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Basic Regression Analysis with
Time Series Data

models using time series data. In Section 10.1, we discuss some conceptual differ-

ences between time series and cross-sectional data. Section 10.2 provides some exam-
ples of time series regressions that are often estimated in the empirical social sciences. We
then turn our attention to the finite sample properties of the OLS estimators and state the
Gauss-Markov assumptions and the classical linear model assumptions for time series
regression. While these assumptions have features in common with those for the cross-
sectional case, they also have some significant differences that we will need to highlight.

In addition, we return to some issues that we treated in regression with cross-
sectional data, such as how to use and interpret the logarithmic functional form and
dummy variables. The important topics of how to incorporate trends and account for
seasonality in multiple regression are taken up in Section 10.5.

In this chapter, we begin to study the properties of OLS for estimating linear regression

10.1 THE NATURE OF TIME SERIES DATA

An obvious characteristic of time series data which distinguishes it from cross-sectional
data is that a time series data set comes with a temporal ordering. For example, in
Chapter 1, we briefly discussed a time series data set on employment, the minimum
wage, and other economic variables for Puerto Rico. In this data set, we must know that
the data for 1970 immediately precede the data for 1971. For analyzing time series data
in the social sciences, we must recognize that the past can effect the future, but not vice
versa (unlike in the Star Trek universe). To emphasize the proper ordering of time series
data, Table 10.1 gives a partial listing of the data on U.S. inflation and unemployment
rates in PHILLIPS.RAW.

Another difference between cross-sectional and time series data is more subtle. In
Chapters 3 and 4, we studied statistical properties of the OLS estimators based on the
notion that samples were randomly drawn from the appropriate population.
Understanding why cross-sectional data should be viewed as random outcomes is fairly
straightforward: a different sample drawn from the population will generally yield dif-
ferent values of the independent and dependent variables (such as education, experi-
ence, wage, and so on). Therefore, the OLS estimates computed from different random
samples will generally differ, and this is why we consider the OLS estimators to be ran-
dom variables.
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Part 2 Regression Analysis with Time Series Data

Table 10.1
Partial Listing of Data on U.S. Inflation and Unemployment Rates, 1948-1996

Year Inflation Unemployment
1948 8.1 3.8
1949 —1.2 59
1950 1.3 5.3
1951 7.9 33
1994 2.6 6.1
1995 2.8 5.6
1996 3.0 54

How should we think about randomness in time series data? Certainly, economic
time series satisfy the intuitive requirements for being outcomes of random variables.
For example, today we do not know what the Dow Jones Industrial Average will be at
its close at the end of the next trading day. We do not know what the annual growth in
output will be in Canada during the coming year. Since the outcomes of these variables
are not foreknown, they should clearly be viewed as random variables.

Formally, a sequence of random variables indexed by time is called a stochastic
process or a time series process. (‘“Stochastic” is a synonym for random.) When we
collect a time series data set, we obtain one possible outcome, or realization, of the sto-
chastic process. We can only see a single realization, because we cannot go back in time
and start the process over again. (This is analogous to cross-sectional analysis where we
can collect only one random sample.) However, if certain conditions in history had been
different, we would generally obtain a different realization for the stochastic process,
and this is why we think of time series data as the outcome of random variables. The
set of all possible realizations of a time series process plays the role of the population
in cross-sectional analysis.

10.2 EXAMPLES OF TIME SERIES REGRESSION MODELS

In this section, we discuss two examples of time series models that have been useful in
empirical time series analysis and that are easily estimated by ordinary least squares.
We will study additional models in Chapter 11.
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Chapter 10 Basic Regression Analysis with Time Series Data

Static Models

Suppose that we have time series data available on two variables, say y and z, where y,
and z, are dated contemporaneously. A static model relating y to z is

Y,=Bo+ Bz, tu,t=12,...,n (10.1)

The name “static model” comes from the fact that we are modeling a contemporaneous
relationship between y and z. Usually, a static model is postulated when a change in z
at time ¢ is believed to have an immediate effect on y: Ay, = 8,Az,, when Au, = 0. Static
regression models are also used when we are interested in knowing the tradeoff between
yand z.

An example of a static model is the static Phillips curve, given by

inf, = By + Biunem, + u,, (10.2)

where inf, is the annual inflation rate and unem, is the unemployment rate. This form of
the Phillips curve assumes a constant natural rate of unemployment and constant infla-
tionary expectations, and it can be used to study the contemporaneous tradeoff between
them. [See, for example, Mankiw (1994, Section 11.2).]

Naturally, we can have several explanatory variables in a static regression model.
Let mrdrte, denote the murders per 10,000 people in a particular city during year ¢, let
convrte, denote the murder conviction rate, let unem, be the local unemployment rate,
and let yngmle, be the fraction of the population consisting of males between the ages
of 18 and 25. Then, a static multiple regression model explaining murder rates is

mrdrte, = B, + Biconvrte, + Bunem, + Biyngmle, + u,. (10.3)

Using a model such as this, we can hope to estimate, for example, the ceteris paribus
effect of an increase in the conviction rate on criminal activity.

Finite Distributed Lag Models

In a finite distributed lag (FDL) model, we allow one or more variables to affect y
with a lag. For example, for annual observations, consider the model

gfr, = ay + ype, + &,pe,_, + 6,pe,_, + u,, (10.4)

where gfr, is the general fertility rate (children born per 1,000 women of childbearing
age) and pe, is the real dollar value of the personal tax exemption. The idea is to see
whether, in the aggregate, the decision to have children is linked to the tax value of hav-
ing a child. Equation (10.4) recognizes that, for both biological and behavioral reasons,
decisions to have children would not immediately result from changes in the personal
exemption.

Equation (10.4) is an example of the model

Ve = & + 502[ + 8111_1 + 82Zr—2 + Uy, (10-5)
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Part 2 Regression Analysis with Time Series Data

which is an FDL of order two. To interpret the coefficients in (10.5), suppose that z is
a constant, equal to c, in all time periods before time ¢. At time ¢, z increases by one unit
to ¢ + 1 and then reverts to its previous level at time ¢ + 1. (That is, the increase in z is
temporary.) More precisely,

92 =64 T 6L =C + 1’ 41 = Cy Zyyp = Cy .

To focus on the ceteris paribus effect of z on y, we set the error term in each time
period to zero. Then,

Vo1 = ag + §yc + 8¢ + b,c,

v, = oy + 8y(c + 1) + §,c + ¢,
Vi1 = g+ 8¢ + 8,(c + 1) + 84,
Visa = @y + 8¢ + 8¢ + &,(c + 1),

Viez = g + 8¢ + 8,c + b,c,

and so on. From the first two equations, y, — y,_, = &,, which shows that §, is the
immediate change in y due to the one-unit increase in z at time . 8, is usually called the
impact propensity or impact multiplier.

Similarly, 6, = y,,; — y,_ is the change in y one period after the temporary change,
and 6, = y,., — y,_, is the change in y two periods after the change. At time ¢ + 3, y
has reverted back to its initial level: y,,; = y,_;. This is because we have assumed that
only two lags of z appear in (10.5). When we graph the §; as a function of j, we obtain
the lag distribution, which summarizes the dynamic effect that a temporary increase in
z has on y. A possible lag distribution for the FDL of order two is given in Figure 10.1.
(Of course, we would never know the parameters Sj; instead, we will estimate the 8_, and
then plot the estimated lag distribution.)

The lag distribution in Figure 10.1 implies that the largest effect is at the first lag.
The lag distribution has a useful interpretation. If we standardize the initial value of y
aty,_, = 0, the lag distribution traces out all subsequent values of y due to a one-unit,
temporary increase in z.

We are also interested in the change in y due to a permanent increase in z. Before
time ¢, z equals the constant c. At time ¢, z increases permanently toc + 1: z, = ¢, s <
tand z, = ¢ + 1, s = t. Again, setting the errors to zero, we have

Vo1 = 0+ §¢c + 8¢ + by,
Y, =0yt o(c+ 1)+ §c+ b,
Vg1 = ag + 8p(c + 1) + 6,(c + 1) + ¢,
Viao = 0g + 8(c + 1)+ 6,(c + 1) + 6,(c + 1),

and so on. With the permanent increase in z, after one period, y has increased by §, +
8,, and after two periods, y has increased by J, + 8, + J,. There are no further changes
in y after two periods. This shows that the sum of the coefficients on current and lagged
z, 0 + 8, + &,, is the long-run change in y given a permanent increase in z and is called
the long-run propensity (LRP) or long-run multiplier. The LRP is often of interest
in distributed lag models.
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Chapter 10 Basic Regression Analysis with Time Series Data

Figure 10.1

A lag distribution with two nonzero lags. The maximum effect is at the first lag.

coefficient

(3)

lag

As an example, in equation (10.4), 8, measures the immediate change in fertility
due to a one-dollar increase in pe. As we mentioned earlier, there are reasons to believe
that §, is small, if not zero. But 8, or 6,, or both, might be positive. If pe permanently
increases by one dollar, then, after two years, gfr will have changed by §, + 6, + 6,.
This model assumes that there are no further changes after two years. Whether or not
this is actually the case is an empirical matter.

A finite distributed lag model of order ¢ is written as

Vi =g+ 6z + 6,z T ... + 8,2, T u,. (10.6)

This contains the static model as a special case by setting §,, &5, ..., §, equal to zero.
Sometimes, a primary purpose for estimating a distributed lag model is to test whether
z has a lagged effect on y. The impact propensity is always the coefficient on the con-
temporaneous z, 6,. Occasionally, we omit z, from (10.6), in which case the impact
propensity is zero. The lag distribution is again the §; graphed as a function of j. The
long-run propensity is the sum of all coefficients on the variables z,_;:

LRP=5,+ 6, + ...+ &

4

(10.7)
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Part 2 Regression Analysis with Time Series Data

Because of the often substantial correlation in z at different lags—that is, due to multi-
collinearity in (10.6)—it can be difficult to obtain precise estimates of the individual &;.
Interestingly, even when the &; cannot be
precisely estimated, we can often get good
QUESTION 10.1 estimates of the LRP. We will see an exam-
In an equation for annual data, suppose that ple later.

We can have more than one explanatory
variable appearing with lags, or we can add
where int is an interest rate and inf is the inflation rate, what are the contemporaneous variables to an FDL
impact and long-run propensities? model. For example, the average education

level for women of childbearing age could
be added to (10.4), which allows us to account for changing education levels for women.

int, = 1.6 + 48 inf, — 15 inf,_, + 32 inf,_, + u,

A Convention About the Time Index

When models have lagged explanatory variables (and, as we will see in the next chap-
ter, models with lagged y), confusion can arise concerning the treatment of initial obser-
vations. For example, if in (10.5), we assume that the equation holds, starting at r = 1,
then the explanatory variables for the first time period are z;, z,, and z_,. Our conven-
tion will be that these are the initial values in our sample, so that we can always start
the time index at ¢ = 1. In practice, this is not very important because regression pack-
ages automatically keep track of the observations available for estimating models with
lags. But for this and the next few chapters, we need some convention concerning the
first time period being represented by the regression equation.

10.3 FINITE SAMPLE PROPERTIES OF OLS UNDER
CLASSICAL ASSUMPTIONS

In this section, we give a complete listing of the finite sample, or small sample, prop-
erties of OLS under standard assumptions. We pay particular attention to how the
assumptions must be altered from our cross-sectional analysis to cover time series
regressions.

Unbiasedness of OLS

The first assumption simply states that the time series process follows a model which
is linear in its parameters.

ASSUMPTION TS.1 (LINEAR IN PARAMETERS)
The stochastic process {(Xg1, X2, - Xera Ve): t = 1,2, ..., n} follows the linear model

v, = Bo + Bix,y + ... + Buxy t+ u, (10.8)

where {u,: t = 1,2,...,n} is the sequence of errors or disturbances. Here, n is the number
of observations (time periods).
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Chapter 10 Basic Regression Analysis with Time Series Data

Table 10.2
Example of X for the Explanatory Variables in Equation (10.3)

t convrte unem yngmle
1 .46 .074 12
2 42 071 12
3 42 .063 A1
4 47 .062 .09
5 48 .060 .10
6 .50 .059 A1
7 .55 .058 12
8 .56 .059 A3

In the notation x,;, t denotes the time period, and j is, as usual, a label to indicate one
of the k explanatory variables. The terminology used in cross-sectional regression
applies here: y, is the dependent variable, explained variable, or regressand; the x,; are
the independent variables, explanatory variables, or regressors.

We should think of Assumption TS.1 as being essentially the same as Assumption
MLR.1 (the first cross-sectional assumption), but we are now specifying a linear model
for time series data. The examples covered in Section 10.2 can be cast in the form of
(10.8) by appropriately defining x,,. For example, equation (10.5) is obtained by setting
Xt = 2o X2 T -5 and X3 = &2

In order to state and discuss several of the remaining assumptions, we let x, =
(X,1,X,2, - - -, X) denote the set all independent variables in the equation at time 7. Further,
X denotes the collection of all independent variables for all time periods. It is useful to
think of X as being an array, with n rows and k columns. This reflects how time series
data are stored in econometric software packages: the " row of X is x,, consisting of all
independent variables for time period ¢. Therefore, the first row of X corresponds to ¢ =
1, the second row to ¢ = 2, and the last row to # = n. An example is given in Table 10.2,
using n = 8 and the explanatory variables in equation (10.3).

The next assumption is the time series analog of Assumption MLR.3, and it also
drops the assumption of random sampling in Assumption MLR.2.

ASSUMPTION TS.2 (ZERO CONDITIONAL MEAN)
For each t, the expected value of the error u,, given the explanatory variables for all time
periods, is zero. Mathematically,
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Part 2 Regression Analysis with Time Series Data

Ew/X)=0,t=12,...,n (10.9)

This is a crucial assumption, and we need to have an intuitive grasp of its meaning. As
in the cross-sectional case, it is easiest to view this assumption in terms of uncorrelat-
edness: Assumption TS.2 implies that the error at time ¢, u,, is uncorrelated with each
explanatory variable in every time period. The fact that this is stated in terms of the con-
ditional expectation means that we must also correctly specify the functional relation-
ship between y, and the explanatory variables. If u, is independent of X and E(x,) = 0,
then Assumption TS.2 automatically holds.

Given the cross-sectional analysis from Chapter 3, it is not surprising that we
require u, to be uncorrelated with the explanatory variables also dated at time ¢: in con-
ditional mean terms,

E(u,|x,,, ..., x,;) = B(u,x,) = 0. (10.10)

When (10.10) holds, we say that the x,; are contemporaneously exogenous. Equation
(10.10) implies that u, and the explanatory variables are contemporaneously uncorre-
lated: Corr(x,;,u,) = 0, for all j.

Assumption TS.2 requires more than contemporaneous exogeneity: u, must be
uncorrelated with x;;, even when s # ¢. This is a strong sense in which the explanatory
variables must be exogenous, and when TS.2 holds, we say that the explanatory vari-
ables are strictly exogenous. In Chapter 11, we will demonstrate that (10.10) is suffi-
cient for proving consistency of the OLS estimator. But to show that OLS is unbiased,
we need the strict exogeneity assumption.

In the cross-sectional case, we did not explicitly state how the error term for, say,
person i, u,, is related to the explanatory variables for other people in the sample. The
reason this was unnecessary is that, with random sampling (Assumption MLR.2), u; is
automatically independent of the explanatory variables for observations other than i. In
a time series context, random sampling is almost never appropriate, so we must explic-
itly assume that the expected value of u, is not related to the explanatory variables in
any time periods.

It is important to see that Assumption TS.2 puts no restriction on correlation in the
independent variables or in the u, across time. Assumption TS.2 only says that the aver-
age value of u, is unrelated to the independent variables in all time periods.

Anything that causes the unobservables at time ¢ to be correlated with any of the
explanatory variables in any time period causes Assumption TS.2 to fail. Two leading
candidates for failure are omitted variables and measurement error in some of the
regressors. But, the strict exogeneity assumption can also fail for other, less obvious
reasons. In the simple static regression model

Ve = BO + Blzt + U,

Assumption TS.2 requires not only that u, and z, are uncorrelated, but that u, is also
uncorrelated with past and future values of z. This has two implications. First, z can
have no lagged effect on y. If z does have a lagged effect on y, then we should estimate
a distributed lag model. A more subtle point is that strict exogeneity excludes the pos-
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Chapter 10 Basic Regression Analysis with Time Series Data

sibility that changes in the error term today can cause future changes in z. This effec-
tively rules out feedback from y on future values of z. For example, consider a simple
static model to explain a city’s murder rate in terms of police officers per capita:

mrdrte, = B, + B, polpc, + u,.

It may be reasonable to assume that u, is uncorrelated with polpc, and even with past
values of polpc,; for the sake of argument, assume this is the case. But suppose that the
city adjusts the size of its police force based on past values of the murder rate. This
means that, say, polpc,, , might be correlated with u, (since a higher u, leads to a higher
mrdrte,). If this is the case, Assumption TS.2 is generally violated.

There are similar considerations in distributed lag models. Usually we do not worry
that u, might be correlated with past z because we are controlling for past z in the model.
But feedback from u to future z is always an issue.

Explanatory variables that are strictly exogenous cannot react to what has happened
to y in the past. A factor such as the amount of rainfall in an agricultural production
function satisfies this requirement: rainfall in any future year is not influenced by the
output during the current or past years. But something like the amount of labor input
might not be strictly exogenous, as it is chosen by the farmer, and the farmer may adjust
the amount of labor based on last year’s yield. Policy variables, such as growth in the
money supply, expenditures on welfare, highway speed limits are often influenced by
what has happened to the outcome variable in the past. In the social sciences, many
explanatory variables may very well violate the strict exogeneity assumption.

Even though Assumption TS.2 can be unrealistic, we begin with it in order to conclude
that the OLS estimators are unbiased. Most treatments of static and finite distributed lag
models assume TS.2 by making the stronger assumption that the explanatory variables are
nonrandom, or fixed in repeated samples. The nonrandomness assumption is obviously
false for time series observations; Assumption TS.2 has the advantage of being more real-
istic about the random nature of the x,;, while it isolates the necessary assumption about
how u, and the explanatory variables are related in order for OLS to be unbiased.

The last assumption needed for unbiasedness of OLS is the standard no perfect
collinearity assumption.

ASSUMPTION TS.3 (NO PERFECT COLLINEARITY)
In the sample (and therefore in the underlying time series process), no independent variable
is constant or a perfect linear combination of the others.

We discussed this assumption at length in the context of cross-sectional data in
Chapter 3. The issues are essentially the same with time series data. Remember,
Assumption TS.3 does allow the explanatory variables to be correlated, but it rules out
perfect correlation in the sample.

Under Assumptions TS.1, TS.2, and TS.3, the OLS estimators are unbiased conditional on
X, and therefore unconditionally as well: E(8) = B, j = 0,1,..., k.
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The proof of this theorem is essentially the
STION 10.2 same as that for Theorem 3.1 in Chapter 3,

In the FDL model y, = ay + 8,2, + 8:z,_, + U, what do we need | and so we omit it. When comparing
to assume about the sequence {zo, z;, ..., z,} in order for As- Theorem 10.1 to Theorem 3.1, we have

sumption TS.3 to hold?

been able to drop the random sampling

assumption by assuming that, for each ¢, u,
has zero mean given the explanatory variables at all time periods. If this assumption
does not hold, OLS cannot be shown to be unbiased.

The analysis of omitted variables bias, which we covered in Section 3.3, is essen-
tially the same in the time series case. In particular, Table 3.2 and the discussion sur-
rounding it can be used as before to determine the directions of bias due to omitted
variables.

The Variances of the OLS Estimators and the
Gauss-Markov Theorem

We need to add two assumptions to round out the Gauss-Markov assumptions for time
series regressions. The first one is familiar from cross-sectional analysis.

ASSUMPTION TS.4 (HOMOSKEDASTICITY)
Conditional on X, the variance of u, is the same for all t: Var(u/X) = Var(u) = o2,
t=1,2,...,n

This assumption means that Var(u,/X ) cannot depend on X—it is sufficient that «, and X
are independent—and that Var(u,) must be constant over time. When TS.4 does not hold,
we say that the errors are heteroskedastic, just as in the cross-sectional case. For exam-
ple, consider an equation for determining three-month, T-bill rates (i3,) based on the
inflation rate (inf,) and the federal deficit as a percentage of gross domestic product (def,):

i3, = By + Biinf, + B.def, + u,. (10.1)

Among other things, Assumption TS.4 requires that the unobservables affecting inter-
est rates have a constant variance over time. Since policy regime changes are known to
affect the variability of interest rates, this assumption might very well be false. Further,
it could be that the variability in interest rates depends on the level of inflation or rela-
tive size of the deficit. This would also violate the homoskedasticity assumption.

When Var(u,|X) does depend on X, it often depends on the explanatory variables at
time ¢, x,. In Chapter 12, we will see that the tests for heteroskedasticity from Chapter
8 can also be used for time series regressions, at least under certain assumptions.

The final Gauss-Markov assumption for time series analysis is new.

ASSUMPTION TS.5 (NO SERIAL CORRELATION)
Conditional on X, the errors in two different time periods are uncorrelated: Corr(u,,ug|X) =
0, forall t # s.
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The easiest way to think of this assumption is to ignore the conditioning on X. Then,
Assumption TS.5 is simply

Corr(u,,u,) = 0, for all ¢ # s. (10.12)

(This is how the no serial correlation assumption is stated when X is treated as nonran-
dom.) When considering whether Assumption TS.5 is likely to hold, we focus on equa-
tion (10.12) because of its simple interpretation.

When (10.12) is false, we say that the errors in (10.8) suffer from serial correla-
tion, or autocorrelation, because they are correlated across time. Consider the case of
errors from adjacent time periods. Suppose that, when u,_; > 0 then, on average, the
error in the next time period, u,, is also positive. Then Corr(u,,u,_;) > 0, and the errors
suffer from serial correlation. In equation (10.11) this means that, if interest rates are
unexpectedly high for this period, then they are likely to be above average (for the given
levels of inflation and deficits) for the next period. This turns out to be a reasonable
characterization for the error terms in many time series applications, which we will see
in Chapter 12. For now, we assume TS.5.

Importantly, Assumption TS.5 assumes nothing about temporal correlation in the
independent variables. For example, in equation (10.11), inf, is almost certainly corre-
lated across time. But this has nothing to do with whether TS.5 holds.

A natural question that arises is: In Chapters 3 and 4, why did we not assume that
the errors for different cross-sectional observations are uncorrelated? The answer
comes from the random sampling assumption: under random sampling, u; and u, are
independent for any two observations i and 4. It can also be shown that this is true, con-
ditional on all explanatory variables in the sample. Thus, for our purposes, serial corre-
lation is only an issue in time series regressions.

Assumptions TS.1 through TS.5 are the appropriate Gauss-Markov assumptions for
time series applications, but they have other uses as well. Sometimes, TS.1 through
TS.5 are satisfied in cross-sectional applications, even when random sampling is not a
reasonable assumption, such as when the cross-sectional units are large relative to the
population. It is possible that correlation exists, say, across cities within a state, but as
long as the errors are uncorrelated across those cities, Assumption TS.5 holds. But we
are primarily interested in applying these assumptions to regression models with time
series data.

Under the time series Gauss-Markov assumptions TS.1 through TS.5, the variance of ,é/
conditional on X, is

Var(B|X) = o/[SST,(1 — R)1,j = 1,....k, (10.13)

where SST; is the total sum of squares of x,; and R? is the R-squared from the regression of
x; on the other independent variables.
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Equation (10.13) is the exact variance we derived in Chapter 3 under the cross-
sectional Gauss-Markov assumptions. Since the proof is very similar to the one for
Theorem 3.2, we omit it. The discussion from Chapter 3 about the factors causing large
variances, including multicollinearity among the explanatory variables, applies imme-
diately to the time series case.

The usual estimator of the error variance is also unbiased under Assumptions TS.1
through TS.5, and the Gauss-Markov theorem holds.

Under Assumptions TS.1 through TS.5, the estimator 62 = SSR/df is an unbiased estimator
of o2, wheredf=n — k — 1.

Under Assumptions TS.1 through TS.5, the OLS estimators are the best linear unbiased esti-
mators conditional on X.

The bottom line here is that OLS has
QUESTION 10.3 the same desirable finite sample properties

In the FDL model y, = ao + 80z + 8,Z,_; + U,, explain the nature |~ under TS.1 through TS.5 that it has under
of any multicollinearity in the explanatory variables. MLR.1 through MLR.5.

Inference Under the Classical Linear Model Assumptions

In order to use the usual OLS standard errors, ¢ statistics, and F statistics, we need to
add a final assumption that is analogous to the normality assumption we used for cross-
sectional analysis.

ASSUMPTION TS.6 (NORMALITY)
The errors u, are independent of X and are independently and identically distributed as
Normal(0, o?).

Assumption TS.6 implies TS.3, TS.4, and TS.5, but it is stronger because of the
independence and normality assumptions.

Under Assumptions TS.1 through TS.6, the CLM assumptions for time series, the OLS esti-
mators are normally distributed, conditional on X. Further, under the null hypothesis, each
t statistic has a t distribution, and each F statistic has an F distribution. The usual construc-
tion of confidence intervals is also valid.
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The implications of Theorem 10.5 are of utmost importance. It implies that, when
Assumptions TS.1 through TS.6 hold, everything we have learned about estimation and
inference for cross-sectional regressions applies directly to time series regressions.
Thus, ¢ statistics can be used for testing statistical significance of individual explanatory
variables, and F statistics can be used to test for joint significance.

Just as in the cross-sectional case, the usual inference procedures are only as good
as the underlying assumptions. The classical linear model assumptions for time series
data are much more restrictive than those for the cross-sectional data—in particular, the
strict exogeneity and no serial correlation assumptions can be unrealistic. Nevertheless,
the CLM framework is a good starting point for many applications.

(Static Phillips Curve)

To determine whether there is a tradeoff, on average, between unemployment and infla-
tion, we can test Hy: B; = 0 against Hy: B; < 0 in equation (10.2). If the classical linear
model assumptions hold, we can use the usual OLS t statistic. Using annual data for the
United States in PHILLIPS.RAW, for the years 1948 through 1996, we obtain

inf, = 1.42 + 468 unem,
(1.72) (.289) (10.14)
n =49, R? = .053, R*> = .033.

This equation does not suggest a tradeoff between unem and inf: B, > 0. The t statistic for
B, is about 1.62, which gives a p-value against a two-sided alternative of about .11. Thus,
if anything, there is a positive relationship between inflation and unemployment.

There are some problems with this analysis that we cannot address in detail now. In
Chapter 12, we will see that the CLM assumptions do not hold. In addition, the static
Phillips curve is probably not the best model for determining whether there is a short-
run tradeoff between inflation and unemployment. Macroeconomists generally prefer
the expectations augmented Phillips curve, a simple example of which is given in
Chapter 11.

As a second example, we estimate equation (10.11) using anual data on the U.S.
economy.

(Effects of Inflation and Deficits on Interest Rates)

The data in INTDEF.RAW come from the 1997 Economic Report of the President and span
the years 1948 through 1996. The variable i3 is the three-month T-bill rate, inf is the annual
inflation rate based on the consumer price index (CPI), and def is the federal budget deficit
as a percentage of GDP. The estimated equation is
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i3 = 1.25 + .613 inf, + .700 def,
0.44) (.076) (.118) (10.15)
n =49, R* = 697, R> = .683.

These estimates show that increases in inflation and the relative size of the deficit work
together to increase short-term interest rates, both of which are expected from basic eco-
nomics. For example, a ceteris paribus one percentage point increase in the inflation rate
increases i3 by .613 points. Both inf and def are very statistically significant, assuming, of
course, that the CLM assumptions hold.

10.4 FUNCTIONAL FORM, DUNMIMY VARIABLES, AND
INDEX NUMBERS

All of the functional forms we learned about in earlier chapters can be used in time
series regressions. The most important of these is the natural logarithm: time series
regressions with constant percentage effects appear often in applied work.

(Puerto Rican Employment and the Minimum Wage)

Annual data on the Puerto Rican employment rate, minimum wage, and other variables are
used by Castillo-Freedman and Freedman (1992) to study the effects of the U.S. minimum
wage on employment in Puerto Rico. A simplified version of their model is

log( prepop,) = B, + Bilog(mincov,) + B,log(usgnp,) + u,, (10.16)

where prepop; is the employment rate in Puerto Rico during year t (ratio of those working
to total population), usgnp, is real U.S. gross national product (in billions of dollars), and
mincov measures the importance of the minimum wage relative to average wages. In par-
ticular, mincov = (avgmin/avgwage)-avgcov, where avgmin is the average minimum wage,
avgwage is the average overall wage, and avgcov is the average coverage rate (the pro-
portion of workers actually covered by the minimum wage law).

Using data for the years 1950 through 1987 gives

log(prepop,) = —1.05 — .154 log(mincov,) — .012 log(usgnp,)
(0.77) (.065) (.089) (10.17)
n =38, R>=.661, R* = .641.

The estimated elasticity of prepop with respect to mincov is —.154, and it is statistically sig-
nificant with t = —2.37. Therefore, a higher minimum wage lowers the employment rate,
something that classical economics predicts. The GNP variable is not statistically significant,
but this changes when we account for a time trend in the next section.
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We can use logarithmic functional forms in distributed lag models, too. For exam-
ple, for quarterly data, suppose that money demand (M,) and gross domestic product
(GDP,) are related by

log(M,) = o + 6,log(GDP,) + 6,1og(GDP,_,) + 6,log(GDP,_,)
+ 8;log(GDP,_;) + 6,log(GDP,_,) + u,.

The impact propensity in this equation, J, is also called the short-run elasticity: it
measures the immediate percentage change in money demand given a 1% increase in
GDP. The long-run propensity, §, + 8, + ... + J,, is sometimes called the long-run
elasticity: it measures the percentage increase in money demand after four quarters
given a permanent 1% increase in GDP.

Binary or dummy independent variables are also quite useful in time series appli-
cations. Since the unit of observation is time, a dummy variable represents whether, in
each time period, a certain event has occurred. For example, for annual data, we can
indicate in each year whether a Democrat or a Republican is president of the United
States by defining a variable democ,, which is unity if the president is a Democrat, and
zero otherwise. Or, in looking at the effects of capital punishment on murder rates in
Texas, we can define a dummy variable for each year equal to one if Texas had capital
punishment during that year, and zero otherwise.

Often dummy variables are used to isolate certain periods that may be systemati-
cally different from other periods covered by a data set.

(Effects of Personal Exemption on Fertility Rates)

The general fertility rate (gfr) is the number of children born to every 1,000 women of child-
bearing age. For the years 1913 through 1984, the equation,

gfr, = Bo + Bipe, + Boww2, + Bypill, + u,

explains gfr in terms of the average real dollar value of the personal tax exemption (pe) and
two binary variables. The variable ww2 takes on the value unity during the years 1941
through 1945, when the United States was involved in World War II. The variable pill is unity
from 1963 on, when the birth control pill was made available for contraception.

Using the data in FERTIL3.RAW, which were taken from the article by Whittington, Alm,
and Peters (1990), gives

gfr, = 98.68 + .083 pe, — 24.24 ww2, — 31.59 pill,
(3.21) (.030) (7.46) (4.08) (10.18)
n=72,R>= 473, R? = 450.

Each variable is statistically significant at the 1% level against a two-sided alternative. We
see that the fertility rate was lower during World War II: given pe, there were about 24
fewer births for every 1,000 women of childbearing age, which is a large reduction. (From
1913 through 1984, gfr ranged from about 65 to 127.) Similarly, the fertility rate has been
substantially lower since the introduction of the birth control pill.
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The variable of economic interest is pe. The average pe over this time period is $100.40,
ranging from zero to $243.83. The coefficient on pe implies that a 12-dollar increase in pe
increases gfr by about one birth per 1,000 women of childbearing age. This effect is hardly
trivial.

In Section 10.2, we noted that the fertility rate may react to changes in pe with a lag.
Estimating a distributed lag model with two lags gives

gfr, = 95.87 + .073 pe, — .0058 pe, , + .034 pe, ,

(3.28) (.126)  (.1557) (.126)
— 22.13 ww2, — 31.30 pill, (10.19)
(10.73) (3.98)

n =70, R*> = 499, R*> = 459.

In this regression, we only have 70 observations because we lose two when we lag pe
twice. The coefficients on the pe variables are estimated very imprecisely, and each one is
individually insignificant. It turns out that there is substantial correlation between pe,, pe;_,,
and pe,_,, and this multicollinearity makes it difficult to estimate the effect at each lag.
However, pe,, pe,_,, and pe,_, are jointly significant: the F statistic has a p-value = .012.
Thus, pe does have an effect on gfr [as we already saw in (10.18)], but we do not have
good enough estimates to determine whether it is contemporaneous or with a one- or two-
year lag (or some of each). Actually, pe,_, and pe,_, are jointly insignificant in this equation
(p-value = .95), so at this point, we would be justified in using the static model. But for
illustrative purposes, let us obtain a confidence interval for the long-run propensity in this
model.

The estimated LRP in (10.19) is .073 — .0058 + .034 = .101. However, we do not have
enough information in (10.19) to obtain the standard error of this estimate. To obtain the
standard error of the estimated LRP, we use the trick suggested in Section 4.4. Let 6, =
8 + &, + 8, denote the LRP and write §, in terms of 6,, §,, and 8, as 6, = 6, — 8, — 5.
Next, substitute for &, in the model

gfr, = ay, + dype, + 6, pe,_, + S, pe,_, + ...
to get
gfr, = ay + (0, — 6, — d,)pe, + 8,pe,_, + S,pe,_, + ...
ay + Oype, + Oi(pe,_, — pe,) + 6,(pe,_, — pe) + ...

From this last equation, we can obtain 6, and its standard error by regressing gfr, on pe,,
(pe,_i — pey, (pe;—, — pey), ww2,, and pill,. The coefficient and associated standard error
on pe, are what we need. Running this regression gives 6, = .101 as the coefficient on pe,
(as we already knew from above) and se(éo) = .030 [which we could not compute from
(10.19)]. Therefore, the t statistic for (30 is about 3.37, so éo is statistically different from zero
at small significance levels. Even though none of the Sjis individually significant, the LRP is
very significant. The 95% confidence interval for the LRP is about .041 to .160.
Whittington, Alm, and Peters (1990) allow for further lags but restrict the coefficients
to help alleviate the multicollinearity problem that hinders estimation of the individual §;.
(See Problem 10.6 for an example of how to do this.) For estimating the LRP, which would
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seem to be of primary interest here, such restrictions are unnecessary. Whittington, Alm,
and Peters also control for additional variables, such as average female wage and the
unemployment rate.

Binary explanatory variables are the key component in what is called an event
study. In an event study, the goal is to see whether a particular event influences some
outcome. Economists who study industrial organization have looked at the effects of
certain events on firm stock prices. For example, Rose (1985) studied the effects of new
trucking regulations on the stock prices of trucking companies.

A simple version of an equation used for such event studies is

R{ =B+ B R+ Byd, + u,

where R/ is the stock return for firm f during period ¢ (usually a week or a month), R
is the market return (usually computed for a broad stock market index), and d, is a
dummy variable indicating when the event occurred. For example, if the firm is an air-
line, d, might denote whether the airline experienced a publicized accident or near acci-
dent during week ¢. Including R}" in the equation controls for the possibility that broad
market movements might coincide with airline accidents. Sometimes, multiple dummy
variables are used. For example, if the event is the imposition of a new regulation that
might affect a certain firm, we might include a dummy variable that is one for a few
weeks before the regulation was publicly announced and a second dummy variable for
a few weeks after the regulation was announced. The first dummy variable might detect
the presence of inside information.

Before we give an example of an event study, we need to discuss the notion of an
index number and the difference between nominal and real economic variables. An
index number typically aggregates a vast amount of information into a single quantity.
Index numbers are used regularly in time series analysis, especially in macroeconomic
applications. An example of an index number is the index of industrial production (IIP),
computed monthly by the Board of Governors of the Federal Reserve. The IIP is a mea-
sure of production across a broad range of industries, and, as such, its magnitude in a
particular year has no quantitative meaning. In order to interpret the magnitude of the
IIP, we must know the base period and the base value. In the 1997 Economic Report
of the President (ERP), the base year is 1987, and the base value is 100. (Setting IIP to
100 in the base period is just a convention; it makes just as much sense to set I[IP = 1
in 1987, and some indexes are defined with one as the base value.) Because the IIP was
107.7 in 1992, we can say that industrial production was 7.7% higher in 1992 than in
1987. We can use the IIP in any two years to compute the percentage difference in
industrial output during those two years. For example, since IIP = 61.4 in 1970 and
IIP = 85.7 in 1979, industrial production grew by about 39.6% during the 1970s.

It is easy to change the base period for any index number, and sometimes we must
do this to give index numbers reported with different base years a common base year.
For example, if we want to change the base year of the IIP from 1987 to 1982, we sim-
ply divide the IIP for each year by the 1982 value and then multiply by 100 to make the
base period value 100. Generally, the formula is
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newindex, = 100(oldindex,/oldindex, .y qse)> (10.20)

where oldindex, ... 15 the original value of the index in the new base year. For exam-
ple, with base year 1987, the IIP in 1992 is 107.7; if we change the base year to 1982,
the IIP in 1992 becomes 100(107.7/81.9) = 131.5 (because the IIP in 1982 was 81.9).

Another important example of an index number is a price index, such as the consumer
price index (CPI). We already used the CPI to compute annual inflation rates in Example
10.1. As with the industrial production index, the CPI is only meaningful when we com-
pare it across different years (or months, if we are using monthly data). In the 1997 ERP,
CPI = 38.8 in 1970, and CPI = 130.7 in 1990. Thus, the general price level grew by
almost 237% over this twenty-year period. (In 1997, the CPI is defined so that its average
in 1982, 1983, and 1984 equals 100; thus, the base period is listed as 1982—-1984.)

In addition to being used to compute inflation rates, price indexes are necessary for
turning a time series measured in nominal dollars (or current dollars) into real dollars
(or constant dollars). Most economic behavior is assumed to be influenced by real, not
nominal, variables. For example, classical labor economics assumes that labor supply
is based on the real hourly wage, not the nominal wage. Obtaining the real wage from
the nominal wage is easy if we have a price index such as the CPI. We must be a little
careful to first divide the CPI by 100, so that the value in the base year is one. Then, if
w denotes the average hourly wage in nominal dollars and p = CPI/100, the real wage
is simply w/p. This wage is measured in dollars for the base period of the CPI. For
example, in Table B-45 in the 1997 ERP, average hourly earnings are reported in nom-
inal terms and in 1982 dollars (which means that the CPI used in computing the real
wage had the base year 1982). This table reports that the nominal hourly wage in 1960
was $2.09, but measured in 1982 dollars, the wage was $6.79. The real hourly wage had
peaked in 1973, at $8.55 in 1982 dollars, and had fallen to $7.40 by 1995. Thus, there
has been a nontrivial decline in real wages over the past 20 years. (If we compare nom-
inal wages from 1973 and 1995, we get a very misleading picture: $3.94 in 1973 and
$11.44 in 1995. Since the real wage has actually fallen, the increase in the nominal
wage is due entirely to inflation.)

Standard measures of economic output are in real terms. The most important of
these is gross domestic product, or GDP. When growth in GDP is reported in the pop-
ular press, it is always real GDP growth. In the 1997 ERP, Table B-9, GDP is reported
in billions of 1992 dollars. We used a similar measure of output, real gross national
product, in Example 10.3.

Interesting things happen when real dollar variables are used in combination with
natural logarithms. Suppose, for example, that average weekly hours worked are related
to the real wage as

log(hours) = B, + B,log(w/p) + u.
Using the fact that log(w/p) = log(w) — log(p), we can write this as

log(hours) = B, + Bilog(w) + B,log(p) + u, (10.21)

but with the restriction that 8, = —f3,. Therefore, the assumption that only the real
wage influences labor supply imposes a restriction on the parameters of model (10.21).
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If B, # —B,, then the price level has an effect on labor supply, something that can hap-
pen if workers do not fully understand the distinction between real and nominal wages.

There are many practical aspects to the actual computation of index numbers, but it
would take us too far afield to cover those here. Detailed discussions of price indexes
can be found in most intermediate macroeconomic texts, such as Mankiw (1994,
Chapter 2). For us, it is important to be able to use index numbers in regression analy-
sis. As mentioned earlier, since the magnitudes of index numbers are not especially
informative, they often appear in logarithmic form, so that regression coefficients have
percentage change interpretations.

We now give an example of an event study that also uses index numbers.

(Antidumping Filings and Chemical Imports)

Krupp and Pollard (1996) analyzed the effects of antidumping filings by U.S. chemical
industries on imports of various chemicals. We focus here on one industrial chemical, bar-
ium chloride, a cleaning agent used in various chemical processes and in gasoline produc-
tion. In the early 1980s, U.S. barium chloride producers believed that China was offering its
U.S. imports at an unfairly low price (an action known as dumping), and the barium chlo-
ride industry filed a complaint with the U.S. International Trade Commission (ITC) in
October 1983. The ITC ruled in favor of the U.S. barium chloride industry in October 1984.
There are several questions of interest in this case, but we will touch on only a few of them.
First, are imports unusually high in the period immediately preceding the initial filing?
Second, do imports change noticeably after an antidumping filing? Finally, what is the
reduction in imports after a decision in favor of the U.S. industry?

To answer these questions, we follow Krupp and Pollard by defining three dummy vari-
ables: befile6 is equal to one during the six months before filing, affile6 indicates the six
months after filing, and afdec6 denotes the six months after the positive decision. The
dependent variable is the volume of imports of barium chloride from China, chnimp, which
we use in logarithmic form. We include as explanatory variables, all in logarithmic form, an
index of chemical production, chempi (to control for overall demand for barium chloride),
the volume of gasoline production, gas (another demand variable), and an exchange rate
index, rtwex, which measures the strength of the dollar against several other currencies.
The chemical production index was defined to be 100 in June 1977. The analysis here dif-
fers somewhat from Krupp and Pollard in that we use natural logarithms of all variables
(except the dummy variables, of course), and we include all three dummy variables in the
same regression.

Using monthly data from February 1978 through December 1988 gives the following:

log(chnimp) = —17.80 + 3.12 log(chempi) + .196 log(gas)

(21.05) (0.48) (.907)
+ .983 log(rtwex) + .060 befile6 — .032 affile6 — .566 afdec6 (10.22)
(-400) (.261) (:264) (.286)

n = 131, R?> = 305, R> = 271.
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The equation shows that befile6 is statistically insignificant, so there is no evidence that
Chinese imports were unusually high during the six months before the suit was filed.
Further, although the estimate on affile6 is negative, the coefficient is small (indicating
about a 3.2% fall in Chinese imports), and it is statistically very insignificant. The coefficient
on afdec6 shows a substantial fall in Chinese imports of barium chloride after the decision
in favor of the U.S. industry, which is not surprising. Since the effect is so large, we com-
pute the exact percentage change: 100[exp(—.566) — 1] = —43.2%. The coefficient is sta-
tistically significant at the 5% level against a two-sided alternative.

The coefficient signs on the control variables are what we expect: an increase in over-
all chemical production increases the demand for the cleaning agent. Gasoline production
does not affect Chinese imports significantly. The coefficient on log(rtwex) shows that an
increase in the value of the dollar relative to other currencies increases the demand for
Chinese imports, as is predicted by economic theory. (In fact, the elasticity is not statistically
different from one. Why?)

Interactions among qualitative and quantitative variables are also used in time series
analysis. An example with practical importance follows.

(Election Outcomes and Economic Performance)

Fair (1996) summarizes his work on explaining presidential election outcomes in terms of
economic performance. He explains the proportion of the two-party vote going to the
Democratic candidate using data for the years 1916 through 1992 (every four years) for a
total of 20 observations. We estimate a simplified version of Fair's model (using variable
names that are more descriptive than his):

demvote = B, + B,partyWH + B,incum + B;partyWH:gnews
+ B,partyWH inf + u,

where demvote is the proportion of the two-party vote going to the Democratic candidate.
The explanatory variable partyWH is similar to a dummy variable, but it takes on the value
one if a Democrat is in the White House and —1 if a Republican is in the White House. Fair
uses this variable to impose the restriction that the effect of a Republican being in the White
House has the same magnitude but opposite sign as a Democrat being in the White House.
This is a natural restriction since the party shares must sum to one, by definition. It also
saves two degrees of freedom, which is important with so few observations. Similarly, the
variable incum is defined to be one if a Democratic incumbent is running, —1 if a
Republican incumbent is running, and zero otherwise. The variable gnews is the number of
quarters during the current administration’s first 15 (out of 16 total), where the quarterly
growth in real per capita output was above 2.9% (at an annual rate), and inf is the aver-
age annual inflation rate over the first 15 quarters of the administration. See Fair (1996) for
precise definitions.

Economists are most interested in the interaction terms partyWH-gnews and
partyWH:-inf. Since partyWH equals one when a Democrat is in the White House, 8; mea-
sures the effect of good economic news on the party in power; we expect 85 > 0. Similarly,
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B, measures the effect that inflation has on the party in power. Because inflation during an
administration is considered to be bad news, we expect 8, < 0.
The estimated equation using the data in FAIR.RAW is

demvote = 481 — .0435 partyWH + .0544 incum
(.012) (.0405) (.0234)

+ .0108 partyWH-gnews — .0077 partyWH-inf (10.23)
(-0041) (-0033)

n =20, R* = .663, R* = .573.

All coefficients, except that on partyWH, are statistically significant at the 5% level.
Incumbency is worth about 5.4 percentage points in the share of the vote. (Remember,
demvote is measured as a proportion.) Further, the economic news variable has a positive
effect: one more quarter of good news is worth about 1.1 percentage points. Inflation, as
expected, has a negative effect: if average annual inflation is, say, two percentage points
higher, the party in power loses about 1.5 percentage points of the two-party vote.

We could have used this equation to predict the outcome of the 1996 presidential elec-
tion between Bill Clinton, the Democrat, and Bob Dole, the Republican. (The independent
candidate, Ross Perot, is excluded because Fair's equation is for the two-party vote only.)
Since Clinton ran as an incumbent, partyWH = 1 and incum = 1. To predict the election
outcome, we need the variables gnews and inf. During Clinton’s first 15 quarters in office,
per capita real GDP exceeded 2.9% three times, so gnews = 3. Further, using the GDP price
deflator reported in Table B-4 in the 1997 ERP, the average annual inflation rate (computed
using Fair's formula) from the fourth quarter in 1991 to the third quarter in 1996 was
3.019. Plugging these into (10.23) gives

demvote = 481 — .0435 + .0544 + .0108(3) — .0077(3.019) =~ .5011.

Therefore, based on information known before the election in November, Clinton was pre-
dicted to receive a very slight majority of the two-party vote: about 50.1%. In fact, Clinton
won more handily: his share of the two-party vote was 54.65%.

10.5 TRENDS AND SEASONALITY
Characterizing Trending Time Series

Many economic time series have a common tendency of growing over time. We must
recognize that some series contain a time trend in order to draw causal inference using
time series data. Ignoring the fact that two sequences are trending in the same or oppo-
site directions can lead us to falsely conclude that changes in one variable are actually
caused by changes in another variable. In many cases, two time series processes appear
to be correlated only because they are both trending over time for reasons related to
other unobserved factors.

Figure 10.2 contains a plot of labor productivity (output per hour of work) in the
United States for the years 1947 through 1987. This series displays a clear upward
trend, which reflects the fact that workers have become more productive over time.
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Figure 10.2
Output per labor hour in the United States during the years 1947-1987; 1977 = 100.
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Other series, at least over certain time periods, have clear downward trends. Because
positive trends are more common, we will focus on those during our discussion.
What kind of statistical models adequately capture trending behavior? One popular
formulation is to write the series {y,} as
Vvo=ay Tt atte,t=12 ..., (10.24)
where, in the simplest case, {e,} is an independent, identically distributed (i.i.d.)
sequence with E(e,) = 0, Var(e,) = o2 Note how the parameter «, multiplies time, ¢,
resulting in a linear time trend. Interpreting «; in (10.24) is simple: holding all other

factors (those in e,) fixed, «; measures the change in y, from one period to the next due
to the passage of time: when Ae, = 0,

Ayl =V T Yi—1 T O

Another way to think about a sequence that has a linear time trend is that its aver-
age value is a linear function of time:

E(y) = ay + aqt. (10.25)

If a; > 0, then, on average, y, is growing over time and therefore has an upward trend.
If @, <0, then y, has a downward trend. The values of y, do not fall exactly on the line
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QUESTION 10.4

In Example 10.4, we used the general fertility rate as the dependent
variable in a finite distributed lag model. From 1950 through the
mid-1980s, the gfr has a clear downward trend. Can a linear trend
with @, < 0 be realistic for all future time periods? Explain.

Basic Regression Analysis with Time Series Data

in (10.25) due to randomness, but the
expected values are on the line. Unlike the
mean, the variance of y, is constant across
time: Var(y,) = Var(e,) = o>

If {e,} is an i.i.d. sequence, then {y,} is

an independent, though not identically,
distributed sequence. A more realistic
characterization of trending time series allows {e,} to be correlated over time, but this
does not change the flavor of a linear time trend. In fact, what is important for regres-
sion analysis under the classical linear model assumptions is that E(y,) is linear in z.
When we cover large sample properties of OLS in Chapter 11, we will have to discuss
how much temporal correlation in {e,} is allowed.

Many economic time series are better approximated by an exponential trend,
which follows when a series has the same average growth rate from period to period.
Figure 10.3 plots data on annual nominal imports for the United States during the years
1948 through 1995 (ERP 1997, Table B-101).

In the early years, we see that the change in the imports over each year is relatively
small, whereas the change increases as time passes. This is consistent with a constant
average growth rate: the percentage change is roughly the same in each period.

In practice, an exponential trend in a time series is captured by modeling the natural
logarithm of the series as a linear trend (assuming that y, > 0):

Figure 10.3
Nominal U.S. imports during the years 1948-1995 (in billions of U.S. dollars).
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log(y,) = By + Byt te,t=12,.... (10.26)

Exponentiating shows that y, itself has an exponential trend: y, = exp(8, + Bt + e,).
Because we will want to use exponentially trending time series in linear regression
models, (10.26) turns out to be the most convenient way for representing such series.

How do we interpret B8, in (10.26)? Remember that, for small changes, Alog(y,) =
log(y,) — log(y,_,) is approximately the proportionate change in y,:

AlOg(y,) = (yt - ytfl)/ytfl' (10-27)

The right-hand side of (10.27) is also called the growth rate in y from period ¢t — 1 to
period t. To turn the growth rate into a percent, we simply multiply by 100. If y, follows
(10.26), then, taking changes and setting Ae, = 0,

Alog(y,) = B,, for all z. (10.28)

In other words, 3, is approximately the average per period growth rate in y,. For exam-
ple, if ¢ denotes year and B, = .027, then y, grows about 2.7% per year on average.

Although linear and exponential trends are the most common, time trends can be
more complicated. For example, instead of the linear trend model in (10.24), we might
have a quadratic time trend:

y, = oy + at + at® + e, (10.29)

If @, and «, are positive, then the slope of the trend is increasing, as is easily seen by
computing the approximate slope (holding e, fixed):

Ay,
Ar =, + 2a,t. (10.20)

[If you are familiar with calculus, you recognize the right-hand side of (10.30) as the
derivative of o, + a;t + a,t? with respect to ¢.] If a; > 0, but a,, < 0, the trend has a
hump shape. This may not be a very good description of certain trending series because
it requires an increasing trend to be followed, eventually, by a decreasing trend.
Nevertheless, over a given time span, it can be a flexible way of modeling time series
that have more complicated trends than either (10.24) or (10.26).

Using Trending Variables in Regression Analysis

Accounting for explained or explanatory variables that are trending is fairly straight-
forward in regression analysis. First, nothing about trending variables necessarily vio-
lates the classical linear model assumptions, TS.1 through TS.6. However, we must be
careful to allow for the fact that unobserved, trending factors that affect y, might also
be correlated with the explanatory variables. If we ignore this possibility, we may find
a spurious relationship between y, and one or more explanatory variables. The phe-
nomenon of finding a relationship between two or more trending variables simply
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because each is growing over time is an example of spurious regression. Fortunately,
adding a time trend eliminates this problem.

For concreteness, consider a model where two observed factors, x,; and x,,, affect
¥,. In addition, there are unobserved factors that are systematically growing or shrink-
ing over time. A model that captures this is

Y = Bo T Bixy T BoXip + Bst + u,. (10.31)

This fits into the multiple linear regression framework with x,; = t. Allowing for the
trend in this equation explicitly recognizes that y, may be growing (35 > 0) or shrink-
ing (B; < 0) over time for reasons essentially unrelated to x,; and x,,. If (10.31) satis-
fies assumptions TS.1, TS.2, and TS.3, then omitting ¢ from the regression and
regressing y, on x,,, x,, will generally yield biased estimators of 3, and 3,: we have
effectively omitted an important variable, ¢, from the regression. This is especially true
if x,, and x,, are themselves trending, because they can then be highly correlated with
t. The next example shows how omitting a time trend can result in spurious regression.

(Housing Investment and Prices)

The data in HSEINV.RAW are annual observations on housing investment and a housing
price index in the United States for 1947 through 1988. Let invpc denote real per capita
housing investment (in thousands of dollars) and let price denote a housing price index
(equal to one in 1982). A simple regression in constant elasticity form, which can be
thought of as a supply equation for housing stock, gives

log(invpe) = —.550 + 1.241 log(price)
(.043) (0.382) (10.32)
n =42, R* = 208, R*> = .189.

The elasticity of per capita investment with respect to price is very large and statistically sig-
nificant; it is not statistically different from one. We must be careful here. Both invpc and
price have upward trends. In particular, if we regress log(invpc) on t, we obtain a coefficient
on the trend equal to .0081 (standard error = .0018); the regression of log(price) on t yields
a trend coefficient equal to .0044 (standard error = .0004). While the standard errors on
the trend coefficients are not necessarily reliable—these regressions tend to contain sub-
stantial serial correlation—the coefficient estimates do reveal upward trends.
To account for the trending behavior of the variables, we add a time trend:

log(imA/pc) = —913 — .381 log(price) + .0098 ¢
(.136) (.679) (.0035) (10.33)
n =42, R* = 341, R* = .307.

The story is much different now: the estimated price elasticity is negative and not statisti-
cally different from zero. The time trend is statistically significant, and its coefficient implies
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an approximate 1% increase in invpc per year, on average. From this analysis, we cannot
conclude that real per capita housing investment is influenced at all by price. There are
other factors, captured in the time trend, that affect invpc, but we have not modeled these.
The results in (10.32) show a spurious relationship between invpc and price due to the fact
that price is also trending upward over time.

In some cases, adding a time trend can make a key explanatory variable more sig-
nificant. This can happen if the dependent and independent variables have different
kinds of trends (say, one upward and one downward), but movement in the independent
variable about its trend line causes movement in the dependent variable away from its
trend line.

(Fertility Equation)

If we add a linear time trend to the fertility equation (10.18), we obtain

gfr, = 11177 + 279 pe, — 35.59 ww2, + 997 pill, — 1.15 1
(3.36) (.040) (6.30) (6.626) 0.19)  (10.34)

n=72,R*=.662, R* = .642.

The coefficient on pe is more than triple the estimate from (10.18), and it is much more sta-
tistically significant. Interestingly, pill is not significant once an allowance is made for a lin-
ear trend. As can be seen by the estimate, gfr was falling, on average, over this period,
other factors being equal.

Since the general fertility rate exhibited both upward and downward trends during the
period from 1913 through 1984, we can see how robust the estimated effect of pe is when
we use a quadratic trend:

gfr, = 124.09 + 348 pe, — 35.88 ww2, — 10.12 pill,
(4.36) (.040) (5.71) (6.34)
— 2531t + .0196 ¢* (10.35)
(0.39)  (.0050)

n=72,R>= 727, R*> = 706.

The coefficient on pe is even larger and more statistically significant. Now, pill has the
expected negative effect and is marginally significant, and both trend terms are statistically
significant. The quadratic trend is a flexible way to account for the unusual trending behav-
ior of gfr.

You might be wondering in Example 10.8: Why stop at a quadratic trend? Nothing
prevents us from adding, say, £ as an independent variable, and, in fact, this might be
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warranted (see Exercise 10.12). But we have to be careful not to get carried away when
including trend terms in a model. We want relatively simple trends that capture broad
movements in the dependent variable that are not explained by the independent variables
in the model. If we include enough polynomial terms in ¢, then we can track any series
pretty well. But this offers little help in finding which explanatory variables affect y,.

A Detrending Interpretation of Regressions with a Time
Trend

Including a time trend in a regression model creates a nice interpretation in terms of

detrending the original data series before using them in regression analysis. For con-

creteness, we focus on model (10.31), but our conclusions are much more general.
When we regress y, on x,,, x,, and ¢, we obtain the fitted equation

9. = éo + .élxtl + Bzxrz + BAJ' (10.36)

We can extend the results on the partialling out interpretation of OLS that we covered
in Chapter 3 to show that 3, and 3, can be obtained as follows.

(i) Regress each of y,, x,; and x,, on a constant and the time trend ¢ and save the
residuals, say y,, X,;, X5, t = 1,2, ..., n. For example,
j}t =V~ aAO - dlt‘
Thus, we can think of ¥, as being linearly detrended. In detrending y,, we have esti-
mated the model

y,=ay T att+oe

by OLS; the residuals from this regression, ¢, = ¥,, have the time trend removed (at least
in the sample). A similar interpretation holds for X,; and X,,.
(i1) Run the regression of

V. on X, Xp. (10.37)

(No intercept is necessary, but including an intercept affects nothing: the intercept will
be estimated to be zero.) This regression exactly yields él and 32 from (10.36).

This means that the estimates of primary interest, él and ﬁz, can be interpreted as
coming from a regression without a time trend, but where we first detrend the depen-
dent variable and all other independent variables. The same conclusion holds with any
number of independent variables and if the trend is quadratic or of some other polyno-
mial degree.

If 7 is omitted from (10.36), then no detrending occurs, and y, might seem to be
related to one or more of the x,; simply because each contains a trend; we saw this in
Example 10.7. If the trend term is statistically significant, and the results change in
important ways when a time trend is added to a regression, then the initial results with-
out a trend should be treated with suspicion.

The interpretation of ﬁl and ﬁz shows that it is a good idea to include a trend in the
regression if any independent variable is trending, even if y,is not. If y, has no notice-
able trend, but, say, x,, is growing over time, then excluding a trend from the regression
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may make it look as if x,; has no effect on y,, even though movements of x,; about its
trend may affect y,. This will be captured if ¢ is included in the regression.

(Puerto Rican Employment)

When we add a linear trend to equation (10.17), the estimates are

log(prgpopz) = —8.70 — .169 log(mincov,) + 1.06 log(usgnp,)
(1.30) (.044) (0.18)

— .032¢

n =38, R* = 847, R* = .834.

The coefficient on log(usgnp) has changed dramatically: from —.012 and insignificant to
1.06 and very significant. The coefficient on the minimum wage has changed only slightly,
although the standard error is notably smaller, making log(mincov) more significant than
before.

The variable prepop, displays no clear upward or downward trend, but log(usgnp) has
an upward, linear trend. (A regression of log(usgnp) on t gives an estimate of about .03, so
that usgnp is growing by about 3% per year over the period.) We can think of the estimate
1.06 as follows: when usgnp increases by 1% above its long-run trend, prepop increases
by about 1.06%.

Computing R-squared when the Dependent
Variable is Trending

R-squareds in time series regressions are often very high, especially compared with typ-
ical R-squareds for cross-sectional data. Does this mean that we learn more about fac-
tors affecting y from time series data? Not necessarily. On one hand, time series data
often come in aggregate form (such as average hourly wages in the U.S. economy), and
aggregates are often easier to explain than outcomes on individuals, families, or firms,
which is often the nature of cross-sectional data. But the usual and adjusted R-squares
for time series regressions can be artificially high when the dependent variable is trend-
ing. Remember that R? is a measure of how large the error variance is relative to the
variance of y. The formula for the adjusted R-squared shows this directly:

P2 _ A2yA~2
R*=1-(a,/0)),
where 62 is the unbiased estimator of the error variance, &f, = SST/(n — 1), and
SST = E (y, — y)*. Now, estimating the error variance when y, is trending is no prob-
t=1

lem, provided a time trend is included in the regression. However, when E(y,) follows,
say, a linear time trend [see (10.24)], SST/(n — 1) is no longer an unbiased or consis-
tent estimator of Var(y,). In fact, SST/(n — 1) can substantially overestimate the vari-
ance in y,, because it does not account for the trend in y,.
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When the dependent variable satisfies linear, quadratic, or any other polynomial
trends, it is easy to compute a goodness-of-fit measure that first nets out the effect of
any time trend on y,. The simplest method is to compute the usual R-squared in a regres-
sion where the dependent variable has already been detrended. For example, if the
model is (10.31), then we first regress y, on ¢ and obtain the residuals y,. Then, we
regress

j)‘t on x;q, X2, and 7. (10-39)

The R-squared from this regression is

SSR

1 - il
&, (10.40)
35
“

where SSR is identical to the sum of squared residuals from (10.36). Since 2 yr = E

=1 =1
(y, — ¥)? (and usually the inequality is strict), the R-squared from (10.40) is no greater
than, and usually less than, the R-squared from (10.36). (The sum of squared residuals
is identical in both regressions.) When y, contains a strong linear time trend, (10.40) can
be much less than the usual R-squared.

The R-squared in (10.40) better reflects how well x,, and x,, explain y,, because it
nets out the effect of the time trend. After all, we can always explain a trending variable
with some sort of trend, but this does not mean we have uncovered any factors that
cause movements in y,. An adjusted R-squared can also be computed based on (10.40):

divide SSR by (n — 4) because this is the df in (10.36) and divide 2 y2 by (n — 2), as
t=1
there are two trend parameters estimated in detrending y,. In general, SSR is divided by

the df in the usual regression (that includes any time trends), and 2 y2 is divided by
=1

(n — p), where p is the number of trend parameters estimated in detrending y,. See

Wooldridge (1991a) for further discussion on computing goodness-of-fit measures with

trending variables.

(Housing Investment)

In Example 10.7, we saw that including a linear time trend along with log(price) in the
housing investment equation had a substantial effect on the price elasticity. But the
R-squared from regression (10.33), taken literally, says that we are “explaining” 34.1% of
the variation in log(invpc). This is misleading. If we first detrend log(invpc) and regress the
detrended variable on log(price) and t, the R-squared becomes .008, and the adjusted
R-squared is actually negative. Thus, movements in log( price) about its trend have virtually
no explanatory power for movements in log(invpc) about its trend. This is consistent with
the fact that the t statistic on log(price) in equation (10.33) is very small.
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Before leaving this subsection, we must make a final point. In computing the
R-squared form of an F statistic for testing multiple hypotheses, we just use the usual
R-squareds without any detrending. Remember, the R-squared form of the F statistic is
just a computational device, and so the usual formula is always appropriate.

Seasonality

If a time series is observed at monthly or quarterly intervals (or even weekly or daily),
it may exhibit seasonality. For example, monthly housing starts in the Midwest are
strongly influenced by weather. While weather patterns are somewhat random, we can
be sure that the weather during January will usually be more inclement than in June,
and so housing starts are generally higher in June than in January. One way to model
this phenomenon is to allow the expected value of the series, y,, to be different in each
month. As another example, retail sales in the fourth quarter are typically higher than
in the previous three quarters because of the Christmas holiday. Again, this can be cap-
tured by allowing the average retail sales to differ over the course of a year. This is in
addition to possibly allowing for a trending mean. For example, retail sales in the most
recent first quarter were higher than retail sales in the fourth quarter from 30 years ago,
because retail sales have been steadily growing. Nevertheless, if we compare average
sales within a typical year, the seasonal holiday factor tends to make sales larger in the
fourth quarter.

Even though many monthly and quarterly data series display seasonal patterns, not
all of them do. For example, there is no noticeable seasonal pattern in monthly interest
or inflation rates. In addition, series that do display seasonal patterns are often season-
ally adjusted before they are reported for public use. A seasonally adjusted series is
one that, in principle, has had the seasonal factors removed from it. Seasonal adjustment
can be done in a variety of ways, and a careful discussion is beyond the scope of this
text. [See Harvey (1990) and Hylleberg (1986) for detailed treatments.]

Seasonal adjustment has become so common that it is not possible to get seasonally
unadjusted data in many cases. Quarterly U.S. GDP is a leading example. In the annual
Economic Report of the President, many macroeconomic data sets reported at monthly
frequencies (at least for the most recent years) and those that display seasonal patterns
are all seasonally adjusted. The major sources for macroeconomic time series, includ-
ing Citibase, also seasonally adjust many of the series. Thus, the scope for using our
own seasonal adjustment is often limited.

Sometimes, we do work with seasonally unadjusted data, and it is useful to know
that simple methods are available for dealing with seasonality in regression models.
Generally, we can include a set of seasonal dummy variables to account for seasonal-
ity in the dependent variable, the independent variables, or both.

The approach is simple. Suppose that we have monthly data, and we think that sea-
sonal patterns within a year are roughly constant across time. For example, since
Christmas always comes at the same time of year, we can expect retail sales to be, on
average, higher in months late in the year than in earlier months. Or, since weather pat-
terns are broadly similar across years, housing starts in the Midwest will be higher on
average during the summer months than the winter months. A general model for
monthly data that captures these phenomena is
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v, = By + d,feb, + &,mar, + Sapr, + ... + 6, dec, + (10.41)

Bixn + ... + Bixy t u,
where feb,, mar,, ..., dec, are dummy variables indicating whether time period ¢ corre-
sponds to the appropriate month. In this
formulation, January is the base month,
and B, is the intercept for January. If there
is no seasonality in y,, once the x,; have
been controlled for, then 8, through §,, are
all zero. This is easily tested via an F test.

QUESTION 10.5

In equation (10.41), what is the intercept for March? Explain why
seasonal dummy variables satisfy the strict exogeneity assumption.

(Effects of Antidumping Filings)

In Example 10.5, we used monthly data that have not been seasonally adjusted. There-
fore, we should add seasonal dummy variables to make sure none of the important conclu-
sions changes. It could be that the months just before the suit was filed are months
where imports are higher or lower, on average, than in other months. When we add
the 11 monthly dummy variables as in (10.41) and test their joint significance, we obtain
p-value = .59, and so the seasonal dummies are jointly insignificant. In addition, nothing
important changes in the estimates once statistical significance is taken into account. Krupp
and Pollard (1996) actually used three dummy variables for the seasons (fall, spring, and
summer, with winter as the base season), rather than a full set of monthly dummies; the
outcome is essentially the same.

If the data are quarterly, then we would include dummy variables for three of the
four quarters, with the omitted category being the base quarter. Sometimes, it is useful
to interact seasonal dummies with some of the x,; to allow the effect of x,; on y, to dif-
fer across the year.

Just as including a time trend in a regression has the interpretation of initially
detrending the data, including seasonal dummies in a regression can be interpreted as
deseasonalizing the data. For concreteness, consider equation (10.41) with k = 2. The
OLS slope coefficients ,[3’1 and ,[§2 on x; and x, can be obtained as follows:

(i) Regress each of y,, x,; and x,, on a constant and the monthly dummies, feb,,

mar,, ...,dec,, and save the residuals, say y,, X, and X,, for all + = 1,2,...,n. For
example,
Y, =y, — & — oyfeb, — aumar, — ... — oy, dec,.

This is one method of deseasonalizing a monthly time series. A similar interpretation
holds for X,; and X,,.

(ii) Run the regression, without the monthly dummies, of ¥, on X,; and X, [just as
in (10.37)]. This gives B, and B,.

In some cases, if y, has pronounced seasonality, a better goodness-of-fit measure is
an R-squared based on the deseasonalized y,. This nets out any seasonal effects that are
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not explained by the x,;. Specific degrees of freedom ajustments are discussed in
Wooldridge (1991a).

Time series exhibiting seasonal patterns can be trending as well, in which case, we
should estimate a regression model with a time trend and seasonal dummy variables.
The regressions can then be interpreted as regressions using both detrended and desea-
sonalized series. Goodness-of-fit statistics are discussed in Wooldridge (1991a): essen-
tially, we detrend and deasonalize y, by regressing on both a time trend and seasonal
dummies before computing R-squared.

In this chapter, we have covered basic regression analysis with time series data. Under
assumptions that parallel those for cross-sectional analysis, OLS is unbiased (under
TS.1 through TS.3), OLS is BLUE (under TS.1 through TS.5), and the usual OLS stan-
dard errors, ¢ statistics, and F statistics can be used for statistical inference (under TS.1
through TS.6). Because of the temporal correlation in most time series data, we must
explicitly make assumptions about how the errors are related to the explanatory vari-
ables in all time periods and about the temporal correlation in the errors themselves.
The classical linear model assumptions can be pretty restrictive for time series applica-
tions, but they are a natural starting point. We have applied them to both static regres-
sion and finite distributed lag models.

Logarithms and dummy variables are used regularly in time series applications and
in event studies. We also discussed index numbers and time series measured in terms of
nominal and real dollars.

Trends and seasonality can be easily handled in a multiple regression framework by
including time and seasonal dummy variables in our regression equations. We presented
problems with the usual R-squared as a goodness-of-fit measure and suggested some
simple alternatives based on detrending or deseasonalizing.

Autocorrelation Long-Run Elasticity

Base Period Long-Run Multiplier

Base Value Long-Run Propensity (LRP)
Contemporaneously Exogenous Seasonal Dummy Variables
Deseasonalizing Seasonality

Detrending Seasonally Adjusted

Event Study Serial Correlation
Exponential Trend Short-Run Elasticity

Finite Distributed Lag (FDL) Model Spurious Regression
Growth Rate Static Model

Impact Multiplier Stochastic Process

Impact Propensity Strictly Exogenous

Index Number Time Series Process

Lag Distribution Time Trend

Linear Time Trend
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10.1 Decide if you agree or disagree with each of the following statements and give a
brief explanation of your decision:
(i) Like cross-sectional observations, we can assume that most time series
observations are independently distributed.
(ii) The OLS estimator in a time series regression is unbiased under the first
three Gauss-Markov assumptions.
(iii) A trending variable cannot be used as the dependent variable in multi-
ple regression analysis.
(iv) Seasonality is not an issue when using annual time series observations.

10.2 Let gGDP, denote the annual percentage change in gross domestic product and let
int, denote a short-term interest rate. Suppose that gGDP, is related to interest rates by

gGDP, = «a, + §yint, + b,int,_, + u,,

where u, is uncorrelated with int, int,_,, and all other past values of interest rates.
Suppose that the Federal Reserve follows the policy rule:

int, = vy, + y,(gGDP,_, — 3) + v,

where vy, > 0. (When last year’s GDP growth is above 3%, the Fed increases interest
rates to prevent an “overheated” economy.) If v, is uncorrelated with all past values of
int, and u,, argue that inf, must be correlated with u,_,. (Hint: Lag the first equation for
one time period and substitute for gGDP,_, in the second equation.) Which Gauss-
Markov assumption does this violate?

10.3 Suppose y, follows a second order FDL model:
Ve = @ + 80Zt + 6121—1 + Szzz—z + u,.

Let z* denote the equilibrium value of z, and let y* be the equilibrium value of y,, such
that

yE=ay + 0yz* + 6,z% + 8,z*.
Show that the change in y*, due to a change in z*, equals the long-run propensity times
the change in z*:
Ay* = LRP-Az*.
This gives an alternative way of interpreting the LRP.

10.4 When the three event indicators befile6, affile6, and afdec6 are dropped from
equation (10.22), we obtain R* = .281 and R*> = .264. Are the event indicators jointly
significant at the 10% level?

10.5 Suppose you have quarterly data on new housing starts, interest rates, and real per
capita income. Specify a model for housing starts that accounts for possible trends and
seasonality in the variables.

10.6 In Example 10.4, we saw that our estimates of the individual lag coefficients in a
distributed lag model were very imprecise. One way to alleviate the multicollinearity
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problem is to assume that the &; follow a relatively simple pattern. For concreteness,
consider a model with four lags:

Y=yt 80z, + 0121 + 825+ 032,53 F 84z, 4 T u,
Now, let us assume that the &; follow a quadratic in the lag, j:
Bj =Y tyjt Yzjz»

for parameters vy,, y;, and y,. This is an example of a polynomial distributed lag (PDL)
model.
(i) Plug the formula for each §; into the distributed lag model and write the
model in terms of the parameters vy, for 4 = 0,1,2.
(ii)) Explain the regression you would run to estimate the v,,.
(iii) The polynomial distributed lag model is a restricted version of the gen-
eral model. How many restrictions are imposed? How would you test
these? (Hint: Think F test.)

10.7 In October 1979, the Federal Reserve changed its policy of targeting the money
supply and instead began to focus directly on short-term interest rates. Using the data
in INTDEF.RAW, define a dummy variable equal to one for years after 1979. Include
this dummy in equation (10.15) to see if there is a shift in the interest rate equation after
1979. What do you conclude?

10.8 Use the data in BARIUM.RAW for this exercise.

(i) Add a linear time trend to equation (10.22). Are any variables, other
than the trend, statistically significant?

(i) In the equation estimated in part (i), test for joint significance of all
variables except the time trend. What do you conclude?

(iii)) Add monthly dummy variables to this equation and test for seasonality.
Does including the monthly dummies change any other estimates or
their standard errors in important ways?

10.9 Add the variable log(prgnp) to the minimum wage equation in (10.38). Is this
variable significant? Interpret the coefficient. How does adding log(prgnp) affect the
estimated minimum wage effect?

10.10 Use the data in FERTIL3.RAW to verify that the standard error for the LRP in
equation (10.19) is about .030.

10.11 Use the data in EZANDERS.RAW for this exercise. The data are on monthly
unemployment claims in Anderson Township in Indiana, from January 1980 through
November 1988. In 1984, an enterprise zone (EZ) was located in Anderson (as well as
other cities in Indiana). [See Papke (1994) for details.]

(i) Regress log(uclms) on a linear time trend and 11 monthly dummy vari-
ables. What was the overall trend in unemployment claims over this
period? (Interpret the coefficient on the time trend.) Is there evidence of
seasonality in unemployment claims?
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(ii)) Add ez, a dummy variable equal to one in the months Anderson had an
EZ, to the regression in part (i). Does having the enterprise zone seem
to decrease unemployment claims? By how much? [You should use for-
mula (7.10) from Chapter 7.]

(iii) What assumptions do you need to make to attribute the effect in part (ii)
to the creation of an EZ?

10.12 Use the data in FERTIL3.RAW for this exercise.
(i)  Regress gfr, on ¢ and t* and save the residuals. This gives a detrended
8/, say gfr..
(i) Regress gfr, on all of the variables in equation (10.35), including ¢ and 2.
Compare the R-squared with that from (10.35). What do you conclude?
(iii) Reestimate equation (10.35) but add ¢° to the equation. Is this additional
term statistically significant?

10.13 Use the data set CONSUMP.RAW for this exercise.

(i) Estimate a simple regression model relating the growth in real per
capita consumption (of nondurables and services) to the growth in real
per capita disposable income. Use the change in the logarithms in both
cases. Report the results in the usual form. Interpret the equation and
discuss statistical significance.

(i) Add a lag of the growth in real per capita disposable income to the
equation from part (i). What do you conclude about adjustment lags in
consumption growth?

(iii) Add the real interest rate to the equation in part (i). Does it affect con-
sumption growth?

10.14 Use the data in FERTIL3.RAW for this exercise.

(i) Add pe,_5; and pe,_, to equation (10.19). Test for joint significance of
these lags.

(i) Find the estimated long-run propensity and its standard error in the
model from part (i). Compare these with those obtained from equation
(10.19).

(iii) Estimate the polynomial distributed lag model from Problem 10.6. Find
the estimated LRP and compare this with what is obtained from the
unrestricted model.

10.15Use the data in VOLAT.RAW for this exercise. The variable rsp500 is the
monthly return on the Standard & Poors 500 stock market index, at an annual rate. (This
includes price changes as well as dividends.) The variable i3 is the return on three-
month T-bills, and pcip is the percentage change in industrial production; these are also

at an annual rate.
(i) Consider the equation
rsp500, = B, + Bipcip, + B,i3, + u,.

What signs do you think 8, and 3, should have?
(i) Estimate the previous equation by OLS, reporting the results in stan-
dard form. Interpret the signs and magnitudes of the coefficients.
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(iii) Which of the variables is statistically significant?
(iv) Does your finding from part (iii) imply that the return on the S&P 500
is predictable? Explain.

10.16 Consider the model estimated in (10.15); use the data in INTDEF.RAW.

(i) Find the correlation between inf and def over this sample period and
comment.

(ii)) Add a single lag of inf and def to the equation and report the results in
the usual form.

(iii) Compare the estimated LRP for the effect of inflation from that in equa-
tion (10.15). Are they vastly different?

(iv) Are the two lags in the model jointly significant at the 5% level?
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C h a pt e r Eleven

Further Issues in Using OLS with
Time Series Data

under increasingly stronger sets of assumptions. Under the full set of classical lin-

ear model assumptions for time series, TS.1 through TS.6, OLS has exactly the
same desirable properties that we derived for cross-sectional data. Likewise, statistical
inference is carried out in the same way as it was for cross-sectional analysis.

From our cross-sectional analysis in Chapter 5, we know that there are good reasons
for studying the large sample properties of OLS. For example, if the error terms are not
drawn from a normal distribution, then we must rely on the central limit theorem to jus-
tify the usual OLS test statistics and confidence intervals.

Large sample analysis is even more important in time series contexts. (This is some-
what ironic given that large time series samples can be difficult to come by; but we
often have no choice other than to rely on large sample approximations.) In Section
10.3, we explained how the strict exogeneity assumption (TS.2) might be violated in
static and distributed lag models. As we will show in Section 11.2, models with lagged
dependent variables must violate Assumption TS.2.

Unfortunately, large sample analysis for time series problems is fraught with many
more difficulties than it was for cross-sectional analysis. In Chapter 5, we obtained the
large sample properties of OLS in the context of random sampling. Things are more
complicated when we allow the observations to be correlated across time. Nevertheless,
the major limit theorems hold for certain, although not all, time series processes. The
key is whether the correlation between the variables at different time periods tends to
zero quickly enough. Time series that have substantial temporal correlation require spe-
cial attention in regression analysis. This chapter will alert you to certain issues per-
taining to such series in regression analysis.

In Chapter 10, we discussed the finite sample properties of OLS for time series data

11.1 STATIONARY AND WEAKLY DEPENDENT
TIME SERIES

In this section, we present the key concepts that are needed to apply the usual large sam-
ple approximations in regression analysis with time series data. The details are not as
important as a general understanding of the issues.
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Part 2 Regression Analysis with Time Series Data

Stationary and Nonstationary Time Series

Historically, the notion of a stationary process has played an important role in the
analysis of time series. A stationary time series process is one whose probability distri-
butions are stable over time in the following sense: if we take any collection of random
variables in the sequence and then shift that sequence ahead 4 time periods, the joint
probability distribution must remain unchanged. A formal definition of stationarity
follows.

STATIONARY STOCHASTIC PROCESS: The stochastic process {x,: t = 1,2, ...} is sta-
tionary if for every collection of time indices | =, <1, < ... <1, the joint distribu-
tion of (x,,x,,, ..., X, ) is the same as the joint distribution of (x, X, > ---»X; 1) fOr
all integers h = 1.

This definition is a little abstract, but its meaning is pretty straightforward. One
implication (by choosing m = 1 and ¢, = 1) is that x, has the same distribution as x, for
all r = 2,3, .... In other words, the sequence {x,: t = 1,2, ...} is identically distributed.
Stationarity requires even more. For example, the joint distribution of (x;,x,) (the first
two terms in the sequence) must be the same as the joint distribution of (x,,x,. ;) for any
t = 1. Again, this places no restrictions on how x, and x,, , are related to one another;
indeed, they may be highly correlated. Stationarity does require that the nature of any
correlation between adjacent terms is the same across all time periods.

A stochastic process that is not stationary is said to be a nonstationary process.
Since stationarity is an aspect of the underlying stochastic process and not of the avail-
able single realization, it can be very difficult to determine whether the data we have
collected were generated by a stationary process. However, it is easy to spot certain
sequences that are not stationary. A process with a time trend of the type covered in
Section 10.5 is clearly nonstationary: at a minimum, its mean changes over time.

Sometimes, a weaker form of stationarity suffices. If {x,: t =1,2,...} has a finite
second moment, that is, E(x?) < o for all ¢, then the following definition applies.

COVARIANCE STATIONARY PROCESS: A stochastic process {x,: t =1,2,...} with
finite second moment [E(x?) < 0] is covariance stationary if (i) E(x,) is constant; (ii)

Var(x,) is constant; (iii) for any ¢, h = 1, Cov(x,,x,,) depends only on 4 and not on .
Covariance stationarity focuses only on the first two moments of a stochastic
process: the mean and variance of the process are constant across time, and the covari-
ance between x, and x,,, depends only on

the distance between the two terms, A, and

QUESTION 11.1 not on the location of the initial time

Suppose that {y,: t = 1,2,...} is generated by y, = &, + &t + e, | period, t. It follows immediately that the

where 8, # 0, and {e,: t = 1,2,...} is an i.i.d. sequence with mean correlation between x, and x,,, also de-
zero and variance o2. (i) Is {y,} covariance stationary? (ii) Is y, — E(y,) pends only on .

covariance stationary?

If a stationary process has a finite sec-

ond moment, then it must be covariance

stationary, but the converse is certainly not true. Sometimes, to emphasize that station-
arity is a stronger requirement than covariance stationarity, the former is referred to as
strict stationarity. However, since we will not be delving into the intricacies of central
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limit theorems for time series processes, we will not be worried about the distinction
between strict and covariance stationarity: we will call a series stationary if it satisfies
either definition.

How is stationarity used in time series econometrics? On a technical level, station-
arity simplifies statements of the law of large numbers and the central limit theorem,
although we will not worry about formal statements. On a practical level, if we want to
understand the relationship between two or more variables using regression analysis,
we need to assume some sort of stability over time. If we allow the relationship between
two variables (say, y, and x,) to change arbitrarily in each time period, then we cannot
hope to learn much about how a change in one variable affects the other variable if we
only have access to a single time series realization.

In stating a multiple regression model for time series data, we are assuming a cer-
tain form of stationarity in that the 3; do not change over time. Further, Assumptions
TS.4 and TS.5 imply that the variance of the error process is constant over time and that
the correlation between errors in two adjacent periods is equal to zero, which is clearly
constant over time.

Weakly Dependent Time Series

Stationarity has to do with the joint distributions of a process as it moves through time.
A very different concept is that of weak dependence, which places restrictions on how
strongly related the random variables x, and x,, , can be as the time distance between
them, h, gets large. The notion of weak dependence is most easily discussed for a sta-
tionary time series: loosely speaking, a stationary time series process {x,: t = 1,2,...}
is said to be weakly dependent if x, and x,, , are “almost independent” as % increases
without bound. A similar statement holds true if the sequence is nonstationary, but then
we must assume that the concept of being almost independent does not depend on the
starting point, 7.

The description of weak dependence given in the previous paragraph is necessar-
ily vague. We cannot formally define weak dependence because there is no definition
that covers all cases of interest. There are many specific forms of weak dependence
that are formally defined, but these are well beyond the scope of this text. [See White
(1984), Hamilton (1994), and Wooldridge (1994b) for advanced treatments of these
concepts.]

For our purposes, an intuitive notion of the meaning of weak dependence is suffi-
cient. Covariance stationary sequences can be characterized in terms of correlations: a
covariance stationary time series is weakly dependent if the correlation between x, and
X,., goes to zero “sufficiently quickly” as # — . (Because of covariance stationarity,
the correlation does not depend on the starting point, ¢.) In other words, as the variables
get farther apart in time, the correlation between them becomes smaller and smaller.
Covariance stationary sequences where Corr(x,,x,,,) — 0 as h — o are said to be
asymptotically uncorrelated. Intuitively, this is how we will usually characterize weak
dependence. Technically, we need to assume that the correlation converges to zero fast
enough, but we will gloss over this.

Why is weak dependence important for regression analysis? Essentially, it replaces
the assumption of random sampling in implying that the law of large numbers (LLN)
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and the central limit theorem (CLT) hold. The most well-known central limit theorem
for time series data requires stationarity and some form of weak dependence: thus, sta-
tionary, weakly dependent time series are ideal for use in multiple regression analysis.
In Section 11.2, we will show how OLS can be justified quite generally by appealing to
the LLN and the CLT. Time series that are not weakly dependent—examples of which
we will see in Section 11.3—do not generally satisfy the CLT, which is why their use
in multiple regression analysis can be tricky.

The simplest example of a weakly dependent time series is an independent, identi-
cally distributed sequence: a sequence that is independent is trivially weakly dependent.
A more interesting example of a weakly dependent sequence is

x,=e t+ ae,_,t=12,..., (11.1)

where {e,:t =0,1,...} is ani.i.d. sequence with zero mean and variance o>. The process
{x,} is called a moving average process of order one [MA(1)]: x, is a weighted aver-
age of ¢, and e,_; in the next period, we drop e,_,, and then x,, ; depends on e, ; and
e,. Setting the coefficient on e, to one in (11.1) is without loss of generality.

Why is an MA(1) process weakly dependent? Adjacent terms in the sequence are
correlated: because x,,, = e,,, + ae,, Cov(x,,x,,,) = a,Var(e,) = a, o2. Since
Var(x,) = (1 + a})o?, Corr(x,x,.,) = a,/(1 + «af). For example, if o, = .5, then
Corr(x,,x,,,) = .4. [The maximum positive correlation occurs when «; = 1; in which
case, Corr(x,,x,,;) = .5.] However, once we look at variables in the sequence that are
two or more time periods apart, these variables are uncorrelated because they are
independent. For example, x,,, = e,,, + a,e,,, is independent of x, because {e,} is
independent across t. Due to the identical distribution assumption on the e,, {x,} in
(11.1) is actually stationary. Thus, an MA(1) is a stationary, weakly dependent
sequence, and the law of large numbers and the central limit theorem can be applied
to {x,}.

A more popular example is the process

Y, =py,_, te,t=12, ... (11.2)

The starting point in the sequence is y, (at t = 0), and {e,: t =1,2,...} is an i.i.d.
sequence with zero mean and variance o2, We also assume that the e, are independent
of y, and that E(y,) = 0. This is called an autoregressive process of order one
[AR(D)].

The crucial assumption for weak dependence of an AR(1) process is the stability
condition |p,| < 1. Then we say that {y,} is a stable AR(1) process.

To see that a stable AR(1) process is asymptotically uncorrelated, it is useful to
assume that the process is covariance stationary. (In fact, it can generally be shown that
{y,} is strictly stationary, but the proof is somewhat technical.) Then, we know that
E(y,) = E(y,_)), and from (11.2) with p, # 1, this can happen only if E(y,) = 0. Taking
the variance of (11.2) and using the fact that e, and y,_, are independent (and therefore
uncorrelated), Var(y,) = p3Var(y,_,) + Var(e,), and so, under covariance stationarity,
we must have o; = pjo;, + 0. Since p; < 1 by the stability condition, we can easily
solve for o7
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o; = o1 — p}). (11.3)

Now we can find the covariance between y, and y, ., for h = 1. Using repeated sub-
stitution,

Yeon = P1Yevn—1 T €n = PrP1Yrsn—2 T €p1) T ey,
_ 2 _
= PYirn—2 T P t e, =00

— .k h—1
=py,tpel et oot pe e

Since E(y,) = 0 for all ¢, we can multiply this last equation by y, and take expecta-
tions to obtain Cov(y,,y,+,). Using the fact that ¢, ; is uncorrelated with y, for all
j =1 gives

COV(yt’yH—h) = E(ytyt+h) = plhE(y%) + plh_lE(ytet+l) + ..+ E(yter+h)
= piEGY) = pi'oy.

Since o, is the standard deviation of both y, and y, ., ,, we can easily find the correlation
between y, and y,. , for any h = 1:

Corr(y,.Y,44) = Cov(y,y,. )/(0y,0,) = pi'. (11.4)

In particular, Corr(y,.y,+;) = p;» SO p; is the correlation coefficient between any two
adjacent terms in the sequence.

Equation (11.4) is important because it shows that, while y, and y, , , are correlated
for any h = 1, this correlation gets very small for large A: since |p,| < 1, pi' — 0 as
h— . Even when p, is large—say .9, which implies a very high, positive correlation
between adjacent terms—the correlation between y, and y,,, tends to zero fairly
rapidly. For example, Corr(y,,y,+s) = .591, Corr(y,,y,+ 10) = -349, and Corr(y,.y,1,9) =
.122. If t indexes year, this means that the correlation between the outcome of two y that
are twenty years apart is about .122. When p, is smaller, the correlation dies out much
more quickly. (You might try p, = .5 to verify this.)

This analysis heuristically demonstrates that a stable AR(1) process is weakly
dependent. The AR(1) model is especially important in multiple regression analysis
with time series data. We will cover additional applications in Chapter 12 and the use
of it for forecasting in Chapter 18.

There are many other types of weakly dependent time series, including hybrids of
autoregressive and moving average processes. But the previous examples work well for
our purposes.

Before ending this section, we must emphasize one point that often causes confu-
sion in time series econometrics. A trending series, while certainly nonstationary, can
be weakly dependent. In fact, in the simple linear time trend model in Chapter 10 [see
equation (10.24)], the series {y,} was actually independent. A series that is stationary
about its time trend, as well as weakly dependent, is often called a trend-stationary
process. (Notice that the name is not completely descriptive because we assume weak
dependence along with stationarity.) Such processes can be used in regression analysis
just as in Chapter 10, provided appropriate time trends are included in the model.
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11.2 ASYMPTOTIC PROPERTIES OF OLS

In Chapter 10, we saw some cases where the classical linear model assumptions are not
satisfied for certain time series problems. In such cases, we must appeal to large sample
properties of OLS, just as with cross-sectional analysis. In this section, we state the
assumptions and main results that justify OLS more generally. The proofs of the theorems
in this chapter are somewhat difficult and therefore omitted. See Wooldridge (1994b).

ASSUMPTION TS.1’ (LINEARITY AND WEAK
DEPENDENCE)

Assumption TS.1' is the same as TS.1, except we must also assume that {(x,y,): t = 1,2,...}
is weakly dependent. In other words, the law of large numbers and the central limit theo-
rem can be applied to sample averages.

The linear in parameters requirement again means that we can write the model as
Ve = B(J + letl A oo :katk + Uy, (11'5)

where the §; are the parameters to be estimated. The x,; can contain lagged dependent
and independent variables, provided the weak dependence assumption is met.

We have discussed the concept of weak dependence at length because it is by no
means an innocuous assumption. In the next section, we will present time series
processes that clearly violate the weak dependence assumption and also discuss the use
of such processes in multiple regression models.

ASSUMPTION TS.2’" (ZERO CONDITIONAL MEAN)
For each t, E(u,|x,) = 0.

This is the most natural assumption concerning the relationship between u, and the
explanatory variables. It is much weaker than Assumption TS.2 because it puts no
restrictions on how u, is related to the explanatory variables in other time periods. We
will see examples that satisfy TS.2" shortly.

For certain purposes, it is useful to know that the following consistency result only
requires u, to have zero unconditional mean and to be uncorrelated with each x,;:

E(u,) = 0, Cov(x,;u) =0,j=1,....k (11.6)

We will work mostly with the zero conditional mean assumption because it leads to the
most straightforward asymptotic analysis.

ASSUMPTION TS.3’ (NO PERFECT COLLINEARITY)
Same as Assumption TS.3.
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THEOREM 11.1 (CONSISTENCY OF OLS)
Under TS.1', TS.2’, and TS.3’, the OLS estimators are consistent: plim Bj =B,/=01 ..k

There are some key practical differences between Theorems 10.1 and 11.1. First, in
Theorem 11.1, we conclude that the OLS estimators are consistent, but not necessarily
unbiased. Second, in Theorem 11.1, we have weakened the sense in which the explana-
tory variables must be exogenous, but weak dependence is required in the underlying
time series. Weak dependence is also crucial in obtaining approximate distributional
results, which we cover later.

EXA MPLE 171 . 1
(Static Model)

Consider a static model with two explanatory variables:
Y. = Bo + Biza + Bazin T U, (11.7)
Under weak dependence, the condition sufficient for consistency of OLS is
E(u,|7,1,2,2) = 0. (11.8)

This rules out omitted variables that are in u, and are correlated with either z,; or z,,. Also,
no function of z,, or z,, can be correlated with u,, and so Assumption TS.2’ rules out mis-
specified functional form, just as in the cross-sectional case. Other problems, such as mea-
surement error in the variables z,, or z,,, can cause (11.8) to fail.

Importantly, Assumption TS.2" does not rule out correlation between, say, u,_, and z,,.
This type of correlation could arise if z, is related to past y,_,, such as

Z1 = 6 t 6,y,_; + v, (11.9)

For example, z,; might be a policy variable, such as monthly percentage change in the
money supply, and this change depends on last month’s rate of inflation (y,_,). Such a
mechanism generally causes z,; and u,_, to be correlated (as can be seen by plugging in
for y,_,). This kind of feedback is allowed under Assumption TS.2".

EXAMPLE 171. 2
(Finite Distributed Lag Model)

In the finite distributed lag model,
Y, = ay + 09z, + 6,2, + 62,5, + u, (11.10)

a very natural assumption is that the expected value of u,, given current and all past values
of z, is zero:
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E(u,

Z65Zi—1524—2:%—35+--) = 0. (11.11)

This means that, once z, z_,, and z._, are included, no further lags of z affect
E(y:|zp2i—1,24—2,2:—5,...); if this were not true, we would put further lags into the equation.
For example, y, could be the annual percentage change in investment and z, a measure of
interest rates during year t. When we set x, = (z,,2,_,,2,_,), Assumption TS.2' is then sat-
isfied: OLS will be consistent. As in the previous example, TS.2" does not rule out feedback
from y to future values of z.

The previous two examples do not necessarily require asymptotic theory because
the explanatory variables could be strictly exogenous. The next example clearly violates
the strict exogeneity assumption, and therefore we can only appeal to large sample
properties of OLS.

EXAMPLE 171. 3
[AR(1) Model]

Consider the AR(1) model,
v, = Bo+ By, T u, (11.12)
where the error u, has a zero expected value, given all past values of y:
B(u,|y,—1,y,—2,...) = 0. (11.13)
Combined, these two equations imply that

E(yt|yt—l’yt—2"") = E(yt|yt—l) = Bo + Biyi—1- (11.14)

This result is very important. First, it means that, once y lagged one period has been con-
trolled for, no further lags of y affect the expected value of y,. (This is where the name “first
order” originates.) Second, the relationship is assumed to be linear.

Since x, contains only y,_,, equation (11.13) implies that Assumption TS.2" holds. By
contrast, the strict exogeneity assumption needed for unbiasedness, Assumption TS.2, does
not hold. Since the set of explanatory variables for all time periods includes all of the val-
ues on y except the last (yo, V1, ..., ¥o—1), Assumption TS.2 requires that, for all t, u, is uncor-
related with each of yo, 4, ..., ¥,—4. This cannot be true. In fact, because u, is uncorrelated
with y,_; under (11.13), u, and y, must be correlated. Therefore, a model with a lagged
dependent variable cannot satisfy the strict exogeneity assumption TS.2.

For the weak dependence condition to hold, we must assume that |8,] < 1, as we dis-
cussed in Section 11.1. If this condition holds, then Theorem 11.1 implies that the OLS esti-
mator from the regression of y, on y,_, produces consistent estimators of B, and B;.
Unfortunately, B, is biased, and this bias can be large if the sample size is small or if B, is
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near one. (For B, near one, f3; can have a severe downward bias.) In moderate to large sam-
ples, B, should be a good estimator of 8.

When using the standard inference procedures, we need to impose versions of the
homoskedasticity and no serial correlation assumptions. These are less restrictive than
their classical linear model counterparts from Chapter 10.

ASSUMPTION TS.4'" (HOMOSKEDASTICITY)
For all t, Var(u,|x,) = o2

ASSUMPTION TS.5" (NO SERIAL CORRELATION)
For all t # s, E(usug|x,x,) = 0.

In TS.4', note how we condition only on the explanatory variables at time ¢ (compare
to TS.4). In TS.5’, we condition only on the explanatory variables in the time periods
coinciding with u, and u,. As stated, this assumption is a little difficult to interpret, but
it is the right condition for studying the large sample properties of OLS in a variety of
time series regressions. When considering TS.5’, we often ignore the conditioning on
x, and x,, and we think about whether u, and u are uncorrelated, for all ¢ # s.

Serial correlation is often a problem in static and finite distributed lag regression
models: nothing guarantees that the unobservables u, are uncorrelated over time.
Importantly, Assumption TS.5" does hold in the AR(1) model stated in equations
(11.12) and (11.13). Since the explanatory variable at time # is y, ,, we must show that
E(uuly,_1,y,_,) = 0 for all t # 5. To see this, suppose that s < t. (The other case fol-
lows by symmetry.) Then, since u;, = y, — By, — Biy,_1, U, is a function of y dated
before time ¢. But by (11.13), E(u,|u,,y,_;,y,_;) = 0, and then the law of iterated expec-
tations (see Appendix B) implies that E(u,u,|y,_,,y,_;) = 0. This is very important: as
long as only one lag belongs in (11.12), the errors must be serially uncorrelated. We will
discuss this feature of dynamic models more generally in Section 11.4.

We now obtain an asymptotic result that is practically identical to the cross-
sectional case.

THEOREM 11.2 (ASYMPTOTIC NORMALITY OF OLS)
Under TS.1" through TS.5’, the OLS estimators are asymptotically normally distributed.
Further, the usual OLS standard errors, t statistics, F statistics, and LM statistics are asymp-
totically valid.

This theorem provides additional justification for at least some of the examples esti-
mated in Chapter 10: even if the classical linear model assumptions do not hold, OLS
is still consistent, and the usual inference procedures are valid. Of course, this hinges
on TS.1' through TS.5" being true. In the next section, we discuss ways in which the
weak dependence assumption can fail. The problems of serial correlation and het-
eroskedasticity are treated in Chapter 12.
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EXAMPLE 11 . 4
(Efficient Markets Hypothesis)

We can use asymptotic analysis to test a version of the efficient markets hypothesis (EMH).
Let y, be the weekly percentage return (from Wednesday close to Wednesday close) on the
New York Stock Exchange composite index. A strict form of the efficient markets hypothe-
sis states that information observable to the market prior to week t should not help to pre-
dict the return during week t. If we use only past information on y, the EMH is stated as

EQ [y~ 1:Yi—2,--) = E()). (11.15)

If (11.15) is false, then we could use information on past weekly returns to predict the cur-
rent return. The EMH presumes that such investment opportunities will be noticed and will
disappear almost instantaneously.

One simple way to test (11.15) is to specify the AR(1) model in (11.12) as the alterna-
tive model. Then, the null hypothesis is easily stated as Hy: 8; = 0. Under the null hypoth-
esis, Assumption TS.2" is true by (11.15), and, as we discussed earlier, serial correlation is
not an issue. The homoskedasticity assumption is Var(y,|y,_,) = Var(y,) = a2, which we just
assume is true for now. Under the null hypothesis, stock returns are serially uncorrelated,
so we can safely assume that they are weakly dependent. Then, Theorem 11.2 says we can
use the usual OLS t statistic for 3, to test Hy: 8, = 0 against H,: B, # 0.

The weekly returns in NYSE.RAW are computed using data from January 1976 through
March 1989. In the rare case that Wednesday was a holiday, the close at the next trading
day was used. The average weekly return over this period was .196 in percent form, with
the largest weekly return being 8.45% and the smallest being —15.32% (during the stock
market crash of October 1987). Estimation of the AR(1) model gives

return, = .180 + .059 return,_,
(081) (.038) (11.16)

n = 689, R? = .0035, R> = .0020.

The t statistic for the coefficient on return,_, is about 1.55, and so Hy: B, = 0 cannot be
rejected against the two-sided alternative, even at the 10% significance level. The estimate
does suggest a slight positive correlation in the NYSE return from one week to the next, but
it is not strong enough to warrant rejection of the efficient markets hypothesis.

In the previous example, using an AR(1) model to test the EMH might not detect
correlation between weekly returns that are more than one week apart. It is easy to esti-
mate models with more than one lag. For example, an autoregressive model of order
two, or AR(2) model, is

Y= Bo t Biyi—1 + Boy—n T 1,

(11.17)
E(ut|yt71’yt72’ . ) = 0
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There are stability conditions on 3, and (3, that are needed to ensure that the AR(2)
process is weakly dependent, but this is not an issue here because the null hypothesis
states that the EMH holds:

Hy: B, = B, = 0. (11.18)

If we add the homoskedasticity assumption Var(u,|y,_,,y,_,) = 07, we can use a
standard F statistic to test (11.18). If we estimate an AR(2) model for return,, we obtain

return, = .186 + .060 return,_, — .038 return,_,
(.081) (.038) (.038)

n = 638, R = .0048, R> = .0019

(where we lose one more observation because of the additional lag in the equation). The
two lags are individually insignificant at the 10% level. They are also jointly insignifi-
cant: using R? = .0048, the F statistic is approximately F = 1.65; the p-value for this
F statistic (with 2 and 685 degrees of freedom) is about .193. Thus, we do no reject
(11.18) at even the 15% significance level.

EXA MPLE 171.5
(Expectations Augmented Phillips Curve)

A linear version of the expectations augmented Phillips curve can be written as

inf, — inf; = B,(unem, — w,) + e,

where w, is the natural rate of unemployment and inf¢ is the expected rate of inflation
formed in year t — 1. This model assumes that the natural rate is constant, something that
macroeconomists question. The difference between actual unemployment and the natural
rate is called cyclical unemployment, while the difference between actual and expected
inflation is called unanticipated inflation. The error term, e,, is called a supply shock by
macroeconomists. If there is a tradeoff between unanticipated inflation and cyclical unem-
ployment, then B, < 0. [For a detailed discussion of the expectations augmented Phillips
curve, see Mankiw (1994, Section 11.2).]

To complete this model, we need to make an assumption about inflationary expecta-
tions. Under adaptive expectations, the expected value of current inflation depends on
recently observed inflation. A particularly simple formulation is that expected inflation this
year is last year’s inflation: inf¢ = inf,_,. (See Section 18.1 for an alternative formulation of
adaptive expectations.) Under this assumption, we can write

inf, — inf,_, = By + Bunem, + e,
or
Ainf, = B, + B,unem, + ¢,

where Ainf, = inf, — inf,_; and By = — B0 (Bo is expected to be positive, since B, < 0
and uq > 0.) Therefore, under adaptive expectations, the expectations augmented Phillips
curve relates the change in inflation to the level of unemployment and a supply shock, e,.
If e, is uncorrelated with unem,, as is typically assumed, then we can consistently estimate
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B, and B, by OLS. (We do not have to assume that, say, future unemployment rates are
unaffected by the current supply shock.) We assume that TS.1’ through TS.5’ hold. The esti-
mated equation is

Ainf. = 3.03 — .543 unem,
(138) (.230) (11.19)

n = 48, R*> = .108, R*> = .088.

The tradeoff between cyclical unemployment and unanticipated inflation is pronounced in
equation (11.19): a one-point increase in unem lowers unanticipated inflation by over one-
half of a point. The effect is statistically significant (two-sided p-value = .023). We can con-
trast this with the static Phillips curve in Example 10.1, where we found a slightly positive
relationship between inflation and unemployment.

Because we can write the natural rate as wo, = Bo/(—B;), we can use (11.19) to obtain
our own estimate of the natural rate: i, = Bo/(— ;) = 3.03/.543 ~ 5.58. Thus, we esti-
mate the natural rate to be about 5.6, which is well within the range suggested by macro-
economists: historically, 5 to 6% is a common range cited for the natural rate of
unemployment. It is possible to obtain an approximate standard error for this estimate, but
the methods are beyond the scope of this text. [See, for example, Davidson and MacKinnon
(1993).]

Under Assumptions TS.1’ through TS.5’, we can show that the OLS estimators are
asymptotically efficient in the class of estimators described in Theorem 5.3, but we
replace the cross-sectional observation
index i with the time series index t.

QUESTION 11.2 Finally, models with trending explanatory
Suppose that expectations are formed as infe = (1/2)inf,_, + | variables can satisfy Assumptions TS.1'
(1/2)inf,_,. What regression would you run to estimate the expecta- through TS.5’, provided they are trend sta-
tions augmented Phillips curve? tionary. As long as time trends are in-
cluded in the equations when needed, the

usual inference procedures are asymptotically valid.

11.3 USING HIGHLY PERSISTENT TIME SERIES IN
REGRESSION ANALYSIS

The previous section shows that, provided the time series we use are weakly dependent,
usual OLS inference procedures are valid under assumptions weaker than the classical
linear model assumptions. Unfortunately, many economic time series cannot be char-
acterized by weak dependence. Using time series with strong dependence in regression
analysis poses no problem, if the CLM assumptions in Chapter 10 hold. But the usual
inference procedures are very susceptible to violation of these assumptions when the
data are not weakly dependent, because then we cannot appeal to the law of large num-
bers and the central limit theorem. In this section, we provide some examples of highly
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persistent (or strongly dependent) time series and show how they can be transformed
for use in regression analysis.

Highly Persistent Time Series

In the simple AR(1) model (11.2), the assumption |p,| < 1 is crucial for the series to be
weakly dependent. It turns out that many economic time series are better characterized
by the AR(1) model with p; = 1. In this case, we can write

Y=Y te,t=12,.., (11.20)

where we again assume that {e,: t = 1,2,...} is independent and identically distributed
with mean zero and variance 0. We assume that the initial value, y,, is independent of
e forallt=1.

The process in (11.20) is called a random walk. The name comes from the fact that
y at time ¢ is obtained by starting at the previous value, y,_;, and adding a zero mean
random variable that is independent of y, _,. Sometimes, a random walk is defined dif-
ferently by assuming different properties of the innovations, e, (such as lack of correla-
tion rather than independence), but the current definition suffices for our purposes.

First, we find the expected value of y,. This is most easily done by using repeated
substitution to get

y=e+te +..+e +y.
Taking the expected value of both sides gives

E(y,) = E(e,) + E(e,_)) + ... + E(e)) + E(y)
= E(y,), forall t = 1.

Therefore, the expected value of a random walk does not depend on 7. A popular
assumption is that y, = 0—the process begins at zero at time zero—in which case,
E(y,) = 0 for all ¢.

By contrast, the variance of a random walk does change with 7. To compute the vari-
ance of a random walk, for simplicity we assume that y, is nonrandom so that
Var(y,) = 0; this does not affect any important conclusions. Then, by the i.i.d. assump-
tion for {e,},

Var(y,) = Var(e,) + Var(e,_,) + ... + Var(e,) = ot. (11.21)

In other words, the variance of a random walk increases as a linear function of time.
This shows that the process cannot be stationary.

Even more importantly, a random walk displays highly persistent behavior in the
sense that the value of y today is significant for determining the value of y in the very
distant future. To see this, write for 4 periods hence,

Yivn = €r4n + €rrn—1 + ... €rv1 + Vi
Now, suppose at time ¢, we want to compute the expected value of y,, , given the cur-

rent value y,. Since the expected value of e, ;, given y,, is zero for all j = 1, we have
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E(Y, 44y, =y, forall h = 1. (11.22)

This means that, no matter how far in the future we look, our best prediction of y, , is
today’s value, y,. We can contrast this with the stable AR(1) case, where a similar argu-
ment can be used to show that

E(yt+h|yt) = pf’yt, forallh = 1.

Under stability, |p,| < 1, and so E(y,. ,|y,) approaches zero as h — : the value of y,
becomes less and less important, and E(y,.,|y,) gets closer and closer to the uncondi-
tional expected value, E(y,) = 0.

When /& = 1, equation (11.22) is reminiscent of the adaptive expectations assump-
tion we used for the inflation rate in Example 11.5: if inflation follows a random walk,
then the expected value of inf,, given past values of inflation, is simply inf,_,. Thus, a
random walk model for inflation justifies the use of adaptive expectations.

We can also see that the correlation between y, and y,, is close to one for large ¢
when {y,} follows a random walk. If Var(y,) = 0, it can be shown that

COI‘I'(yt,yH_h) =V t/(t + h)

Thus, the correlation depends on the starting point, ¢ (so that {y,} is not covariance sta-
tionary). Further, for fixed ¢, the correlation tends to zero as & — 0, but it does not do
so very quickly. In fact, the larger ¢ is, the more slowly the correlation tends to zero as
h gets large. If we choose & to be something large—say, 4 = 100—we can always
choose a large enough ¢ such that the correlation between y, and y,_ , is arbitrarily close
to one. (If 7 = 100 and we want the correlation to be greater than .95, then ¢ > 1,000
does the trick.) Therefore, a random walk does not satisfy the requirement of an asymp-
totically uncorrelated sequence.

Figure 11.1 plots two realizations of a random walk with initial value y, = 0 and
e, ~ Normal(0,1). Generally, it is not easy to look at a time series plot and to determine
whether or not it is a random walk. Next, we will discuss an informal method for mak-
ing the distinction between weakly and highly dependent sequences; we will study for-
mal statistical tests in Chapter 18.

A series that is generally thought to be well-characterized by a random walk is the
three-month, T-bill rate. Annual data are plotted in Figure 11.2 for the years 1948
through 1996.

A random walk is a special case of what is known as a unit root process. The name
comes from the fact that p; = 1 in the AR(1) model. A more general class of unit root
processes is generated as in (11.20), but {e,} is now allowed to be a general, weakly
dependent series. [For example, {e,} could itself follow an MA(1) or a stable AR(1)
process.] When {e,} is not an i.i.d. sequence, the properties of the random walk we
derived earlier no longer hold. But the key feature of {y,} is preserved: the value of y
today is highly correlated with y even in the distant future.

From a policy perspective, it is often important to know whether an economic time
series is highly persistent or not. Consider the case of gross domestic product in the
United States. If GDP is asymptotically uncorrelated, then the level of GDP in the com-
ing year is at best weakly related to what GDP was, say, thirty years ago. This means a
policy that affected GDP long ago has very little lasting impact. On the other hand, if
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Figure 11.1

Two realizations of the random walk y, = y,_; + e, with y, = 0, e, ~ Normal(0,1), and n = 50.

Y
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GDP is strongly dependent, then next year’s GDP can be highly correlated with the
GDP from many years ago. Then, we should recognize that a policy which causes a dis-
crete change in GDP can have long-lasting effects.

It is extremely important not to confuse trending and highly persistent behaviors. A
series can be trending but not highly persistent, as we saw in Chapter 10. Further, fac-
tors such as interest rates, inflation rates, and unemployment rates are thought by many
to be highly persistent, but they have no obvious upward or downward trend. However,
it is often the case that a highly persistent series also contains a clear trend. One model
that leads to this behavior is the random walk with drift:

y=ayty_,te, t=12,.., (11.23)

where {e,: t = 1,2,...} and y, satisfy the same properties as in the random walk model.
What is new is the parameter «,, which is called the drift rerm. Essentially, to generate
y,, the constant ¢, is added along with the random noise e, to the previous value y,_;.
We can show that the expected value of y, follows a linear time trend by using repeated
substitution:

y=ai te te +...+e +y.

Therefore, if y, = 0, E(y,) = «at: the expected value of y, is growing over time if o, > 0
and shrinking over time if «,, < 0. By reasoning as we did in the pure random walk case,
we can show that E(y,. ,|y,) = ayh + ,, and so the best prediction of y,. , at time 7 is y,
plus the drift a, k. The variance of y, is the same as it was in the pure random walk case.
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Figure 11.2
The U.S. three-month T-bill rate, for the years 1948-1996.
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Figure 11.3 contains a realization of a random walk with drift, where n = 50, y, =
0, oy = 2, and the ¢, are Normal(0,9) random variables. As can be seen from this graph,
y, tends to grow over time, but the series does not regularly return to the trend line.

A random walk with drift is another example of a unit root process, because it is the
special case p; = 1 in an AR(1) model with an intercept:

Ve = O + plyt—l + €.

When p, = 1 and {e,} is any weakly dependent process, we obtain a whole class of
highly persistent time series processes that also have linearly trending means.

Transformations on Highly Persistent Time Series

Using time series with strong persistence of the type displayed by a unit root process in
a regression equation can lead to very misleading results if the CLM assumptions are
violated. We will study the spurious regression problem in more detail in Chapter 18,
but for now we must be aware of potential problems. Fortunately, simple transforma-
tions are available that render a unit root process weakly dependent.

Weakly dependent processes are said to be integrated of order zero, [I(0)].
Practically, this means that nothing needs to be done to such series before using them
in regression analysis: averages of such sequences already satisfy the standard limit the-
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Figure 11.3

A realization of the random walk with drift, y, = 2 + y,_, + e, with y, = 0, e, ~
Normal(0,9), and n = 50. The dashed line is the expected value of y,, E(y,) = 2t.

Y
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orems. Unit root processes, such as a random walk (with or without drift), are said to
be integrated of order zero, or I(0). This means that the first difference of the process
is weakly dependent (and often stationary).

This is simple to see for a random walk. With {y,} generated as in (11.20) for
t=12,...,

Ay, =y, —y_1=e,t=23,..; (11.24)

therefore, the first-differenced series {Ay,: t+ = 2,3,...} is actually an i.i.d. sequence.
More generally, if {y,} is generated by (11.24) where {e,} is any weakly dependent
process, then {Ay,} is weakly dependent. Thus, when we suspect processes are inte-
grated of order one, we often first difference in order to use them in regression analy-
sis; we will see some examples later.

Many time series y, that are strictly positive are such that log(y,) is integrated of
order one. In this case, we can use the first difference in the logs, Alog(y,) = log(y,) —
log(y,_,), in regression analysis. Alternatively, since

Alog(y) = (¥, = Y- )Yi—1s (11.25)
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we can use the proportionate or percentage change in y, directly; this is what we did in
Example 11.4 where, rather than stating the efficient markets hypothesis in terms of the
stock price, p,, we used the weekly percentage change, return, = 100[(p, — p,_)/p,—1]-

Differencing time series before using them in regression analysis has another ben-
efit: it removes any linear time trend. This is easily seen by writing a linearly trending
variable as

Y=Y twnttv,

where v, has a zero mean. Then Ay, = vy, + Av,, and so E(Ay,) = y, + E(Av,) = v,. In
other words, E(Ay,) is constant. The same argument works for Alog(y,) when log(y,)
follows a linear time trend. Therefore, rather than including a time trend in a regression,
we can instead difference those variables that show obvious trends.

Deciding Whether a Time Series Is I(1)

Determining whether a particular time series realization is the outcome of an I(1) ver-
sus an 1(0) process can be quite difficult. Statistical tests can be used for this purpose,
but these are more advanced; we provide an introductory treatment in Chapter 18.

There are informal methods that provide useful guidance about whether a time
series process is roughly characterized by weak dependence. A very simple tool is moti-
vated by the AR(1) model: if |p,| < 1, then the process is 1(0), but it is I(1) if p, = 1.
Earlier, we showed that, when the AR(1) process is stable, p, = Corr(y,,y,_,). There-
fore, we can estimate p, from the sample correlation between y, and y, ;. This sample
correlation coefficient is called the first order autocorrelation of {y,}; we denote this by
p:. By applying the law of large numbers, p, can be shown to be consistent for p, pro-
vided |p,| < 1. (However, p, is not an unbiased estimator of p,.)

We can use the value of p, to help decide whether the process is I(1) or I(0).
Unfortunately, because p, is an estimate, we can never know for sure whether p, < 1.
Ideally, we could compute a confidence interval for p, to see if it excludes the value
p: = 1, but this turns out to be rather difficult: the sampling distributions of the estima-
tor of p, are extremely different when p, is close to one and when p, is much less than
one. (In fact, when p, is close to one, p, can have a severe downward bias.)

In Chapter 18, we will show how to test H,: p; = 1 against H,: p; < 1. For now, we
can only use g, as a rough guide for determining whether a series needs to be differ-
enced. No hard and fast rule exists for making this choice. Most economists think that
differencing is warranted if p, > .9; some would difference when p, > .8.

EXAMPLE 11. 6
(Fertility Equation)

In Example 10.4, we explained the general fertility rate, gfr, in terms of the value of the
personal exemption, pe. The first order autocorrelations for these series are very large:
p, = .977 for gfr and p, = .964 for pe. These are suggestive of unit root behavior, and
they raise questions about the use of the usual OLS t statistics in Chapter 10. We now esti-
mate the equations using the first differences (and dropping the dummy variables for sim-
plicity):
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Agfr = —.785 — .043 Ape
(.502) (.028) (11.26)
n=71,R>= 032, R> = 018.

Now, an increase in pe is estimated to lower gfr contemporaneously, although the estimate
is not statistically different from zero at the 5% level. This gives very different results than
when we estimated the model in levels, and it casts doubt on our earlier analysis.

If we add two lags of Ape, things improve:

Agfr = —.964 — .036 Ape — .014 Ape_, + .110 Ape_,
(468) (.027) (.028) (.027) (11.27)

n =69, R* = 233, R* = .197.

Even though Ape and Ape_, have negative coefficients, their coefficients are small and
jointly insignificant (p-value = .28). The second lag is very significant and indicates a posi-
tive relationship between changes in pe and subsequent changes in gfr two years hence.
This makes more sense than having a contemporaneous effect. See Exercise 11.12 for fur-
ther analysis of the equation in first differences.

When the series in question has an obvious upward or downward trend, it makes
more sense to obtain the first order autocorrelation after detrending. If the data are not
detrended, the autoregressive correlation tends to be overestimated, which biases
toward finding a unit root in a trending process.

EXAMPLE 11. 7
(Wages and Productivity)

The variable hrwage is average hourly wage in the U.S. economy, and outphr is output per
hour. One way to estimate the elasticity of hourly wage with respect to output per hour is
to estimate the equation,

log(hrwage,) = B, + B,log(outphr,) + B,t + u,

where the time trend is included because log(hrwage) and log(outphr,) both display clear,
upward, linear trends. Using the data in EARNS.RAW for the years 1947 through 1987, we
obtain

log(hrwage,) = —5.33 + 1.64 log(outphr,) — .018 ¢
(0.37) (0.09) (.002) (11.28)

n =41, R* = 971, R* = .970.
(We have reported the usual goodness-of-fit measures here; it would be better to report
those based on the detrended dependent variable, as in Section 10.5.) The estimated elas-

ticity seems too large: a 1% increase in productivity increases real wages by about 1.64%.
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Because the standard error is so small, the 95% confidence interval easily excludes a unit
elasticity. U.S. workers would probably have trouble believing that their wages increase by
more than 1.5% for every 1% increase in productivity.

The regression results in (11.28) must be viewed with caution. Even after linearly de-
trending log(hrwage), the first order autocorrelation is .967, and for detrended log(outphr),
p1 = .945. These suggest that both series have unit roots, so we reestimate the equation
in first differences (and we no longer need a time trend):

Alog(hrwage,) = —.0036 + .809 Alog(outphr)
(.0042) (.173) (11.29)

n = 40, R?> = 364, R> = .343.

Now, a 1% increase in productivity is estimated to increase real wages by about .81%, and
the estimate is not statistically different from one. The adjusted R-squared shows that the
growth in output explains about 35% of the growth in real wages. See Exercise 11.9 for a
simple distributed lag version of the model in first differences.

In the previous two examples, both the dependent and independent variables appear
to have unit roots. In other cases, we might have a mixture of processes with unit roots
and those that are weakly dependent (though possibly trending). An example is given
in Exercise 11.8.

11.4 DYNAMICALLY COMPLETE MODELS AND THE
ABSENCE OF SERIAL CORRELATION

In the AR(1) model (11.12), we showed that, under assumption (11.13), the errors {,}
must be serially uncorrelated in the sense that Assumption TS.5' is satisfied: assum-
ing that no serial correlation exists is practically the same thing as assuming that only
one lag of y appears in E(y,|[y,_ 1,2, ...).

Can we make a similar statement for other regression models? The answer is yes.
Consider the simple static regression model

Y. = Bo t Biz, + u, (11.30)

where y, and z, are contemporaneously dated. For consistency of OLS, we only need
E(u,|z,) = 0. Generally, the {u,} will be serially correlated. However, if we assume that

E(x,

ZYi—1>Zi—15---) = 0, (11.31)

then (as we will show generally later) Assumption TS.5" holds. In particular, the {u,}
are serially uncorrelated.

To gain insight into the meaning of (11.31), we can write (11.30) and (11.31) equiv-
alently as
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EGlz0yi—152-15--) = EGlz) = Bo + Buzs, (11.32)

where the first equality is the one of current interest. It says that, once z, has been con-
trolled for, no lags of either y or z help to explain current y. This is a strong requirement;
if it is false, then we can expect the errors to be serially correlated.

Next, consider a finite distributed lag model with two lags:

Ve = BO + B] 2 + Bzztfl + ﬂ3Z172 + u;. (11'33)

Since we are hoping to capture the lagged effects that z has on y, we would naturally
assume that (11.33) captures the distributed lag dynamics:

E(|z,02,-1:2-2:2—3> ---) = BEWVi|202,-1,2,-2); (11.34)
that is, at most two lags of z matter. If (11.31) holds, we can make further statements:
once we have controlled for z and its two lags, no lags of y or additional lags of z affect

current y:

E(V|zmYi—1:2—15---) = BEOVil2n2i—1,2—2)- (11.35)
Equation (11.35) is more likely than (11.32), but it still rules out lagged y affecting cur-
rent y.

Next, consider a model with one lag of both y and z:

Y. = Bot Bz + By T Baze—1 T ou,

Since this model includes a lagged dependent variable, (11.31) is a natural assumption,
as it implies that

E(y,

in other words, once z,, y,_, and z,_, have been controlled for, no further lags of either
y or z affect current y.
In the general model

ZpYi—15%8—15Ye—2+- ) = E(yz Zt’yt—hzt—l);

v, = Bo+ Bixy t+ ... + Bix, t u, (11.36)

where the explanatory variables x, = (x,,, ..., X,,) may or may not contain lags of y or z,
(11.31) becomes

E(ul|x[7y1*1’x17]’ . ) = O (11-37)
Written in terms of y,,
E([x.y,— 1% 1....) = E(yJx). (11.38)

In words, whatever is in x,, enough lags have been included so that further lags of y and
the explanatory variables do not matter for explaining y,. When this condition holds, we
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have a dynamically complete model. As we saw earlier, dynamic completeness can be
a very strong assumption for static and finite distributed lag models.

Once we start putting lagged y as explanatory variables, we often think that the
model should be dynamically complete. We will touch on some exceptions to this prac-
tice in Chapter 18.

Since (11.37) is equivalent to

BE(u,|x 1,11ty —s, ...) = 0, (11.39)

we can show that a dynamically complete model must satisfy Assumption TS.5'. (This
derivation is not crucial and can be skipped without loss of continuity.) For concrete-
ness, take s < 7. Then, by the law of iterated expectations (see Appendix B),

EB(uux,x,) = B[E(uu,lx,x,u)lx,x,]
= E[”SE(ut‘xt’xx’uS)‘xt’xx]?
where the second equality follows from E(u,u,|x,xu,) = u,E(u,|x,x,u,). Now, since
s <t, (x,x,u,) is a subset of the conditioning set in (11.39). Therefore, (11.39) implies
that E(u,|x,x,u,) = 0, and so
E(u,ux,x,) = E(u,-0|x,x,) = 0,

which says that Assumption TS.5" holds.

Since specifying a dynamically complete model means that there is no serial corre-
lation, does it follow that all models should be dynamically complete? As we will see
in Chapter 18, for forecasting purposes, the answer is yes. Some think that all models
should be dynamically complete and that

QUESTION 11.3 serial correlation in the errors of a model is

If (11.33) holds where u, = e, + a,e,_, and where {e,} is an i.i.d.
sequence with mean zero and variance a2, can equation (11.33) be

dynamically complete?

a sign of misspecification. This stance is
too rigid. Sometimes, we really are inter-
ested in a static model (such as a Phillips
curve) or a finite distributed lag model
(such as measuring the long-run percentage change in wages given a 1% increase in
productivity). In the next chapter, we will show how to detect and correct for serial cor-
relation in such models.

EXA MPLE 171 . 8
(Fertility Equation)

In equation (11.27), we estimated a distributed lag model for Agfr on Ape, allowing for two
lags of Ape. For this model to be dynamically complete in the sense of (11.38), neither lags
of Agfr nor further lags of Ape should appear in the equation. We can easily see that this
is false by adding Agfr_: the coefficient estimate is .300, and its t statistic is 2.84. Thus,
the model is not dynamically complete in the sense of (11.38).

What should we make of this? We will postpone an interpretation of general models
with lagged dependent variables until Chapter 18. But the fact that (11.27) is not dynami-
cally complete suggests that there may be serial correlation in the errors. We will see how
to test and correct for this in Chapter 12.
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11.5 THE HOMOSKEDASTICITY ASSUMPTION FOR TIME
SERIES MODELS

The homoskedasticity assumption for time series regressions, particularly TS.4’, looks
very similar to that for cross-sectional regressions. However, since x, can contain lagged
y as well as lagged explanatory variables, we briefly discuss the meaning of the homo-
skedasticity assumption for different time series regressions.

In the simple static model, say

v, = Bo + Biz, + u, (11.37)

Assumption TS.4' requires that
Var(u,|z,) = o>

Therefore, even though E(y,|z,) is a linear function of z,, Var(y,|z,) must be constant.
This is pretty straightforward.

In Example 11.4, we saw that, for the AR(1) model (11.12), the homoskedasticity
assumption is

Var(u,|y,_,) = Var(yt|yr—l) = 0-2;

even though E(y,|y,_,) depends on y,_,, Var(y,|y,_,) does not. Thus, the variation in the
distribution of y, cannot depend on y, .
Hopefully, the pattern is clear now. If we have the model

Ye=Bot Bz + Boyi1 T Bazy touy,
the homoskedasticity assumption is

Var(u,

— — 2
Zt’ytfl’ztfl) - Var(yt Zt’ytfl’ztfl) =0,

so that the variance of u, cannot depend on z,, y,_,, or z,_, (or some other function of
time). Generally, whatever explanatory variables appear in the model, we must assume
that the variance of y, given these explanatory variables is constant. If the model con-
tains lagged y or lagged explanatory variables, then we are explicitly ruling out dynamic
forms of heteroskedasticity (something we study in Chapter 12). But, in a static model,
we are only concerned with Var(y,|z,). In equation (11.37), no direct restrictions are
placed on, say, Var(y,|y,_,).

SUMIMARY

In this chapter, we have argued that OLS can be justified using asymptotic analysis, pro-
vided certain conditions are met. Ideally, the time series processes are stationary and
weakly dependent, although stationarity is not crucial. Weak dependence is necessary
for applying the standard large sample results, particularly the central limit theorem.

Processes with deterministic trends that are weakly dependent can be used directly
in regression analysis, provided time trends are included in the model (as in Section
10.5). A similar statement holds for processes with seasonality.
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When the time series are highly persistent (they have unit roots), we must exercise
extreme caution in using them directly in regression models (unless we are convinced
the CLM assumptions from Chapter 10 hold). An alternative to using the levels is to use
the first differences of the variables. For most highly persistent economic time series,
the first difference is weakly dependent. Using first differences changes the nature of
the model, but this method is often as informative as a model in levels. When data are
highly persistent, we usually have more faith in first-difference results. In Chapter 18,
we will cover some recent, more advanced methods for using I(1) variables in multiple
regression analysis.

When models have complete dynamics in the sense that no further lags of any vari-
able are needed in the equation, we have seen that the errors will be serially uncorre-
lated. This is useful because certain models, such as autoregressive models, are
assumed to have complete dynamics. In static and distributed lag models, the dynami-
cally complete assumption is often false, which generally means the errors will be seri-
ally correlated. We will see how to address this problem in Chapter 12.

KEY TERMS
Asymptotically Uncorrelated Nonstationary Process
Autoregressive Process of Order One Random Walk
[AR(1)] Random Walk with Drift
Covariance Stationary Serially Uncorrelated
Dynamically Complete Model Stable AR(1) Process
First Difference Stationary Process
Highly Persistent Strongly Dependent
Integrated of Order One [I(1)] Trend-Stationary Process
Integrated of Order Zero [1(0)] Unit Root Process
Moving Average Process of Order One ~ Weakly Dependent
[MA(D)]
PROBLEMS

11.1 Let {x,: t+=1,2,...} be a covariance stationary process and define vy, =
Cov(x,,x, ) for h = 0. [Therefore, y, = Var(x,).] Show that Corr(x,,x,,,) = V,/Yo-

11.2 Let {e,: t = —1,0,1, ...} be a sequence of independent, identically distributed ran-
dom variables with mean zero and variance one. Define a stochastic process by

x,=e, — (1/2)e, , + (1/2)e, 5 t=12,....

(i) Find E(x,) and Var(x,). Do either of these depend on ¢?

(i) Show that Corr(x,,x,.,) = —1/2 and Corr(x,,x,,,) = 1/3. (Hint: It is
easiest to use the formula in Problem 11.1.)

(iii)) What is Corr(x,,x,, ;) for h > 2?

@iv) Is {x,} an asymptotically uncorrelated process?

11.3 Suppose that a time series process {y,} is generated by y, = z + e, for all
t=1,2,...,where {¢,} is an i.i.d. sequence with mean zero and variance o?. The ran-
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dom variable z does not change over time; it has mean zero and variance of. Assume
that each e, is uncorrelated with z.
(i) Find the expected value and variance of y,. Do your answers depend
on t?
@ii)) Find Cov(y,,y,. ) for any ¢ and h. Is {y,} covariance stationary?
(iii) Use parts (i) and (ii) to show that Corr(y,,y,.,) = o=-/(oZ + o2) for all
t and h.
@iv) Does y, satisfy the intuitive requirement for being asymptotically uncor-
related? Explain.

11.4 Let {y,: t = 1,2, ...} follow a random walk, as in (11.20), with y, = 0. Show that
Corr(y,,¥;4p) = VtIt + hyfort =1, h > 0.

11.5 For the U.S. economy, let gprice denote the monthly growth in the overall price
level and let gwage be the monthly growth in hourly wages. [These are both obtained
as differences of logarithms: gprice = Alog(price) and gwage = Alog(wage).] Using
the monthly data in WAGEPRC.RAW, we estimate the following distributed lag model:

gpr?ce = —.00093 + .119 gwage + .097 gwage_, + .040 gwage_,

(-.00057) (.052) (.039) (.039)
+ .038 gwage_; + .081 gwage_, + .107 gwage_s + .095 gwage_
(.039) (.039) (.039) (.039)
+ .104 gwage_, + .103 gwage_g + .159 gwage_, + .110 gwage_,,
(.039) (.039) (.039) (.039)
+ .103 gwage_,, + .016 gwage_,,
(.039) (.052)

n =273, R> = 317, R*> = .283.

(i) Sketch the estimated lag distribution. At what lag is the effect of gwage
on gprice largest? Which lag has the smallest coefficient?

(ii)) For which lags are the ¢ statistics less than two?

(iii) What is the estimated long-run propensity? Is it much different than
one? Explain what the LRP tells us in this example.

(iv) What regression would you run to obtain the standard error of the LRP
directly?

(v) How would you test the joint significance of six more lags of gwage?
What would be the dfs in the F distribution? (Be careful here; you lose
six more observations.)

11.6 Let hy6, denote the three-month holding yield (in percent) from buying a six-
month T-bill at time (r — 1) and selling it at time ¢ (three months hence) as a three-
month T-bill. Let hy3,_, be the three-month holding yield from buying a three-month
T-bill at time (¢ — 1). At time (¢ — 1), hy3,_, is known, whereas hy6, is unknown
because p3, (the price of three-month T-bills) is unknown at time (¢ — 1). The expecta-
tions hypothesis (EH) says that these two different three-month investments should be
the same, on average. Mathematically, we can write this as a conditional expectation:

E(hy6,|1,_)) = hy3,_,,
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where I,_, denotes all observable information up through time ¢ — 1. This suggests esti-
mating the model

hy6, = By + Bihy3,_; + u,,

and testing Hy: B, = 1. (We can also test Hy: 3, = 0, but we often allow for a term pre-
mium for buying assets with different maturities, so that 8, # 0.)
(i) Estimating the previous equation by OLS using the data in
INTQRT.RAW (spaced every three months) gives

hy6, = —.058 + 1.104 hy3,_,
(.070) (0.039)
n = 123, R* = .866.

Do you reject Hy: B, = 1 against Hy: 8, # 1 at the 1% significance
level? Does the estimate seem practically different from one?

(i) Another implication of the EH is that no other variables dated as ( — 1)
or earlier should help explain hy6,, once hy3,_, has been controlled for.
Including one lag of the spread between six-month and three-month,
T-bill rates gives

hy6, = —.123 + 1.053 hy3,_, + 480 (r6,_, — r3,_,)
(.067) (0.039) (.109)
n =123, R> = 885.

Now is the coefficient on hy3,_, statistically different from one? Is the
lagged spread term significant? According to this equation, if, at time
(t — 1), r6 is above r3, should you invest in six-month or three-month,
T-bills?

(iii) The sample correlation between hy3, and hy3,_, is .914. Why might this
raise some concerns with the previous analysis?

(iv) How would you test for seasonality in the equation estimated in part
(ii)?

11.7 A partial adjustment model is

Vi=vt vy te
Ve = Y = AT — v toa,

where y¥ is the desired or optimal level of y, and y, is the actual (observed) level. For
example, y¥ is the desired growth in firm inventories, and x, is growth in firm sales. The
parameter vy, measures the effect of x, on y*. The second equation describes how the
actual y adjusts depending on the relationship between the desired y in time ¢ and the
actual y in time (¢ — 1). The parameter A measures the speed of adjustment and satis-
fiesO0 <A< 1.
(1) Plug the first equation for y* into the second equation and show that we
can write

Y= Bo+ By—1 T Box, T u,
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(ii)
(iii)

In particular, find the B; in terms of the y; and A and find #, in terms of
e, and a,. Therefore, the partial adjustment model leads to a model with
a lagged dependent variable and a contemporaneous x.

If E(e,|x,y,—1»X,—1»...) = B(a,|x,,y,—,x,_,...) = 0 and all series are
wegkly dependeint, how would you estimate the 8,7

If B, = .7 and B, = .2, what are the estimates of vy, and A?

CONMPUTER EXERCISES

Further Issues in Using OLS with Time Series Data

11.8 Use the data in HSEINV.RAW for this exercise.

@

(i)

(iii)

@iv)

Find the first order autocorrelation in log(invpc). Now find the autocor-
relation after linearly detrending log(invpc). Do the same for log( price).
Which of the two series may have a unit root?

Based on your findings in part (i), estimate the equation

log(invpc,) = B, + BiAlog(price,) + Bt + u,

and report the results in standard form. Interpret the coefficient Bl and
determine whether it is statistically significant.

Linearly detrend log(invpc,) and use the detrended version as the depen-
dent variable in the regression from part (ii) (see Section 10.5). What
happens to R*?

Now use Alog(invpc,) as the dependent variable. How do your results
change from part (ii)? Is the time trend still significant? Why or why not?

11.9 In Example 11.7, define the growth in hourly wage and output per hour as the
change in the natural log: ghrwage = Alog(hrwage) and goutphr = Alog(outphr).
Consider a simple extension of the model estimated in (11.29):

ghrwage, = B, + B,goutphr, + B,goutphr,_, + u,.

This allows an increase in productivity growth to have both a current and lagged effect
on wage growth.

®

(ii)

(iii)
11.10 ()

Estimate the equation using the data in EARNS.RAW and report the
results in standard form. Is the lagged value of goutphr statistically sig-
nificant?

If B, + B, = 1, a permanent increase in productivity growth is fully
passed on in higher wage growth after one year. Test Hy: B, + 8, = 1
against the two-sided alternative. Remember, the easiest way to do this
is to write the equation so that 6 = B8, + [, appears directly in the
model, as in Example 10.4 from Chapter 10.

Does goutphr,_, need to be in the model? Explain.

In Example 11.4, it may be that the expected value of the return at time
t, given past returns, is a quadratic function of return,_,. To check this
possibility, use the data in NYSE.RAW to estimate

return, = B, + Byreturn,_, + Byreturn>_, + u,;

report the results in standard form.
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(ii) State and test the null hypothesis that E(return|return,_,) does not
depend on return,_,. (Hint: There are two restrictions to test here.)
What do you conclude?

(iii) Drop return’_, from the model, but add the interaction term
return,_,-return,_,. Now, test the efficient markets hypothesis.

(iv) What do you conclude about predicting weekly stock returns based on
past stock returns?

11.11 Use the data in PHILLIPS.RAW for this exercise.

(i) In Example 11.5, we assumed that the natural rate of unemployment is
constant. An alternative form of the expectations augmented Phillips
curve allows the natural rate of unemployment to depend on past levels
of unemployment. In the simplest case, the natural rate at time ¢ equals
unem,_,. If we assume adaptive expectations, we obtain a Phillips curve
where inflation and unemployment are in first differences:

Ainf = By + B,Aunem + u.

Estimate this model, report the results in the usual form, and discuss the
sign, size, and statistical significance of ,él.

(ii)) Which model fits the data better, (11.19) or the model from part (i)?
Explain.

11.12 (i) Add a linear time trend to equation (11.27). Is a time trend necessary in
the first-difference equation?

(ii)) Drop the time trend and add the variables ww2 and pill to (11.27) (do
not difference these dummy variables). Are these variables jointly sig-
nificant at the 5% level?

(iii)) Using the model from part (ii), estimate the LRP and obtain its standard
error. Compare this to (10.19), where gfr and pe appeared in levels
rather than in first differences.

11.13 Let inven, be the real value inventories in the United States during year ¢, let GDP,
denote real gross domestic product, and let 3, denote the (ex post) real interest rate on
three-month T-bills. The ex post real interest rate is (approximately) r3, = i3, — inf,
where i3, is the rate on three-month T-bills and inf, is the annual inflation rate [see
Mankiw (1994, Section 6.4)]. The change in inventories, Ainven, is the inventory
investment for the year. The accelerator model of inventory investment is

Ainven, = B, + B,AGDP, + u,,

where 3, > 0. [See, for example, Mankiw (1994), Chapter 17.]

(i) Use the data in INVEN.RAW to estimate the accelerator model. Report
the results in the usual form and interpret the equation. Is B, statistically
greater than zero?

(i1) If the real interest rate rises, then the opportunity cost of holding inven-
tories rises, and so an increase in the real interest rate should decrease
inventories. Add the real interest rate to the accelerator model and dis-
cuss the results. Does the level of the real interest rate work better than
the first difference, Ar3,?
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Further Issues in Using OLS with Time Series Data

11.14 Use CONSUMP.RAW for this exercise. One version of the permanent income
hypothesis (PIH) of consumption is that the growth in consumption is unpredictable.
[Another version is that the change in consumption itself is unpredictable; see Mankiw
(1994, Chapter 15) for discussion of the PIH.] Let gc, = log(c,) — log(c,_,) be the
growth in real per capita consumption (of nondurables and services). Then the PIH
implies that E(gc,|I,_,) = E(gc,), where I,_, denotes information known at time (t — 1);
in this case, ¢ denotes a year.

®
(ii)

Test the PIH by estimating gc, = B, + B,gc,—; + u,. Clearly state the
null and alternative hypotheses. What do you conclude?

To the regression in part (i), add gy,_, and i3,_,, where gy, is the growth
in real per capita disposable income and i3, is the interest rate on three-
month T-bills; note that each must be lagged in the regression. Are these
two additional variables jointly significant?

11.15 Use the data in PHILLIPS.RAW for this exercise.

®

(ii)
(iii)
(iv)

Estimate an AR(1) model for the unemployment rate. Use this equation
to predict the unemployment rate for 1997. Compare this with the
actual unemployment rate for 1997. (You can find this information in a
recent Economic Report of the President.)

Add a lag of inflation to the AR(1) model from part (i). Is inf,_, statis-
tically significant?

Use the equation from part (ii) to predict the unemployment rate for
1997. Is the result better or worse than in the model from part (i)?

Use the method from Section 6.4 to construct a 95% prediction interval
for the 1997 unemployment rate. Is the 1997 unemployment rate in the
interval?
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C h apt e r Twelve

Serial Correlation and
Heteroskedasticity in Time Series
Regressions

n this chapter, we discuss the critical problem of serial correlation in the error terms
Iof a multiple regression model. We saw in Chapter 11 that when, in an appropriate

sense, the dynamics of a model have been completely specified, the errors will not
be serially correlated. Thus, testing for serial correlation can be used to detect dynamic
misspecification. Furthermore, static and finite distributed lag models often have seri-
ally correlated errors even if there is no underlying misspecification of the model.
Therefore, it is important to know the consequences and remedies for serial correlation
for these useful classes of models.

In Section 12.1, we present the properties of OLS when the errors contain serial cor-
relation. In Section 12.2, we demonstrate how to test for serial correlation. We cover
tests that apply to models with strictly exogenous regressors and tests that are asymp-
totically valid with general regressors, including lagged dependent variables. Section
12.3 explains how to correct for serial correlation under the assumption of strictly
exogenous explanatory variables, while Section 12.4 shows how using differenced data
often eliminates serial correlation in the errors. Section 12.5 covers more recent
advances on how to adjust the usual OLS standard errors and test statistics in the pres-
ence of very general serial correlation.

In Chapter 8, we discussed testing and correcting for heteroskedasticity in cross-
sectional applications. In Section 12.6, we show how the methods used in the cross-
sectional case can be extended to the time series case. The mechanics are essentially the
same, but there are a few subtleties associated with the temporal correlation in time
series observations that must be addressed. In addition, we briefly touch on the conse-
quences of dynamic forms of heteroskedasticity.

12.1 PROPERTIES OF OLS WITH SERIALLY CORRELATED
ERRORS

Unbiasedness and Consistency

In Chapter 10, we proved unbiasedness of the OLS estimator under the first three
Gauss-Markov assumptions for time series regressions (TS.1 through TS.3). In partic-
ular, Theorem 10.1 assumed nothing about serial correlation in the errors. It follows
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that, as long as the explanatory variables are strictly exogenous, the Bj are unbiased,
regardless of the degree of serial correlation in the errors. This is analogous to the
observation that heteroskedasticity in the errors does not cause bias in the B,

In Chapter 11, we relaxed the strict exogeneity assumption to E(u|x,) = 0 and
showed that, when the data are weakly dependent, the B, are still consistent (although
not necessarily unbiased). This result did not hinge on any assumption about serial cor-
relation in the errors.

Efficiency and Inference

Since the Gauss-Markov theorem (Theorem 10.4) requires both homoskedasticity and
serially uncorrelated errors, OLS is no longer BLUE in the presence of serial correla-
tion. Even more importantly, the usual OLS standard errors and test statistics are not
valid, even asymptotically. We can see this by computing the variance of the OLS esti-
mator under the first four Gauss-Markov assumptions and the AR(1) model for the error
terms. More precisely, we assume that

u,=pu,_, +e,t=12,....n (12.1)

Il <1, (12.2)

where the e, are uncorrelated random variables with mean zero and variance o2; recall
from Chapter 11 that assumption (12.2) is the stability condition.
We consider the variance of the OLS slope estimator in the simple regression model

Y. = Bo + Bix, + u,

and, just to simplify the formula, we assume that the sample average of the x, is zero
(x = 0). Then the OLS estimator 3, of 3, can be written as

B, = B, + SST;' X xu, (12.3)
=1

n

where SST, = E x2. Now, in computing the variance of ,@‘1 (conditional on X), we must
t=1

account for the serial correlation in the u,:

Var(f3,) = SST;?Var (Z xtu,) = SSTXZ(Z x2Var(u,)
=1 =1

n—1n—t
+ 2 E Extx,ﬂ»E(u,u,ﬂ»)) (12.4)
1=1j=1

n—1n—t

= 0?/SST, + 2(0*/SST?) X, X pix,x,. )

=1 j=1
where o = Var(u,) and we have used the fact that E(u,u, , ;) = Cov(u,u,,;) = p’c” [see
equation (11.4)]. The first term in equation (12.4), */SST,, is the variance of 3, when

p = 0, which is the familiar OLS variance under the Gauss-Markov assumptions. If we
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ignore the serial correlation and estimate the variance in the usual way, the variance
estimator will usually be biased when p # 0 because it ignores the second term in
(12.4). As we will see through later examples, p > 0 is most common, in which case,
p’ > 0 for all j. Further, the independent variables in regression models are often posi-
tively correlated over time, so that x,x, ., ; is positive for most pairs # and ¢ + j. Therefore,

n—1ln—t
in most economic applications, the term 2 2 p’x,x,. ;s positive, and so the usual OLS
=1 j=1 ’

variance formula o*/SST, underestimates the true variance of the OLS estimator. If p is
large or x, has a high degree of positive serial correlation—a common case—the bias in
the usual OLS variance estimator can be substantial. We will tend to think the OLS
slope estimator is more precise than it actually is.

When p < 0, p’ is negative when j is odd and positive when j is even, and so it is

n—1ln—t
difficult to determine the sign of 2 2 pIx.x, ;- In fact, it is possible that the usual OLS
=1 j=1
variance formula actually overstates the true variance of B] In either case, the usual
variance estimator will be biased for Var(,Bl) in the presence of serial correlation.
Because the standard error of 3, is an
estimate of the standard deviation of S,

using the usual OLS standard error in the
Suppose that, rather than the AR(1) model, u, follows the MA(1) presence of serial correlation is invalid.
model u, = e, + ae,_,. Find Var(8,) and show that it is different
from the usual formula if a # 0.

QUESTION 12.1

Therefore, t statistics are no longer valid
for testing single hypotheses. Since a
smaller standard error means a larger ¢ sta-
tistic, the usual ¢ statistics will often be too large when p > 0. The usual F and LM sta-
tistics for testing multiple hypotheses are also invalid.

Serial Correlation in the Presence of Lagged Dependent
Variables

Beginners in econometrics are often warned of the dangers of serially correlated errors
in the presence of lagged dependent variables. Almost every textbook on econometrics
contains some form of the statement “OLS is inconsistent in the presence of lagged
dependent variables and serially correlated errors.” Unfortunately, as a general asser-
tion, this statement is false. There is a version of the statement that is correct, but it is
important to be very precise.

To illustrate, suppose that the expected value of y,, given y,_,, is linear:

E(yt|yr—l) = BO + Blyr—l’ (12-5)

where we assume stability, |8,| < 1. We know we can always write this with an error

term as
Ve = BO + ,B]y,,, + U, (12-6)
E(u,|y,_,) = 0. (12.7)

By construction, this model satisfies the key Assumption TS. 3’ for consistency of OLS,
and therefore the OLS estimators {3, and 3, are consistent. It is important to see that,

378



Chapter 12 Serial Correlation and Heteroskedasticity in Time Series Regressions

without further assumptions, the errors {u,} can be serially correlated. Condition (12.7)
ensures that u, is uncorrelated with y,_,, but 4, and y,_, could be correlated. Then, since
U,y = ¥,—1 — Bo — Biy;—», the covariance between u, and u,_, is —3,Cov(u,,y,_»),
which is not necessarily zero. Thus, the errors exhibit serial correlation and the model
contains a lagged dependent variable, but OLS consistently estimates 8, and 3, because
these are the parameters in the conditional expectation (12.5). The serial correlation in
the errors will cause the usual OLS statistics to be invalid for testing purposes, but it
will not affect consistency.

So when is OLS inconsistent if the errors are serially correlated and the regressors
contain a lagged dependent variable? This happens when we write the model in error
form, exactly as in (12.6), but then we assume that {u,} follows a stable AR(1) model
as in (12.1) and (12.2), where

E(et|ut71’ut72’ ) = E(etlytfbytfz’ ) = 0 (12-8)

Since e, is uncorrelated with y,_; by assumption, Cov(y,_,u,) = pCov(y,_,u,_,),
which is not zero unless p = 0. This causes the OLS estimators of 3, and B, from the
regression of y, on y,_; to be inconsistent.

We now see that OLS estimation of (12.6), when the errors u, also follow an AR(1)
model, leads to inconsistent estimators. However, the correctness of this statement
makes it no less wrongheaded. We have to ask: What would be the point in estimating
the parameters in (12.6) when the errors follow an AR(1) model? It is difficult to think
of cases where this would be interesting. At least in (12.5) the parameters tell us the
expected value of y, given y,_,. When we combine (12.6) and (12.1), we see that y,
really follows a second order autoregressive model, or AR(2) model. To see this, write
U,y =y,_1 — Bo — By, and plug this into u, = pu,_; + e, Then, (12.6) can be
rewritten as

Ve = Bot Biyi—1 T pi—1 — Bo — Biyi—2) t e

Bo(l = p) + (By + p)y,—1 — pB1Y,—2 T &,
=at oy t+toy,*te,

where oy, = By(1 — p), &, = B, + p, and @, = —pp,;. Given (12.8), it follows that

E(ytlyt—l9yt—2"") = E(ytlyr—l’yt—2) = O + QY- + Y. (12'9)

This means that the expected value of y,, given all past y, depends on two lags of y. It
is equation (12.9) that we would be interested in using for any practical purpose, includ-
ing forecasting, as we will see in Chapter 18. We are especially interested in the param-
eters ;. Under the appropriate stability conditions for an AR(2) model—we will cover
these in Section 12.3—OLS estimation of (12.9) produces consistent and asymptoti-
cally normal estimators of the ;.

The bottom line is that you need a good reason for having both a lagged dependent
variable in a model and a particular model of serial correlation in the errors. Often se-
rial correlation in the errors of a dynamic model simply indicates that the dynamic
regression function has not been completely specified: in the previous example, we
should add y,_, to the equation.
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In Chapter 18, we will see examples of models with lagged dependent variables
where the errors are serially correlated and are also correlated with y,_;. But even in
these cases, the errors do not follow an autoregressive process.

12.2 TESTING FOR SERIAL CORRELATION

In this section, we discuss several methods of testing for serial correlation in the error
terms in the multiple linear regression model

Y= Bo T Bixy T .o+ Brxy T ou,.

We first consider the case when the regressors are strictly exogenous. Recall that this
requires the error, u,, to be uncorrelated with the regressors in all time periods (see Section
10.3), and so, among other things, it rules out models with lagged dependent variables.

A t test for AR(1) Serial Correlation with Strictly
Exogenous Regressors

While there are numerous ways in which the error terms in a multiple regression model
can be serially correlated, the most popular model—and the simplest to work with—is
the AR(1) model in equations (12.1) and (12.2). In the previous section, we explained
the implications of performing OLS when the errors are serially correlated in general,
and we derived the variance of the OLS slope estimator in a simple regression model
with AR(1) errors. We now show how to test for the presence of AR(1) serial correla-
tion. The null hypothesis is that there is no serial correlation. Therefore, just as with
tests for heteroskedasticity, we assume the best and require the data to provide reason-
ably strong evidence that the ideal assumption of no serial correlation is violated.

We first derive a large sample test, under the assumption that the explanatory vari-
ables are strictly exogenous: the expected value of u,, given the entire history of inde-
pendent variables, is zero. In addition, in (12.1), we must assume that

E(e,Ju,_it;_5,...) = 0 (12.10)

and
Var(e,|u,_,) = Var(e,) = o2. (12.11)

These are standard assumptions in the AR(1) model (which follow when {e,} is an i.i.d.
sequence), and they allow us to apply the large sample results from Chapter 11 for
dynamic regression.

As with testing for heteroskedasticity, the null hypothesis is that the appropriate
Gauss-Markov assumption is true. In the AR(1) model, the null hypothesis that the
errors are serially uncorrelated is

Hy: p= 0. (12.12)
How can we test this hypothesis? If the u, were observed, then, under (12.10) and
(12.11), we could immediately apply the asymptotic normality results from Theorem

11.2 to the dynamic regression model
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u,=pu,_, te,t=2,..,n (12.13)

(Under the null hypothesis p = 0, {#,} is clearly weakly dependent.) In other words, we
could estimate p from the regression of u, on u,_,, for all t = 2, ..., n, without an inter-
cept, and use the usual ¢ statistic for p. This does not work because the errors u, are not
observed. Nevertheless, just as with testing for heteroskedasticity, we can replace u,
with the corresponding OLS residual, #,. Since i, depends on the OLS estimators BO,
Bl, cee Bk, it is not obvious that using #, for u, in the regression has no effect on the dis-
tribution of the ¢ statistic. Fortunately, it turns out that, because of the strict exogeneity
assumption, the large sample distribution of the ¢ statistic is not affected by using the
OLS residuals in place of the errors. A proof is well-beyond the scope of this text, but
it follows from the work of Wooldridge (1991Db).
We can summarize the asymptotic test for AR(1) serial correlation very simply:

TESTING FOR AR(1) SERIAL CORRELATION WITH STRICTLY EXOGENOUS
REGRESSORS:

(i) Run the OLS regression of y, on x,4, ..., x,, and obtain the OLS residuals, #,, for
allt=12,...,n.
(ii) Run the regression of

d,oni, ,forallt=2,...,n, (12.14)

obtaining the coefficient p on i, and its ¢ statistic, #;. (This regression may or may not
contain an intercept; the ¢ statistic for p will be slightly affected, but it is asymptotically
valid either way.)

(iii) Use ; to test Hy: p = 0 against H,: p # 0 in the usual way. (Actually, since
p > 0 is often expected a priori, the alternative can be Hy: p > 0.) Typically, we con-
clude that serial correlation is a problem to be dealt with only if H,, is rejected at the 5%
level. As always, it is best to report the p-value for the test.

In deciding whether serial correlation needs to be addressed, we should remember
the difference between practical and statistical significance. With a large sample size, it
is possible to find serial correlation even though p is practically small; when g is close
to zero, the usual OLS inference procedures will not be far off [see equation (12.4)].
Such outcomes are somewhat rare in time series applications because time series data
sets are usually small.

EXA MPLE 12 .1
[Testing for AR(1) Serial Correlation in the Phillips Curve]

In Chapter 10, we estimated a static Phillips curve that explained the inflation-
unemployment tradeoff in the United States (see Example 10.1). In Chapter 11, we studied
a particular expectations augmented Phillips curve, where we assumed adaptive expecta-
tions (see Example 11.5). We now test the error term in each equation for serial correlation.
Since the expectations augmented curve uses Ainf, = inf, — inf,_, as the dependent vari-
able, we have one fewer observation.
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For the static Phillips curve, the regression in (12.14) yields p = .573, t = 4.93, and
p-value = .000 (with 48 observations). This is very strong evidence of positive, first order
serial correlation. One consequence of this is that the standard errors and t statistics from
Chapter 10 are not valid. By contrast, the test for AR(1) serial correlation in the expecta-
tions augmented curve gives p = —.036, t = —.297, and p-value = .775 (with 47 obser-
vations): there is no evidence of AR(1) serial correlation in the expectations augmented
Phillips curve.

Although the test from (12.14) is derived from the AR(1) model, the test can detect
other kinds of serial correlation. Remember, p is a consistent estimator of the correla-
tion between u, and u,_,. Any serial correlation that causes adjacent errors to be corre-
lated can be picked up by this test. On the other hand, it does not detect serial
correlation where adjacent errors are uncorrelated, Corr(u,,u,_,) = 0. (For example, u,
and u,_, could be correlated.)

In using the usual 7 statistic from (12.14), we must assume that the errors in (12.13)
satisfy the appropriate homoskedasticity assumption, (12.11). In fact, it is easy to make
the test robust to heteroskedasticity in e,:
we simply use the usual, heteroskedasticity-
robust ¢ statistic from Chapter 8. For the
static Phillips curve in Example 12.1, the
heteroskedasticity-robust ¢ statistic is 4.03,
which is smaller than the nonrobust ¢ sta-
tistic but still very significant. In Section 12.6, we further discuss heteroskedasticity in
time series regressions, including its dynamic forms.

QUESTION 12 .2

How would you use regression (12.14) to construct an approximate
95% confidence interval for p?

The Durbin-Watson Test Under Classical Assumptions

Another test for AR(1) serial correlation is the Durbin-Watson test. The Durbin-
Watson (DW) statistic is also based on the OLS residuals:

n
E(ﬁt - ﬁt7])2
__ =2

DW = - (12.15)
2.7
=1
Simple algebra shows that DW and g from (12.14) are closely linked:
DW = 2(1 — p). (12.16)

n

One reason this relationship is not exact is that p has Eﬁf_ , in its denominator, while
=2

the DW statistic has the sum of squares of all OLS residuals in its denominator. Even

with moderate sample sizes, the approximation in (12.16) is often pretty close.

Therefore, tests based on DW and the ¢ test based on p are conceptually the same.
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Durbin and Watson (1950) derive the distribution of DW (conditional on X), some-
thing that requires the full set of classical linear model assumptions, including normal-
ity of the error terms. Unfortunately, this distribution depends on the values of the
independent variables. (It also depends on the sample size, the number of regressors,
and whether the regression contains an intercept.) While some econometrics packages
tabulate critical values and p-values for DW, many do not. In any case, they depend on
the full set of CLM assumptions.

Several econometrics texts report upper and lower bounds for the critical values that
depend on the desired significance level, the alternative hypothesis, the number of
observations, and the number of regressors. (We assume that an intercept is included in
the model.) Usually, the DW test is computed for the alternative

H,: p > 0. (12.17)

From the approximation in (12.16), p = 0 implies that DW = 2, and p > 0 implies that
DW < 2. Thus, to reject the null hypothesis (12.12) in favor of (12.17), we are looking
for a value of DW that is significantly less than two. Unfortunately, because of the prob-
lems in obtaining the null distribution of DW, we must compare DW with two sets of
critical values. These are usually labelled as d,, (for upper) and d, (for lower). If
DW < d,, then we reject H, in favor of (12.17); if DW > d,, we fail to reject H,,. If
d, = DW = d_, the test is inconclusive.

As an example, if we choose a 5% significance level withn = 45 and k = 4, d,, =
1.720 and d, = 1.336 [see Savin and White (1977)]. If DW < 1.336, we reject the null
of no serial correlation at the 5% level; if DW > 1.72, we fail to reject H; if 1.336 =
DW = 1.72, the test is inconclusive.

In Example 12.1, for the static Phillips curve, DW is computed to be DW = .80. We
can obtain the lower 1% critical value from Savin and White (1977) fork = 1 and n =
50: d, = 1.32. Therefore, we reject the null of no serial correlation against the alterna-
tive of positive serial correlation at the 1% level. (Using the previous ¢ test, we can con-
clude that the p-value equals zero to three decimal places.) For the expectations
augmented Phillips curve, DW = 1.77, which is well within the fail-to-reject region at
even the 5% level (d, = 1.59).

The fact that an exact sampling distribution for DW can be tabulated is the only
advantage that DW has over the ¢ test from (12.14). Given that the tabulated critical val-
ues are exactly valid only under the full set of CLM assumptions and that they can lead
to a wide inconclusive region, the practical disadvantages of the DW are substantial.
The ¢ statistic from (12.14) is simple to compute and asymptotically valid without nor-
mally distributed errors. The 7 statistic is also valid in the presence of heteroskedastic-
ity that depends on the x,; and it is easy to make it robust to any form of het-
eroskedasticity.

Testing for AR(1) Serial Correlation without Strictly
Exogenous Regressors

When the explanatory variables are not strictly exogenous, so that one or more x,; is cor-
related with u,_,, neither the 7 test from regression (12.14) nor the Durbin-Watson
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statistic are valid, even in large samples. The leading case of nonstrictly exogenous
regressors occurs when the model contains a lagged dependent variable: y,_, and u,_,
are obviously correlated. Durbin (1970) suggested two alternatives to the DW statistic
when the model contains a lagged dependent variable and the other regressors are non-
random (or, more generally, strictly exogenous). The first is called Durbin’s h statistic.
This statistic has a practical drawback in that it cannot always be computed, and so we
do not cover it here.

Durbin’s alternative statistic is simple to compute and is valid when there are any
number of non-strictly exogenous explanatory variables. The test also works if the
explanatory variables happen to be strictly exogenous.

TESTING FOR SERIAL CORRELATION WITH GENERAL REGRESSORS:

(i) Run the OLS regression of y, on x,,, ..., x, and obtain the OLS residuals, #,, for
allr=1,2,...,n.
(i1) Run the regression of

Uy ON Xy Xpoy oovs Xepr Uy g, fOT Al 2 = 2, ..., 10 (12.18)

to obtain the coefficient p on i, and its  statistic, ;.
(iii) Use £; to test Hy: p = 0 against H;: p # 0 in the usual way (or use a one-sided
alternative).

In equation (12.18), we regress the OLS residuals on all independent variables, includ-
ing an intercept, and the lagged residual. The ¢ statistic on the lagged residual is a valid
test of (12.12) in the AR(1) model (12.13) (when we add Var(u,|x .u,_,) = o under Hy).
Any number of lagged dependent variables may appear among the x,;, and other non-
strictly exogenous explanatory variables are allowed as well.

The inclusion of x,,, ..., x, explicitly allows for each x,; to be correlated with u,_,,
and this ensures that #; has an approximate ¢ distribution in large samples. The 7 statis-
tic from (12.14) ignores possible correlation between x,; and u,_, soAit is not valid with-
out strictly exogenous regressors. Incidentally, because @4, =y, — B, — Bix,, — ... —
ka,k, it can be shown that the 7 statistic on #,_, is the same if y, is used in place of i,
as the dependent variable in (12.18).

The ¢ statistic from (12.18) is easily made robust to heteroskedasticity of unknown
form (in particular, when Var(u,|x,,u, _,) is not constant): just use the heteroskedasticity-
robust ¢ statistic on #,_,.

EXAMPLE 12 .2
[Testing for AR(1) Serial Correlation in the
Minimum Wage Equation]

In Chapter 10 (see Example 10.9), we estimated the effect of the minimum wage on the
Puerto Rican employment rate. We now check whether the errors appear to contain serial
correlation, using the test that does not assume strict exogeneity of the minimum wage or
GNP variables. [We add the log of Puerto Rican real GNP to equation (10.38), as in Problem
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10.9]. We are assuming that the underlying stochastic processes are weakly dependent, but
we allow them to contain a linear time trend (by including t in the regression).
Letting G, denote the OLS residuals, we run the regression of

u, on log(mincov,), log( prgnp,), log(usgnp,), t, and i,_,,

using the 37 available observations. The estimated coefficient on G,_, is p = .481 with t =
2.89 (two-sided p-value = .007). Therefore, there is strong evidence of AR(1) serial corre-
lation in the errors, which means the t statistics for the [§/ that we obtained before are not
valid for inference. Remember, though, the ,é/ are still consistent if u, is contemporaneously
uncorrelated with each explanatory variable. Incidentally, if we use regression (12.14)
instead, we obtain p = .417 and t = 2.63, so the outcome of the test is similar in this case.

Testing for Higher Order Serial Correlation
The test from (12.18) is easily extended to higher orders of serial correlation. For
example, suppose that we wish to test

Hy: p; =0,p, =0 (12.19)

in the AR(2) model,
U, = pitty—y + poit; > + e,

This alternative model of serial correlation allows us to test for second order serial cor-
relation. As always, we estimate the model by OLS and obtain the OLS residuals, #,.
Then, we can run the regression of

U, 0N X1y Xyny oevs Xy Uy, and @l,_,, for all t = 3,...,n,

to obtain the F test for joint significance of &,_, and 4,_,. If these two lags are jointly
significant at a small enough level, say 5%, then we reject (12.19) and conclude that the
errors are serially correlated.

More generally, we can test for serial correlation in the autoregressive model of
order ¢:

u, = pt,_y + poit,_» + ... +pu_, +e,. (12.20)
The null hypothesis is

Hy:py =0,p,=0,...,p, = 0. (12.21)

TESTING FOR AR(q) SERIAL CORRELATION:

(i) Run the OLS regression of y, on x,,, ..., x, and obtain the OLS residuals, #,, for
allr=1.2,...,n.
(i1) Run the regression of

385



Part 2 Regression Analysis with Time Series Data

0y O Xyy5 Xy ooy Xypo Uy gy ooy gy fOr @ll £ = (g + 1),...,7. (12.22)

(iii) Compute the F test for joint significance of 4,_,, #,_,, ..., #,_,in (12.22). [The
F statistic with y, as the dependent variable in (12.22) can also be used, as it gives an
identical answer.]

If the x,; are assumed to be strictly exogenous, so that each x,; is uncorrelated with u,_,
Uy, ...,U4,_, then the x,; can be omitted from (12.22). Including the x,; in the regres-
sion makes the test valid with or without the strict exogeneity assumption. The test
requires the homoskedasticity assumption

Var(u,|x,u,_y, ..., u,_,) = ™. (12.23)

A heteroskedasticity-robust version can be computed as described in Chapter 8.

An alternative to computing the F test is to use the Lagrange multiplier (LM ) form
of the statistic. (We covered the LM statistic for testing exclusion restrictions in Chapter
5 for cross-sectional analysis.) The LM statistic for testing (12.21) is simply

LM = (n — q)R;, (12.24)

where R? is just the usual R-squared from regression (12.22). Under the null hypothe-
sis, LM 2 Xf,. This is usually called the Breusch-Godfrey test for AR(g) serial correla-
tion. The LM statistic also requires (12.23), but it can be made robust to het-
eroskedasticity. [For details, see Wooldridge (1991Db).

EXAMPLE 172. 3
[Testing for AR(3) Serial Correlation]

In the event study of the barium chloride industry (see Example 10.5), we used monthly
data, so we may wish to test for higher orders of serial correlation. For illustration purposes,
we test for AR(3) serial correlation in the errors underlying equation (10.22). Using regres-
sion (12.22), the F statistic for joint significance of &,_,, 0,_,, and &,_5 is F = 5.12. Originally,
we had n = 131, and we lose three observations in the auxiliary regression (12.22). Because
we estimate 10 parameters in (12.22) for this example, the df in the F statistic are 3 and
118. The p-value of the F statistic is .0023, so there is strong evidence of AR(3) serial cor-
relation.

With quarterly or monthly data that have not been seasonally adjusted, we some-
times wish to test for seasonal forms of serial correlation. For example, with quarterly
data, we might postulate the autoregressive model

U, = pu,_, + e, (12.25)

From the AR(1) serial correlation tests, it is pretty clear how to proceed. When the
regressors are strictly exogenous, we can use a ¢ test on i,_, in the regression of
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d,oni, 4 foralt=35,...,n

A modification of the Durbin-Watson statistic is also available [see Wallis (1972)].
When the x,; are not strictly exogenous, we can use the regression in (12.18), with &,_,
replacing i,_;.

In Example 12.3, the data are monthly and are not seasonally adjusted. Therefore,
it makes sense to test for correlation between u, and u,_,,. A regression of 4, on i,_,
yields p,, = —.187 and p-value = .028, so
there is evidence of negative seasonal auto-
correlation. (Including the regressors
changes things only modestly: g, =
—.170 and p-value = .052.) This is some-
what unusual and does not have an obvious
explanation.

QUESTION 12.3

Suppose you have quarterly data and you want to test for the pres-
ence of first order or fourth order serial correlation. With strictly
exogenous regressors, how would you proceed?

12.3 CORRECTING FOR SERIAL CORRELATION WITH
STRICTLY EXOGENOUS REGRESSORS

If we detect serial correlation after applying one of the tests in Section 12.2, we have to
do something about it. If our goal is to estimate a model with complete dynamics, we
need to respecify the model. In applications where our goal is not to estimate a fully
dynamic model, we need to find a way to carry out statistical inference: as we saw in
Section 12.1, the usual OLS test statistics are no longer valid. In this section, we begin
with the important case of AR(1) serial correlation. The traditional approach to this
problem assumes fixed regressors. What are actually needed are strictly exogenous
regressors. Therefore, at a minimum, we should not use these corrections when the
explanatory variables include lagged dependent variables.

Obtaining the Best Linear Unbiased Estimator in the
AR(1) Model

We assume the Gauss-Markov Assumptions TS.1 through TS.4, but we relax Assump-
tion TS.5. In particular, we assume that the errors follow the AR(1) model

u, =pu,_, +e,forallt=12,.... (12.26)

Remember that Assumption TS.2 implies that u, has a zero mean conditional on X. In
the following analysis, we let the conditioning on X be implied in order to simplify the
notation. Thus, we write the variance of u, as

Var(u,) = /(1 — p?). (12.27)

For simplicity, consider the case with a single explanatory variable:
v, = By + Bix, + u, forallt =12,...,n.

Since the problem in this equation is serial correlation in the u,, it makes sense to trans-
form the equation to eliminate the serial correlation. For t = 2, we write
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Vi1 = Bo T Bixe—1 T Uy
Y = Bo T Bix, + u,.

Now, if we multiply this first equation by p and subtract it from the second equation,
we get

Ye = PYi—1 = (1 - P).Bo + Bl(xt - pxt*l) te,t= 2,

where we have used the fact that e, = u, — pu,_,. We can write this as
¥ = (1 - p)BO + Blit T e,l= 2, (12.28)

where

V=Y = PV X, = X, — px_y (12.29)

are called the quasi-differenced data. (If p = 1, these are differenced data, but remem-
ber we are assuming |p| < 1.) The error terms in (12.28) are serially uncorrelated; in
fact, this equation satisfies all of the Gauss-Markov assumptions. This means that, if we
knew p, we could estimate 3, and 3, by regressing j, on %,, provided we divide the esti-
mated intercept by (1 — p).

The OLS estimators from (12.28) are not quite BLUE because they do not use the
first time period. This is easily fixed by writing the equation for t = 1 as

Y1 = Bo T Bix; + uy. (12.30)

Since each e, is uncorrelated with u;, we can add (12.30) to (12.28) and still have seri-
ally uncorrelated errors. However, using (12.27), Var(u,) = o2/(1 — p*) > o2 = Var(e,).
[Equation (12.27) clearly does not hold when |p| = 1, which is why we assume the sta-
bility condition.] Thus, we must multiply (12.30) by (1 — p*)"? to get errors with the
same variance:

(1= g2y, = (1= p)' 2By + Byl = p)' 2, + (1 = p) 2,

or

yi =0 = p)"By + BX, + iy, (12.31)
where ii, = (1 — p)"u,, 5, = (1 — p?)'?y,, and so on. The error in (12.31) has vari-
ance Var(i,) = (1 — p?)Var(u,) = o2, so we can use (12.31) along with (12.28) in an
OLS regression. This gives the BLUE estimators of 3, and 8, under Assumptions TS.1
through TS.4 and the AR(1) model for u,.This is another example of a generalized least
squares (or GLS) estimator. We saw other GLS estimators in the context of het-
eroskedasticity in Chapter 8.
Adding more regressors changes very little. For t = 2, we use the equation

Yo=0=pBo + BiXy + ... + BiXy + e, (12.32)
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where %,; = x,; — px,_, ;. Fort = 1, we have , = (1 — p»)"?y,, ¥, = (1 — p")"x,;,
and the intercept is (1 — p?)"/?8,. For given p, it is fairly easy to transform the data and
to carry out OLS. Unless p = 0, the GLS estimator, that is, OLS on the transformed
data, will generally be different from the original OLS estimator. The GLS estimator
turns out to be BLUE, and, since the errors in the transformed equation are serially
uncorrelated and homoskedastic, ¢ and F statistics from the transformed equation are

valid (at least asymptotically, and exactly if the errors e, are normally distributed).

Feasible GLS Estimation with AR(1) Errors

The problem with the GLS estimator is that p is rarely known in practice. However, we
already know how to get a consistent estimator of p: we simply regress the OLS resid-
uals on their lagged counterparts, exactly as in equation (12.14). Next, we use this esti-
mate, g, in place of p to obtain the quasi-differenced variables. We then use OLS on the
equation

Y, = BoX,o + BiX,y + ... + B Xy + error,, (12.33)

where %,, = (1 — p) for t = 2, and ¥,, = (1 — p*)"2. This results in the feasible GLS
(FGLS) estimator of the 8;. The error term in (12.33) contains e, and also the terms
involving the estimation error in p. Fortunately, the estimation error in g does not affect
the asymptotic distribution of the FGLS estimators.

FEASIBLE GLS ESTIMATION OF THE AR(1) MODEL:

(i) Run the OLS regression of y, on x,, ..., x,, and obtain the OLS residuals, i, t =
1,2,...,n.

(i1) Run the regression in equation (12.14) and obtain p.

(iii) Apply OLS to equation (12.33) to estimate 3, B, ..., B;. The usual standard
errors, ¢ statistics, and F statistics are asymptotically valid.

The cost of using p in place of p is that the feasible GLS estimator has no tractable finite
sample properties. In particular, it is not unbiased, although it is consistent when the
data are weakly dependent. Further, even if e, in (12.32) is normally distributed, the ¢
and F statistics are only approximately ¢ and F distributed because of the estimation
error in p. This is fine for most purposes, although we must be careful with small sam-
ple sizes.

Since the FGLS estimator is not unbiased, we certainly cannot say it is BLUE.
Nevertheless, it is asymptotically more efficient than the OLS estimator when the
AR(1) model for serial correlation holds (and the explanatory variables are strictly
exogenous). Again, this statement assumes that the time series are weakly dependent.

There are several names for FGLS estimation of the AR(1) model that come from
different methods of estimating p and different treatment of the first observation.
Cochrane-Orcutt (CO) estimation omits the first observation and uses p from
(12.14), whereas Prais-Winsten (PW) estimation uses the first observation in the pre-
viously suggested way. Asymptotically, it makes no difference whether or not the first
observation is used, but many time series samples are small, so the differences can be
notable in applications.
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In practice, both the Cochrane-Orcutt and Prais-Winsten methods are used in an
iterative scheme. Once the FGLS estimator is found using g from (12.14), we can com-
pute a new set of residuals, obtain a new estimator of p from (12.14), transform the data
using the new estimate of p, and estimate (12.33) by OLS. We can repeat the whole
process many times, until the estimate of p changes by very little from the previous iter-
ation. Many regression packages implement an iterative procedure automatically, so
there is no additional work for us. It is difficult to say whether more than one iteration
helps. It seems to be helpful in some cases, but, theoretically, the large sample proper-
ties of the iterated estimator are the same as the estimator that uses only the first itera-
tion. For details on these and other methods, see Davidson and MacKinnon (1993,
Chapter 10).

EXAMPLE 172 . 4
(Cochrane-Orcutt Estimation in the Event Study)

We estimate the equation in Example 10.5 using iterated Cochrane-Orcutt estimation. For
comparison, we also present the OLS results in Table 12.1.

The coefficients that are statistically significant in the Cochrane-Orcutt estimation do
not differ by much from the OLS estimates [in particular, the coefficients on log(chempi),
log(rtwex), and afdec6]. It is not surprising for statistically insignificant coefficients to
change, perhaps markedly, across different estimation methods.

Notice how the standard errors in the second column are uniformly higher than
the standard errors in column (1). This is common. The Cochrane-Orcutt standard errors
account for serial correlation; the OLS standard errors do not. As we saw in Section 12.1,
the OLS standard errors usually understate the actual sampling variation in the OLS esti-
mates and should not be relied upon when significant serial correlation is present.
Therefore, the effect on Chinese imports after the International Trade Commissions deci-
sion is now less statistically significant than we thought (t,4ecs = —1.68).

The Cochrane-Orcutt (CO) method reports one fewer observation than OLS; this reflects
the fact that the first transformed observation is not used in the CO method. This slightly
affects the degrees of freedom that are used in hypothesis tests.

Finally, an R-squared is reported for the CO estimation, which is well-below the
R-squared for the OLS estimation in this case. However, these R-squareds should not be
compared. For OLS, the R-squared, as usual, is based on the regression with the untrans-
formed dependent and independent variables. For CO, the R-squared comes from the final
regression of the transformed dependent variable on the transformed independent vari-
ables. It is not clear what this R? is actually measuring, nevertheless, it is traditionally
reported.

Comparing OLS and FGLS

In some applications of the Cochrane-Orcutt or Prais-Winsten methods, the FGLS esti-
mates differ in practically important ways from the OLS estimates. (This was not the
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Table 12.1

Serial Correlation and Heteroskedasticity in Time Series Regressions

Dependent Variable: log(chnimp)

Coefficient OLS Cochrane-Orcutt
log(chempi) 3.12 2.95
(0.48) (0.65)
log(gas) .196 1.05
(.907) (0.99)
log(rtwex) 983 1.14
(.400) (0.51)
befile6 .060 —.016
(.261) (.321)
affile6 —.032 —.033
(.264) (.323)
afdec6 —.565 —.577
(.286) (.343)
intercept —17.70 —37.31
(20.05) (23.22)
p _ 293
(.084)
Observations 131 130
R-Squared 305 .193

case in Example 12.4.) Typically, this has been interpreted as a verification of feasible
GLS’s superiority over OLS. Unfortunately, things are not so simple. To see why, con-
sider the regression model

Ve = BO + let + Uy,

where the time series processes are stationary. Now, assuming that the law of large
numbers holds, consistency of OLS for 3, holds if

Cov(x,,u,) = 0. (12.34)

Earlier, we asserted that FGLS was consistent under the strict exogeneity assumption,
which is more restrictive than (12.34). In fact, it can be shown that the weakest assump-
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tion that must hold for FGLS to be consistent, in addition to (12.34), is that the sum of
X,_; and x, ., is uncorrelated with u,:

Cov({x,_; + x,1},u,) = 0. (12.35)

Practically speaking, consistency of FGLS requires «, to be uncorrelated with x,_,, x,,
and x,_ ;.

This means that OLS and FGLS might give significantly different estimates because
(12.35) fails. In this case, OLS—which is still consistent under (12.34)—is preferred to
FGLS (which is inconsistent). If x has a lagged effect on y, or x,, , reacts to changes in
u,, FGLS can produce misleading results.

Since OLS and FGLS are different estimation procedures, we never expect them to
give the same estimates. If they provide similar estimates of the §;, then FGLS is pre-
ferred if there is evidence of serial correlation, because the estimator is more efficient
and the FGLS test statistics are at least asymptotically valid. A more difficult problem
arises when there are practical differences in the OLS and FGLS estimates: it is hard to
determine whether such differences are statistically significant. The general method
proposed by Hausman (1978) can be used, but this is beyond the scope of this text.

Consistency and asymptotic normality of OLS and FGLS rely heavily on the time
series processes y, and the x,; being weakly dependent. Strange things can happen if we
apply either OLS or FGLS when some processes have unit roots. We discuss this fur-
ther in Chapter 18.

EXAMPLE 172 .5
(Static Phillips Curve)

Table 12.2 presents OLS and iterated Cochrane-Orcutt estimates of the static Phillips curve
from Example 10.1.

Table 12.2

Dependent Variable: inf

Coefficient OLS Cochrane-Orcutt
unem 468 —.665

(.289) (.320)
intercept 1.424 7.580

(1.719) (2.379)
o _ 774

(.091)

Observations 49 48
R-Squared .053 .086
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The coefficient of interest is on unem, and it differs markedly between CO and OLS. Since
the CO estimate is consistent with the inflation-unemployment tradeoff, our tendency is to
focus on the CO estimates. In fact, these estimates are fairly close to what is obtained by
first differencing both inf and unem (see Problem 11.11), which makes sense because the
quasi-differencing used in CO with p = .774 is similar to first differencing. It may just be
that inf and unem are not related in levels, but they have a negative relationship in first dif-
ferences.

Correcting for Higher Order Serial Correlation

It is also possible to correct for higher orders of serial correlation. A general treatment
is given in Harvey (1990). Here, we illustrate the approach for AR(2) serial correlation:

U, = pitty—y + poit; > + e,

where {e,} satisfies the assumptions stated for the AR(1) model. The stability condition
is more complicated now. They can be shown to be [see Harvey (1990)]

p>—1,p—p, <l,and p, + p, < 1.

For example, the model is stable if p, = .8 and p, = —.3; the model is unstable if p, =
7 and p, = 4.

Assuming the stability conditions hold, we can obtain the transformation that elim-
inates the serial correlation. In the simple regression model, this is easy when ¢ > 2:

Ve~ P1Yi—1— PYi2 = Bo(l = py = po) + Bix, — pix—y — pox, o) T

or
5, =Bl —p,— po) + BiX, +e,t=34,...n (12.36)

If we know p, and p,, we can easily estimate this equation by OLS after obtaining the
transformed variables. Since we rarely know p, and p,, we have to estimate them. As
usual, we can use the OLS residuals, i,: obtain p, and p, from the regression of

d,onil,_y,0,_,t=3,..,n

[This is the same regression used to test for AR(2) serial correlation with strictly exoge-
nous regressors.] Then, we use p, and p, in place of p, and p, to obtain the transformed
variables. This gives one version of the feasible GLS estimator. If we have multiple
explanatory variables, then each one is transformed by X; = x,; — p1x,—1; — PoXi—2
when t > 2.

The treatment of the first two observations is a little tricky. It can be shown that the
dependent variable and each independent variable (including the intercept) should be
transformed by

Z = {1+ pld = py)* — pil/(1 = p2)} 'z
== p)"z = {p(1 = pD"?(1 = pz,
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where z, and z, denote either the dependent or an independent variable at = 1 and ¢ =
2, respectively. We will not derive these transformations. Briefly, they eliminate the se-
rial correlation between the first two observations and make their error variances equal
to o2

Fortunately, econometrics packages geared toward time series analysis easily esti-
mate models with general AR(qg) errors; we rarely need to directly compute the trans-
formed variables ourselves.

12.4 DIFFERENCING AND SERIAL CORRELATION

In Chapter 11, we presented differencing as a transformation for making an integrated
process weakly dependent. There is another way to see the merits of differencing when
dealing with highly persistent data. Suppose that we start with the simple regression
model:

Y. =B+ Bix, tu,t=12,..., (12.37)

where u, follows the AR(1) process (12.26). As we mentioned in Section 11.3, and as
we will discuss more fully in Chapter 18, the usual OLS inference procedures can be
very misleading when the variables y, and x, are integrated of order one, or I(1). In the
extreme case where the errors {,} in (12.37) follow a random walk, the equation makes
no sense because, among other things, the variance of u, grows with ¢. It is more logi-
cal to difference the equation:

Ay, = B/Ax, + Au, 1 =2,...,n. (12.38)

If u, follows a random walk, then ¢, = Au, has zero mean, a constant variance, and is
serially uncorrelated. Thus, assuming that ¢, and Ax, are uncorrelated, we can estimate
(12.38) by OLS, where we lose the first observation.

Even if u, does not follow a random walk, but p is positive and large, first differ-
encing is often a good idea: it will eliminate most of the serial correlation. Of course,
(12.38) is different from (12.37), but at least we can have more faith in the OLS stan-
dard errors and ¢ statistics in (12.38). Allowing for multiple explanatory variables does
not change anything.

EXA MPLE 12 . 6
(Differencing the Interest Rate Equation)

In Example 10.2, we estimated an equation relating the three-month, T-bill rate to inflation
and the federal deficit [see equation (10.15)]. If we regress the residuals from this equation
on a single lag, we obtain p = .530 (.123), which is statistically greater than zero. If we dif-
ference i3, inf, and def and then check the residuals for AR(1) serial correlation, we obtain
p = .068 (.145), and so there is no evidence of serial correlation. The differencing has appar-
ently eliminated any serial correlation. [In addition, there is evidence that i3 contains a unit
root, and inf may as well, so differencing might be needed to produce I(0) variables anyway.]
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As we explained in Chapter 11, the

QUESTION 12.4 decision of whether or not to difference is

Suppose after estimating a model by OLS that you estimate p from | a tough one. But this discussion points out
regression (12.14) and you obtain p = .92. What would you do another benefit of differencing, which is

about this?

that it removes serial correlation. We will
come back to this issue in Chapter 18.

12.5 SERIAL CORRELATION-ROBUST INFERENCE
AFTER OLS

In recent years, it has become more popular to estimate models by OLS but to correct
the standard errors for fairly arbitrary forms of serial correlation (and heteroskedastic-
ity). Even though we know OLS will be inefficient, there are some good reasons for tak-
ing this approach. First, the explanatory variables may not be strictly exogenous. In this
case, FGLS is not even consistent, let alone efficient. Second, in most applications of
FGLS, the errors are assumed to follow an AR(1) model. It may be better to compute
standard errors for the OLS estimates that are robust to more general forms of serial
correlation.

To get the idea, consider equation (12.4), which is the variance of the OLS slope
estimator in a simple regression model with AR(1) errors. We can estimate this variance
very simply by plugging in our standard estimators of p and . The only problem with
this is that it assumes the AR(1) model holds and also homoskedasticity. It is possible
to relax both of these assumptions.

A general treatment of standard errors that are both heteroskedasticity and serial
correlation-robust is given in Davidson and MacKinnon (1993). Right now, we provide
a simple method to compute the robust standard error of any OLS coefficient.

Our treatment here follows Wooldridge (1989). Consider the standard multiple lin-
ear regression model

v, = Bot+ Bxy t ... + Buxy t+u,t=12,...,n, (12.39)

which we have estimated by OLS. For concreteness, we are interested in obtaining a
serial correlation-robust standard error for B3,. This turns out to be fairly easy. Write x,,
as a linear function of the remaining independent variables and an error term,

X = 8¢+ &x,p + ... + Ox, + 1, (12.40)

where the error r, has zero mean and is uncorrelated with x,,, X5, ..., X,
Then, it can be shown that the asymptotic variance of the OLS estimator S, is
n —2 n
Avar(B,) = (E E(r,z)) Var (E r,u,).
t=1 t=1
Under the no serial correlation Assumption TS.5', {a, = r,u,} is serially uncorrelated,
and so either the usual OLS standard errors (under homoskedasticity) or the

heteroskedasticity-robust standard errors will be valid. But if TS.5' fails, our expression
for Avar(f3,) must account for the correlation between a, and a,, when t # s. In prac-
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tice, it is common to assume that, once the terms are farther apart than a few periods,
the correlation is essentially zero. Remember that under weak dependence, the correla-
tion must be approaching zero, so this is a reasonable approach.

Following the general framework of Newey and West (1987), Wooldridge (1989)
shows that Avar(Bl) can be estimated as follows. Let “se(fy’l)” denote the usual (but
incorrect) OLS standard error and let & be the usual standard error of the regression (or
root mean squared error) from estimating (12.39) by OLS. Let 7, denote the residuals
from the auxiliary regression of

X1 ON Xyny Xpzy v e s Xpge (12.41)

(including a constant, as usual). For a chosen integer g > 0, define

n g n
P =>a2+2> [1 - hig+ D] ( &,&,h), (12.42)
=1 h=1

t=h+1

where

a, =ri,t=12,...,n

This looks somewhat complicated, but in practice it is easy to obtain. The integer g in
(12.42) controls how much serial correlation we are allowing in computing the standard
error. Once we have 7, the serial correlation-robust standard error of 3, is simply

se(B)) = [“se(B,)" 161V, (12.43)

In other words, we take the usual OLS standard error of ,él, divide it by &, square the
result, and then multiply by the square root of v. This can be used to construct confi-
dence intervals and ¢ statistics for Bl.

It is useful to see what v looks like in some simple cases. When g = 1,

P = a2+ Daa_, (12.44)

and when g = 2,

n n

p=>a+ (4/3)( a,a,l) 1 (2/3)( a,a,z). (12.45)
t=1 2 3

= =
The larger that g is, the more terms are included to correct for serial correlation. The
purpose of the factor [1 — A/(g + 1)] in (12.42) is to ensure that ¥ is in fact nonnega-
tive [Newey and West (1987) verify this]. We clearly need v = 0, since ¥ is estimating
a variance and the square root of ¥ appears in (12.43).

The standard error in (12.43) also turns out to be robust to arbitrary heteroskedas-
ticity. In fact, if we drop the second term in (12.42), then (12.43) becomes the usual
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heteroskedasticity-robust standard error that we discussed in Chapter 8 (without the
degrees of freedom adjustment).

The theory underlying the standard error in (12.43) is technical and somewhat sub-
tle. Remember, we started off by claiming we do not know the form of serial correla-
tion. If this is the case, how can we select the integer g? Theory states that (12.43) works
for fairly arbitrary forms of serial correlation, provided g grows with sample size n. The
idea is that, with larger sample sizes, we can be more flexible about the amount of cor-
relation in (12.42). There has been much recent work on the relationship between g and
n, but we will not go into that here. For annual data, choosing a small g, such as g = 1
or g = 2, is likely to account for most of the serial correlation. For quarterly or monthly
data, g should probably be larger (such as g = 4 or 8 for quarterly, g = 12 or 24 for
monthly), assuming that we have enough data. Newey and West (1987) recommend tak-
ing g to be the integer part of 4(n/100)*"; others have suggested the integer part of n'*.
The Newey-West suggestion is implemented by the econometrics program Eviews®.
For, say, n = 50 (which is reasonable for annual, postwar data from World War II),
g = 3. (The integer part of n'* gives g = 2.)

We summarize how to obtain a serial correlation-robust standard error for f3,. Of
course, since we can list any independent variable first, the following procedure works
for computing a standard error for any slope coefficient.

SERIAL CORRELATION-ROBUST STANDARD ERROR FOR §;:

(i) Estimate (12.39) by OLS, which yields “se(él)”, 4, and the OLS residuals
{d,t=1,...,n}.

(i1) Compute the residuals {7;: t = 1,...,n} from the auxiliary regression (12.41).
Then form @, = 7,i, (for each 1).

(iii) For your choice of g, compute v as in (12.42).

(iv) Compute se([?l) from (12.43).

Empirically, the serial correlation-robust standard errors are typically larger than the
usual OLS standard errors when there is serial correlation. This is because, in most
cases, the errors are positively serially correlated. However, it is possible to have sub-
stantial serial correlation in {#,} but to also have similarities in the usual and SC-robust
standard errors of some coefficients: it is the sample autocorrelations of @, = 7,i, that
determine the robust standard error for [§l.

The use of SC-robust standard errors has lagged behind the use of standard errors
robust only to heteroskedasticity for several reasons. First, large cross sections, where
the heteroskedasticity-robust standard errors will have good properties, are more com-
mon than large time series. The SC-robust standard errors can be poorly behaved when
there is substantial serial correlation and the sample size is small. (Where small can
even be as large as, say, 100.) Second, since we must choose the integer g in equation
(12.42), computation of the SC-robust standard errors is not automatic. As mentioned
earlier, some econometrics packages have automated the selection, but you still have to
abide by the choice.

Another important reason that SC-robust standard errors are not yet routinely com-
puted is that, in the presence of severe serial correlation, OLS can be very inefficient,
especially in small sample sizes. After performing OLS and correcting the standard
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errors for serial correlation, the coefficients are often insignificant, or at least less sig-
nificant than they were with the usual OLS standard errors.

The SC-robust standard errors after OLS estimation are most useful when we have
doubts about some of the explanatory variables being strictly exogenous, so that meth-
ods such as Cochrane-Orcutt are not even consistent. It is also valid to use the SC-robust
standard errors in models with lagged dependent variables assuming, of course, that
there is good reason for allowing serial correlation in such models.

EXAMPLE 12 .7
(The Puerto Rican Minimum Wage)

We obtain an SC-robust standard error for the minimum wage effect in the Puerto Rican
employment equation. In Example 12.2, we found pretty strong evidence of AR(1) serial
correlation. As in that example, we use as additional controls log(usgnp), log(prgnp), and
a linear time trend.

The OLS estimate of the elasticity of the employment rate with respect to the minimum
wage is 3, = —.2123, and the usual OLS standard error is “se(8,)" = .0402. The standard
error of the regression is & = .0328. Further, using the previous procedure with g = 2 [see
(12.45)], we obtain ¥ = .000805. This gives the SC/heteroskedasticity-robust standard error
as se(B;) = [(.0402/.0328)*]V/.000805 ~ .0426. Interestingly, the robust standard error is
only slightly greater than the usual OLS standard error. The robust t statistic is about —4.98,
and so the estimated elasticity is still very statistically significant.

For comparison, the iterated CO estimate of B, is —.1111, with a standard error of
.0446. Thus, the FGLS estimate is much closer to zero than the OLS estimate, and we might
suspect violation of the strict exogeneity assumption. Or, the difference in the OLS and FGLS
estimates might be explainable by sampling error. It is very difficult to tell.

Before leaving this section, we note that it is possible to construct serial correlation-
robust, F-type statistics for testing multiple hypotheses, but these are too advanced to
cover here. [See Wooldridge (1991b, 1995) and Davidson and MacKinnon (1993) for
treatments. |

12.6 HETEROSKEDASTICITY IN TIME SERIES
REGRESSIONS

We discussed testing and correcting for heteroskedasticity for cross-sectional applica-
tions in Chapter 8. Heteroskedasticity can also occur in time series regression models,
and the presence of heteroskedasticity, while not causing bias or inconsistency in the Bj,
does invalidate the usual standard errors, ¢ statistics, and F statistics. This is just as in
the cross-sectional case.

In time series regression applications, heteroskedasticity often receives little, if any,
attention: the problem of serially correlated errors is usually more pressing. Never-
theless, it is useful to briefly cover some of the issues that arise in applying tests and
corrections for heteroskedasticity in time series regressions.
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Since the usual OLS statistics are asymptotically valid under Assumptions TS.1’
through TS.5’, we are interested in what happens when the homoskedasticity assump-
tion, TS.4', does not hold. Assumption TS.2' rules out misspecifications such as omit-
ted variables and certain kinds of measurement error, while TS.5’ rules out serial
correlation in the errors. It is important to remember that serially correlated errors cause
problems which tests and adjustments for heteroskedasticity are not able to address.

Heteroskedasticity-Robust Statistics

In studying heteroskedasticity for cross-sectional regressions, we noted how it has no
bearing on the unbiasedness or consistency of the OLS estimators. Exactly the same
conclusions hold in the time series case, as we can see by reviewing the assumptions
needed for unbiasedness (Theorem 10.1) and consistency (Theorem 11.1).

In Section 8.2, we discussed how the usual OLS standard errors, ¢ statistics, and F'
statistics can be adjusted to allow for the presence of heteroskedasticity of unknown
form. These same adjustments work for time series regressions under Assumptions
TS.1', TS.2’, TS.3’, and TS.5'. Thus, provided the only assumption violated is the
homoskedasticity assumption, valid inference is easily obtained in most econometric
packages.

Testing for Heteroskedasticity

Sometimes, we wish to test for heteroskedasticity in time series regressions, especially
if we are concerned about the performance of heteroskedasticity-robust statistics in rel-
atively small sample sizes. The tests we covered in Chapter 8 can be applied directly,
but with a few caveats. First, the errors u, should not be serially correlated; any serial
correlation will generally invalidate a test for heteroskedasticity. Thus, it makes sense
to test for serial correlation first, using a heteroskedasticity-robust test if heteroskedas-
ticity is suspected. Then, after something has been done to correct for serial correlation,
we can test for heteroskedasticity.

Second, consider the equation used to motivate the Breusch-Pagan test for het-
eroskedasticity:

uw? =08, + 8x,, + ... + S x, + v, (12.46)

where the null hypothesis is Hy: §, = 8, = ... = §, = 0. For the F statistic—with 77
replacing u? as the dependent variable—to be valid, we must assume that the errors {v,}
are themselves homoskedastic (as in the cross-sectional case) and serially uncorrelated.
These are implicitly assumed in computing all standard tests for heteroskedasticity,
including the version of the White test we covered in Section 8.3. Assuming that the
{v,} are serially uncorrelated rules out certain forms of dynamic heteroskedasticity,
something we will treat in the next subsection.

If heteroskedasticity is found in the u, (and the u, are not serially correlated), then
the heteroskedasticity-robust test statistics can be used. An alternative is to use
weighted least squares, as in Section 8.4. The mechanics of weighted least squares for
the time series case are identical to those for the cross-sectional case.
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EXAMPLE 12 .8
(Heteroskedasticity and the Efficient Markets Hypothesis)

In Example 11.4, we estimated the simple model
return, = B, + Byreturn,_, + u,. (12.47)

The EMH states that 8, = 0. When we tested this hypothesis using the data in NYSE.RAW,
we obtained t; = 1.55 with n = 689. With

such a large sample, this is not much evi-

QUESTION 12.5 dence against the EMH. While the EMH
How would you compute the White test for heteroskedasticity in states that the expected return given past

equation (12.47)?

observable information should be constant,

it says nothing about the conditional vari-
ance. In fact, the Breusch-Pagan test for heteroskedasticity entails regressing the squared
OLS residuals G2 on return,_,:

i? = 4.66 — 1.104 return,_, + residual,
0.43) (0.201) (12.48)

n = 689, R* = .042.

The t statistic on return,_, is about —5.5, indicating strong evidence of heteroskedasticity.
Because the coefficient on return,_, is negative, we have the interesting finding that volatil-
ity in stock returns is lower when the previous return was high, and vice versa. Therefore,
we have found what is common in many financial studies: the expected value of stock
returns does not depend on past returns, but the variance of returns does.

Autoregressive Conditional Heteroskedasticity

In recent years, economists have become interested in dynamic forms of heteroskedas-
ticity. Of course, if x, contains a lagged dependent variable, then heteroskedasticity as
in (12.46) is dynamic. But dynamic forms of heteroskedasticity can appear even in
models with no dynamics in the regression equation.

To see this, consider a simple static regression model:

Y. = Bo + Bz, + u,

and assume that the Gauss-Markov assumptions hold. This means that the OLS esti-
mators are BLUE. The homoskedasticity assumption says that Var(u,|Z) is constant,
where Z denotes all n outcomes of z,. Even if the variance of u, given Z is constant, there
are other ways that heteroskedasticity can arise. Engle (1982) suggested looking at the
conditional variance of u, given past errors (where the conditioning on Z is left
implicit). Engle suggested what is known as the autoregressive conditional het-
eroskedasticity (ARCH) model. The first order ARCH model is
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E@?|u,_ . u,_,...) = BWu,_)) = ap + ayu’_,, (12.49)

where we leave the conditioning on Z implicit. This equation represents the conditional
variance of u, given past u,, only if E(u,|u,_,,u,_,,...) = 0, which means that the errors
are serially uncorrelated. Since conditional variances must be positive, this model only
makes sense if oy > 0 and «, = 0; if @, = 0, there are no dynamics in the variance
equation.

It is instructive to write (12.49) as

w=a,+ oy, +v, (12.50)

where the expected value of v, (given u,_,, u,_,, ...) is zero by definition. (The v, are
not independent of past u, because of the constraint v, = —a, — ayu>_,.) Equation
(12.50) looks like an autoregressive model in u? (hence the name ARCH). The stability
condition for this equation is «; < 1, just as in the usual AR(1) model. When «;, > 0,
the squared errors contain (positive) serial correlation even though the u, themselves
do not.

What implications does (12.50) have for OLS? Since we began by assuming the
Gauss-Markov assumptions hold, OLS is BLUE. Further, even if , is not normally dis-
tributed, we know that the usual OLS test statistics are asymptotically valid under
Assumptions TS.1' through TS.5’, which are satisfied by static and distributed lag mod-
els with ARCH errors.

If OLS still has desirable properties under ARCH, why should we care about ARCH
forms of heteroskedasticity in static and distributed lag models? We should be con-
cerned for two reasons. First, it is possible to get consistent (but not unbiased) estima-
tors of the B, that are asymptotically more efficient than the OLS estimators. A weighted
least squares procedure, based on estimating (12.50), will do the trick. A maximum
likelihood procedure also works under the assumption that the errors u, have a condi-
tional normal distribution. Second, economists in various fields have become interested
in dynamics in the conditional variance. Engle’s orginal application was to the variance
of United Kingdom inflation, where he found that a larger magnitude of the error in the
previous time period (larger u?_,) was associated with a larger error variance in the cur-
rent period. Since variance is often used to measure volatility, and volatility is a key ele-
ment in asset pricing theories, ARCH models have become important in empirical
finance.

ARCH models also apply when there are dynamics in the conditional mean. Suppose
we have the dependent variable, y,, a contemporaneous exogenous variable, z,, and

E(y,|z,,y,,1,z,,1,y,,2, ) = BO + Blzz + .32)’171 + B3Z171’

so that at most one lag of y and z appears in the dynamic regression. The typical
approach is to assume that Var(y,|z,,y,_1,Z,—1»Y,—» ---) is constant, as we discussed in
Chapter 11. But this variance could follow an ARCH model:

Var(y, [z, y,— 12— 12Yi—2s ) = VAU |2,y 1,2 1.Y,—25 - --)

— 2
= oy, T ou;_,
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where u, =y, — E(V,|2,,¥,— 1,2~ 15Y¢—2, - --). As we know from Chapter 11, the presence
of ARCH does not affect consistency of OLS, and the usual heteroskedasticity-robust
standard errors and test statistics are valid. (Remember, these are valid for any form of
heteroskedasticity, and ARCH is just one particular form of heteroskedasticity.)

If you are interested in the ARCH model and its extensions, see Bollerslev, Chou,
and Kroner (1992) and Bollerslev, Engle, and Nelson (1994) for recent surveys.

EXA MPLE 172.9
(ARCH in Stock Returns)

In Example 12.8, we saw that there was heteroskedasticity in weekly stock returns. This het-
eroskedasticity is actually better characterized by the ARCH model in (12.50). If we com-
pute the OLS residuals from (12.47), square these, and regress them on the lagged squared
residual, we obtain

42 = 2.95 + 337 0%, + residual,
(0.44) (.036) (12.51)

n =688, R*=.114.

The t statistic on GZ_, is over nine, indicating strong ARCH. As we discussed earlier, a larger
error at time t — 1 implies a larger variance in stock returns today.

It is important to see that, while the squared OLS residuals are autocorrelated, the OLS
residuals themselves are not (as is consistent with the EMH). Regressing d, on §,_, gives
p = .0014 with t; = .038.

Heteroskedasticity and Serial Correlation in Regression
Models

Nothing rules out the possibility of both heteroskedasticity and serial correlation being
present in a regression model. If we are unsure, we can always use OLS and compute
fully robust standard errors, as described in Section 12.5.

Much of the time serial correlation is viewed as the most important problem, because
it usually has a larger impact on standard errors and the efficiency of estimators than
does heteroskedasticity. As we concluded in Section 12.2, obtaining tests for serial cor-
relation that are robust to arbitrary heteroskedasticity is fairly straightforward. If we
detect serial correlation using such a test, we can employ the Cochrane-Orcutt transfor-
mation [see equation (12.32)] and, in the transformed equation, use heteroskedasticity-
robust standard errors and test statistics. Or, we can even test for heteroskedasticity in
(12.32) using the Breusch-Pagan or White tests.

Alternatively, we can model heteroskedasticity and serial correlation, and correct
for both through a combined weighted least squares AR(1) procedure. Specifically, con-
sider the model
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Y. = Bo T Bixy T ..o+ Brxy T ouy
u, = Vhpy, (12.52)
vi=pvi toe, |p| <1,

where the explanatory variables X are independent of e, for all ¢, and £, is a function of
the x,;. The process {e,} has zero mean, constant variance o, and is serially uncorre-
lated. Therefore, {v,} satisfies a stable AR(1) process. Suppressing the conditioning on
the explanatory variables, we have

Var(u,) = o2h,,
where o2 = ¢2/(1 — p?). But v, = u,/\Vh, is homoskedastic and follows a stable AR(1)
model. Therefore, the transformed equation

yvINh, = B(INR) + By /NB) + ... + Bux /NVh) + v,  (12.53)

has AR(1) errors. Now, if we have a particular kind of heteroskedasticity in mind—that
is, we know h,—we can estimate (12.52) using standard CO or PW methods.

In most cases, we have to estimate A, first. The following method combines the
weighted least squares method from Section 8.4 with the AR(1) serial correlation cor-
rection from Section 12.3.

FEASIBLE GLS WITH HETEROSKEDASTICITY AND AR(1) SERIAL CORRELATION:

(i) Estimate (12.52) by OLS and save the residuals, #,.

(ii) Regress log(ii?) on x,,, ..., X, (or on $,, $?) and obtain the fitted values, say g,.
(iii) Obtain the estimates of A,: fz, = exp(g).

(iv) Estimate the transformed equation

h %y, = b, 2By + B b x, + o + Boh X, + error,  (12.54)

by standard Cochrane-Orcutt or Prais-Winsten methods.

These feasible GLS estimators are asymptotically efficient. More importantly, all
standard errors and test statistics from the CO or PW methods are asymptotically valid.

SUMMARY

We have covered the important problem of serial correlation in the errors of multiple
regression models. Positive correlation between adjacent errors is common, especially
in static and finite distributed lag models. This causes the usual OLS standard errors and
statistics to be misleading (although the ﬁ] can still be unbiased, or at least consistent).
Typically, the OLS standard errors underestimate the true uncertainty in the parameter
estimates.

The most popular model of serial correlation is the AR(1) model. Using this as the
starting point, it is easy to test for the presence of AR(1) serial correlation using the
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OLS residuals. An asymptotically valid ¢ statistic is obtained by regressing the OLS
residuals on the lagged residuals, assuming the regressors are strictly exogenous and a
homoskedasticity assumption holds. Making the test robust to heteroskedasticity is sim-
ple. The Durbin-Watson statistic is available under the classical linear model assump-
tions, but it can lead to an inconclusive outcome, and it has little to offer over the ¢ test.

For models with a lagged dependent variable, or other nonstrictly exogenous regres-
sors, the standard ¢ test on #,_, is still valid, provided all independent variables are
included as regressors along with @, ;. We can use an F or an LM statistic to test for
higher order serial correlation.

In models with strictly exogenous regressors, we can use a feasible GLS proce-
dure—Cochrane-Orcutt or Prais-Winsten—to correct for AR(1) serial correlation. This
gives estimates that are different from the OLS estimates: the FGLS estimates are
obtained from OLS on quasi-differenced variables. All of the usual test statistics from
the transformed equation are asymptotically valid. Almost all regression packages have
built-in features for estimating models with AR(1) errors.

Another way to deal with serial correlation, especially when the strict exogeneity
assumption might fail, is to use OLS but to compute serial correlation-robust standard
errors (that are also robust to heteroskedasticity). Many regression packages follow a
method suggested by Newey and West (1987); it is also possible to use standard regres-
sion packages to obtain one standard error at a time.

Finally, we discussed some special features of heteroskedasticity in time series
models. As in the cross-sectional case, the most important kind of heteroskedasticity is
that which depends on the explanatory variables; this is what determines whether the
usual OLS statistics are valid. The Breusch-Pagan and White tests covered in Chapter
8 can be applied directly, with the caveat that the errors should not be serially corre-
lated. In recent years, economists—especially those who study the financial markets—
have become interested in dynamic forms of heteroskedasticity. The ARCH model is
the leading example.

KEY TERMS

Autoregressive Conditional Feasible GLS (FGLS)
Heteroskedasticity (ARCH) Prais-Winsten (PW) Estimation

Breusch-Godfrey Test Quasi-Differenced Data

Cochrane-Orcutt (CO) Estimation Serial Correlation-Robust Standard Error

Durbin-Watson (DW) Statistic Weighted Least Squares

PROBLEMS

12.1 When the errors in a regression model have AR(1) serial correlation, why do the
OLS standard errors tend to underestimate the sampling variation in the 3,7 Is it always
true that the OLS standard errors are too small?

12.2 Explain what is wrong with the following statement: “The Cochrane-Orcutt and
Prais-Winsten methods are both used to obtain valid standard errors for the OLS esti-
mates.”
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12.3 In Example 10.6, we estimated a variant on Fair’s model for predicting presiden-
tial election outcomes in the United States.
(i) What argument can be made for the error term in this equation being
serially uncorrelated. (Hint: How often do presidential elections take

place?)
(ii)) When the OLS residuals from (10.23) are regressed on the lagged resid-
uals, we obtain p = —.068 and se(p) = .240. What do you conclude

about serial correlation in the u,?
(iii) Does the small sample size in this application worry you in testing for
serial correlation?

12.4 True or False: “If the errors in a regression model contain ARCH, they must be
serially correlated.”

12.5 (i) In the enterprise zone event study in Problem 10.11, a regression of the OLS
residuals on the lagged residuals produces p = .841 and se(p) = .053. What
implications does this have for OLS?

(i) If you want to use OLS but also want to obtain a valid standard error for
the EZ coefficient, what would you do?

12.6 In Example 12.8, we found evidence of heteroskedasticity in u, in equation
(12.47). Thus, we compute the heteroskedasticity-robust standard errors (in [-]) along
with the usual standard errors:

return, = .180 + .059 return,_,
(.081) (.038)
[.085] [.069]

n = 689, R> = .0035, R* = .0020.

What does using the heteroskedasticity-robust ¢ statistic do to the significance of
return,_,;?

CONMPUTER EXERCISES

12.7 In Example 11.6, we estimated a finite DL. model in first differences:

Agfr, = vy + 8oApe, + 8,Ape,_, + 8,Ape,_, + u,.

Use the data in FERTIL3.RAW to test whether there is AR(1) serial correlation in the
errors.

12.8 (i) Using the data in WAGEPRC.RAW, estimate the distributed lag model from
Problem 11.5. Use regression (12.14) to test for AR(1) serial correlation.
(i) Reestimate the model using iterated Cochrane-Orcutt estimation. What
is your new estimate of the long-run propensity?
(iii) Using iterated CO, find the standard error for the LRP. (This requires
you to estimate a modified equation.) Determine whether the estimated
LRP is statistically different from one at the 5% level.
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Part 2

12.9 (i)

(ii)

12.10()

(ii)

(iii)

@iv)

Regression Analysis with Time Series Data

In part (i) of Problem 11.13, you were asked to estimate the accelerator model
for inventory investment. Test this equation for AR(1) serial correlation.

If you find evidence of serial correlation, reestimate the equation by
Cochrane-Orcutt and compare the results.

Use NYSE.RAW to estimate equation (12.48). Let h, be the fitted values
from this equation (the estimates of the conditional variance). How many ﬁ,
are negative?

Add return’_, to (12.48) and again compute the fitted values, fz,. Are

any fz, negative?

Use the fz, from part (ii) to estimate (12.47) by weighted least squares

(as in Section 8.4). Compare your estimate of 3, with that in equation
(11.16). Test Hy: B; = 0 and compare the outcome when OLS is used.
Now, estimate (12.47) by WLS, using the estimated ARCH model in
(12.51) to obtain the ﬁ,. Does this change your findings from part (iii)?

12.11 Consider the version of Fair’s model in Example 10.6. Now, rather than predict-
ing the proportion of the two-party vote received by the Democrat, estimate a linear
probability model for whether or not the Democrat wins.

®

(ii)

(iii)

@iv)

)
(vi)

12.12)

(ii)
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Use the binary variable demwins in place of demvote in (10.23) and
report the results in standard form. Which factors affect the probability
of winning? Use the data only through 1992.

How many fitted values are less than zero? How many are greater than
one?

Use the following prediction rule: if demwins > .5, you predict the
Democrat wins; otherwise, the Republican wins. Using this rule, deter-
mine how many of the 20 elections are correctly predicted by the
model.

Plug in the values of the explanatory variables for 1996. What is the
predicted probability that Clinton would win the election? Clinton did
win; did you get the correct prediction?

Use a heteroskedasticity-robust # test for AR(1) serial correlation in the
errors. What do you find?

Obtain the heteroskedasticity-robust standard errors for the estimates in
part (i). Are there notable changes in any ¢ statistics?

In Problem 10.13, you estimated a simple relationship between consumption
growth and growth in disposable income. Test the equation for AR(1) serial
correlation (using CONSUMP.RAW).

In Problem 11.14, you tested the permanent income hypothesis by
regressing the growth in consumption on one lag. After running this
regression, test for heteroskedasticity by regressing the squared residu-

als on gc,_, and gc?_,. What do you conclude?






