Var(�̂0) � (�2n�1) ��

n

i�1
xi

2����
n

i�1
(xi � x̄)2�, where

the term multiplying �2n�1 is greater than or equal to one, but it is equal to one if and
only if x̄ � 0. In this case, the variance is as small as it can possibly be: Var(�̂0) � �2/n.

CHAPTER 3

QUESTION 3.1
Just a few factors include age and gender distribution, size of the police force (or, more
generally, resources devoted to crime fighting), population, and general historical fac-
tors. These factors certainly might be correlated with prbconv and avgsen, which means
(3.5) would not hold. For example, size of the police force is possibly correlated with
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both prbcon and avgsen, as some cities put more effort into crime prevention and
enforcement. We should try to bring as many of these factors into the equation as pos-
sible.

QUESTION 3.2
We use the third property of OLS concerning predicted values and residuals: when we
plug the average values of all independent variables into the OLS regression line, we
obtain the average value of the dependent variable. So �colGPA � 1.29 � .453 �hsGPA
� .0094 �ACT � 1.29 � .453(3.4) � .0094(24.2) � 3.06. You can check the average of
colGPA in GPA1.RAW to verify this to the second decimal place.

QUESTION 3.3
No. The variable shareA is not an exact linear function of expendA and expendB,
even though it is an exact nonlinear function: shareA � 100�[expendA/(expendA �
expendB)]. Therefore, it is legitimate to have expendA, expendB, and shareA as explana-
tory variables.

QUESTION 3.4
As we discussed in Section 3.4, if we are interested in the effect of x1 on y, correla-
tion among the other explanatory variables (x2, x3, and so on) does not affect Var(�̂1).
These variables are included as controls, and we do not have to worry about this kind
of collinearity. Of course, we are controlling for them primarily because we think
they are correlated with attendance, but this is necessary to perform a ceteris paribus
analysis.

CHAPTER 4

QUESTION 4.1
Under these assumptions, the Gauss-Markov assumptions are satisfied: u is indepen-
dent of the explanatory variables, so E(u�x1, …, xk) � E(u), and Var(u�x1, …, xk) �
Var(u). Further, it is easily seen that E(u) � 0. Therefore, MLR.3 and MLR.5 hold. The
classical linear model assumptions are not satisfied, because u is not normally distrib-
uted (which is a violation of MLR.6).

QUESTION 4.2
H0: �1 � 0, H1: �1 � 0.

QUESTION 4.3
Because �̂1 � .56 � 0 and we are testing against H1: �1 � 0, the one-sided p-value is
one-half of the two-sided p-value, or .043.

QUESTION 4.4
H0: �5 � �6 � �7 � �8 � 0. k � 8 and q � 4. The restricted version of the model is

score � �0 � �1classize � �2expend � �3tchcomp � �4enroll � u.
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QUESTION 4.5
The F statistic for testing exclusion of ACT is [(.291 � .183)/(1 � .291)](680 � 3) �
103.13. Therefore, the absolute value of the t statistic is about 10.16. The t statistic on
ACT is negative, because �̂ACT is negative, so tACT � �10.16.

QUESTION 4.6
Not by much. The F test for joint significance of droprate and gradrate is easily com-
puted from the R-squareds in the table: F � [(.361 � .353)/(1 � .361)](402/2) � 2.52.
The 10% critical value is obtained from Table G.3(a) as 2.30, while the 5% critical
value from Table G.3(b) is 3. The p-value is about .082. Thus, droprate and gradrate
are jointly significant at the 10% level, but not at the 5% level. In any case, controlling
for these variables has a minor effect on the b/s coefficient.

CHAPTER 5

QUESTION 5.1
This requires some assumptions. It seems reasonable to assume that �2 � 0 (score
depends positively on priGPA) and Cov(skipped,priGPA) � 0 (skipped and priGPA are
negatively correlated). This means that �2
1 � 0, which means that plim �̃1 � �1.
Because �1 is thought to be negative (or at least nonpositive), a simple regression is
likely to overestimate the importance of skipping classes.

QUESTION 5.2
�̂j � 1.96se(�̂j) is the asymptotic 95% confidence interval. Or, we can replace 1.96
with 2.

CHAPTER 6

QUESTION 6.1
Because fincdol � 1,000�faminc, the coefficient on fincdol will be the coefficient on
faminc divided by 1,000, or .0927/1,000 � .0000927. The standard error also drops
by a factor of 1,000, and so the t statistic does not change, nor do any of the other
OLS statistics. For readability, it is better to measure family income in thousands of
dollars.

QUESTION 6.2
We can do this generally. The equation is

log(y) � �0 � �1log(x1) � �2x2 � …,

where x2 is a proportion rather than a percentage. Then, ceteris paribus, �log(y) �
�2�x2, 100��log(y) � �2(100��x2), or %�y � �2(100��x2). Now, because �x2 is the
change in the proportion, 100��x2 is a percentage point change. In particular, if �x2 �
.01, then 100��x2 � 1, which corresponds to a one percentage point change. But then
�2 is the percentage change in y when 100��x2 � 1.
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QUESTION 6.3
The new model would be stndfnl � �0 � �1atndrte � �2priGPA � �3ACT �
�4priGPA2 � �5ACT2 � �6priGPA�atndrte � �7ACT�atndrte � u. Therefore, the par-
tial effect of atndrte on stndfnl is �1 � �6priGPA � �7ACT. This is what we multiply
by �atndrte to obtain the ceteris paribus change in stndfnl.

QUESTION 6.4
From equation (6.21), R̄2 � 1 � �̂2/[SST/(n � 1)]. For a given sample and a given
dependent variable, SST/(n � 1) is fixed. When we use different sets of explanatory
variables, only �̂2 changes. As �̂2 decreases, R̄2 increases. If we make �̂ , and therefore
�̂2, as small as possible, we are making R̄2 as large as possible.

QUESTION 6.5
One possibility is to collect data on annual earnings for a sample of actors, along with
profitability of the movies in which they each appeared. In a simple regression analy-
sis, we could relate earnings to profitability. But we should probably control for other
factors that may affect salary, such as age, gender, and the kinds of movies in which the
actors performed. Methods for including qualitative factors in regression models are
considered in Chapter 7.

CHAPTER 7

QUESTION 7.1
No, because it would not be clear when party is one and when it is zero. A better name
would be something like Dem, which is one for Democratic candidates, and zero for
Republicans. Or, Rep, which is one for Republicans, and zero for Democrats.

QUESTION 7.2
With outfield as the base group, we would include the dummy variables frstbase,
scndbase, thrdbase, shrtstop, and catcher.

QUESTION 7.3
The null in this case is H0: 
1 � 
2 � 
3 � 
4 � 0, so that there are four restrictions.
As usual, we would use an F test (where q � 4 and k depends on the number of other
explanatory variables).

QUESTION 7.4
Because tenure appears as a quadratic, we should allow separate quadratics for men
and women. That is, we would add the explanatory variables female�tenure and
female�tenure2.

QUESTION 7.5
We plug pcnv � 0, avgsen � 0, tottime � 0, ptime86 � 0, qemp86 � 0, black � 1, and
hispan � 0 into (7.31): arr̂86 � .380 � .038(4) � .170 � .398, or almost .4. It is hard
to know whether this is “reasonable.” For someone with no prior convictions who was
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employed throughout the year, this estimate might seem high, but remember that the
population consists of men who were already arrested at least once prior to 1986.

CHAPTER 8

QUESTION 8.1
This statement is clearly false. For example, in equation (8.7), the usual standard error
for black is .147, while the heteroskedasticity-robust standard error is .118.

QUESTION 8.2
The F test would be obtained by regressing û2 on marrmale, marrfem, and singfem
(singmale is the base group). With n � 526 and three independent variables in this
regression, the df are 3 and 522.

QUESTION 8.3
Not really. Because this is a simple regression model, heteroskedasticity only matters if
it is related to inc. But the Breusch-Pagan test in this case is equivalent to a t statistic in
regressing û2 on inc. A t statistic of .96 is not large enough to reject the homoskedas-
ticity assumption.

QUESTION 8.4
We can use weighted least squares but compute the heteroskedasticity-robust standard
errors. In equation (8.26), if our variance model is incorrect, we still have het-
eroskedasticity. Thus, we can make a guess at the form of heteroskedasticity and per-
form WLS, but our analysis can be made robust to incorrect forms of heteroskedasticity.
Unfortunately, we probably have to explicity obtain the transformed variables.

CHAPTER 9

QUESTION 9.1
These are binary variables, and squaring them has no effect: black2 � black, and
hispan2 � hispan.

QUESTION 9.2
When educ�IQ is in the equation, the coefficient on educ, say �1, measures the effect of
educ on log(wage) when IQ � 0. (The partial effect of education is �1 � �9IQ.) There
is no one in the population of interest with an IQ close to zero. At the average popula-
tion IQ, which is 100, the estimated return to education from column (3) is .018 �
.00034(100) � .052, which is almost what we obtain as the coefficient on educ in col-
umn (2).

QUESTION 9.3
No. If educ* is an integer—which means someone has no education past the previous
grade completed—the measurement error is zero. If educ* is not an integer, educ �
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educ*, and so the measurement error is negative. At a minimum, e1 cannot have zero
mean, and e1 and educ* are probably correlated.

QUESTION 9.4
An incumbent’s decision not to run may be systematically related to how he or she
expects to do in the election. Therefore, we may only have a sample of incumbents who
are stronger, on average, than all possible incumbents who could run. This results in a
sample selection problem if the population of interest includes all incumbents. If we are
only interested in the effects of campaign expenditures on election outcomes for incum-
bents who seek reelection, there is no sample selection problem.

CHAPTER 10

QUESTION 10.1
The impact propensity is .48, while the long-run propensity is .48 � .15 � .32 � .65.

QUESTION 10.2
The explanatory variables are xt1 � zt and xt2 � zt�1. The absence of perfect collinear-
ity means that these cannot be constant, and there cannot be an exact linear relationship
between them in the sample. This rules out the possibility that all the z1, …, zn take on
the same value or that the z0, z1, …, zn�1 take on the same value. But it eliminates other
patterns as well. For example, if zt � a � bt for constants a and b, then zt�1 � a �
b(t � 1) � (a � bt) � b � zt � b, which is a perfect linear function of zt.

QUESTION 10.3
If {zt} is slowly moving over time—as is the case for the levels or logs of many eco-
nomic time series—then zt and zt�1 can be highly correlated. For example, the correla-
tion between unemt and unemt�1 in PHILLIPS.RAW is .74.

QUESTION 10.4
No, because a linear time trend with 1 � 0 becomes more and more negative as t gets
large. Since gfr cannot be negative, a linear time trend with a negative trend coefficient
cannot represent gfr in all future time periods.

QUESTION 10.5
The intercept for March is �0 � 
2. Seasonal dummy variables are strictly exogenous
because they follow a deterministic pattern. For example, the months do not change
based upon whether either the explanatory variables or the dependent variable change.

CHAPTER 11

QUESTION 11.1
(i) No, because E(yt) � 
0 � 
1t depends on t. (ii) Yes, because yt � E(yt) � et is an
i.i.d. sequence.
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QUESTION 11.2
We plug inft

e � (1/2)inft�1 � (1/2)inft�2 into inft � inft
e � �1(unemt � �0) � et and

rearrange: inft � (1/2)(inft�1 � inft�2) � �0 � �1unemt � et, where �0 � ��1�0, as
before. Therefore, we would regress yt on unemt, where yt � inft � (1/2)(inft�1 �
inft�2). Note that we lose the first two observations in constructing yt.

QUESTION 11.3
No, because ut and ut�1 are correlated. In particular, Cov(ut,ut�1) � E[(et �
1et�1)(et�1 � 1et�2)] � 1E(et

2
�1) � 1�e

2 � 0 if 1 � 0. If the errors are serially
correlated, the model cannot be dynamically complete.

CHAPTER 12

QUESTION 12.1
We use equation (12.4). Now, only adjacent terms are correlated. In particular, the
covariance between xtut and xt�1ut�1 is xtxt�1Cov(ut,ut�1) � xtxt�1�e

2. Therefore, the
formula is

Var(�̂1) � SSTx
�2 ��

n

t�1
xt

2Var(ut) � 2 �
n�1

t�1
xtxt�1E(utut�1)�

� �2/SSTx � (2/SSTx
2) �

n�1

t�1
�e

2xtxt�1

� �2/SSTx � �e
2(2/SSTx

2) �
n�1

t�1
xtxt�1

where �2 � Var(ut) � �e
2 � 1

2�e
2 � �e

2(1 � 1
2). Unless xt and xt�1 are uncorrelated in

the sample, the second term is nonzero whenever  � 0. Notice that if xt and xt�1 are
positively correlated and  � 0, the true variance is actually smaller than the usual vari-
ance. When the equation is in levels (as opposed to being differenced), the typical case
is  � 0, with positive correlation between xt and xt�1.

QUESTION 12.2
�̂ � 1.96se(�̂), where se(�̂) is the standard error reported in the regression. Or, we could
use the heteroskedasticity-robust standard error. Showing that this is asymptotically
valid is complicated because the OLS residuals depend on �̂j, but it can be done.

QUESTION 12.3
The model we have in mind is ut � �1ut�1 � �4ut�4 � et, and we want to test H0: �1 �
0, �4 � 0 against the alternative that H0 is false. We would run the regression of ût on
ût�1 and ût�4 to obtain the usual F statistic for joint significance of the two lags. (We
are testing two restrictions.)

QUESTION 12.4
We would probably estimate the equation using first differences, as �̂ � .92 is close
enough to one to raise questions about the levels regression. See Chapter 18 for more
discussion.
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QUESTION 12.5
Because there is only one explanatory variable, the White test is easy to compute.
Simply regress û t

2 on returnt�1 and returnt
2
�1 (with an intercept, as always) and com-

pute the F test for joint significance of returnt�1 and returnt
2
�1. If these are jointly sig-

nificant at a small enough significance level, we reject the null of homoskedasticity.

CHAPTER 13

QUESTION 13.1
Yes, assuming that we have controlled for all relevant factors. The coefficient on black
is 1.076, and, with a standard error of .174, it is not statistically different from one. The
95% confidence interval is from about .735 to 1.417.

QUESTION 13.2
The coefficient on highearn shows that, in the absence of any change in the earnings
cap, high earners spend much more time—on the order of 29.2% on average [because
exp(.256) � 1 � .292]—on workers’ compensation.

QUESTION 13.3
First, E(vi1) � E(ai � ui1) � E(ai) � E(vi1) � 0. Similarly, E(vi2) � 0. Therefore, the
covariance between vi1 and vi2 is simply E(vi1vi2) � E[(ai � ui1)(ai � ui2)] � E(ai

2) �
E(aiui1) � E(aiui2) � E(ui1ui2) � E(ai

2), because all of the covariance terms are zero by
assumption. But E(ai

2) � Var(ai), because E(ai) � 0. This causes positive serial corre-
lation across time in the errors within each i, which biases the usual OLS standard
errors in a pooled cross-sectional regression.

QUESTION 13.4
Because �admn � admn90 � admn85 is the difference in binary indicators, it can be �1
if and only if admn90 � 0 and admn85 � 1. In other words, Washington state had an
administrative per se law in 1985 but it was repealed by 1990.

QUESTION 13.5
No, just as it does not cause bias and inconsistency in a time series regression with
strictly exogenous explanatory variables. There are two reasons it is a concern. First,
serial correlation in the errors in any equation generally biases the usual OLS standard
errors and test statistics. Second, it means that pooled OLS is not as efficient as esti-
mators that account for the serial correlation (as in Chapter 12).

CHAPTER 14

QUESTION 14.1
Whether we use first differencing or the within transformation, we will have trouble
estimating the coefficient on kidsit. For example, using the within transformation, if
kidsit does not vary for family i, then kïdsit � kidsit � �kidsi � 0 for t � 1,2,3. As long
as some families have variation in kidsit, then we can compute the fixed effects estima-
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tor, but the kids coefficient could be very imprecisely estimated. This is a form of mul-
ticollinearity in fixed effects estimation (or first-differencing estimation).

QUESTION 14.2
If a firm did not receive a grant in the first year, it may or may not receive a grant in
the second year. But if a firm did receive a grant in the first year, it could not get a grant
in the second year. That is, if grant�1 � 1, then grant � 0. This induces a negative cor-
relation between grant and grant�1. We can verify this by computing a regression of
grant on grant�1, using the data in JTRAIN.RAW for 1989. Using all firms in the sam-
ple, we get

grânt � (.248) � (.248) grant�1.
grânt � (.035) � (.072) grant�1.

n � 157, R2 � .070.

The coefficient on grant�1 must be the negative of the intercept, because grânt � 0
when grant�1 � 1.

QUESTION 14.3
It suggests that the unobserved effect ai is positively correlated with unionit. Remember,
pooled OLS leaves ai in the error term, while fixed effects removes ai. By definition, ai

has a positive effect on log(wage). By the standard omitted variables analysis (see
Chapter 3), OLS has an upward bias when the explanatory variable (union) is positively
correlated with the omitted variable (ai). Thus, belonging to a union appears to be pos-
itively related to time-constant, unobserved factors that affect wage.

QUESTION 14.4
Not if all sisters within a family have the same mother and father. Then, because the
parents’ race variables would not change by sister, they would be differenced away in
(14.13).

CHAPTER 15

QUESTION 15.1
Probably not. In the simple equation (15.18), years of education is part of the error term.
If some men who were assigned low draft lottery numbers obtained additional school-
ing, then lottery number and education are negatively correlated, which violates the first
requirement for an instrumental variable in equation (15.4).

QUESTION 15.2
(i) For (15.27), we require that high school peer group effects carry over to college.
Namely, for a given SAT score, a student who went to a high school where smoking
marijuana was more popular would smoke more marijuana in college. Even if the iden-
tification condition (15.27) holds, the link might be weak.

(ii) We have to assume that percent of students using marijuana at a student’s high
school is not correlated with unobserved factors that affect college grade point average.
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While we are somewhat controlling for high school quality by including SAT in the
equation, this might not be enough. Perhaps high schools that did a better job of prepar-
ing students for college also had fewer students smoking marijuana. Or, marijuana
usage could be correlated with average income levels. These are, of course, empirical
questions that we may or may not be able to answer.

QUESTION 15.3
While prevalence of the NRA and subscribers to gun magazines are probably correlated
with the presence of gun control legislation, it is not obvious that they are uncorrelated
with unobserved factors that affect the violent crime rate. In fact, we might argue that
a population interested in guns is a reflection of high crime rates, and controlling for
economic and demographic variables is not sufficient to capture this. It would be hard
to argue persuasively that these are truly exogenous in the violent crime equation.

QUESTION 15.4
As usual, there are two requirements. First, it should be the case that growth in govern-
ment spending is systematically related to the party of the president, after netting out
the investment rate and growth in the labor force. In other words, the instrument must
be partially correlated with the endogenous explanatory variable. While we might think
that government spending grows more slowly under Republican presidents, this cer-
tainly has not always been true in the United States and would have to be tested using
the t statistic on REPt�1 in the reduced form gGOVt � �0 � �1REPt�1 � �2INVRATt �
�3gLABt � vt. We must assume that the party of the president has no separate effect on
gGDP. This would be violated if, for example, monetary policy differs systematically
by presidential party and has a separate effect on GDP growth.

CHAPTER 16

QUESTION 16.1
Probably not. It is because firms choose price and advertising expenditures jointly that
we are not interested in the experiment where, say, advertising changes exogenously
and we want to know the effect on price. Instead, we would model price and advertis-
ing each as a function of demand and cost variables. This is what falls out of the eco-
nomic theory.

QUESTION 16.2
We must assume two things. First, money supply growth should appear in equation
(16.22), so that it is partially correlated with inf. Second, we must assume that money
supply growth does not appear in equation (16.23). If we think we must include money
supply growth in equation (16.23), then we are still short an instrument for inf. Of
course, the assumption that money supply growth is exogenous can also be questioned.

QUESTION 16.3
Use the Hausman test from Chapter 15. In particular, let v̂2 be the OLS residuals from
the reduced form regression of open on log(pcinc) and log(land). Then, use an OLS
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regression of inf on open, log(pcinc), and v̂2 and compute the t statistic for significance
of v̂2. If v̂2 is significant, the 2SLS and OLS estimates are statistically different.

QUESTION 16.4
The demand equation looks like

log( fisht) � �0 � �1log(prcfisht) � �2log(inct)

� �3log(prcchickt) � �4log(prcbeeft) � ut1,

where logarithms are used so that all elasticities are constant. By assumption, the
demand function contains no seasonality, so the equation does not contain monthly
dummy variables (say febt, mart, …, dect, with January as the base month). Also, by
assumption, the supply of fish is seasonal, which means that the supply function does
depend on at least some of the monthly dummy variables. Even without solving the
reduced form for log(prcfish), we conclude that it depends on the monthly dummy vari-
ables. Since these are exogenous, they can be used as instruments for log(prcfish) in the
demand equation. Therefore, we can estimate the demand-for-fish equation using
monthly dummies as the IVs for log(prcfish). Identification requires that at least one
monthly dummy variable appears with a nonzero coefficient in the reduced form for
log(prcfish).

CHAPTER 17

QUESTION 17.1
H0: �4 � �5 � �6 � 0, so that there are three restrictions and therefore three df in the
LR or Wald test.

QUESTION 17.2
We need the partial derivative of �(�̂0 � �̂1nwifeinc � �̂2educ � �̂3exper � �̂4exper2

� …) with respect to exper, which is �(�)(�̂3 � 2�̂4exper), where �(�) is evaluated at
the given values and the initial level of experience. Therefore, we need to evaluate the
standard normal probability density at .270 � .012(20.13) � .131(12.3) � .123(10) �
.0019(102) � .053(42.5) � .868(0) � .036(1) � .463, where we plug in the initial level
of experience (10). But �(.463) � (2�)�1/2exp[�(.4632)/2] � .358. Next, we multiply
this by �̂3 � 2�̂4exper, which is evaluated at exper � 10. The partial effect using the
calculus approximation is .358[.123 � 2(.0019)(10)] � .030. In other words, at the
given values of the explanatory variables and starting at exper � 10, the next year of
experience increases the probability of labor force participation by about .03.

QUESTION 17.3
No. The number of extramarital affairs is a nonnegative integer, which presumably
takes on zero or small numbers for a substantial fraction of the population. It is not real-
istic to use a Tobit model, which, while allowing a pileup at zero, treats y as being con-
tinuously distributed over positive values. Formally, assuming that y � max(0,y*),
where y* is normally distributed, is at odds with the discreteness of the number of extra-
marital affairs when y � 0.
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QUESTION 17.4
The adjusted standard errors are the usual Poisson MLE standard errors multiplied by
�̂ � ��2 � 1.41, so the adjusted standard errors will be about 41% higher. The quasi-
LR statistic is the usual LR statistic divided by �̂2, so it will be one-half of the usual LR
statistic.

QUESTION 17.5
By assumption, mvpi � �0 � xi� � ui, where, as usual, xi� denotes a linear function
of the exogenous variables. Now, observed wage is the largest of the minimum wage
and the marginal value product, so wagei � max(minwagei,mvpi), which is very similar
to equation (17.34), except that the max operator has replaced the min operator.

CHAPTER 18

QUESTION 18.1
We can plug these values directly into equation (18.1) and take expectations. First,
because zs � 0, for all s � 0, y�1 �  � u�1. Then, z0 � 1, so y0 �  � 
0 � u0.
For h � 1, yh �  � 
h�1 � 
h � uh. Because the errors have zero expected values,
E(y�1) � , E(y0) �  � 
0, and E(yh) �  � 
h�1 � 
h, for all h � 1. As h * �,

h * 0. It follows that E(yh) *  as h * �, that is, the expected value of yh returns to
the expected value before the increase in z, at time zero. This makes sense: while the
increase in z lasted for two periods, it is still a temporary increase.

QUESTION 18.2
Under the described setup, �yt and �xt are i.i.d. sequences that are independent of one
another. In particular, �yt and �xt are uncorrelated. If �̂1 is the slope coefficient from
regressing �yt on �xt, t � 1,2, …, n, then plim �̂1 � 0. This is as it should be, as we are
regressing one I(0) process on another I(0) process, and they are uncorrelated. We write
the equation �yt � �0 � �1�xt � et, where �0 � �1 � 0. Because {et} is independent
of {�xt}, the strict exogeneity assumption holds. Moreover, {et} is serially uncorrelated
and homoskedastic. By Theorem 11.2 in Chapter 11, the t statistic for �̂1 has an approx-
imate standard normal distribution. If et is normally distributed, the classical linear
model assumptions hold, and the t statistic has an exact t distribution.

QUESTION 18.3
Write xt � xt�1 � at, where {at} is I(0). By assumption, there is a linear combination,
say st � yt � �xt, which is I(0). Now, yt � �xt�1 � yt � �(xt � at) � st � �at. Because
st and at are I(0) by assumption, so is st � �at.

QUESTION 18.4
Just use the sum of squared residuals form of the F test and assume homoskedasticity.
The restricted SSR is obtained by regressing �hy6t � �hy3t�1 � (hy6t�1 � hy3t�2) on
a constant. Notice that 0 is the only parameter to estimate in �hy6t � 0 � �0�hy3t�1

� 
(hy6t�1 � hy3t�2) when the restrictions are imposed. The unrestricted sum of
squared residuals is obtained from equation (18.39).
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QUESTION 18.5
We are fitting two equations: ŷt � ̂ � �̂t and ŷt � �̂ � 
̂yeart. We can obtain the rela-
tionship between the parameters by noting that yeart � t � 49. Plugging this into the
second equation gives ŷt � �̂ � 
̂(t � 49) � (�̂ � 49
̂) � 
̂t. Matching the slope and
intercept with the first equation gives 
̂ � �̂—so that the slopes on t and yeart are iden-
tical—and ̂ � �̂ � 49
̂. Generally, when we use year rather than t, the intercept will
change, but the slope will not. (You can verify this by using one of the time series data
sets, such as HSEINV.RAW or INVEN.RAW.) Whether we use t or some measure of
year does not change fitted values, and, naturally, it does not change forecasts of future
values. The intercept simply adjusts appropriately to different ways of including a trend
in the regression.
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A p p e n d i x G

Statistical Tables

TABLE G.1

Cumulative Areas Under the Standard Normal Distribution

z 0 1 2 3 4 5 6 7 8 9

�3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
�2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
�2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
�2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
�2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
�2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
�2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
�2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
�2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
�2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
�2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
�1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
�1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
�1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
�1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
�1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
�1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
�1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
�1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
�1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
�1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
�0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
�0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
�0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148

continued
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TABLE G.1 (concluded)

z 0 1 2 3 4 5 6 7 8 9

�0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
�0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
�0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
�0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
�0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
�0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
�0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Examples: If Z ~ Normal(0,1) then P(Z � �1.32) � .0934 and P(Z � 1.84) � .9671.
Source: This table was generated using the Stata® function normd.
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TABLE G.2

Critical Values of the t Distribution

Significance Level

1-Tailed: .10 .05 .025 .01 .005
2-Tailed: .20 .10 .050 .02 .010

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660
90 1.291 1.662 1.987 2.368 2.632

120 1.289 1.658 1.980 2.358 2.617
� 1.282 1.645 1.960 2.326 2.576

Examples: The 1% critical value for a one-tailed test with 25 df is 2.485. The 5% critical for a two-tailed test
with large (� 120) df is 1.96.
Source: This table was generated using the Stata® function invt.
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TABLE G.3a

10% Critical Values of the F Distribution

Numerator Degrees of Freedom

1 2 3 4 5 6 7 8 9 10

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32
11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10

15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06
16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96

20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94
21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87
26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86
27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84
29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83

30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82
40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71
90 2.76 2.36 2.15 2.01 1.91 1.84 1.78 1.74 1.70 1.67

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65

� 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60

Example: The 10% critical value for numerator df � 2 and denominator df � 40 is 2.44.
Source: This table was generated using the Stata® function invfprob.
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TABLE G.3b

5% Critical Values of the F Distribution

Numerator Degrees of Freedom

1 2 3 4 5 6 7 8 9 10

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99
90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91

� 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83

Example: The 5% critical value for numerator df � 4 and large denominator df (�) is 2.37.
Source: This table was generated using the Stata® function invfprob.
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TABLE G.3c

1% Critical Values of the F Distribution

Numerator Degrees of Freedom

1 2 3 4 5 6 7 8 9 10

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63
90 6.93 4.85 4.01 3.54 3.23 3.01 2.84 2.72 2.61 2.52

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47

� 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32

Example: The 1% critical value for numerator df � 3 and denominator df � 60 is 4.13.
Source: This table was generated using the Stata® function invfprob.
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TABLE G.4

Critical Values of the Chi-Square Distribution

Significance Level

.10 .05 .01

1 2.71 3.84 6.63
2 4.61 5.99 9.21
3 6.25 7.81 11.34
4 7.78 9.49 13.28
5 9.24 11.07 15.09

6 10.64 12.59 16.81
7 12.02 14.07 18.48
8 13.36 15.51 20.09
9 14.68 16.92 21.67

10 15.99 18.31 23.21

11 17.28 19.68 24.72
12 18.55 21.03 26.22
13 19.81 22.36 27.69
14 21.06 23.68 29.14
15 22.31 25.00 30.58

16 23.54 26.30 32.00
17 24.77 27.59 33.41
18 25.99 28.87 34.81
19 27.20 30.14 36.19
20 28.41 31.41 37.57

21 29.62 32.67 38.93
22 30.81 33.92 40.29
23 32.01 35.17 41.64
24 33.20 36.42 42.98
25 34.38 37.65 44.31

26 35.56 38.89 45.64
27 36.74 40.11 46.96
28 37.92 41.34 48.28
29 39.09 42.56 49.59
30 40.26 43.77 50.89

Example: The 5% critical value with df � 8 is 15.51.
Source: This table was generated using the Stata® function
invchi.
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A

Adjusted R-Squared: A goodness-of-fit measure in
multiple regression analysis that penalizes additional
explanatory variables by using a degrees of freedom
adjustment in estimating the error variance.

Alternative Hypothesis: The hypothesis against which
the null hypothesis is tested.

AR(1) Serial Correlation: The errors in a time series
regression model follow an AR(1) model.

Asymptotic Bias: See inconsistency.
Asymptotic Confidence Interval: A confidence interval

that is approximately valid in large sample sizes.
Asymptotic Normality: The sampling distribution of a

properly normalized estimator converges to the stan-
dard normal distribution.

Asymptotic Properties: Properties of estimators and test
statistics that apply when the sample size grows with-
out bound.

Asymptotic Standard Error: A standard error that is
valid in large samples.

Asymptotic t Statistic: A t statistic that has an approxi-
mate standard normal distribution in large samples.

Asymptotic Variance: The square of the value we must
divide an estimator by in order to obtain an asymptotic
standard normal distribution.

Asymptotically Efficient: For consistent estimators with
asymptotically normal distributions, the estimator with
the smallest asymptotic variance.

Asymptotically Uncorrelated: A time series process in
which the correlation between random variables at
two points in time tends to zero as the time interval
between them increases. (See also weakly depen-
dent.)

Attenuation Bias: Bias in an estimator that is always
toward zero; thus, the expected value of an estimator

with attenuation bias is less in magnitude than the
absolute value of the parameter.

Augmented Dickey-Fuller Test: A test for a unit root
that includes lagged changes of the variable as regres-
sors.

Autocorrelation: See serial correlation.
Autoregressive Conditional Heteroskedasticity (ARCH):

A model of dynamic heteroskedasticity where the vari-
ance of the error term, given past information, depends
linearly on the past squared errors.

Autoregressive Process of Order One [AR(1)]: A time
series model whose current value depends linearly on
its most recent value plus an unpredictable distur-
bance.

Auxiliary Regression: A regression used to compute a
test statistic—such as the test statistics for het-
eroskedasticity and serial correlation—or any other
regression that does not estimate the model of primary
interest.

Average: The sum of n numbers divided by n.

B

Balanced Panel: A panel data set where all years (or
periods) of data are available for all cross-
sectional units.

Base Group: The group represented by the overall inter-
cept in a multiple regression model that includes
dummy explanatory variables.

Base Period: For index numbers, such as price or pro-
duction indices, the period against which all other time
periods are measured.

Base Value: The value assigned to the base period for
constructing an index number; usually the base value is
one or 100.

791

G L O S S A R Y

ry.qxd  7/14/99 9:45 PM  Page 791



Glossary

792

Benchmark Group: See base group.
Bernoulli Random Variable: A random variable that

takes on the values zero or one.
Best Linear Unbiased Estimator (BLUE): Among all

linear, unbiased estimators, the estimator with the
smallest variance. OLS is BLUE, conditional on the
sample values of the explanatory variables, under the
Gauss-Markov assumptions.

Beta Coefficients: See standardized coefficients.
Bias: The difference between the expected and the popu-

lation parameter values of an estimator.
Biased Estimator: An estimator whose expectation, or

sampling mean, is different from the population value
it is supposed to be estimating.

Biased Towards Zero: A description of an estimator
whose expectation in absolute value is less than the
absolute value of the population parameter.

Binary Response Model: A model for a binary (dummy)
dependent variable.

Binary Variable: See dummy variable.
Binomial Distribution: The probability distribution of

the number of successes out of n independent Bernoulli
trials, where each trial has the same probability of suc-
cess.

Bivariate Regression Model: See simple linear regres-
sion model.

BLUE: See best linear unbiased estimator.
Breusch-Godfrey Test: An asymptotically justified test

for AR(p) serial correlation, with AR(1) being the most
popular; the test allows for lagged dependent variables
as well as other regressors that are not strictly exoge-
nous.

Breusch-Pagan Test: A test for heteroskedasticity where
the squared OLS residuals are regressed on the
explanatory variables in the model.

C

Causal Effect: A ceteris paribus change in one variable
has an effect on another variable.

Censored Regression Model: A multiple regression
model where the dependent variable has been censored
above or below some known threshold.

Central Limit Theorem: A key result from probability
theory which implies that the sum of independent ran-
dom variables, or even weakly dependent random vari-
ables, when standardized by its standard deviation, has
a distribution that tends to standard normal as the sam-
ple size grows.

Ceteris Paribus: All other relevant factors are held fixed.
Chi-Square Distribution: A probability distribution

obtained by adding the squares of independent stan-
dard normal random variables. The number of terms in
the sum equals the degrees of freedom in the distribu-
tion.

Chow Statistic: An F statistic for testing the equality of
regression parameters across different groups (say, men
and women) or time periods (say, before and after a
policy change).

Classical Errors-in-Variables (CEV): A measurement
error model where the observed measure equals the
actual variable plus an independent, or at least an
uncorrelated, measurement error.

Classical Linear Model: The multiple linear regression
model under the full set of classical linear model
assumptions.

Classical Linear Model (CLM) Assumptions: The ideal
set of assumptions for multiple regression analysis: for
cross-sectional analysis, Assumptions MLR.1 through
MLR.6 and for time series analysis, Assumptions TS.1
through TS.6. The assumptions include linearity in the
parameters, no perfect collinearity, the zero conditional
mean assumption, homoskedasticity, no serial correla-
tion, and normality of the errors.

Cluster Effect: An unobserved effect that is common to
all units, usually people, in the cluster.

Cluster Sample: A sample of natural clusters or groups
which usually consist of people.

Cochrane-Orcutt (CO) Estimation: A method of esti-
mating a multiple linear regression model with AR(1)
errors and strictly exogenous explanatory variables;
unlike Prais-Winsten, Cochrane-Orcutt does not use
the equation for the first time period.

Coefficient of Determination: See R-squared.
Cointegration: The notion that a linear combination of

two series, each of which is integrated of order one, is
integrated of order zero.

Composite Error: In a panel data model, the sum of the
time constant unobserved effect and the idiosyncratic
error.

Conditional Distribution: The probability distribution of
one random variable, given the values of one or more
other random variables.

Conditional Expectation: The expected or average value
of one random variable, called the dependent or
explained variable, that depends on the values of one or
more other variables, called the independent or explana-
tory variables.
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Conditional Forecast: A forecast that assumes the future
values of some explanatory variables are known with
certainty.

Conditional Variance: The variance of one random vari-
able, given one or more other random variables.

Confidence Interval (CI): A rule used to construct a ran-
dom interval so that a certain percentage of all data
sets, determined by the confidence level, yields an
interval that contains the population value.

Confidence Level: The percentage of samples in which
we want our confidence interval to contain the popula-
tion value; 95% is the most common confidence level,
but 90% and 99% are also used.

Consistent Estimator: An estimator that converges in
probability to the population parameter as the sample
size grows without bound.

Consistent Test: A test where, under the alternative
hypothesis, the probability of rejecting the null hypoth-
esis converges to one as the sample size grows without
bound.

Constant Elasticity Model: A model where the elasticity
of the dependent variable, with respect to an explana-
tory variable, is constant; in multiple regression, both
variables appear in logarithmic form.

Contemporaneously Exogenous Regressor: In time
series or panel data applications, a regressor that is
uncorrelated with the error term in the same time
period, but not necessarily in other time periods.

Continuous Random Variable: A random variable that
takes on any particular value with probability zero.

Control Group: In program evaluation, the group that
does not participate in the program.

Control Variable: See explanatory variable.
Corner Solution: A nonnegative dependent variable that

is roughly continuous over strictly positive values but
takes on the value zero with some regularity.

Correlation Coefficient: A measure of linear depen-
dence between two random variables that does not
depend on units of measurement and is bounded
between �1 and 1.

Count Variable: A variable that takes on nonnegative
integer values.

Covariance: A measure of linear dependence between
two random variables.

Covariance Stationary: A time series process with con-
stant mean and variance where the covariance between
any two random variables in the sequence depends only
on the distance between them.

Covariate: See explanatory variable.
Critical Value: In hypothesis testing, the value against

which a test statistic is compared to determine whether
or not the null hypothesis is rejected.

Cross-Sectional Data Set: A data set collected from a
population at a given point in time.

Cumulative Distribution Function (cdf): A function
that gives the probability of a random variable being
less than or equal to any specified real number.

D

Data Censoring: A situation that arises when we do not
always observe the outcome on the dependent variable
because at an upper (or lower) threshold we only know
that the outcome was above (or below) the threshold.
(See also censored regression model.)

Data Frequency: The interval at which time series data
are collected. Yearly, quarterly, and monthly are the
most common data frequencies.

Data Mining: The practice of using the same data set to
estimate numerous models in a search to find the “best”
model.

Davidson-MacKinnon Test: A test that is used for test-
ing a model against a nonnested alternative; it can be
implemented as a t test on the fitted values from the
competing model.

Degrees of Freedom (df ): In multiple regression analy-
sis, the number of observations minus the number of
estimated parameters.

Denominator Degrees of Freedom: In an F test, the
degrees of freedom in the unrestricted model.

Dependent Variable: The variable to be explained in 
a multiple regression model (and a variety of other
models).

Descriptive Statistic: A statistic used to summarize a set
of numbers; the sample average, sample median, and
sample standard deviation are the most common.

Deseasonalizing: The removing of the seasonal compo-
nents from a monthly or quarterly time series.

Detrending: The practice of removing the trend from a
time series.

Dickey-Fuller Distribution: The limiting distribution of
the t statistic in testing the null hypothesis of a unit
root.

Dickey-Fuller (DF) Test: A t test of the unit root null
hypothesis in an AR(1) model. (See also augmented
Dickey-Fuller test.)

Difference in Slopes: A description of a model where
some slope parameters may differ by group or time
period.
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Difference-in-Differences Estimator: An estimator that
arises in policy analysis with data for two time periods.
One version of the estimator applies to independently
pooled cross sections and another to panel data sets.

Diminishing Marginal Effect: The marginal effect of an
explanatory variable becomes smaller as the value of
the explanatory variable increases.

Discrete Random Variable: A random variable that
takes on at most a finite or countably infinite number of
values.

Distributed Lag Model: A time series model that relates
the dependent variable to current and past values of an
explanatory variable.

Disturbance: See error term.
Downward Bias: The expected value of an estimator is

below the population value of the parameter.
Dummy Dependent Variable: See binary response

model.
Dummy Variable: A variable that takes on the value zero

or one.
Dummy Variable Regression: In a panel data setting, the

regression that includes a dummy variable for each
cross-sectional unit, along with the remaining explana-
tory variables. It produces the fixed effects estimator.

Dummy Variable Trap: The mistake of including too
many dummy variables among the independent vari-
ables; it occurs when an overall intercept is in the
model and a dummy variable is included for each
group.

Duration Analysis: An application of the censored
regression model, where the dependent variable is time
elapsed until a certain event occurs, such as the time
before an unemployed person becomes reemployed.

Durbin-Watson (DW) Statistic: A statistic used to test
for first order serial correlation in the errors of a time
series regression model under the classical linear
model assumptions.

Dynamically Complete Model: A time series model
where no further lags of either the dependent variable
or the explanatory variables help to explain the mean of
the dependent variable.

E

Econometric Model: An equation relating the dependent
variable to a set of explanatory variables and unob-
served disturbances, where unknown population parame-
ters determine the ceteris paribus effect of each ex-
planatory variable.

Economic Model: A relationship derived from economic
theory or less formal economic reasoning.

Economic Significance: See practical significance.
Elasticity: The percent change in one variable given a 1%

ceteris paribus increase in another variable.
Empirical Analysis: A study that uses data in a formal

econometric analysis to test a theory, estimate a rela-
tionship, or determine the effectiveness of a policy.

Endogeneity: A term used to describe the presence of an
endogenous explanatory variable.

Endogenous Explanatory Variable: An explanatory
variable in a multiple regression model that is corre-
lated with the error term, either because of an omitted
variable, measurement error, or simultaneity.

Endogenous Sample Selection: Nonrandom sample
selection where the selection is related to the dependent
variable, either directly or through the error term in the
equation.

Endogenous Variables: In simultaneous equations mod-
els, variables that are determined by the equations in
the system.

Engle-Granger Two-Step Procedure: A two-step method
for estimating error correction models whereby the coin-
tegrating parameter is estimated in the first stage, and the
error correction parameters are estimated in the second.

Error Correction Model: A time series model in first
differences that also contains an error correction term,
which works to bring two I(1) series back into long-run
equilibrium.

Error Term: The variable in a simple or multiple regres-
sion equation that contains unobserved factors that
affect the dependent variable. The error term may also
include measurement errors in the observed dependent
or independent variables.

Error Variance: The variance of the error term in a mul-
tiple regression model.

Errors-in-Variables: A situation where either the depen-
dent variable or some independent variables are mea-
sured with error.

Estimate: The numerical value taken on by an estimator
for a particular sample of data.

Estimator: A rule for combining data to produce a numer-
ical value for a population parameter; the form of the
rule does not depend on the particular sample obtained.

Event Study: An econometric analysis of the effects of
an event, such as a change in government regulation or
economic policy, on an outcome variable.

Excluding a Relevant Variable: In multiple regression
analysis, leaving out a variable that has a nonzero par-
tial effect on the dependent variable.
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Exclusion Restrictions: Restrictions which state that cer-
tain variables are excluded from the model (or have
zero population coefficients).

Exogenous Explanatory Variable: An explanatory vari-
able that is uncorrelated with the error term.

Exogenous Sample Selection: Sample selection that
either depends on exogenous explanatory variables or is
independent of the error term in the equation of interest.

Exogenous Variable: Any variable that is uncorrelated
with the error term in the model of interest.

Expected Value: A measure of central tendency in the
distribution of a random variable, including an estima-
tor.

Experiment: In probability, a general term used to denote
an event whose outcome is uncertain. In econometric
analysis, it denotes a situation where data are collected
by randomly assigning individuals to control and treat-
ment groups.

Experimental Data: Data that have been obtained by
running a controlled experiment.

Experimental Group: See treatment group.
Explained Sum of Squares (SSE): The total sample vari-

ation of the fitted values in a multiple regression model.
Explained Variable: See dependent variable.
Explanatory Variable: In regression analysis, a variable

that is used to explain variation in the dependent variable.
Exponential Function: A mathematical function defined

for all values that have an increasing slope but a con-
stant proportionate change.

Exponential Smoothing: A simple method of forecast-
ing a variable that involves a weighting of all previous
outcomes on that variable.

Exponential Trend: A trend with a constant growth rate.

F

F Distribution: The probability distribution obtained by
forming the ratio of two independent chi-square ran-
dom variables, where each has been divided by its
degrees of freedom.

F Statistic: A statistic used to test multiple hypotheses
about the parameters in a multiple regression model.

Feasible GLS (FGLS) Estimator: A GLS procedure
where variance or correlation parameters are unknown
and therefore must first be estimated. (See also gener-
alized least squares estimator.)

Finite Distributed Lag (FDL) Model: A dynamic model
where one or more explanatory variables are allowed to
have lagged effects on the dependent variable.

First Difference: A transformation on a time series con-
structed by taking the difference of adjacent time peri-
ods, where the earlier time period is subtracted from
the later time period.

First-Differenced Equation: In time series or panel data
models, an equation where the dependent and indepen-
dent variables have all been first-differenced.

First-Differenced Estimator: In a panel data setting, the
pooled OLS estimator applied to first differences of the
data across time.

First Order Conditions: The set of linear equations used
to solve for the OLS estimates.

Fitted Values: The estimated values of the dependent
variable when the values of the independent variables
for each observation are plugged into the OLS regres-
sion line.

Fixed Effect: See unobserved effect.
Fixed Effects Estimator: For the unobserved effects

panel data model, the estimator obtained by applying
pooled OLS to a time-demeaned equation.

Fixed Effects Transformation: For panel data, the time-
demeaned data.

Forecast Error: The difference between the actual out-
come and the forecast of the outcome.

Forecast Interval: In forecasting, a confidence interval
for a yet unrealized future value of a time series vari-
able. (See also prediction interval.)

Functional Form Misspecification: A problem that
occurs when a model has omitted functions of the
explanatory variables (such as quadratics) or uses the
wrong functions of either the dependent variable or
some explanatory variables.

G

Gauss-Markov Assumptions: The set of assumptions
(Assumptions MLR.1 through MLR.5 or TS.1 through
TS.5) under which OLS is BLUE.

Gauss-Markov Theorem: The theorem which states
that, under the five Gauss-Markov assumptions (for
cross-sectional or time series models), the OLS estima-
tor is BLUE (conditional on the sample values of the
explanatory variables).

Generalized Least Squares (GLS) Estimator: An esti-
mator that accounts for a known structure of the error
variance (heteroskedasticity), serial correlation pattern
in the errors, or both, via a transformation of the origi-
nal model.
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Geometric (or Koyck) Distributed Lag: An infinite dis-
tributed lag model where the lag coefficients decline at
a geometric rate.

Goodness-of-Fit Measure: A statistic that summarizes
how well a set of explanatory variables explains a
dependent or response variable.

Granger Causality: A limited notion of causality where
past values of one series (xt) are useful for predicting
future values of another series (yt), after past values of
yt have been controlled for.

Growth Rate: The proportionate change in a time
series from the previous period. It may be approxi-
mated as the difference in logs or reported in per-
centage form.

H

Heckit Method: An econometric procedure used to cor-
rect for sample selection bias due to incidental trun-
cation or some other form of nonrandomly missing
data.

Heterogeneity Bias: The bias in OLS due to omitted het-
erogeneity (or omitted variables).

Heteroskedasticity: The variance of the error term, given
the explanatory variables, is not constant.

Heteroskedasticity of Unknown Form: Hetero-
skedasticity that may depend on the explanatory vari-
ables in an unknown, arbitrary fashion.

Heteroskedasticity-Robust F Statistic: An F-type sta-
tistic that is (asymptotically) robust to heteroskedastic-
ity of unknown form.

Heteroskedasticity-Robust LM Statistic: An LM statis-
tic that is robust to heteroskedasticity of unknown
form.

Heteroskedasticity-Robust Standard Error: A stan-
dard error that is (asymptotically) robust to het-
eroskedasticity of unknown form.

Heteroskedasticity-Robust t Statistic: A t statistic that is
(asymptotically) robust to heteroskedasticity of
unknown form.

Highly Persistent Process: A time series process where
outcomes in the distant future are highly correlated
with current outcomes.

Homoskedasticity: The errors in a regression model have
constant variance, conditional on the explanatory vari-
ables.

Hypothesis Test: A statistical test of the null, or main-
tained, hypothesis against an alternative hypothesis.

I

Identified Equation: An equation whose parameters can
be consistently estimated, especially in models with
endogenous explanatory variables.

Idiosyncratic Error: In panel data models, the error that
changes over time as well as across units (say, individ-
uals, firms, or cities).

Impact Elasticity: In a distributed lag model, the imme-
diate percentage change in the dependent variable
given a 1% increase in the independent variable.

Impact Multiplier: See impact propensity.
Impact Propensity: In a distributed lag model, the imme-

diate change in the dependent variable given a one-unit
increase in the independent variable.

Incidental Truncation: A sample selection problem
whereby one variable, usually the dependent variable,
is only observed for certain outcomes of another vari-
able.

Inclusion of an Irrelevant Variable: The including of an
explanatory variable in a regression model that has a
zero population parameter in estimating an equation by
OLS.

Inconsistency: The difference between the probability
limit of an estimator and the parameter value.

Independent Random Variables: Random variables
whose joint distribution is the product of the marginal
distributions.

Independent Variable: See explanatory variable.
Independently Pooled Cross Section: A data set

obtained by pooling independent random samples from
different points in time.

Index Number: A statistic that aggregates information
on economic activity, such as production or prices.

Infinite Distributed Lag (IDL) Model: A distributed lag
model where a change in the explanatory variable can
have an impact on the dependent variable into the
indefinite future.

Influential Observations: See outliers.
Information Set: In forecasting, the set of variables that

we can observe prior to forming our forecast.
In-Sample Criteria: Criteria for choosing forecasting

models that are based on goodness-of-fit within the
sample used to obtain the parameter estimates.

Instrumental Variable (IV): In an equation with an
endogenous explanatory variable, an IV is a variable
that does not appear in the equation, is uncorrelated
with the error in the equation, and is (partially) corre-
lated with the endogenous explanatory variable.
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Instrumental Variables (IV) Estimator: An estimator in
a linear model used when instrumental variables are
available for one or more endogenous explanatory vari-
ables.

Integrated of Order One [I(1)]: A time series process
that needs to be first-differenced in order to produce an
I(0) process.

Integrated of Order Zero [I(0)]: A stationary, weakly
dependent time series process that, when used in
regression analysis, satisfies the law of large numbers
and the central limit theorem.

Interaction Effect: In multiple regression, the partial
effect of one explanatory variable depends on the value
of a different explanatory variable.

Interaction Term: An independent variable in a regres-
sion model that is the product of two explanatory vari-
ables.

Intercept Parameter: The parameter in a multiple linear
regression model that gives the expected value of the
dependent variable when all the independent variables
equal zero.

Intercept Shift: The intercept in a regression model dif-
fers by group or time period.

Internet: A global computer network that can be used to
access information and download data bases.

Interval Estimator: A rule that uses data to obtain lower
and upper bounds for a population parameter. (See also
confidence interval.)

Inverse Mills Ratio: A term that can be added to a mul-
tiple regression model to remove sample selection bias.

J

Joint Distribution: The probability distribution deter-
mining the probabilities of outcomes involving two or
more random variables.

Joint Hypothesis Test: A test involving more than one
restriction on the parameters in a model.

Jointly Statistically Significant: The null hypothesis that
two or more explanatory variables have zero population
coefficients is rejected at the chosen significance level.

Just Identified Equation: For models with endogenous
explanatory variables, an equation that is identified but
would not be identfied with one fewer instrumental
variable.

L

Lag Distribution: In a finite or infinite distributed lag

model, the lag coefficients graphed as a function of the
lag length.

Lagged Dependent Variable: An explanatory variable
that is equal to the dependent variable from an earlier
time period.

Lagged Endogenous Variable: In a simultaneous equa-
tions model, a lagged value of one of the endogenous
variables.

Lagrange Multiplier Statistic: A test statistic with large
sample justification that can be used to test for omitted
variables, heteroskedasticity, and serial correlation,
among other model specification problems.

Large Sample Properties: See asymptotic properties.
Latent Variable Model: A model where the observed

dependent variable is assumed to be a function of an
underlying latent, or unobserved, variable.

Law of Iterated Expectations: A result from probability
that relates unconditional and conditional expectations.

Law of Large Numbers (LLN): A theorem which says
that the average from a random sample converges in
probability to the population average; the LLN also
holds for stationary and weakly dependent time series.

Leads and Lags Estimator: An estimator of a cointegrat-
ing parameter in a regression with I(1) variables, where
the current, some past, and some future first differences
in the explanatory variable are included as regressors.

Level-Level Model: A regression model where the
dependent variable and the independent variables are in
level (or original) form.

Level-Log Model: A regression model where the depen-
dent variable is in level form and (at least some of) the
independent variables are in logarithmic form.

Likelihood Ratio Statistic: A statistic that can be used 
to test single or multiple hypotheses when the con-
strained and unconstrained models have been esti-
mated by maximum likelihood. The statistic is twice
the difference in the unconstrained and constrained
log-likelihoods.

Limited Dependent Variable: A dependent or response
variable whose range is restricted in some important
way.

Linear Function: A function where the change in the
dependent variable, given a one-unit change in an inde-
pendent variable, is constant.

Linear Probability Model (LPM): A binary response
model where the response probability is linear in its
parameters.

Linear Time Trend: A trend that is a linear function of
time.
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Linear Unbiased Estimator: In multiple regression
analysis, an unbiased estimator that is a linear function
of the outcomes on the dependent variable.

Logarithmic Function: A mathematical function defined
for positive arguments that has a positive, but dimin-
ishing, slope.

Log-Level Model: A regression model where the depen-
dent variable is in logarithmic form and the indepen-
dent variables are in level (or original) form.

Log-Log Model: A regression model where the depen-
dent variable and (at least some of) the explanatory
variables are in logarithmic form.

Logit Model: A model for binary response where the
response probability is the logit function evaluated at a
linear function of the explanatory variables.

Log-Likelihood Function: The sum of the log-likelihoods,
where the log-likelihood for each observation is the log
of the density of the dependent variable given the
explanatory variables; the log-likelihood function is
viewed as a function of the parameters to be estimated.

Long-Run Elasticity: The long-run propensity in a dis-
tributed lag model with the dependent and independent
variables in logarithmic form; thus, the long-run elas-
ticity is the eventual percentage increase in the
explained variable, given a permanent 1% increase in
the explanatory variable.

Long-Run Multiplier: See long-run propensity.
Long-Run Propensity: In a distributed lag model, the

eventual change in the dependent variable given a per-
manent, one-unit increase in the independent variable.

Longitudinal Data: See panel data.
Loss Function: A function that measures the loss when a

forecast differs from the actual outcome; the most com-
mon examples are absolute value loss and squared loss.

M

Marginal Effect: The effect on the dependent variable
that results from changing an independent variable by
a small amount.

Martingale: A time series process whose expected value,
given all past outcomes on the series, simply equals the
most recent value.

Martingale Difference Sequence: The first difference of
a martingale. It is unpredictable (or has a zero mean),
given past values of the sequence.

Matched Pairs Sample: A sample where each observa-
tion is matched with another, as in a sample consisting
of a husband and wife or a set of two siblings.

Matrix: An array of numbers.
Matrix Notation: A convenient mathematical notation,

grounded in matrix algebra, for expressing and manip-
ulating the multiple regression model.

Maximum Likelihood Estimation (MLE): A broadly
applicable estimation method where the parameter esti-
mates are chosen to maximize the log-likelihood func-
tion.

Mean: See expected value.
Mean Absolute Error (MAE): A performance measure

in forecasting, computed as the average of the absolute
values of the forecast errors.

Mean Squared Error: The expected squared distance that
an estimator is from the population value; it equals the
variance plus the square of any bias.

Measurement Error: The difference between an
observed variable and the variable that belongs in a
multiple regression equation.

Median: In a probability distribution, it is the value
where there is a 50% chance of being below the value
and a 50% chance of being above it. In a sample of
numbers, it is the middle value after the numbers have
been ordered.

Method of Moments Estimator: An estimator obtained
by using the sample analog of population moments;
ordinary least squares and two stage least squares are
both method of moments estimators.

Micronumerosity: A term introduced by Arthur
Goldberger to describe properties of econometric esti-
mators with small sample sizes.

Minimum Variance Unbiased Estimator: An estimator
with the smallest variance in the class of all unbiased
estimators.

Missing Data: A data problem that occurs when we do
not observe values on some variables for certain obser-
vations (individuals, cities, time periods, and so on) in
the sample.

Moving Average Process of Order One [MA(1)]: A
time series process generated as a linear function of the
current value and one lagged value of a zero-mean,
constant variance, uncorrelated stochastic process.

Multicollinearity: A term that refers to correlation among
the independent variables in a multiple regression
model; it is usually invoked when some correlations are
“large,” but an actual magnitude is not well-defined.

Multiple Hypothesis Test: A test of a null hypothesis
involving more than one restriction on the parameters.

Multiple Linear Regression (MLR) Model: A model
linear in its parameters, where the dependent variable is
a function of independent variables plus an error term.
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Multiple Regression Analysis: A type of analysis that is
used to describe estimation of and inference in the mul-
tiple linear regression model.

Multiple Restrictions: More than one restriction on the
parameters in an econometric model.

Multiple Step-Ahead Forecast: A time series forecast of
more than one period into the future.

Multiplicative Measurement Error: Measurement error
where the observed variable is the product of the true
unobserved variable and a positive measurement error.

N

n-R-Squared Statistic: See Lagrange multiplier statistic.
Natural Experiment: A situation where the economic

environment—sometimes summarized by an explana-
tory variable—exogenously changes, perhaps inadver-
tently, due to a policy or institutional change.

Natural Logarithm: See logarithmic function.
Nominal Variable: A variable measured in nominal or

current dollars.
Nonexperimental Data: Data that have not been

obtained through a controlled experiment.
Nonlinear Function: A function whose slope is not con-

stant.
Nonnested Models: Two (or more) models where no

model can be written as a special case of the other by
imposing restrictions on the parameters.

Nonrandom Sample Selection: A sample selection
process that cannot be characterized as drawing ran-
domly from the population of interest.

Nonstationary Process: A time series process whose
joint distributions are not constant across different
epochs.

Normal Distribution: A probability distribution com-
monly used in statistics and econometrics for modeling
a population. Its probability distribution function has a
bell shape.

Normality Assumption: The classical linear model
assumption which states that the error (or dependent
variable) has a normal distribution, conditional on the
explanatory variables.

Null Hypothesis: In classical hypothesis testing, we take
this hypothesis as true and require the data to provide
substantial evidence against it.

Numerator Degrees of Freedom: In an F test, the num-
ber of restrictions being tested.

O

Observational Data: See nonexperimental data.
OLS: See ordinary least squares.
OLS Intercept Estimate: The intercept in an OLS

regression line.
OLS Regression Line: The equation relating the pre-

dicted value of the dependent variable to the indepen-
dent variables, where the parameter estimates have
been obtained by OLS.

OLS Slope Estimate: A slope in an OLS regression line.
Omitted Variable Bias: The bias that arises in the OLS

estimators when a relevant variable is omitted from the
regression.

Omitted Variables: One or more variables, which we
would like to control for, have been omitted in estimat-
ing a regression model.

One-Sided Alternative: An alternative hypothesis which
states that the parameter is greater than (or less than)
the value hypothesized under the null.

One-Step-Ahead Forecast: A time series forecast one
period into the future.

One-Tailed Test: A hypothesis test against a one-sided
alternative.

On-Line Data Bases: Data bases that can be accessed via
a computer network.

On-Line Search Services: Computer software that
allows the Internet or data bases on the Internet to be
searched by topic, name, title, or key words.

Order Condition: A necessary condition for identifying
the parameters in a model with one or more endoge-
nous explanatory variables: the total number of exoge-
nous variables must be at least as great as the total
number of explanatory variables.

Ordinal Variable: A variable where the ordering of the
values conveys information but the magnitude of the
values does not.

Ordinary Least Squares (OLS): A method for estimating
the parameters of a multiple linear regression model.
The ordinary least squares estimates are obtained by
minimizing the sum of squared residuals.

Outliers: Observations in a data set that are substantially
different from the bulk of the data, perhaps because of
errors or because some data are generated by a differ-
ent model than most of the other data.

Out-of-Sample Criteria: Criteria used for choosing fore-
casting models that are based on a part of the sample
that was not used in obtaining parameter estimates.
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Overall Significance of a Regression: A test of the joint
significance of all explanatory variables appearing in a
multiple regression equation.

Overdispersion: In modeling a count variable, the vari-
ance is larger than the mean.

Overidentified Equation: In models with endogenous
explanatory variables, an equation where the number of
instrumental variables is strictly greater than the num-
ber of endogenous explanatory variables.

Overidentifying Restrictions: The extra moment condi-
tions that come from having more instrumental variables
than endogenous explanatory variables in a linear model.

Overspecifying a Model: See inclusion of an irrelevant
variable.

P

p-value: The smallest significance level at which the null
hypothesis can be rejected. Equivalently, the largest
significance level at which the null hypothesis cannot
be rejected.

Panel Data: A data set constructed from repeated cross
sections over time. With a balanced panel, the same
units appear in each time period. With an unbalanced
panel, some units do not appear in each time period,
often due to attrition.

Pairwise Uncorrelated Random Variables: A set of two
or more random variables where each pair is uncorre-
lated.

Parameter: An unknown value that describes a popula-
tion relationship.

Parsimonious Model: A model with as few parameters
as possible for capturing any desired features.

Partial Effect: The effect of an explanatory variable on
the dependent variable, holding other factors in the
regression model fixed.

Percent Correctly Predicted: In a binary response
model, the percentage of times the prediction of zero or
one coincides with the actual outcome.

Percentage Change: The porportionate change in a vari-
able, multiplied by 100.

Percentage Point Change: The change in a variable that
is measured as a percent.

Perfect Collinearity: In multiple regression, one inde-
pendent variable is an exact linear function of one or
more other independent variables.

Plug-In Solution to the Omitted Variables Problem: A
proxy variable is substituted for an unobserved omitted
variable in an OLS regression.

Point Forecast: The forecasted value of a future out-
come.

Poisson Distribution: A probability distribution for
count variables.

Poisson Regression Model: A model for a count depen-
dent variable where the dependent variable, conditional
on the explanatory variables, is nominally assumed to
have a Poisson distribution.

Policy Analysis: An empirical analysis that uses econo-
metric methods to evaluate the effects of a certain pol-
icy.

Pooled Cross Section: A data configuration where inde-
pendent cross sections, usually collected at different
points in time, are combined to produce a single data
set.

Pooled OLS Estimation: OLS estimation with indepen-
dently pooled cross sections, panel data, or cluster sam-
ples, where the observations are pooled across time (or
group) as well as across the cross-sectional units.

Population: A well-defined group (of people, firms,
cities, and so on) that is the focus of a statistical or
econometric analysis.

Population Model: A model, especially a multiple linear
regression model, that describes a population.

Population R-Squared: In the population, the fraction of
the variation in the dependent variable that is explained
by the explanatory variables.

Population Regression Function: See conditional
expectation.

Power of a Test: The probability of rejecting the null hy-
pothesis when it is false; the power depends on the val-
ues of the population parameters under the alternative.

Practical Significance: The practical or economic impor-
tance of an estimate, which is measured by its sign and
magnitude, as opposed to its statistical significance.

Prais-Winsten (PW) Estimation: A method of estimat-
ing a multiple linear regression model with AR(1)
errors and strictly exogenous explanatory variables;
unlike Cochrane-Orcutt, Prais-Winsten uses the equa-
tion for the first time period in estimation.

Predetermined Variable: In a simultaneous equations
model, either a lagged endogenous variable or a lagged
exogenous variable.

Predicted Variable: See dependent variable.
Prediction: The estimate of an outcome obtained by plug-

ging specific values of the explanatory variables into an
estimated model, usually a multiple regression model.

Prediction Error: The difference between the actual out-
come and a prediction of that outcome.

Prediction Interval: A confidence interval for an
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unknown outcome on a dependent variable in a multi-
ple regression model.

Predictor Variable: See explanatory variable.
Probability Density Function (pdf): A function that, for

discrete random variables, gives the probability that the
random variable takes on each value; for continuous
random variables, the area under the pdf gives the prob-
ability of various events.

Probability Limit: The value to which an estimator con-
verges as the sample size grows without bound.

Probit Model: A model for binary responses where the
response probability is the standard normal cdf evalu-
ated at a linear function of the explanatory variables.

Program Evaluation: An analysis of a particular private
or public program using econometric methods to obtain
the causal effect of the program.

Proportionate Change: The change in a variable relative
to its initial value; mathematically, the change divided
by the initial value.

Proxy Variable: An observed variable that is related but
not identical to an unobserved explanatory variable in
multiple regression analysis.

Q

Quadratic Functions: Functions that contain squares of
one or more explanatory variables; they capture dimin-
ishing or increasing effects on the dependent variable.

Qualitative Variable: A variable describing a non-
quantitative feature of an individual, a firm, a city, and
so on.

Quasi-Demeaned Data: In random effects estimation for
panel data, it is the original data in each time period
minus a fraction of the time average; these calculations
are done for each cross-sectional observation.

Quasi-Differenced Data: In estimating a regression
model with AR(1) serial correlation, it is the difference
between the current time period and a multiple of the
previous time period, where the multiple is the param-
eter in the AR(1) model.

Quasi-Experiment: See natural experiment.
Quasi-Likelihood Ratio Statistic: A modification of the

likelihood ratio statistic that accounts for possible dis-
tributional misspecification, as in a Poisson regression
model.

Quasi-Maximum Likelihood Estimation: Maximum
likelihood estimation but where the log-likelihood
function may not correspond to the actual conditional
distribution of the dependent variable.

R

R-Bar Squared: See adjusted R-squared.
R-Squared: In a multiple regression model, the propor-

tion of the total sample variation in the dependent vari-
able that is explained by the independent variable.

R-Squared Form of the F Statistic: The F statistic for
testing exclusion restrictions expressed in terms of the
R-squareds from the restricted and unrestricted models.

Random Effects Estimator: A feasible GLS estimator in
the unobserved effects model where the unobserved
effect is assumed to be uncorrelated with the explana-
tory variables in each time period.

Random Effects Model: The unobserved effects panel
data model where the unobserved effect is assumed to
be uncorrelated with the explanatory variables in each
time period.

Random Sampling: A sampling scheme whereby each
observation is drawn at random from the population. In
particular, no unit is more likely to be selected than any
other unit, and each draw is independent of all other
draws.

Random Variable: A variable whose outcome is uncer-
tain.

Random Walk: A time series process where next
period’s value is obtained as this period’s value, plus
an independent (or at least an uncorrelated) error
term.

Random Walk with Drift: A random walk that has a
constant (or drift) added in each period.

Rank Condition: A sufficient condition for identification
of a model with one or more endogenous explanatory
variables.

Rational Distributed Lag (RDL) Model: A type of infi-
nite distributed lag model where the lag distribution
depends on relatively few parameters.

Real Variable: A monetary value measured in terms of a
base period.

Reduced Form Equation: A linear equation where an
endogenous variable is a function of exogenous vari-
ables and unobserved errors.

Reduced Form Error: The error term appearing in a
reduced form equation.

Reduced Form Parameters: The parameters appearing
in a reduced form equation.

Regressand: See dependent variable.
Regression Error Specification Test (RESET): A gen-

eral test for functional form in a multiple regression
model; it is an F test of joint significance of the
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squares, cubes, and perhaps higher powers of the fitted
values from the initial OLS estimation.

Regression Through the Origin: Regression analysis
where the intercept is set to zero; the slopes are
obtained by minimizing the sum of squared residuals,
as usual.

Regressor: See explanatory variable.
Rejection Region: The set of values of a test statistic that

leads to rejecting the null hypothesis.
Rejection Rule: In hypothesis testing, the rule that deter-

mines when the null hypothesis is rejected in favor of
the alternative hypothesis.

Residual: The difference between the actual value and
the fitted (or predicted) value; there is a residual for
each observation in the sample used to obtain an OLS
regression line.

Residual Analysis: A type of analysis that studies the
sign and size of residuals for particular observations
after a multiple regression model has been estimated.

Residual Sum of Squares: See sum of squared residuals.
Response Probability: In a binary response model, the

probability that the dependent variable takes on the
value one, conditional on explanatory variables.

Response Variable: See dependent variable.
Restricted Model: In hypothesis testing, the model

obtained after imposing all of the restrictions required
under the null.

Root Mean Squared Error (RMSE): Another name for
the standard error of the regression in multiple regres-
sion analysis.

S

Sample Average: The sum of n numbers divided by n; a
measure of central tendency.

Sample Correlation: For outcomes on two random vari-
ables, the sample covariance divided by the product of
the sample standard deviations.

Sample Covariance: An unbiased estimator of the popu-
lation covariance between two random variables.

Sample Regression Function: See OLS regression line.
Sample Selection Bias: Bias in the OLS estimator which

is induced by using data that arise from endogenous
sample selection.

Sample Standard Deviation: A consistent estimator of
the population standard deviation.

Sample Variance: An unbiased, consistent estimator of
the population variance.

Sampling Distribution: The probability distribution of
an estimator over all possible sample outcomes.

Sampling Variance: The variance in the sampling distri-
bution of an estimator; it measures the spread in the
sampling distribution.

Score Statistic: See Lagrange multiplier statistic.
Seasonal Dummy Variables: A set of dummy variables

used to denote the quarters or months of the year.
Seasonality: A feature of monthly or quarterly time series

where the average value differs systematically by sea-
son of the year.

Seasonally Adjusted: Monthly or quarterly time series
data where some statistical procedure—possibly
regression on seasonal dummy variables—has been
used to remove the seasonal component.

Selected Sample: A sample of data obtained not by ran-
dom sampling but by selecting on the basis of some
observed or unobserved characteristic.

Semi-Elasticity: The percentage change in the dependent
variable given a one-unit increase in an independent
variable.

Sensitivity Analysis: The process of checking whether
the estimated effects and statistical significance of key
explanatory variables are sensitive to inclusion of other
explanatory variables, functional form, dropping of
potentially outlying observations, or different methods
of estimation.

Serial Correlation: In a time series or panel data model,
correlation between the errors in different time periods.

Serial Correlation-Robust Standard Error: A standard
error for an estimator that is (asymptotically) valid
whether or not the errors in the model are serially cor-
related.

Serially Uncorrelated: The errors in a time series or
panel data model are pairwise uncorrelated across time.

Short-Run Elasticity: The impact propensity in a distrib-
uted lag model when the dependent and independent
variables are in logarithmic form.

Significance Level: The probability of Type I error in
hypothesis testing.

Simple Linear Regression Model: A model where the
dependent variable is a linear function of a single inde-
pendent variable, plus an error term.

Simultaneity: A term that means at least one explanatory
variable in a multiple linear regression model is deter-
mined jointly with the dependent variable.

Simultaneity Bias: The bias that arises from using OLS to
estimate an equation in a simultaneous equations model.

Simultaneous Equations Model (SEM): A model that
jointly determines two or more endogenous variables,
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where each endogenous variable can be a function of
other endogenous variables as well as of exogenous
variables and an error term.

Slope Parameter: The coefficient on an independent
variable in a multiple regression model.

Spreadsheet: Computer software used for entering and
manipulating data.

Spurious Correlation: A correlation between two vari-
ables that is not due to causality, but perhaps to the
dependence of the two variables on another unobserved
factor.

Spurious Regression Problem: A problem that arises
when regression analysis indicates a relationship
between two or more unrelated time series processes
simply because each has a trend, is an integrated time
series (such as a random walk), or both.

Stable AR(1) Process: An AR(1) process where the pa-
rameter on the lag is less than one in absolute value.
The correlation between two random variables in the
sequence declines to zero at a geometric rate as the dis-
tance between the random variables increases, and so a
stable AR(1) process is weakly dependent.

Standard Deviation: A common measure of spread in
the distribution of a random variable.

Standard Deviation of �̂j: A common measure of spread
in the sampling distribution of �̂j.

Standard Error of �̂j: An estimate of the standard devi-
ation in the sampling distribution of �̂j.

Standard Error of the Estimate: See standard error of
the regression.

Standard Error of the Regression (SER): In multiple
regression analysis, the estimate of the standard devia-
tion of the population error, obtained as the square root
of the sum of squared residuals over the degrees of
freedom.

Standard Normal Distribution: The normal distribution
with mean zero and variance one.

Standardized Coefficient: A regression coefficient that
measures the standard deviation change in the depen-
dent variable given a one standard deviation increase in
an independent variable.

Standardized Random Variable: A random variable
transformed by subtracting off its expected value and
dividing the result by its standard deviation; the new ran-
dom variable has mean zero and standard deviation one.

Static Model: A time series model where only contem-
poraneous explanatory variables affect the dependent
variable.

Stationary Process: A time series process where the mar-
ginal and all joint distributions are invariant across time.

Statistical Inference: The act of testing hypotheses about
population parameters.

Statistically Different from Zero: See statistically sig-
nificant.

Statistically Insignificant: Failure to reject the null
hypothesis that a population parameter is equal to zero,
at the chosen significance level.

Statistically Significant: Rejecting the null hypothesis
that a parameter is equal to zero against the specified
alternative, at the chosen significance level.

Stochastic Process: A sequence of random variables
indexed by time.

Strict Exogeneity: An assumption that holds in a time
series or panel data model when the explanatory vari-
ables are strictly exogenous.

Strictly Exogenous: A feature of explanatory variables in
a time series or panel data model where the error term
at any time period has zero expectation, conditional on
the explanatory variables in all time periods; a less
restrictive version is stated in terms of zero correlations.

Strongly Dependent: See highly persistent process.
Structural Equation: An equation derived from eco-

nomic theory or from less formal economic reasoning.
Structural Error: The error term in a structural equation,

which could be one equation in a simultaneous equa-
tions model.

Structural Parameters: The parameters appearing in a
structural equation.

Sum of Squared Residuals: In multiple regression
analysis, the sum of the squared OLS residuals across
all observations.

Summation Operator: A notation, denoted by �, used to
define the summing of a set of numbers.

T

t Distribution: The distribution of the ratio of a standard
normal random variable and the square root of an inde-
pendent chi-square random variable, where the chi-
square random variable is first divided by its df.

t Ratio: See t statistic.
t Statistic: The statistic used to test a single hypothesis

about the parameters in an econometric model.
Test Statistic: A rule used for testing hypotheses where

each sample outcome produces a numerical value.
Text Editor: Computer software that can be used to edit

text files.
Text (ASCII) File: A universal file format that can be trans-

ported across numerous computer platforms.
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Time-Demeaned Data: Panel data where, for each cross-
sectional unit, the average over time is subtracted from
the data in each time period.

Time Series Data: Data collected over time on one or
more variables.

Time Series Process: See stochastic process.
Time Trend: A function of time that is the expected value

of a trending time series process.
Tobit Model: A model for a dependent variable that takes

on the value zero with positive probability but is
roughly continuously distributed over strictly positive
values. (See also corner solution.)

Top Coding: A form of data censoring where the value of
a variable is not reported when it is above a given
threshold; we only know that it is at least as large as the
threshold.

Total Sum of Squares (SST): The total sample variation
in a dependent variable about its sample average.

Treatment Group: In program evaluation, the group that
participates in the program. (See also experimental
group.)

Trending Process: A time series process whose
expected value is an increasing or decreasing function
of time.

Trend-Stationary Process: A process that is stationary
once a time trend has been removed; it is usually
implicit that the detrended series is weakly depen-
dent.

Truncated Regression Model: A classical linear regres-
sion model for cross-sectional data in which the sam-
pling scheme entirely excludes, on the basis of
outcomes on the dependent variable, part of the popu-
lation.

True Model: The actual population model relating the
dependent variable to the relevant independent vari-
ables, plus a disturbance, where the zero conditional
mean assumption holds.

Two Stage Least Squares (2SLS) Estimator: An instru-
mental variables estimator where the IV for an endoge-
nous explanatory variable is obtained as the fitted value
from regressing the endogenous explanatory variable on
all exogenous variables.

Two-Sided Alternative: An alternative where the pop-
ulation parameter can be either less than or greater than
the value stated under the null hypothesis.

Two-Tailed Test: A test against a two-sided alternative.
Type I Error: A rejection of the null hypothesis when it

is true.
Type II Error: The failure to reject the null hypothesis

when it is false.

U

Unbalanced Panel: A panel data set where certain years
(or periods) of data are missing for some cross-
sectional units.

Unbiased Estimator: An estimator whose expected
value (or mean of its sampling distribution) equals the
population value (regardless of the population value).

Unconditional Forecast: A forecast that does not rely on
knowing, or assuming values for, future explanatory
variables.

Uncorrelated Random Variables: Random variables
that are not linearly related.

Underspecifying a Model: See excluding a relevant vari-
able.

Unidentified Equation: An equation with one or more
endogenous explanatory variables where sufficient
instrumental variables do not exist to identify the pa-
rameters.

Unit Root Process: A highly persistent time series
process where the current value equals last period’s
value, plus a weakly dependent disturbance.

Unobserved Effect: In a panel data model, an unob-
served variable in the error term that does not change
over time. For cluster samples, an unobserved variable
that is common to all units in the cluster.

Unobserved Effects Model: A model for panel data or
cluster samples where the error term contains an unob-
served effect.

Unobserved Heterogeneity: See unobserved effect.
Unrestricted Model: In hypothesis testing, the model

that has no restrictions placed on its parameters.
Upward Bias: The expected value of an estimator is

greater than the population parameter value.

V

Variance: A measure of spread in the distribution of a
random variable.

Variance of the Prediction Error: The variance in the
error that arises when predicting a future value of the
dependent variable based on an estimated multiple
regression equation.

Vector Autoregressive (VAR) Model: A model for two
or more time series where each variable is modeled as
a linear function of past values of all variables, plus dis-
turbances that have zero means given all past values of
the observed variables.
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W

Weakly Dependent: A term that describes a time series
process where some measure of dependence between
random variables at two points in time—such as corre-
lation—diminishes as the interval between the two
points in time increases.

Weighted Least Squares (WLS) Estimator: An estima-
tor used to adjust for a known form of heteroskedastic-
ity, where each squared residual is weighted by the
inverse of the (estimated) variance of the error.

White Test: A test for heteroskedasticity that involves
regressing the squared OLS residuals on the OLS fitted
values and on the squares of the fitted values; in its
most general form, the squared OLS residuals are
regressed on the explanatory variables, the squares of
the explanatory variables, and all the nonredundant
cross products of the explanatory variables.

Within Estimator: See fixed effects estimator.

Within Transformation: See fixed effects transforma-
tion.

Y

Year Dummy Variables: For data sets with a time series
component, dummy (binary) variables equal to one in
the relevant year and zero in all other years.

Z

Zero Conditional Mean Assumption: A key assumption
used in multiple regression analysis which states that,
given any values of the explanatory variables, the
expected value of the error equals zero. (See
Assumptions MLR.3, TS.2, and TS.2�.)
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