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from the ADL coefficients or, alternatively, by estimating the distributed lag model directly
using GLS is to view the decision in terms of a trade-off between bias and variance. Esti-
mating the dynamic multipliers using an approximate ADL model introduces bias; how-
ever, because there are few coefficients, the variance of the estimator of the dynamic
multipliers can be small. In contrast, estimating a long distributed lag model using GL.S pro-
duces less bias in the multipliers; however, because there are so many coefficients, their vari-
ance can be large. If the ADL approximation to the dynamic multipliers is a good one, then
the bias of the implied dynamic multipliers will be small, so the ADL approach will have a
smaller variance than the GLS approach with only a small increase in the bias. For this rea-
son, unrestricted estimation of an ADL model with small number of lags of Yand Xis an

attractive way to approximate a long distributed lag when X is strictly exogenous.

Additional Topics
in Time Series Regression

his chapter takes up some further topics in time series regression, starting with

forecasting. Chapter 14 considered forecasting a single variable. In practice,
however, you might want to forecast two or more variables such as the rate of
inflation and the growth rate of the GDP. Section 16.1 introduces a model for
forecasting multiple variables, vector autoregressions (VARSs), in which lagged values
of two or more variables are used to forecast future values of those variables.
Chapter 14 also focused on making forecasts one period (e.g., one quarter) into the
future, but making forecasts two, three, or more periods into the future is important
as well. Methods for making multiperiod forecasts are discussed in Section 16.2.

Sections 16.3 and 16.4 return to the topic of Section 14.6, stochastic trends.
Section 16.3 introduces additional models of stochastic trends and an alternative test
for a unit autoregressive root. Section 16.4 introduces the concept of cointegration,
which arises when two variables share a common stochastic trend, that is, when each
variable contains a stochastic trend, but a weighted difference of the two variables
does not.

In some time series data, especially financial data, the variance changes over
time: Sometimes the series exhibits high volatility, while at other times the volatility is
low, so the data exhibit clusters of volatility. Section 16.5 discusses volatility clustering
and introduces models in which the variance of the forecast error changes over time,
that is, models in which the forecast error is conditionally heteroskedastic. Models of
conditional heteroskedasticity have several applications. One application is
computing forecast intervals, where the width of the interval changes over time to
reflect periods of high or low uncertainty. Another application is forecasting the
uncertainty of returns on an asset, such as a stock, which in turn can be useful in
assessing the risk of owning that asset.

Vector Autoregressions

Chapter 14 focused on forecasting the rate of inflation, but in reality economic
forecasters are in the business of forecasting other key macroeconomic variables
as well, such as the rate of unemployment, the growth rate of GDP, and interest
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Vector Autoregressions

A vector autoregression (VAR) is a set of k time series regressiqns, in which th
regressors are lagged values of all k series. A VAR extends the univariate »aﬁ_;o’;‘
gression to a list, or “vector,” of time series variables. When the number of lags in
each of the equations is the same and is equal to p, the system of equations is called
a VAR(p). S
In the case of two time series variables, Y, and X, the VAR(p) cfonsists of the

two equations
Yi=PBp+BuYa+ - +BpYptyuX-i+ - FypX, tuy (161)
X =Bt Ba¥t -+ BoypY, TyaXia + o X, tug, (162)

where the B8’s and the y’s are unknown coefficients and u;, and u,, are error terms.

The VAR assumptions are the time series regression assumptions of Key Con-
cept 14.6, applied to each equation. The coefficients of a VAR are estimated by
estimating each equation by OLS.

rates. One approach is to develop a separate forecasting model for each variable
using the methods of Section 14.4. Another approach is to develop a single model
that::an forecast all the variables, which can help to make the forecasts mutually
consistent. One way to forecast several variables with a single model is to use a
vector autoregression {(VAR). A VAR extends the univariate autoregression to
multiple time series variables, that is, it extends the univariate autoregressiog toa

“vector” of time series variables.

The VAR Model

A vector autoregression (VAR) with two time series variables, ¥ and X, consists
of two equations: In one, the dependent variable is ¥};in the other, the dependent
variable is X, The regressors in both equations are lagged values of both variables.
More generally,a VAR with k time series variables consists of k equations, one for
each of the variables; where the regressors in all equations are lagged values of all
the variables. The coefficients of the VAR are estimated by estimating each of the
equations by OLS.
VARs are summarized in Key Concept 16.1.
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- Inference in VARs. Under the VAR assumptions, the OLS estimators are con-

sistent and have a joint normal distribution in large samples. Accordingly, statisti-
calinference proceeds in the usual manner; for example, 95% confidence intervals
on coefficients can be constructed as the estimated coefficient + 1.96 standard
€ITOrS.

One new aspect of hypothesis testing arises in VARS because a VAR with k
variables is a collection, or system, of k equations. Thus it is possible to test joint
hypotheses that involve restrictions across multiple equations.

For example, in the two-variable VAR (p) in Equations (16.1) and (16.2), you
could ask whether the correct lag length is p or p — 1 that is, you could ask whether
the coefficients on ¥_, and X, —p &I Ze10 in these two equations. The null hypoth-
esis that these coefficients are zero is

H():ﬁlp = O’ ,BZp = O’ 71p = Ow and ’Y2p =0. (163)

The alternative hypothesis is that at least one of these four coefficients is nonzero.
Thus the null hypothesis involves coefficients from both of the equations, two from
each equation.

Because the estimated coefficients have a jointly normal distribution in large
samples, it is possible to test restrictions on these coefficients by computing an F-
statistic. The precise formula for this statistic is complicated because the notation
must handle multiple equations, so we omit it. In practice, most modern software
packages have automated procedures for testing hypotheses on coefficients in sys-
tems of multiple equations.

How many variables should be included in a VAR? The number of coefficients
in each equation of a VAR is proportional to the number of variables in the VAR,
For example, a VAR with five variables and four lags will have 21 coefficients (four
lags each of five variables, plus the intercept) in each of the five equations, for a
total of 105 coefficients! Estimating all these coefficients increases the amount of
estimation error entering a forecast, which can result in a deterioration of the accu-
racy of the forecast.

The practical implication is that one needs to keep the number of variables in
a VAR small and, especially, to make sure that the variables are plausibly related
to each other so that they will be useful for forecasting one another. For example,
we know from a combination of empirical evidence (such as that discussed in
Chapter 14) and economic theory that the inflation rate, the unemployment rate,
and the short-term interest rate are related to one another, suggesting that these
variables could help to forecast one another other in a VAR. Including an unrelated
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variable in a VAR, however, introduces estimation error without adding predic-
tive content, thereby reducing forecast accuracy.

Determining lag lengths in VARs.' Lag lengths in a VAR can be determined
using either F-tests or information criteria.

The information criterion for a system of equations extends the single-
equation information criterion in Section 14.5. To define this information criterion

we need to adopt matrix notation. Let 2, be the k X k covariance matrix of the -

VAR errors and let i“ be the estimate of the covariance matrix where the I,j ele-
ment of 2, is LTE,T:]ﬁ,-,ﬁﬁ, where il is the OLS residual from the i" equation and
it is the OLS residual from the j™ equation. The BIC for the VAR is

BIC(p) = In[det(Z,)] + k(kp + 1)@, (16.4)

where det(i”) is the determinant of the matrix i“.”[he AIC is computed using
Equation (16.4), modified by replacing the term “In(7)” by “2”.

The expression for the BIC for the k equations in the VAR in Equation (16.4)
extends the expression for a single equation given in Section 14.5. When there is
a single equation, the first term simplifies to In[SSR(p)/T]. The second term in
Equation (16.4) is the penalty for adding additional regressors; k(kp + 1) is the
total number of regression coefficients in the VAR (there are k equations, each of
which has an intercept and p lags of each of the k time series variables).

Lag length estimation in a VAR using the BIC proceeds analogously to the
single equation case: Among a set of candidate values of p, the estimated lag length
D is the value of p that minimizes BIC(p).

Using VARs for causal analysis. The discussion so far has focused on using
VARs for forecasting. Another use of VAR models is for analyzing causal rela-
tionships among economic time series variables; indeed, it was for this purpose
that VARs were first introduced to economics by the econometrician and macro-
economist Christopher Sims (1980). The use of VARs for causal inference is known
as structural VAR modeling, “structural” because in this application VARs are
used to model the underlying structure of the economy. Structural VAR analysis
uses the techniques introduced in this section in the context of forecasting, plus
some additional tools. The biggest conceptual difference between using VARs for
forecasting and using them for structural modeling, however, is that structural

!This section uses matrices and may be skipped for less mathernatical treatments.
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modeling requires very specific assumptions, derived from economic theory and
institutional knowledge, of what is exogenous and what is not. The discussion of
structural VARs is best undertaken in the context of estimation of systems of
simultaneous equations, which goes beyond the scope of this book. For an intro-
duction to using VARSs for forecasting and policy analysis, see Stock and Watson
(2001). For additional mathematical detail on structural VAR modeling, see
Hamilton (1994) or Watson (1994).

A VAR Model of the Rates
of Inflation and Unemployment

As an illustration, consider a two-variable VAR for the inflation rate, Inf,, and the
rate of unemployment, Unemp,. As in Chapter 14, we treat the rate of inflation as
having a stochastic trend, so it is appropriate to transform it by computing its first
difference, Alnf,.

The VAR for Alnf; and Unemp, consists of two equations: one in which Alnf,
is the dependent variable and one in which Unemp, is the dependent variable. The
regressors in both equations are lagged values of Alnf; and Unemp,. Because of
the apparent break in the Phillips curve in the early 1980s found in Section 14.7
using the QLR test, the VAR is estimated using data from 1982:1 to 2004:1V.

The first equation of the VAR is the inflation equation:

Alnf,=1.47 — 0.64AInf_; — 0.64AInf,, — 0.13AInf,_5 — 0.13AInf_,
(0.55) (0.12) (0.10) (0.11) (0.09)

—3.49Unemp,_; + 2.80Unemp,_; + 2.44Unemp,_3 ~ 2.03Unemp,_;.  (16.5)
(0.58) (0.94) (1.07) (0.55)

The adjusted R?is R? = 0.44.

The second equation of the VAR is the unemployment equation, in which the
regressors are the same as in the inflation equation but the dependent variable is
the unemployment rate:

Unemp, = 0.22 + 0.005AInf,_ + 0.004AInf,_, — 0.007Alnf,_;s — 0.003AInf_,

(0.12) (0.017) (0.018) (0.018) (0.014)
+1.52Unemp, 1 — 0.29Unemp,_, — 0.43Unemp,_3 + 0.16 Unemp,_,. (16.6)
(0.11) (0.18) 0.21) (0.11)

The adjusted R? is R? = 0.982.
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Equations (16.5) and (16.6), taken fogether, are a VAR(4) model of the change - -

in the rate of inflation, Alnf, and the unemployment rate, Unemp,.

These VAR equations can be used to perform Granger causality tests. The /-
statistic testing the null hypothesis that the coefficients on Unemp, 4, Unemp,_,
Unernp, 4, and Unemp,_, are zero in the inflation equation [Equation (16.5)] is
11.04, which has a p-value less than 0.001. Thus the null hypothesis is rejected, so
we can conclude that the unemployment rate is a useful predictor of changes in

inflation, given lags in inflation (that is, the unemployment rate Granger-causes '

changes in inflation). The F-statistic testing the hypothesis that the coefficients on
the four lags of AInf, are zero in the unemployment equation [Equation (16.6)] is
0.16, which has a p-value of 0.96. Thus the change in the inflation rate does not
Granger-cause the unemployment rate at the 10% significance level.

Forecasts of the rates of inflation and unemployment one period ahead are
obtained exactly as discussed in Section 14.4. The forecast of the change of infla-
tion from 2004:IV to 2005:1, based on Equation (16.5), is Alnf-;ooD j2ooary = —0.1
percentage point. A similar calculation using Equation (16.6) gives a forecast of
the unemployment rate in 20051 based on data through 20041V of
mms:lpom:w =5.4%, very close to its actual value, Unemp,posg = 5.3%.

Multiperiod Forecasts

The discussion of forecasting so far has focused on making forecasts one period
in advance. Often, however, forecasters are called upon to make forecasts further
into the future. This section describes two methods for making multiperiod fore-
casts. The usual method is to construct “iterated ™ forecasts, in which a one-period-
ahead model is iterated forward one period at a time, in a way that is made precise
in this section. The second method is to make “direct” forecasts by using a regres-
sion in which the dependent variable is the multiperiod variable that one wants to
forecast. For reasons discussed at the end of this section, in most applications the

_iterated method is recommended over the direct method.

lterated Multiperiod Forecasts

The essential idea of an iterated forecast is that a forecasting model is used to
make a forecast one period ahead, for period T+ 1 using data through period T.
The model then is used to make a forecast for date T + 2 given the data through
date T, where the forecasted value for date T+ 1 is treated as data for the pur-
pose of making the forecast for period T -+ 2. Thus the one-period-ahead forecast
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(which is also referred to as a one-step-ahead forecast)is used as an intermiediate
step to make the two-period-ahead forecast. This process repeats, or iterates, until
the forecast is made for the desired forecast horizon /.

The iterated AR forecast method: AR(1). An iterated AR(1) forecast uses an
AR(1) for the one-period-ahead model. For example, consider the first order
autoregression for Alnf, [Equation (14.7)]:

—

Alnfy=0.02 — 024 AlInf, ;. (16.7)
(0.13) (0.10)

The first step in computing the two-quarter-ahead forecast of Alnfrgesa based on
Equation (16.7) using data through 2004:1V is to compute the one-quarter-ahead
forecast of Alnfygsg based on data through 2004:1V: A/I\nf2005 1 20041v = 0.02 —
0.24AInfppqrv =0.02 - 024 X 1.9 = —0 4.The second step is to substltute this fore-
cast into Equation (16.7) so that AIanQOJ 120041y = 0.02 = 0. 24A1nf20031|2004 v =

0.02 - 0.24 X (—0.4) = 0.1. Thus, based on information through the fourth quarter
of 2004, this forecast states that the rate of inflation will increase by 0.1 percent-
age point between the first and second quarters of 2005.

The iterated AR forecast method: AR(p). The iterated AR(1) strategy is
extended to an AR(p) by replacing Y7, with its forecast, YT+1|T, and then treating
that forecast as data for the AR(p) forecast of ¥;.,. For example, consider the
iterated two-period-ahead forecast of inflation based on the AR(4) model from
Section 14.3 [Equation (14.13)]:

Alnf,=0.02 = 026Alnf,_ — 0.32AInf,_, + 0.16AInf, 5 — 0.03AInf_,.  (16.8)
(0.12) (0.09) (0.08) (0.08) (0.09)

The forecast of Alnfys based on d data through 2004:1V using this AR(4),
computed in Section 14.3, is Alnfzoos 1p20041v = 0.4. Thus the two-quarter-
ahead 1terated forecast based on the AR(4) is AInﬁOOS arjaoo4ry = 0.02 —
0.26 Alnfiges: ajpoosay — 0-32AInfroe1v + 0.16AInfroeery — 0.03AInfrp0uy = 0.02 —
0.26X0.4-0.32X1.9+0.16 X (~2.8) - 0.08 X 0.6 = —~1.1. According to this
iterated AR(4) forecast, based on data through the fourth quarter of 2004, the rate
of inflation is predicted to fall by 1.1 percentage points between the first and sec-
ond quarters of 2005.

lterated multivariate forecasts using an iterated VAR. Tterated multivariate
forecasts can be computed using a VAR in much the same way as iterated univariate
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torecasts are computed using an autoregression. The main new feature of an iter-
ated multivariate forecast is that the two-step-ahead (period T + 2) forecast of one
variable depends on the forecasts of all variables in the VAR in period T + 1. For
example, to compute the forecast of the change of inflation from period 7'+ 1 to
period T+ 2 using a VAR with the variables Alnf, and Unemp,, one must forecast
both Alnfy,; and Unempy,, using data through period T as an intermediate step
in forecasting Alnfr,,. More generally, to compute multiperiod iterated VAR fore-

casts & periods ahead, it is necessary to compute forecasts of all variables for all -

intervening periods between 7 and T + h.
As an example, we will compute the iterated VAR forecast of Alnfygs based
on data through 2004:1V using the VAR(4) for Alnf, and Unemp, in Section 16.1
[Equations (16.5) and (16.6)]. The first step is to compute the one-quarter-ahead
forecasts mO()5:I[ZOO4:IV and Unempagspoostv from that VAR. The fO}‘ecast
A/In\]‘zooﬂmmﬂv based on Equation (16.5) was computed in Section 14.3 and is —0.1
percentage point [Equation (14.18)]. A similar calculation using Equation (16.6)
shows that mzoos:uzom:w = 5.4%.In the second step, these forecasts are sub-
stituted into Equations (16.5) and (16.6) to produce the two-quarter-ahead forecast,
AIﬂfzoos:n]zom:lvi
A/]”Eoos;mzom;w =147 - 0643/1\”}5005:1}2004;1\/ — 0.64 A Infagpsry — 0.13AMfgosm
—0.13AInfa000m — 349(7’7/9—\’77172005:112004;1\/ + 2.80Unempanorv
+ 2.44Unempagoen — 2-03Unempagpan
=147 - 0.64 X (=0.1) = 0.64 X 1.9 —0.13 X (—2.8) —0.13 X 0.6

—3.49x54+280%x54+244%x54-203x56=-11
(16.9)

Thus the iterated VAR(4) forecast, based on data through the fourth quarter of
2004, is that inflation will decline by 1.1 percentage points between the first and
second quarters of 2005.

i
it
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fterated Multiperiod Forecasis

The iterated multiperiod AR forecast is computed in steps: First compute the one-
period-ahead forecast, then use that to compute the two-period-ahead forecast,
and so forth. The two- and three-period-ahead iterated forecasts based on an
AR(p) are

lA/T+2]T = B+ .élfjrﬂiT +BoYrd BYyy + o + ﬁpYT—p+2 (16.10)
Yrajr=Bo+ BI?T+2|T+ .ézf’Tﬂ[T*‘ BsYr+ -+ BPYT—p+37 (16.11)

where the é’s are the OLS estimates of the AR(p) coefficients. Continuing this
process (“iterating”) produces forecasts further into the future.

The iterated multiperiod VAR forecast is also computed in steps: First com-
pute the one-period-ahead forecast of all the variables in the VAR, then use those
forecasts to compute the two-period-ahead forecasts, and continue this process
iteratively to the desired forecast horizon. The two-period-ahead iterated forecast
of Y., based on the two-variable VAR(p) in Key Concept 16.1 is

Yroor = Bo+ BuYrsqr + Bu¥r+ BisYra+ - + B Yo pis

+InXrnr + YXr + Y Xr + o+ Y1pX7—pr2, (16.12)

where the coefficients in Equation (16.12) are the OLS estimates of the VAR coef-
ficients. Iterating produces forecasts further into the future.

639

The direct multiperiod forecasting method. Suppose that you want to make a
forecast of Y74, using data through time 7. The direct multivariate method takes
the ADL model as its starting point, but lags the predictor variables by an addi-
tional time period. For example, if two lags of the predictors are used, then the

" dependent variable is Y, and the regressors are ¥,_,, ¥_3, X, 2, and X, ;. The coef-
ficients from this regression can be used directly to compute the forecast of Yrio
using data on Y7, Y71, Xy, and X, without the need for any iteration. More gen-
erally, in a direct /-period-ahead forecasting regression, all predictors are lagged
h periods to produce the /i-period-ahead forecast.

Iterated multiperiod forecasts are summarized in Key Concept 16.2.

Direct Multiperiod Forecasts

Direct multiperiod forecasts are computed without iterating by using a single
regression in which the dependent variable is the multiperiod-ahead variable to
be forecasted and the regressors are the predictor variables. Forecasts computed
this way are called direct forecasts because the regression coefficients can be used
directly to make the multiperiod forecast.

T - 7L’: -




640

CHAPTER 16 Additional Topics in Time Series Regression

For example, the forecast of Alnf; iwo quarters ahead using four lags each of
Alnf,_, and Unemp,_, is computed by first estimating the regression:

Rrnfyy = —0.15 — 0.25AInf,- + 0.16Anf, 5 ~ 0.15AInfo—y ~ 0.10AInf,s
(0.53)  (0.13) (0.13) (0.14) (0.07)

— 0.17Unemp,_, + 1.82Unemp, 3 — 3.53Unemp,, + 1.89Unemp,_s. (16.13) E

(0.70) (1.63) (2.00) (0.91)

The two-quarter—ahead forecast of the change of inflation from 2005:I to 2005:11
is computed by substituting the values of Alnfgogrv,---» Anfoess. ..,
Unempaygary, - - - » Unempagy into Equation (16.13); this yields

R

Alnfygesrjzooary = 0.15 — 0.25AInfrggury + 0.16A Infogossn — 0.15 A f0sm
— 0.10AInfoggsr — 0.17Unempagparyv + 1.82Unempagosm
—3.53Unempsgos; + 1.89Unempagpag = —1.38. (16.14)

The three-quarter ahead direct forecast of Alnfr,; is computed by lagging all
the regressors in Equation (16.13) by one additional quarter, estimating that
regression, and then computing the forecast. The h-quarter-ahead direct forecast
of Alnfy,, is computed by using Alnf; as the dependent variable and the regres-
sors Alnf,_, and Unemp,_, plus additional lags of Alnf,_, and Unemp,_, as desired.

Standard errors in direct multiperiod regressions. Because the dependent
variable in a multiperiod regression occurs two or more periods into the future,
the error term in a multiperiod regression is serially correlated. To see this, con-
sider the two-period-ahead forecast of inflation and suppose that a surprise jump
in oil prices occurs in the next quarter, Today’s two-period-ahead forecast of infla-
tion will be too low because it does not incorporate this unexpected event. Because
the oil price rise was also unknown in the previous quarter, the two-period-ahead
forecast made last quarter will also be too low. Thus the surprise oil price jump
next quarter means that both last quarter’s and this quarter’s two-period-ahead
forecasts are too low. Because of such intervening events, the error term in a mul-
tiperiod regression is serially correlated.

As discussed in Section 15.4, if the error term is serially correlated, the usual
OLS standard errors are incorrect or, more precisely, they are not a reliable basis
for inference. Therefore, heteroskedasticity- and autocorrelation-consistent (HAC)
standard errors must be used-with direct multiperiod regressions. The standard
errors reported in Equation (16.13) for direct multiperiod regressions therefore

. Direct Multiperiod Forecasts

The direct multiperiod forecast 4 periods into the future based on p lags each of
Y, and an additional predictor X, is compited by first estimating the regression,
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V=8 + 8 Yt o +8 Y gy + 81 Xp t o + 8, X gy T, (16.15)

and then using the estimated coefficients directly to make the forecast of ¥r,,
using data through period 7.

are Newey-West HAC standard errors, where the truncation parameter m is set
according to Equation (15.17); for these data (for which T = 92), Equation (15.17)
yields m = 3. For longer forecast horizons, the amount of overlap—and thus the
degree of serial correlation in the error—increases: In general, the first & — 1 auto-
correlation coefficients of the errors in an A-period-ahead regression are nonzero.
Thus larger values of m than indicated by Equation (15.17) are appropriate for
multiperiod regressions with long forecast horizons.
Direct multiperiod forcasts are summarized in Key Concept 16.3

Which Method Should You Use?

In most applications, the iterated method is the recommended procedure for
multiperiod forecasting, for two reasons. First, from a theoretical perspective,
if the underlying one-period-ahead model (the AR or VAR that is used to com-
pute the iterated forecast) is specified correctly, then the coefficients are esti-
mated more efficiently if they are estimated by a one-period-ahead regression
(and then iterated) than by a multiperiod-ahead regression. Second, from a
practical perspective, forecasters are usually interested in forecasts not just at
a single horizon but at multiple horizons. Because they are produced using the
same model, iterated forecasts tend to have time paths that are less erratic
across horizons than do direct forecasts. Because a different model is used at
every horizon for direct forecasts, sampling error in the estimated coefficients
can add random fluctuations to the time paths of a sequence of direct multi-
period forecasts.

Under some circumstances, however, direct forecasts are preferable to iter-
ated forecasts. One such circumstance is when you have reason to believe that the
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one-period-ahead model (the AR or VAR) is niot specified correctly. For example, -
you might believe that the equation for the variable you are trying to forecast in
a VAR is specified correctly, but that one or more of the other equations in the -
VAR is specified incorrectly, perhaps because of neglected nonlinear terms. If the
one-step-ahead model is specified incorrectly, then in general the iterated multi-
period forecast will be biased and the MSFE of the iterated forecast can exceed -
the MSFE of the direct forecast, even though the direct forecast has a larger vari-
ance. A second circumstance in which a direct forecast might be desirable arises ~
in multivariate forecasting models with many predictors, in which case a VAR
specified in terms of all the variables could be unreliable because it would have

Orders of Integration, Differencing, and Stationarity

o If Y, is integrated of order one, that is, if ¥;is I(1), then ¥, has a unit autore-
gressive root and its first difference, A Y, is stationary.
e If Y is integrated of order two, that is, if ¥, is J(2), then AY, has a unit autore-

gressive root and its second difference, A?Y,, is stationary.

e If ¥ is integrated of order d, that is, if ¥, is I(d), then ¥, must be differenced d
times to eliminate its stochastic trend, that is, A‘II{ is stationary.

very many estimated coefficients.

Orders of Integration
and the DF-GLS Unit Root Test

This section extends the treatment of stochastic trends in Section 14.6 by address-
ing two further topics. First, the trends of some time series are not well described
by the random walk model, so we introduce an extension of that model and dis-
cuss its implications for regression modeling of such series. Second, we continue
the discussion of testing for a unit root in time series data and, among other things,
introduce a second test for a unit root, the DF-GLS test.

Other Models of Trends

and Orders of Integration

Recall that the random walk model for a trend, introduced in Section 14.6, speci-
fies that the trend at date ¢ equals the trend at date ¢ — 1, plus a random error term.
If ¥, follows a random walk with drift B, then

Yi=Bo+ Yy +u, (16.16)

where u, is serially uncorrelated. Also recall from Section 14.6 that, if a series has
a random walk trend, then it has an autoregressive root that equals 1.

Although the random walk model of a trend describes the long-run move-
ments of many economic time series, some economic time series have trends thaF
are smoother—that is, vary less from one period to the next—than is implied by
Equation (16.16). A different model is needed to describe the trends of such

series.

One model of a smooth trend makes the first difference of the trend follow a
random walk; that is,

AY,=Bo+ AY., +u, (16.17)

where u, is serially uncorrelated. Thus, if ¥; follows Equation (16.17), AY, follows
arandom walk,so AY, — AY_, is stationary. The difference of the first differences,
AY,— AY,_, is called the second difference of Y, and is denoted A%Y, = AY,— AY_,.
In this terminology, if ¥, follows Equation (16.17), then its second difference is sta-
tionary. If a series has a trend of the form in Equation (16.17), then the first dif-
ference of the series has an autoregressive root that equals 1.

“Orders of integration” terminology.  Some additional terminology is useful for dis-
tinguishing between these two models of trends. A series that has a random walk trend
is said to be integrated of order one, or I(1). A series that has a trend of the form in
Equation (16.17) is said to be integrated of order two, or I(2). A series that does not
have a stochastic trend and is stationary is said to be integrated of order zero, or 1(0).

The ovder of integration in the I(1) and I(2) terminology is the number of
times that the series needs to be differenced for it to be stationary: If ¥, is /(1), then
the first difference of ¥}, AY,, is stationary, and if Y] is Z(2), then the second differ-
ence of ¥, A%Y,, is stationary. If ¥ is 1(0), then Y] is stationary.

Orders of integration are summarized in Key Concept 16.4.

How to test whether a series is I(2) or I(1). 1t ¥is I(2), then AY,is I(1),50 AY,
has'an autoregressive root that equals 1. If, however, ¥/ is I(1), then AY, is station-
ary. Thus the null hypothesis that ¥, is /(2) can be tested against the alternative
hypothesis that ¥ is I(1) by testing whether AY, has a unit autoregressive root. If
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the hypothesis that A Y, has a unit autoregressive root is rejected, then the hypoth-
esis that ¥ is J(2) is rejected in favor of the alternative that ¥is I(1).

Examples of 12) and I(1) series: The price level and the rate of inflation. 1n-

Chapter 14, we concluded that the rate of inflation in the United States plausibly
has a random walk stochastic trend, that is, that the rate of inflation is I(1). If infla-
tion is I(1), then its stochastic trend is removed by first differencing, so Alnf;is sta-

tionary. Recall from Section 14.2 [Equation (14.2)] that quarterly inflation at an

annual rate is the first difference of the logarithm of the price level, multiplied by
400; that is, Inf, = 400Ap,, where p, = In(CPI,) and CPI, denotes the value of the
Consumer Price Index in quarter 7. Thus treating the rate of inflation as I(1) is
equivalent to treating Ap, as I(1), but this in turn is equivalent to treating p, as I(2).
Thus we have all along been treating the logarithm of the price level as (2), even
though we have not used that terminology.

The logarithm of the price level, p,, and the rate of inflation are plotted in
Figure 16.1. The long-run trend of the logarithm of the price level (Figure 16.1a)
varies more smoothly than the long-run trend in the rate of inflation (Figure 16.1b).
The smoothly varying trend in the logarithm of the price level is typical of /(2) series.

The DF-GLS Test for a Unit Root

This section continues the discussion of Section 14.6 regarding testing for a unit
autoregressive root. We first describe another test for a unit autoregressive root,
the so-called DF-GLS test: Next, in an optional mathematical section, we discuss
why unit root test statistics do not have normal distributions, even in large samples.

The DF-GLS test. The ADF test was the first test developed for testing the null
hypothesis of a unit root and is the most commonly used test in practice. Other
tests subsequently have been proposed, however, many of which have higher
power (Key Concept 3.5) than the ADF test. A test with higher power than the
ADF test is more likely to reject the null hypothesis of a unit root against the sta-
tionary alternative when the alternative is true; thus a more powerful test is better
able to distinguish between a unit AR root and a root that is large but less than 1.

This section discusses one such test, the DF-GLS test developed by Elliott,
Rothenberg, and Stock (1996). The test is introduced for the case that, under the
null hypothesis, ¥, has a random walk trend, possibly with drift, and under the alter-
native Y, is stationary around a linear time trend.

The DF-GLS test is computed in two steps. In the first step, the intercept and
trend are estimated by generalized least squares (GLS; see Section 15.5). The GLS
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\The trend in the logarithm of prices (Figure 16.1a) is much smoother than the trend in inflation (Figure 16.1b).
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estimation is performed by computing three new variables, V,, X 1 »and X, where -

Vi=YandV,=Y,—a*Y_,t=2,..., T, X;y=1and X}, =1~ =2,...,T,and
X =1 and Xy =t—a*(—1), ‘whexe o* is computed using the formula
a*=1—13.5/T.Then V, is regressed against X, and X,; that is, OLS is used to
estimate the coefficients of the population regression equation

Vi=380X),+ 8. X+ e, (16.18)

using the observations t=1,. .., T, where ¢, is the error term. Note that there j is

no intercept in the regression in Equatlon (16.18). The OLS estimators 50 and 81
are then used to compute a “detrended” version of ¥, Y§ =¥, - (50 + Slr)

In the second step, the Dickey—Fuller test is used to test for a unit autoregres-
sive root in Y¥, where the Dickey-Fuller regression does not include an intercept
or a time trend. Thatis, AY¢ is regressed against Y9, and A Yfi_l, ey AYf’_p, where
the number of lags p is determined, as usual, either by expert knowledge or by
using a data-based method such as the AIC or BIC as discussed in Section 14.5.

If the alternative hypothesis is that Y} is stationary with a mean that might be
nonzero but without a time trend, then the preceding steps are modified. Specifi-
cally, or* is computed using the formula a* =1—7/T, X,, is omitted from the regres-
sion in Equation (16.18), and the series v¢is computed as Y¢ =Y, — 80

The GLS regression in the first step of the DF-GLS test makes this test more
complicated than the conventional ADF test, but it is also what improves its abil-
ity to discriminate between the null hypothesis of a unit autoregressive root and
the alternative that ¥, is stationary. This improvement can be substantial. For exam-
ple, suppose that ¥, is in fact a stationary AR(1) with autoregressive coefficient
B1 = 0.95, that there are T'= 200 observations, and that the unit root tests are com-
puted without a time trend [that is, ¢ is excluded from the Dickey—Fuller regres-
sion, and X,, is omitted from Equation (16.18)]. Then the probability that the ADF
test correctly rejects the null hypothesis at the 5% significance level is approxi-
mately 31% compared to 75% for the DF-GLS test.

Critical values for DF-GLS test.  Because the coefficients on the deterministic terms
are estimated differently in the ADF and DF-GLS tests, the tests have different crit-
ical values. The critical values for the DF-GLS test are given in Table 16.1. If the
DF-GLS test statistic (the r-statistic on Y¢; in the regression in the second step) is
less than the critical value (that is, it is more negative than the critical value), then the
null hypothesis that ¥ has a unit root is rejected. Like the critical values for the
Dickey-Fuller test, the appropriate critical value depends on which version of the test
is used, that is, on whether or not a time trend is included [whether or not X, is
included in Equation (16.18)].
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5 Critical Values of the DF-GLS Test

Deterministic Regressors

=~

[Regressors in Equation (16.18)1 10% 5% 1%
Intercept only (X7, only) -1.62 —1.95 -2.58
Intercept and time trend (X, and X5,) ~2.57 —2 89 —3.48

Source: Fuller (1976) and Elliott, Rothenberg, and Stock (1996, Table 1).

Application to inflation. The DF-GLS statistic, computed for the rate of CPI
inflation, Inf;, over the period 1962:1 to 2004:IV with an intercept but no time trend,
is —2.06 when three lags of AY? are included in the Dickey-Fuller regression in
the second stage. This value is less than the 5% critical value in Table 16.1,~1.95,
so using the DF-GLS test with three lags leads to rejecting the null hypothesis of
a unit root at the 5% significance level. The choice of three lags was based on the

" AIC (out of a maximum of six lags).

Because the DF-GLS test is better able to discriminate between the unit root
null hypothesis and the stationary alternative, one interpretation of this finding is
that inflation is in fact stationary, but the Dickey-Fuller test implemented in Sec-
tion 14.6 failed to detect this (at the 5% level). This conclusion, however, should be
tempered by noting that whether the DF-GLS test rejects the null hypothesis is, in
this application, sensitive to the choice of lag length. If the test is based on two lags,
which is the number of lags chosen by BIC, it rejects the null hypothesis at the 10%
but not the 5% level. The result is also sensitive to the choice of sample; if the sta-
tistic is instead computed over the period 1963:1 to 2004:IV (that is, dropping just
the first year), the test rejects the null hypothesis at the 10% level but not at the
5% level using AIC lag lengths. The overall picture therefore is rather ambiguous
[as it is based on the ADF test, as discussed following Equation (14.34)] and
requires the forecaster to make an informed judgment about whether it is better
to model inflation as I(1) or stationary.

Why Do Unit Root Tests
Have Nonnormal Distributions?

In Section 14.6, it was stressed that the large-sample normal distribution upon
which regression analysis relies so heavily does not apply if the regressors are
nonstationary. Under the null hypothesis that the regression contains a unit root,
the regressor ¥, in the Dickey-Fuller regression (and the regressor Y2, in the
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‘modified Dickey-Fuller regression in the second step of the DF-GLS test) is non- - i

stationary. The nonnormal distribution of the unit root test statistics is a conse-
quence of this nonstationarity.

To gain some mathematical insight into this nonnormality, consider the simplest -
possible Dickey-Fuller regression, in which AY, is regressed against the single
regressor Y,_; and the intercept is excluded. In the notation of Key Concept 14.8,
the OLS estimator in this regression is 8 = S, ¥, AY/S L, Y2, 50

T
DYLAY,
T=— o (16.19)

15,
= NY7,
ngr

~Nl=

Consider the numerator in Equation (16.19). Under the additional assump-
tion that Y;, = 0, a bit of algebra (Exercise 16.5) shows that

Under the null hypothesis, AY, = 1, which is serially uncorrelated and has

a finite variance, so the second term in Equation (16.20) has the probability
limit 37, (AY)? —£> o Under the assumption that ¥; = 0, the first term in

e . 1T 1T . .
Equation (16.20) can be written Yﬂﬁ = \/;2,:1AK = \/;thlu,, which in turn
obeys the central limit theorem; that is, YT/\/?" 4 N(0, 0%). Thus (Yﬂ\/?)2
~ i3 (AY)? %> 0%(Z% - 1), where Z is a standard normal ran.dom Variablé.
Recall, however, that the square of a standard normal distribution has a chi-
squared distribution with 1 degree of freedom. It therefore follows from Equation
(16.20) that, under the null hypothesis, the numerator in Equation (16.19) has the
limiting distribution

2
d Ty

VLAY =5 S - 1) (16.21)

M~

1
T4

7

The large-sample distribution in Equation (16.21) is different than the usual
large-sample normal distribution when the regressor is stationary. Instead, the
numerator of the OLS estimator of the coefficient on ¥ in'this Dickey-Fuller

regression has a distribution that is proportional to a chi-squared distribution with .

1 degree of freedom, minus 1. )
This discussion has considered only the numerator of 78. The denominator

also behaves unusually under the null hypothesis: Because ¥] follows a random
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walk under the null hypothesis, %E L, Y2 does not converge in probability to a
constant. Instead, the denominator in Equation (16.19) is a random variable, even
in large samples: Under the null hypothesis, % E,Tzl Y? converges in distribution
jointly with the numerator. The unusual distributions of the numerator and denom-
inator in Equation (16.19) are the source of the nonstandard distribution of the
Dickey-Fuller test statistic and the reason that the ADF statistic has its own spe-
cial table of critical values.

Cointegration

Sometimes two or more series have the same stochastic trend in common. In this
special case, referred to as cointegration, regression analysis can reveal long-run
relationships among time series variables, but some new methods are needed.

Cointegration and Error Correction

"Two or more time series with stochastic trends can move together so closely over
the long run that they appear to have the same trend component; that is, they
appear to have a common trend. For example, two interest rates on U.S. govern-
ment debt are plotted in Figure 16.2. One of the rates is the interest rate on 90-day
U.S. Treasury bills, at an annual rate (R90,); the other is the interest rate on a
1-year US. Treasury bond (R1yr)); these interest rates are discussed in Appendix
16.1. The interest rates exhibit the same long-run tendencies or trends: Both were
low in the 1960s, both rose through the 1970s to peaks in the early 1980s, then
both fell through the 1990s. Moreover, the difference between the two series, Rilyr,
— R90,, which is called the “spread” between the two interest rates and is also plot-
ted in Figure 16.2, does not appear to have a trend. That is, subtracting the 90-day
interest rate from the 1-year interest rate appears to eliminate the trends in both
of the individual rates. Said differently, although the two interest rates differ, they
appear to share a common stochastic trend: Because the trend in each individual
series is eliminated by subtracting one series from the other, the two series must
have the same trend; that is, they must have a common stochastic trend.

Two or more series that have a common stochastic trend are said to be
cointegrated. The formal definition of cointegration (due to the econometrician
Clive Granger, 1983; see the box on Clive Granger and Robert Engle) is given in
Key Concept 16.5. In this section, we introduce a test for whether cointegration is
present, discuss estimation of the coefficients of regressions relating cointegrated
variables, and illustrate the use of the cointegrating relationship for forecasting.
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Cointegration

Suppose that X, and Y, are integrated of order -one: If, for some coefficient
0, Y, — 6, is integrated of order zero, then X, and ¥; are said to be cointegrated.
The coefficient §is called the cointegrating coefficient. B

If X, and ¥ are cointegrated, then they have the same, or common, stochastic
trend. Computing the difference ¥; — 6.X; eliminates this common stochastic trend.

The discussion initially focuses on the case that there are only two variables, X,
and Y. )

Vector error correction model. Until now, we have eliminated the stochastic
trend in an /(1) variable ¥, by computing its first difference, AY; the problems cre-
ated by stochastic trends were then avoided by using A ¥ instead of ¥ in time series

20
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One-year and three-month interest rates share a common stochastic trend. The spread, or the difference, between the
two rates does not exhibit a trend. These two interest rates appear to be cointegrated.
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regressions. If X, and 1] aré cointegrated, however, another way to eliminate the
trend is to compute Y, — 6.X;, where 6 is chosen to eliminate the common trend
from the difference. Because the term Y, — 0.X; is stationary, it too can be used in
Tegression analysis.

In fact, if X, and Y] are cointegrated, the first differences of X, and ¥, can be
modeled using a VAR, augmented by including ¥,_; — 6X_, as an additional
regressor:

AY,=Big+ BuldY g+ - + B AY , +y AX -
FypAXe, (Yo — 80X ) + oy, (16.22)

AX, = Bag + AV + o+ By AY, oy AN+ -
TYpAXp + an(Yo — 0X) + (16.23)

The term ¥ — 6.X; is called the error correction term. The combined model in
Equations (16.22) and (16.23) is called a vector exror correction model (VECM).
Ina VECM, past values of ¥/~ 6.X; help to predict future values of A Y, and/or AX,.

How Can You Tell Whether

Two Variables Are Cointegrated?

There are three ways to decide whether two variables can plausibly be modeled
as cointegrated: Use expert knowledge and economic theory, graph the series and
see whether they appear to have a common stochastic trend, and perform statis-
tical tests for cointegration. All three methods should be used in practice.

First, you must use your expert knowledge of these variables to decide
whether cointegration is in fact plausible. For example, the two interest rates in
Figure 16.2 are linked together by the so-called expectations theory of the term
structure of interest rates. According to this theory, the interest rate on January 1
on the 1-year Treasury bond is the average of the interest rate on a 90-day Trea-
sury bill for the first quarter of the year and the expected interest rates on future
90-day Treasury bills issued in the second, third, and fourth quarters of the year;if
not, then investors could expect to make money by holding either the 1-year
Treasury note or a sequence of four 90-day Treasury bills, and they would bid up
prices until the expected returns are equalized. If the 90-day interest rate has a
random walk stochastic trend, this theory implies that this stochastic trend is inher-
ited by the 1-year interest rate and that the difference between the two rates, that
is, the spread, is stationary. Thus the expectations theory of the term structure
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n 2003, two econometricians, Robert F. Engle and
Clive W. J. Granger, won the Nobel Prize in eco-
nomics for fundamental theoretical research in time
series econometrics that they did in the late 1970s
and early 1980s.
g Granger’s work focused

on how to handle stochastic
trends in economic time
series data. From earlier work
by himself and others, he
knew that two unrelated
series with stochastic trends
Clive W. J. Granger  could, by the usual statistical
measures of ¢-statistics ;md regression R%s, falsely
appear to be meaningfully related; this is the “spuri-
ous regression” problem. In the 1970, the standard
practice was to use differences of time series data to
avoid the risk of a spurious regression. For this rea-
son, Granger was skeptical of some recent work by
some British econometricians (Davidson, Hendry,
Srba, and Yeo, 1978), who claimed that the lagged
difference between log consumption and log income
(InC, — InY,;) was a valuable predictor of the
growth rate of consumption (AInC,). Because InC,
and InY, individually have a unit root, the conven-
tional wisdom was that they should be included in
first differences because including them in levels
would produce a version of a spurious regression.
Granger set out to prove mathermatically that the
British team had made a mistake, but instead proved
that their specification was correct: There is a well-
defined mathematical representation—the vector
error correction model—for time series that are indi-

vidually 7(1) but for which a linear combination is

J(0). He termed this sifuation “cointegration.” Insub-""
sequent work with his colleague at the University of -
California at San Diego, Robert Engle, Granger pro- -

posed several tests for cointegration, most notably
the Engle-Granger ADF test described on page 653.
The methods of cointegration analysis are now a sta-
ple in modern macroeconometrics.

Around the same time, Robert Engle was pon-
dering the striking increase in the volatility of US.
inflation during the late 1970s (see Figure 16.1b). If
the volatility of inflation had
increased, he reasoned, then
prediction intervals for infla-
tion forecasts should be wider
than the models of the day
would indicate, because those
models held the variance of
inflation constant. But how, Robert F. Engle
precisely, can you forecast the
time-varying variance (which you do not observe) of
an error term (which you also do not observe)?

Engle’s answer was to develop the autoregres-
sive conditional heteroskedasticity (ARCH) model,
described in Section 16.5. The ARCH model and its
extensions, developed mainly by Engle and his stu-
dents, proved especially useful for modeling the
volatility of asset returns, and the resulting volatil-
ity forecasts can be used to price financial deriva-
tives and to assess changes over time in the risk of
holding financial assets. Today, measures and fore-
casts of volatility are a core component of finan-
cial econometrics, and the ARCH model and its
descendants are the workhorse tools for modeling

volatility.
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implies that if the interest rates are (1), then they will be cointegrated with a coin-
tegrating coefficient of 6 = 1 (Exercise 16.2).

Second, visual inspection of the series helps to identify cases in which cointe-
gration is plausible. For example, the graph of the two interest rates in Figure 16.2
shows that each of the series appears to be I(1) but that the spread appears to be
1(0), so the two series appear to be cointegrated.

Third, the unit root testing procedures introduced so far can be extended to
tests for cointegration. The insight on which these tests are based is that if ¥} and X,
are cointegrated with cointegrating coefficient 6, then ¥ — 6; is stationary; oth-
erwise, ¥, — 0.X, is nonstationary [is I(1)]. The hypothesis that ¥, and X, are not coin-
legrated [that is, that ¥, — 6., is I(1)] therefore can be tested by testing the null
hypothesis that ¥/ — 0.X; has a unit root; if this hypothesis is rejected, then ¥, and
X, can be modeled as cointegrated. The details of this test depend on whether the
cointegrating coefficient 8 is known.

Testing for cointegration when 6 is known. Tn some cases expert knowledge
or economic theory suggests values of . When 6 is known, the Dickey—Fuller and
DF-GLS unit root tests can be used to test for cointegration by first constructing
the series z; = ¥ — 6.X; and then testing the null hypothesis that z, has a unit autore-
gressive root.

Testing for cointegration when @ is unknown. 1f the cointegrating coefficient
6is unknown, then it must be estimated prior to testing for a unit root in the error
correction term. This preliminary step makes it necessary to use different critical
values for the subsequent unit root test.

Specifically, in the first step the cointegrating coefficient 6 is estimated by OLS
estimation of the regression

Y=a+0X+z,. (16.24)

In the second step, a Dickey—Fuller -test (with an intercept but no time trend)
is used to test for a unit root in the residual from this regression, Z,. This two-step
procedure is called the Engle-Granger Augmented Dickey-Fuller test for cointe-
gration, or EG-ADF test (Engle and Granger, 1987).

Critical values of the EG-ADF statistic are given in Table 16.2.2 The critical
values in the first row apply when there is a single regressor in Equation (16.26),

ZThfz critical values in Table 16.2 are taken from Fuller (1976) and Phillips and Ouliaris (1990). Fol-
lowing a suggestion by Hansen (1992), the critical values in Table 16.2 are chosen so that they apply
whether or not X, and ¥, have drift components.
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Critical Values for the Engle-Granger ADF Statistic -
Number of X's in Equation (16.24) 10% . 5%
1 -3.12 —3.41
V é ' ) o T o ) —3.80
W; ) —4.16
4’ ) 7 . B : 7 414 ;6 ) —4.49

so there are two cointegrated variables (X, and ¥[). The subsequent rows apply to
the case of multiple cointegrated variables, which is discussed at the end of this
section.

Estimation of Cointegrating Coefficients

If X, and Y, are cointegrated, then the OLS estimator of the coefficient in the coin-
tegrating regression in Equation (16.24) is consistent. However, in general the OLS
estimator has a nonnormal distribution, and inferences based on its ¢-statistics can
be misleading whether or not those r-statistics are computed using HAC standard
errors. Because of these drawbacks of the OLS estimator of 8, econometricians
have developed a number of other estimators of the cointegrating coefficient.

One such estimator of 9 that is simple to use in practice is the dynamic OLS
(DOLS) estimator (Stock and Watson, 1993). The DOLS estimator is based on a
modified version of Equation (16.24) that includes past, present, and future val-
ues of the change in X,

p .
Y= Bo+O0X,+ 3 GAK, T u, (16.25)

=P

Thus, in Equation (16.25), the regressors are X, AXHP, . ,AX,_p.The DOLS esti-
mator of §is the OLS estimator of §in the regression of Equation (16.25).

If X, and ¥, are cointegrated, then the DOLS estimator is efficient in large
samples. Moreover, statistical inferences about 8 and the 8% in Equation (16.25)
based on HAC standard errors are valid. For example, the t-statistic constructed
using the DOL.S estimator with HAC standard errors has a standard normal dis-
tribution in large samples.

One way to interpret Equation (16.25) is to recall from Section 15.3 that cumu-
lative dynamic multipliers can be computed by modifying the distributed lag
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regression of Y, on Xrand-its lags. Specifically, in Equation (15.7), the cumulative
dynamic multipliers were computed by regressing ¥, on AX,, lags of AX,, and X,_;
the coefficient on X,_, in that specification is the long-run cumulative dynamic mul-
tiplier. Similarly, if X, were strictly exogenous, then in Equation (16.25) the coef-
ficient on X, 8 would be the long-run cumulative multiplier, that is, the long-run
effect on Y of a change in X If X, is not strictly exogenous, then the coefficients
do not have this interpretation. Nevertheless, because X, and ¥, have a common
stochastic trend if they are cointegrated, the DOLS estimator is consistent even if
X, is endogenous.

The DOLS estimator is not the only efficient estimator of the cointegrating
coefficient. The first such estimator was developed by Sgren Johansen (Johansen,
1988). For a discussion of Johansen’s method and of other ways to estimate the
cointegrating coefficient, see Hamilton (1994, Chapter 20).

Even if economic theory does not suggest a specific value of the cointegrat-
ing coefficient, it is important to check whether the estimated cointegrating rela-
tionship makes sense in practice. Because cointegration tests can be misleading
(they can improperly reject the null hypothesis of no cointegration more fre-
quently than they should, and frequently they improperly fail to reject the null),
it is especially important to rely on economic theory, institutional knowledge, and
common sense when estimating and using cointegrating relationships.

» Extension to Multiple Cointegrated Variables

The concepts, tests, and estimators discussed here extend to more than two variables.
For example, if there are three variables, ¥, X, and X, each of which is I(1), then
they are cointegrated with cointegrating coefficients 8; and 8, if ¥, — 8,X;, — 6,5,
is stationary. When there are three or more variables, there can be multiple coin-
tegrating relationships. For example, consider modeling the relationship among
three interest rates: the 3-month rate, the 1-year rate, and the 5-year rate (RSyr).
If they are /(1), then the expectations theory of the term structure of interest rates
suggests that they will all be cointegrated. One cointegrating relationship sug-
gested by the theory is R1yr,— R90,, and a second relationship is R5yr,— R90,. (The
relationship RSyr, — Rlyr, is also a cointegrating relationship, but it contains no
additional information beyond that in the other relationships because it is per-
fectly multicollinear with the other two cointegrating relationships.)

The EG-ADF procedure for testing for a single cointegrating relationship
among multiple variables is the same as for the case of two variables, except that the
regression in Equation (16.24) is modified so that both X}, and X, are regressors; the
critical values for the EG-ADF test are given in Table 16.2, where the appropriate
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" row depends on the number of regressors in the first-stage OLS cointegrating regres- ..

sion. The DOLS estimator of a single cointegrating relationship among multiple
X's involves including the level of each X along with leads and lags of the first dif-
ference of each X. Tests for multiple cointegrating relationships can be performed
using system methods. such as Johansen’s (1988) method, and the DOLS estimator
can be extended to multiple cointegrating relationships by estimating multiple

equations, one for each cointegrating relationship. For additional discussion of coin- "

tegration methods for multiple variables, see Hamilton (1994).

A cautionary note. If two or more variables are cointegrated, then the error cor-
rection term can help to forecast these variables and, possibly, other related vari-
ables. However, cointegration requires the variables to have the same stochastic
trends. Trends in economic variables typically arise from complex interactions of
disparate forces, and closely related series can have different trends for subtle rea-
sons. If variables that are not cointegrated are incorrectly modeled using a VECM,
then the error correction term will be I(1); this introduces a trend into the fore-
cast that can result in poor out-of-sample forecast performance. Thus forecasting
using a VECM must be based on a combination of compelling theoretical argu-
ments in favor of cointegration and careful empirical analysis.

Application to Interest Rates

As discussed earlier, the expectations theory of the term structure of interest rates
implies that if two interest rates of different maturities are /(1), then they will be
cointegrated with a cointegrating coefficient of § = 1; that is, the spread between
the two rates will be stationary. Inspection of Figure 16.2 provides qualitative sup-
port for the hypothesis that the 1-year and 3-month interest rates are cointegrated.
We first use unit root and cointegration test statistics to provide more formal evi-
dence on this hypothesis, then estimate a vector error correction model for these
two interest rates.

Unit root and cointegration tests. Various unit root and cointegration test sta-
tistics for these two series are reported in Table 16.3. The unit root test statistics
in the first two rows examine the hypothesis that the two interest rates, the
3-month rate (R90) and the 1-year rate (R1yr), individually have a unit root. Two of
the four statistics in the first two rows fail to reject this hypothesis at the 10%
Jevel, and three of the four fail to reject at the 5% level. The exception is the ADF
statistic evaluated for the 90-day Treasury bill rate (=2.96), which rejects the unit
root hypothesis at the 5% level. The ADF and DF-GLS statistics lead to different

t6.4 Cointegration 657

Unit Root and Cointegration Test Statistics for Two Interest Rates

TN

Riyr—1.046R90

level.

Series ADF Statistic DF-GLS Statistic
R90 —2.96% —1.88
Fe— SR — S _L_SSQHA e

R90 s the interest rate on 90-day U.S. Treasury biils, at an annual rate, and R1yr is the interest rate on 1-year U.S. Treasury bonds.
Regressions were estimated using quarterly data over the period 1962:1-1999:1V. The number of lags in the unit root test statistic
regressions were chosen by AIC (six lags maximum). Unit root test statistics are significant at the 5% or **1% significance

conclusions for this variable (the ADF test rejects the unit root hypothesis at the
5% level while the DF-GLS test does not), which means that we must exercise
some judgment in deciding whether these variables are plausibly modeled as /(1).
Taken together, these results suggest that the interest rates are plausibly modeled
as I(1). )

The unit root statistics for the spread, R1yr, — R90,, test the further hypothe-
sis that these variables are not cointegrated against the alternative that they are.
The null hypothesis that the spread contains a unit root is rejected at the 1% level
using both unit root tests. Thus we reject the hypothesis that the series are not coin-
tegrated against the alternative that they are, with a cointegrating coefficient 0 = 1.
Taken together, the evidence in the first three rows of Table 16.3 suggests that
these variables plausibly can be modeled as cointegrated with 8 = 1.

Because in this application economic theory suggests a value for 8 (the
expectations theory of the term structure suggests that § = 1) and because the
error correction term is I(0) when this value is imposed (the spread is station-
ary), in principle it is not necessary to use the EG-ADF test, in which 0 is esti-
mated. Nevertheless, we compute the test as an illustration. The first step in the
EG-ADF test is to estimate 6 by the OLS regression of one variable on the
other; the result is

—

Rlyr,=0.361 + 1.046R90,, R?=0.973. (16.26)

The second step is to compute the ADF statistic for the residual from this
regression, Z,. The result, given in the final row of Table 16.3, is less than the 1%
critical value of —3.96 in Table 16.2, so the null hypothesis that Z, has a unit
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autoregressive root is rejected. This statistic also points toward treating the two

interest rates as cointegrated. Note that no standard errors are presented in ;’:',

Equation (16.26) because, as previously discussed, the OLS estimator of the coin-

tegrating coefficient has a nonnormal distribution and its ¢-statistic is not normally -

distributed, so presenting standard errors (HAC or otherwise) would be misleading,

A vector error correction model of the two interest rates. 1f Y, and X, are coin-

tegrated, then forecasts of AY and AX, can be improved by augmenting a VAR of |

AY, and AX, by the lagged value of the error correction term, that is, by comput-
ing forecasts using the VECM in Equations (16.22) and (16.23).1f 8 is known, then
the unknown coefficients of the VECM can be estimated by OLS, including
Zi-1 = Y_y — 6X,_; as an additional regressor. If # is unknown, then the VECM can
be estimated using Z,_, as a regressor, where Z, = ¥, — (AJX[, where 6 is an estimator
of 0.

In the application to the two interest rates, theory suggests that ¢ = 1, and the
unit root tests support modeling the two interest rates as cointegrated with a coin-
tegrating coefficient of 1. We therefore specify the VECM using the theoretically
suggested value of 8= 1, that is, by adding the lagged value of the spread,
Rlyr_, — R90,_,, to a VAR in ARlyr, and AR90, Specified with two lags of first
differences, the resulting VECM is

AR90, = 0.14 — 0.24AR90,_; — 0.44AR90, , — 0.01AR1yr,

0.17) (0.32 034 0.39)
(0.17) (0.32) 0.34) ( (1627)
+0.15AR1yr_, — 0.18(R1yr,_; — R90,_)
(0.27) (0.27)
ARlyr,=0.36 — 0.14AR90,; — 0.33AR90,, — 0.11AR1yr,
0.16) (0.30 0.29 0.35)
(0.16) (0.30) (0.29) ( (16.29)
+0.10ARLyr,_s — 0.52(Rlyr,_, ~ R90,_,)
(0.25) (0.24)

In the first equation, none of the coefficients is individually significant at the
5% level and the coefficients on the lagged first differences of the interest rates
are not jointly signiﬁceint at the 5% level. In the second equation, the coefficients
on the lagged first differences are not jointly significant, but the coefficient on the
lagged spread (the error correction term), which is estimated to be —0.52, hasa
f-statistic of —2.17, so it is statistically significant at the 5% level. Although lagged
values of the first difference of the interest rates are not useful for predicting future

16.5
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interest rates, the lagged spread does help to predict the change in the 1-year Trea-
sury bond rate. When the 1-year rate exceeds the 90-day rate, the 1-year rate is
forecasted to fall in the future.

Volatility Clustering and Autoregressive
Conditional Heteroskedasticity

The phenomenon that some times are tranquil while others are not—that is, that
volatility comes in clusters—shows up in many economic time series. This section
presents a pair of models for quantifying volatility clustering or, as it is also known,
conditional heteroskedasticity.

Volatility Cluétering

The volatility of many financial and macroeconomic variables changes over time.
Forexample, daily percentage changes in the New York Stock Exchange (NYSE)
stock price index, shown in Figure 16.3, exhibit periods of high volatility, such as

price changes exhibit
volatility dustering, in
which there are some

such as in the late
1990s, and other
periods of relative
tranquility, such as in
the mid-1990s.

Daily Percentage Changes in the NYSE Index, 1990-2005

Daily NYSE percentage  Percent

periods of high volatility,

8

6 b

8 ] i ] : i | ] j
1990 1992 1994 1996 1998 2000 2002 2004 2006
Year
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in 1990 and 2003, and other periods of low volatility, such as in 1993. A series with

some periods of low volatility and some periods of high volatility is said to exhibit -
volatility clustering. Because the volatility appears in clusters, the variance of the ~
daily percentage price change in the NYSE index can be forecasted, even though =

the daily price change itself is very difficult to forecast.
Forecasting the variance of a series is of interest for several reasons. First, the
variance of an asset price is a measure of the risk of owning that asset: The larger

the variance of daily stock price changes, the more a stock market participant

stands to gain—or to lose—on a typical day. An investor who is worried about risk
would be less tolerant of participating in the stock market during a period of
high—rather than low—volatility.

Second, the value of some financial derivatives, such as options, depends on the
variance of the underlying asset. An options trader wants the best available forecasts
of future volatility to help him or her know the price at which to buy or sell options,

Third, forecasting variances makes it possible to have accurate forecast inter-
vals. Suppose that you are forecasting the rate of inflation. If the variance of the
forecast error is constant, then an approximate forecast confidence interval can
be constructed along the lines discussed in Section 14.4—that is, as the forecast
plus or minus a multiple of the SER. If, however, the variance of the forecast error
changes over time, then the width of the forecast interval should change over time:
At periods when inflation is subject to particularly large disturbances or shocks,
the interval should be wide; during periods of relative tranquility, the interval
should be tighter.

Volatility clustering can be thought of as clustering of the variance of the error
term over time: If the regression error has a small variance in one period. its vari-
ance tends to be small in the next period, too. In other words, volatility clustering
implies that the error exhibits time-varying heteroskedasticity.

Autoregressive Conditional Heteroskedasticity

Two models of volatility clustering are the autoregressive conditional heteroskedas-
ticity (ARCH) model and its extension, the generalized ARCH (GARCH) model.

ARCH. Consider the ADL(1,1) regression

V=B +BiY vy X o, (16.29)

"In the ARCH model, which was developed by the economeirician Robert Engle

(Engle, 1982; see the box on Clive Granger and Robert Engle), the error u, is
. 2
modeled as being normally distributed with mean zero and variance o7, where o;
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depends on past squared values 1, Specifically, the ARCH model of order D,
denoted ARCH(p), is

0F =g+ oty + g, b + apu,{p, (16.30)

where ay, ay,..., a, are unknown coefficients. If these coefficients are positive,
then if recent squared errors are large the ARCH model predicts that the current
squared error will be large in magnitude in the sense that its variance, o2, is large.

Although it is described here for the ADL(1,1) model in Equation (16.29),
the ARCH model can be applied to the error variance of any time series regres-
sion model with an error that has a conditional mean of zero, including higher-
order ADL models, autoregressions, and time series regressions with multiple
predictors.

GARCH. The generalized ARCH (GARCH) model, developed by the econo-
metrician Tim Bollersiev (1986), extends the ARCH model to let 2 depend on its
own lags as well as lags of the squared error. The GARCH(p,q) model is

ol =ag+agd - + apu,{p + ot + e+ ¢qcr[2_q, (16.31)

where ag, ai, ..., &, ¢y, .., d, are unknown coefficients.

The ARCH model is analogous to a distributed lag model, and the GARCH
model is analogous to an ADL model. As discussed in Appendix 15.2, the ADL
model (when appropriate) can provide a more parsimonious model of dynamic
multipliers than the distributed lag model. Similarly, by incorporating lags of oz,
the GARCH model can capture slowly changing variances with fewer parameters
than the ARCH model. i

An important application of ARCH and GARCH models is to measuring and
forecasting the time-varying volatility of returns on financial assets, particularly
assets observed at high sampling frequencies such as the daily stock returns in
Figure 16.3. In such applications the return itself is often modeled as unpredictable,

'so the regression in Equation (16.29) only includes the intercept.

Estimation and inference. ARCH and GARCH models are estimated by
the method of maximum likelihood (Appendix 11.2). The estimators of the
ARCH and GARCH coefficients are normally distributed in large samples, s0
in large samples r-statistics have standard normal distributions and confidence
intervals can be constructed as the maximum likelihood estimate + 1.96 standard

EIrrors.
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o1

)

‘Application to Stock Price Volatility
A GARCH(1,1) model of the NYSE daily percentage stock price changes, Ry, esti-

mated using data on all trading days from January 2,1990, through November 11, :

2005, is
R,=0.049 (16.32)
(0.012)
52 =0.0079 + 0.072u, + 0.91902% (16.33)

(0.0014) (0.005)  (0.006)

No lagged predictors appear in Equation (16.32) because daily NYSE price
changes are essentially unpredictable.

The two coefficients in the GARCH model (the coefficients on 1, and o)
are both individually statistically significant at the 5% significance level. One mea-
sure of the persistence of movements in the variance is the sum of the coefficients
on 12, and ¢ in the GARCH model (Exercise 16.9). This sum (0.991) is large,
indicating that changes in the conditional variance are persistent. Said differently,
the estimated GARCH model implies that periods of high volatility in NYSE
prices will be long-lasting. This implication is consistent with the long periods of
volatility clustering seen in Figure 16.3.

The estimated conditional variance at date 1, 42, can be computed using the
residuals from Equation (16.32) and the coefficients in Equation (16.33). Figure 164
plots bands of plus or minus one conditional standard deviation (thatis, +0,) based
on the GARCH(1,1) model, along with deviations of the percentage price change
series from its mean. The conditional standard deviation bands quantify the time-
varying volatility of the daily price changes. During the mid-1990s, the conditional
standard deviation bands are tight, indicating lower levels of risk for investors
holding the NYSE index. In contrast, around the turn of the century, these condi-
tional standard deviation bands are wide, indicating a period of greater daily stock
price volatility.

Conclusion

This part of the book has covered some of the most frequently used tools and con-
cepts of time series regression. Many other tools for analyzing economic time series
have been developed for specific applications. If you are interested in learning more
about economic forecasting, see the introductory textbooks by Enders (1995) and
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Percent per annum

5.4

-7.2
1990 1992 1994 1996 1998 2000 2002 2004 2006
Year

The GARCH(1,1) ba

variance is small and wide when it is large. The conditional volatility of stock price changes varies considerably over the

1990-2005 period.

Daily'Per'centég'e Changés in the NYSE index and GARCH(1,1) Bands I

1 ! 1 H l | { !

nds, which are +&,, where &, is computed using Equation (16.33), are narrow when the conditional

Diebold (2007). For an advanced treatment of econometrics with time series data,
see Hamilton (1994).

Summary

1. Vector autoregressions model a “vector” of k time series variables as each
depends on its own lags and the lags of the k — 1 other series. The forecasts
of each of the time series produced by a VAR are mutually consistent, in the
sense that they are based on the same information.

2. Forecasts two or more periods ahead can be computed either by iterating
forward a one-step-ahead model (an AR or a VAR) or by estimating a
multiperiod-ahead regression.
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3. Two series that share a coinmon stochastic trend are cointegrated; that is, Y,
and X, are cointegrated if ¥ and X, are (1) but ¥, — 0X;is 1(0). If ¥ and X,
are cointegrated, the error correction term ¥; — 6.X; can help to predict AY,

and/or A X, A vector error correction model is a VAR model of AY, and AX,; "

augmented to include the lagged error correction term.
4. Volatility clustering—when the variance of a series is high in some periods

and low in others—is common in economic time series, especially financial

time series.

5. The ARCH model of volatility clustering expresses the conditional variance
of the regression error as a function of recent squared regression errors. The
GARCH model augments the ARCH model to include lagged conditional
variances as well. Estimated ARCH and GARCH models produce forecast
intervals with widths that depend on the volatility of the most recent regres-

sion residuals.

Key Terms

vector autoregression (VAR) (632) cointegration (649)
iterated multiperiod AR forecast (639) cointegrating coefficient (650)
iterated multiperiod VAR forecast (639)  error correction term (651)

direct multiperiod forecast (641) vector error correction model (651)
integrated of order d, I(d) (643) EG-ADF test (653)
second difference (643) dynamic OLS (DOLS)
integrated of order zero [/(0)], estimator (654)
one [{(1)], or two [1(2)] (643) volatility clustering (660)
order of integration (643) autoregressive conditional
DF-GLS test (644) heteroskedasticity (ARCH) (660)
common trend (649) generalized ARCH (GARCH) (660)

Review the Concepts

16,1 A macroeconomist wants to construct forecasts for the following macroeco-
nomic variables: GDP; consumption, investment, government purchases,
exports, imports, short-term interest rates, long-term interest rates, and the
rate of price inflation. He has quarterly time series for each of these variables
from 1970 to 2010. Should he estimate a VAR for these variables and use this
for forecasting? Why or why not? Can you suggest an alternative approach?

16.2

16.3

16.4

16.5

Exercises 665

Suppose that ¥; follows a stationary AR(1) model with 8y =0 and 8, = 0.7.
If ¥, =5, what is your forecast of Y, (that is, what is Y.)? What is ¥,y
for i1 = 307 Does this forecast for & = 30 seem reasonable to you?

A version of the permanent income theory of consumption implies that the
logarithm of real GDP (¥) and the logarithm of real consumpticn (C) are
cointegrated with a cointegrating coefficient equal to 1. Explain how you
would investigate this implication by (a) plotting the data and (b) using a
statistical test.

Consider the ARCH model, 67 = 1.0 + 0.8u2,. Explain why this will lead
to volatility clustering. (Hint: What happens when u? | is unusually large?)

The DF-GLS test for a unit root has higher power than the Dickey-Fuller
test. Why should you use a more powerful test?

Exercises

16.1

16.2

Suppose that ¥, follows a stationary AR(1) model, ¥, = B + B, Y_; + 1,

a. Show that the 4-period ahead forecast of ¥;is given by Y =py+
BI(Y.— py), where py = Bo/(1 — By).

b. Suppose that X, is related to ¥, by X, = EE:OBYHP, where [§] < 1.
Show that X; = uy/(1 — 8) + (¥, — ny)/(1 — B:18).

One version of the expectations theory of the term structure of interest
rates holds that a long-term rate equals the average of the expected values
of short-term interest rates into the future, plus a term premium that is 7(0).
Specifically, let Rk, denote a k-period interest rate, let R1, denote a one-
period interest rate, and let ¢, denote an 7(0) term premium. Then
Rk, = %ESIRLH], + ¢, where Rl is the forecast made at date 7 of the
value of R1 at date ¢ + 1. Suppose that R1, follows a random walk so that
R, =R1_;+u,

a. Show that Rk, = R1, +e,.

b. Show that Rk, and R1, are cointegrated. What is the cointegrating
coefficient?

¢. Now suppose that AR1, = 0.5AR1,_| + 1, How does your answer to
(b) change?

d. Now suppose that R1, = 0.5R1,_; + u,. How does your answer to (b)
change?
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16.3

164

16.5

16.6

16.7

16.8

Suppose that 1, follows the ARCH process, o7 = 1.0+ 0.5u .

a. Let E(u?) = var(u,) be the unconditional variance of i, Show thatvar(u,)
=2. (Hint: Use the law of iterated expectations E(u?) = E[E(ufu,-)])

b. Suppose that the distribution of 11, conditional on lagged values of u,
is N(0, 02). I u,_; = 0.2, what is Pr(=3 = 1, = 3)? i u, 1 = 2.0, what
isPr(—3 = u, = 3)?

Suppose that Y, follows the AR(p) model ¥, = Bo+ 1Y 1+ -+ + B, Y, +

u, where E(u]Y,_,, Y_z,. )=0.Let Y y= E(Y|Y, Y_,... ). Show that

f+h[r Bo+ B Y- l+h|1 -+ ﬁpYﬁ)Hz[/ for i > p.
Verlfy Equatlon (16.20). [Hmr Use ZHY Z, (Y, + AY)? to show that
SLy2=3Lv2 +230 v A%+ 3L AY? and solve for SEYAY)

A regression of Y onto current, past, and future values of X, yields
Y, =3.0+ 17X + 08X~ 02X +u,.
a. Rearrange the regression so that it has the form shown in Equation -
(16.25). What are the values of 8,6_y, 8y, and §,?

b. i. Suppose that X, is /(1) and 1, is /(1). Are Y and X cointegrated?
il. Suppose that X, is /(0) and u,is /(1). Are Y and X cointegrated?
iti. Suppose that X,is /(1) and u, is /(0). Are Y and X cointegrated?

Suppose that AY, = i, where u, is 1.i.d. N(0, 1), and consider the regression
Y= BX + error, where X, = AY,,; and error is the 1eglesslon error. Show

that B ~L L} - 1). [Hint: Analyze the numerator of B using analysis

like that in Equation (16.21). Analyze the denominator using the law of
large numbers.|

Consider the following two-variable VAR model with one lag and no intercept:

Y= BnY +ynX-1+uy

X=ByY +yuX- v ux

a. Show that the iterated two-period-ahead forecast for Y can be written
as Y, = 8,Y_» + 8,X,_, and derive values for ; and &, in terms of
the coefficients in the VAR.

b. In light of your answer to (a), do iterated multiperiod forecasts differ
from direct multiperiod forecasts? Explain.

16.9

16.10

Empirical Exercises 667

4. Suppose that E(ufu,_y, 1, s, ... ) =0, that var(i|u,_1, 15, ... } follows
the ARCH(1) model o7 = &g + a112.;, and that the process for 1, is sta-
tionary. Show that var(u,) = ag/(1 — o). (Hint: Use the law of iterated
expectations E(uf) = E[E(u|u,,)].)

jn

. Extend the resultin (a) to the ARCH{p) model.

¢. Show that 3%.,¢; < 1 for a stationary ARCH(p) model.

d. Extend the result in (a) to the GARCH(1,1) model.

e. Show that a; + ¢, < 1for a stationary GARCH(1,1) model.

Consider the cointegrated model ¥, = 0.X; + v;, and X, = X,_| + v,,, where
v, and v, are mean zero serially uncorrelated random variables with
E(vyvo) =0 for all r and j. Derive the vector error correction model
[Equations (16.22) and (16.23)] for X and Y.

Empirical Exercises

El6.1

E16.2

These exercises are based on data series in the data files USMacro_Quarterly
and USMacro_Monthly described in the Empirical Exercises in Chapters 14
and 15. Let ¥, = In(GDF), R, denote the 3-month Treasury bill rate, and

P and 7wFCE denote the inflation rates from the CPI and Personal Con-
sumption Expenditures (PCE) Deflator, respectively.

Using quarterly data from 1955:1 through 2009:4, estimate a VAR(4) (a VAR
with four lags) for AY, and AR,

a. Does AR Granger-cause AY? Does AY Granger-cause AR?

b. Should the VAR include more than four lags?

In this exercise you will compute pseudo out-of-sample two-quarter-ahead
forecasts for AY beginning in 1989:4 through the end of the sample. (That
is, you will compute A ¥igg00/1989:4, A Yigag:311990:1, and so forth.)

a. Construct iterated two-quarter-ahead pseudo out-of-sample forecasts
using an AR(1) model.

b. Construct iterated two-quarter-ahead pseudo out-of-sample forecasts
using a VAR(4) model for AY and AR,

¢. Construct iterated two-quarter-ahead pseudo out-of-sample forecasts
using the naive forecast AY, 5, = (AY, + AY_; + AY,, + AY, 5)/4.

d. Which model has the smallest root mean squared forecast error?
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APPENDIX

161

8 % o 8

E16.3 Use the DF-GLS test to test for a unit autoregressive root for ¥, As an
alternative, suppose that Y is stationary around a deterministic trend. Com-
pare the Tesults to the results obtained in Empirical Exercise 14.3.

E16.4 In Empirical Exercise 15.2, you studied the behavior of 7P — 2 FCE Gyer

the sample period 1970:1 through 2009:12. That analysis was predicaied on
the assumption that #& — 7 ¥ is I(0).

CPI _ _PCE
a. Test for a unit root in the autoregression for 7r,*" — a; ~~. Carry out

the test using the ADF test that includes a constant and 12 lags of the
first difference of w&7 — 7.—,PCE, Also carry out the test using the DF-
GLS procedure. '

b. Test for a unit root in the autoregression for 7Pl and in the autore-
gression for 7/ PCE Asin (a), use both the ADF and DF-GLS tests
including a constant and 12 lagged first differences.

¢. What do the results from (a) and (b) say about cointegration between
these two inflation rates? What is the value of the cointegrating coef-
ficient () implied by your answers to (a) and (b)?

d. Suppose that you did not know that the cointegrating coefficient was
8 = 1. How would you test for cointegration? Carry out the test. How
would you estimate 8?7 Estimate the value of 8 using the DOLS
regression of w<77 onto 7 PCE and six leads and lags of Awr/“E. Is the

estimated value of 4 close to 1?7

E16.5 a. Usingdataon AY (the growth rate in GDP) from 1955:1 to 2009:4, esti-

mate an AR(1) model with GARCH(1,1) errors.

b. Plot the residuals from the AR(1) model along with +¢, bands as in
Figure 16.4.

¢. Some macroeconomists have claimed that there was a sharp drop in the
variability of AY around 1983, which they call the “Great Moderation.”
Ts this Great Moderation evident in the plot that you formed in (b)?

U.S. Financial Data Used in Chapter 16

The interest rates on 3-month U.S. Treasury bills and on 1-year U.S. Treasury bonds are the
monthly average of their daily rates, converted to an annual basis, as reported by the Board
of Governors of the U.S. Federal Reserve. The quarterly data used in this chapter are the

monthly average interest rates for the final month in the quarter.

CCHAE @" R

of Linear Regression
with One Regressor

fhy should an applied econometrician bother learning any econometric

theory? There are several reasons. Learning econometric theory turns your
statistical software from a “black box” into a flexible toolkit from which you are able
to select the right tool for the job at hand. Understanding econometric theory helps
you appreciate why these tools work and what assumptions are required for each
tool to work properly. Perhaps most importantly, knowing econometric theory helps
you recognize when a tool will not work well in an application and when you should
look for a different econometric approach.

This chapter provides an introduction to the econometric theary of linear
regression with a single regressor. This introduction is intended to supplement — not
replace —the material in Chapters 4 and 5, which should be read first.

This chapter extends Chapters 4 and 5 in two ways.

First, it provides a mathematical treatment of the sampling distribution of the
OLS estimator and ¢-statistic, both in large samples under the three least squares
assumptions of Key Concept 4.3 and in finite samples under the two additional
assumptions of homoskedasticity and normal errors. These five extended least
squares assumptions are laid out in Section 171. Sections 17.2 and 17.3, augmented
by Appendix 17.2, develop mathematically the large-sample normal distributions of
the OLS estimator and ¢-statistic under the first three assumptions (the least squares
assumptions of Key Concept 4.3). Section 17.4 derives the exact distributions of the
OLS estimator and t-statistic under the two additional assumptions of
homoskedasticity and normally distributed errors.

Second, this chapter extends Chapters 4 and 5 by providing an alternative
method for handling heteroskedasticity. The approach of Chapters 4 and 5 is to use
heteroskedasticity-robust standard errors to ensure that statistical inference is valid
even if the errors are heteroskedastic. This method comes with a cost, however: If
the errors are heteroskedastic, then in theory a more efficient estimator than OLS is
available. This estimator, called weighted least squares, is presented in Section 175.
Weighted least squares requires a great deal of prior knowledge about the precise
nature of the heteroskedasticity—that is, about the conditional variance of v given X,
When such knowledge is available, weighted least squares improves upon OLS. In
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