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CHAPTER 14

Introduction to Time Series Regression and Forecasting

[SSR(1) = SSR(2)J/[SSR(2)/(T —2)} is the homoskedasticity-only F-statistic (Equation
7.13) testing the null hypothesis that 8, = 0 in the AR(2).1f i, is homoskedastic,then Fhas a
¥4 asymptotic distribution; if not, it has some other asymptotic distribution. Thus pr[BIC(2) -
BIC(1) < 0]=Pr{T[BIC(2) - BIC(1)] < 0} = Pr{—Tn[l + F/(T-2)] + (InT) < 0] =
Pr{Tinf{l + F/(T —2)] > InT}. As T increases, TIn[1 + F/(T-2)]-F —L5 0 [a conse-

quence of the logarithmic approximation In(1 + @) = a, which becomes exactasa —.0].

Thus Pr[BIC(2) — BIC(1) < 0] — Pr(# > InT) — 0,50 Pr(p=2) —> 0.

AIC
In the special case of an AR(1) when zero, one, or two lags are considered, (i) applies to the
AIC where the term InT is replaced by 2,s0 Pr(p = 0) —— 0. All the steps in the proof of
(ii) for the BIC also apply to the AIC, with the modification that InT is replaced by 2; thus
Pr[AIC(2) — AIC(1) < 0] —> Pr(F >2) > 0.1f 1, is homoskedastic, then Pr(F > 2)
— Pr(y} > 2) =0.16,50 Pr(p =2) — 0.16. In general, when p is chosen using the
AIC,Pr(p < p) — Obut Pr(p > p)tendstoa positive number,so Pr (p = p) does not
tend to 1.

i n the 1983 movie Trading Places, the characters played by Dan Aykroyd and Eddie
i Murphy used inside information on how well Florida oranges had fared over the
winter to make millions in the orange juice concentrate futures market, a market for
contracts to buy or sell large quantities of orange juice concentrate at a specified
price on a future date. In real life, traders in orange juice futures in fact do pay close
attention to the weather in Florida: Freezes in Florida kill Florida oranges, the source
of almost all frozen orange juice concentrate made in the United States, so its supply
falls and the price rises. But precisely how much does the price rise when the
weather in Florida turns sour? Does the price rise all at once, or are there delays; if
so, for how long? These are questions that real-life traders in orange juice futures
need to answer if they want to succeed.

This chapter takes up the problem of estimating the effect on ¥ now and in the
future of a change in X; that is, the dynamic causal effect on Y of a change in X.
What, for example, is the effect on the path of orange juice prices over time of a
freezing spell in Florida? The starting point for modeling and estimating dynamic
causal effects is the so-called distributed lag regression model, in which Y, is
expressed as a function of current and past values of X. Section 15.1 introduces the
distributed lag model in the context of estimating the effect of cold weather in
Florida on the price of orange juice concentrate over time. Section 15.2 takes a closer
look at what, precisely, is meant by a dynamic causal effect.

One way to estimate dynamic causal effects is to estimate the coefficients of the
distributed lag regression model using OLS. As discussed in Section 15.3, this
estimator is consistent if the regression error has a conditional mean of zero given
current and past values of X, a condition that (as in Chapter 12) is referred to as
exogeneity. Because the omitted determinants of Y, are correlated over time—that is,
because they are serially correlated—the error term in the distributed lag model can
be serially correlated. This possibility in turn requires “heteroskedasticity- and
autocorrelation-consistent” (HAC) standard errors, the topic of Section 15.4.

A second way to estimate dynamic causal effects, discussed in Section 15.5, is to
model the serial correlation in the error term as an autoregression and then to use
this autoregressive model to derive an autoregressive distributed lag (ADL) model.
Alternatively, the coefficients of the original distributed lag model can be estimated
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by generalized ieast squares (GLS). Both the ADL and GLS methods, however,
require a stronger version of exogeneity than we have used so far: strict exogeneity,
under which the regression errors have a conditional mean of zero given past,
present, and future values of X.

Section 15.6 provides a more complete analysis of the relationship between
orange juice prices and the weather. In this application, the weather is beyond
human control and thus is exogenous {although, as discussed in Section 15.6,
economiic theory suggests that it is not necessarily strictly exogenous). Because
exogeneity is necessary for estimating dynamic causal effects, Section 15.7
examines this assumption in several applications taken from macroeconomics and
finance.

This chapter builds on the material in Sections 14.1 through 14.4 but, with the
exception of a subsection (that can be skipped) of the empirical analysis in Section
15.6, does not require the material in Sections 14.5 through 14.7.

An Initial Taste of the Orange Juice Data

Orlando, the historical center of Florida’s orange-growing region, is normally
sunny and warm. But now and then there is a cold snap, and if temperatures drop
below freezing for too long, the trees drop many of their oranges. If the cold snap
is severe, the trees freeze. Following a freeze, the supply of orange juice concen-
trate falls and its price rises. The timing of the price increases is rather complicated,
however. Orange juice concentrate is a “durable,” or storable, commodity; that is,
it can be stored in its frozen state, albeit at some cost (to run the freezer). Thus the
price of orange juice concentrate depends not only on current supply but also on
expectations of future supply. A freeze today means that future supplies of con-
centrate will be low, but because concentrate currently in storage can be used to
meet either current or future demand, the price of existing concentrate rises today.
But precisely how much does the price of concentrate rise when there is a freeze?
The answer to this question is of interest not just to orange juice traders but more
generally to economists interested in studying the operations of modern com-
modity markets. To learn how the price of orange juice changes in response to
weather conditions, we must analyze data on orange juice prices and the weather.

Monthly data on the price of frozen orange juice concentrate, its monthly per-
centage change, and temperatures in the orange—growing region of Florida from
January 1950 to December 2000 are plotted in Figure 15.1. The price, plotted in
Figure 15.1a, is a measure of the average real price of frozen orange juice con-
centrate paid by wholesalers. This price was deflated by the overall producer price

.
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There have been large month-to-month changes in the price of frozen concentrated orange juice. Many of the large
movements coincide with freezing weather in Orlando, home of many orange groves. J

index for finished goods to eliminate the effects of overall price inflation. The
percentage price change plotted in Figure 15.1b is the percent change in the price
over the month. The temperature data plotted in Figure 15.1c are the number of
“freezing degree days” at the Orlando, Florida, airport, calculated as the sum of
the number of degrees Fahrenheit that the minimum temperature falls below
freezing in a given day over all days in the month; for example, in November 1950
the airport temperature dropped below freezing twice, on the 25% (31°) and on
the 29 (29°), for a total of 4 freezing degree days [(32 — 31) + (32 — 29) = 4].(The
data are described in more detail in Appendix 15.1.) As you can see by compar-
ing the panels in Figure 15.1, the price of orange juice concentrate has large swings,
some of which appear to be associated with cold weather in Florida.
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We begin our quantitative analysisof the relationship between orange juice
price and the weather by using a regression to estimate the amount by which
orange juice prices rise when the weather turns cold. The dependent variable

is the percentage change in the price over that month [%ChgP, where ..

%ChgP, =100 X Aln(P?) and PP’ is the real price of orange juice]. The regres-
sor is the number of freezing degree days during that month (FDD,). This regres-

sion is estimated using monthly data from January 1950 to December 2000 (as are

all regressions in this chapter), for a total of 7 = 612 observations:

%ChgP,= —0.40 + 0.47FDD, (15.1)
(0.22) (0.13)

The standard errors reported in this section are not the usual OLS standard errors,
but rather are heteroskedasticity- and autocorrelation-consistent (HAC) standard
errors that are appropriate when the error term and regressors are autocorrelated.
HAC standard errors are discussed in Section 15.4, and for now they are used with-
out further explanation.

According to this regression, an additional freezing degree day during a month
increases the price of orange juice concentrate over that month by 0.47%.In a
month with 4 freezing degree days, such as November 1950, the price of orange
juice concentrate is estimated to have increased by 1.88% (4 X 0.47% = 1.88%),
relative to a month with no days below freezing.

Because the regression in Equation (15.1) includes only a contemporaneous
measure of the weather, it does not capture any lingering effects of the cold snap
on the orange juice price over the coming months. To capture these we need to
consider the effect on prices of both contemporaneous and lagged values of FDD,
which in turn can be done by augmenting the regression in Equation (15.1) with,
for example, lagged values of FDD over the previous 6 months:

%ChgP,= —0.65 + 0.ATFDD, + 0.14FDD,_{ + 0.06FDD,,

(0.23) (0.14) (0.08) (0.06)
+0.07FDD, 5 + 0.03FDD,_y + 0.05FDD,_s + 0.05FDD, . (152)
(0.05) (0.03) (0.03) (0.04)

Equation (15.2) is a distributed lag regression. The coefficient on FDD, in
Equation (15.2) estimates the percentage increase in prices over the course of the
month in which the freeze occurs; an additional freezing degree day is estimated to
increase prices that month by 0.47%. The coefficient on the first lag of FDD,,
FDD,_,, estimates the percentage increase in prices arising from a freezing degree
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day in the preceding month, the coefficient on the second lag estimates the effect of a
freezing degree day 2 months ago, and so forth. Equivalently, the coefficient on the first
lag of FDD estimates the effect of a unit increase in FDD 1 month after the freeze
occurs. Thus the estimated coefficients in Equation (15.2) are estimates of the effect
of a unit increase in FOD, on current and future values of % ChgP; that is, they are
estimates of the dynamic effect of FDD, on % ChgP,. For example, the 4 freezing
degree days in November 1950 are estimated to have increased orange juice prices
by 1.88% during November 1950, by an additional 0.56% (= 4 X 0.14) in December
1950, by an additional 0.24% (= 4 X 0.06) in January 1951, and so forth.

Dynamic Causal Effects

Before learning more about the tools for estimating dynamic causal effects, we
should spend a moment thinking about what, precisely, is meant by a dynamic
causal effect. Having a clear idea about what a dynamic causal effect is leads to a
clearer understanding of the conditions under which it can be estimated.

Causal Effects and Time Series Data

Section 1.2 defined a causal effect as the outcome of an ideal randomized con-
trolled experiment: When a horticulturalist randomly applies fertilizer to some

. tomato plots but not others and then measures the yield, the expected difference

in yield between the fertilized and unfertilized plots is the causal effect on tomato
yield of the fertilizer. This concept of an experiment, however, is one in which there
are multiple subjects (multiple tomato plots or multiple people), so the data are
either cross-sectional (the tomato yield at the end of the harvest) or panel data
(individual incomes before and after an experimental job training program). By
having multiple subjects, it is possible to have both treatment and control groups
and thereby to estimate the causal effect of the treatment.

In time series applications, this definition of causal effects in terms of an ideal
randomized controlled experiment needs to be modified. To be concrete, consider
an important problem of macroeconomics: estimating the effect of an unanticipated
change in the short-term interest rate on the current and future economic activity
in a given country, as measured by GDP.Taken literally, the randomized controlled
experiment of Section 1.2 would entail randomly assigning different economies to
treatment and control groups. The central banks in the treatment group would
apply the treatment of a random interest rate change, while those in the control
group would apply no such random changes; for both groups, economic activity (for
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example, GDP) would be measured-cover-the next few years. But what if we are
interested in estimating this effect for a specific country, say the United States?
Then this experiment would entail-having different “clones” of the United States
as subjects and assigning some clone economies to the treatment group and some
to the control group. Obviously, this “parallel universes” experiment is infeasible,

Instead, in time series data it is useful to think of a randomized controlled
experiment consisting of the same subject {e.g., the U.S. economy) being given dif-

ferent treatments (randomly chosen changes in interest rates) at different points

in time (the 1970s, the 1980s, and so forth). In this framework, the single subject at
different times plays the role of both treatment and control group: Sometimes the
Fed changes the interest rate, while at other times it does not. Because data are
collected over time, it is possible to estimate the dynamic causal effect, that is, the
time path of the effect on the outcome of interest of the treatment. For example,
a surprise increase in the short-term interest rate of two percentage points, sus-
tained for one quarter, might initially have a negligible effect on output; after two
quarters GDP growth might slow, with the greatest slowdown after l% years; then
over the next 2 years, GDP growth might return to normal. This time path of causal
effects is the dynamic causal effect on GDP growth of a surprise change in the
interest rate.

As a second example, consider the causal effect on orange juice price changes
of a freezing degree day. It is possible to imagine a variety of hypothetical exper-
iments, each yielding a different causal effect. One experiment would be to change
the weather in the Florida orange groves, holding constant weather elsewhere —
for example, hoiding constant weather in the Texas grapefruit groves and in other
citrus fruit regions. This experiment would measure a partial effect, holding other
weather constant. A second experiment might change the weather in all the
regions, where the “treatment” is application of overall weather patterns. If
weather is correlated across regions for competing crops, then these two dynamic
causal effects differ. In this chapter, we consider the causal effect in the latter
experiment, that is, the causal effect of applying general weather patterns. This cor-
responds to measuring the dynamic effect on prices of a change in Florida weather,
not holding constant weather in other agricultural regions.

Dynamic effects and the distributed lag model. Because dynamic effects nec-
essarily occur over time, the econometric model used to estimate dynamic causal
effects needs to incorporate lags. To do so, ¥, can be expressed as a distributed lag
of current and r past values of X

Yi=Bo+ BiX+ BaX + B3 Xig + o+ B X Ty, (15.3)

i bl
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‘where u, is an error term that includes measurement error in ¥, and the effect of
omitted determinants of ¥,. The model in Equation (15.3) is called the distributed
lag model relating X, and r of its lags, to Y, .

As an illustration of Equation (15.3), consider a modified version of the
tomato/fertilizer experiment: Because fertilizer apnlied today might remain in the
ground in future years, the horticulturalist wants to determine the effect on tomato
yield over time of applying fertilizer. Accordingly, she designs a 3-year experi-
ment and randomly divides her plots into four groups: The first is fertilized in only
the first year; the second is fertilized in only the second year; the third is fertilized
in only the third year; and the fourth, the control group, is never fertilized. Toma-
toes are grown annually in each plot, and the third-year harvest is weighed. The
three treatment groups are denoted by the binary variables X,_,, X,_;, and X, ., where
trepresents the third year (the year in which the harvest is weighed), X,_, = 1 if the
plot is in the first group (fertilized two years earlier), X,_j = 1 if the plot was fertil-
ized 1 year earlier, and X; = 1 if the plot was fertilized in the final year. In the
context of Equation (15.3) (which applies to a single plot), the effect of being fer-
tilized in the final year is B,, the effect of being fertilized 1 year earlier is 8,, and
the effect of being fertilized 2 years earlier is 85. If the effect of fertilizer is great-
est in the year itis applied, then 3; would be larger than $3, and B;.

More generally, the coefficient on the contemporaneous value of X,, 8, is the
contemporaneous or immediate effect of a unit change in X, on Y. The coefficient
on X,_|, By, is the effect on ¥ of a unit change in X,_; or, equivalently, the effect
on ¥, of a unit change in X; that is, B, is the effect of a unit change in X on ¥
one period later. In general, the coefficient on X,_,, is the effect of a unit change
in X on Y after & periods. The dynamic causal effect is the effect of a change in
X,on'Y, Y1, ¥4, and so forth; that s, it is the sequence of causal effects on cur-
rent and future values of Y. Thus, in the context of the distributed lag model in
Equation (15.3), the dynamic causal effect is the sequence of coefficients B,

BZ’ s Br+1'

Implications for empirical time series analysis. This formulation of dynamic
causal effects in time series data as the expected outcome of an experiment in which
different treatment levels are repeatedly applied to the same subject has two impli-
cations for empirical attempts to measure the dynamic causal effect with observa-
tional time series data. The first implication is that the dynamic causal effect should
not change over the sample on which we have data. This in turn is implied by the
data being jointly stationary (Key Concept 14.5). As discussed in Section 14.7, the
hypothesis that a population regression function is stable over time can be tested
using the QLR test for a break, and it is possible to estimate the dynamic causal
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effect in different subsamples. The second implication is that X must be uncorre-
lated with the error term, and it is to this implication that we now turn.

Two Types of Exogeneity

Section 12.1 defined an “exogenous” variable as a variable that is uncorrelated
with the regression error term and an “endogenous” variable as a variable that is

correlated with the error term. This terminology traces to models with multiple -

equations, in which an “endogenous” variable is determined within the model
while an “exogenous” variable is determined outside the model. Loosely speak-
ing, if we are to estimate dynarmic causal effects using the distributed lag model in
Equation (15.3), the regressors (the X’s) must be uncorrelated with the error term.
Thus X must be exogenous. Because we are working with time series data, how-
ever, we need to refine the definitions of exogeneity. In fact, there are two differ-
ent concepts of exogeneity that we use here.

The first concept of exogeneity is that the error term has a conditional
mean of zero given current and all past values of X,, that is, that E(ulX, X,_,,
X,_5,...) = 0.This modifies the standard conditional mean assumption for multi-
ple regression with cross-sectional data (Assumption #1 in Key Concept 6.4),
which requires only that i, has a conditional mean of zero given the included
regressors, that is, that E(u|X, Xy, . . ., X—,) = 0. Including all lagged values of
X, in the conditional expectation implies that all the more distant causal effects—
all the causal effects beyond lag r—are zero. Thus, under this assumption, the 7 dis-
tributed lag coefficients in Equation (15.3) constitute all the nonzero dynamic
causal effects. We can refer to this assumption—that E(u|X, X1, ...) = 0—as past
and present exogeneity, but because of the similarity of this definition and the def-
inition of exogeneity in Chapter 12, we just use the term exogeneity.

" The second concept of exogeneity is that the error term has mean zero, given
all past, present, and fitture values of X, that is, that E(ul. .., Xegy X X0 Xy,
X,_y,...)=0.This is called strict exogeneity; for clarity, we also call it pas, pres-
ent, and future exogeneity. The reason for introducing the concept of strict exo-
geneity is that, when X is strictly exogenous, there are more efficient estimators of
dynamic causal effects than the OLS estimators of the coefficients of the distrib-
uted lag regression in Equation (15.3).

The difference between exogeneity (past and present) and strict exogeneity
(past, present, and future) is that strict exogeneity includes future values of X in the
conditional expectation. Thus strict exogeneity implies exogeneity, but not the
reverse. One way to understand the difference between the two concepts is to
consider the implications of these definitions for correlations between X and 1. If
X is (past and present) exogenous, then , is uncorrelated with current and past

|
1
+

The Distributed Lag Model and Exogeneity

In the distributed lag model
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Y= 0o+ BrX+ BoXiy + BsXin + -0 + BaX, +uy, (15.4)
there are two different types of exogeneity, that is, two different exogeneity

Past and present exogeneity (exogeneity):

E(”tl)(v Xt—ls )()‘—2’ T ) = O; (155)

Past, present, and future exogeneity (strict exogeneity):

E(u ..., Koo, Xepr, X Xiep, Xy ) =0, (15.6)

If X is strictly exogenous, it is exogenous, but exogeneity does not imply strict

values of X;. If X is strictly exogenous, then in addition u, is uncorrelated with furure
values of X,. For example, if a change in ¥; causes fiture values of X, to change, then
X, is not strictly exogenous even though it might be (past and present) exogenous.

As an illustration, consider the hypothetical multiyear tomato/fertilizer exper-
iment described following Equation (15.3). Because the fertilizer is randomly
applied in the hypothetical experiment, it is exogenous. Because tomato yield
today does not depend on the amount of fertilizer applied in the future, the fer-
tilizer time series is also strictly exogenous.

As a second illustration, consider the orange juice price example, in which Y, is
the monthly percentage change in orange juice prices and X; is the number of freez-
ing degree days in that month. From the perspective of orange juice markets, we can
think of the weather—the number of freezing degree days—as if it were randomly
assigned, in the sense that the weather is outside human control. If the effect of FDD
is linear and if it has no effect on prices after » months, then it follows that the
weather is exogenous. But is the weather strictly exogenous? If the conditional mean
of u, given future FDD is nonzero, then FDD is not strictly exogenous. Answering
this question requires thinking carefully about what, precisely, is contained in 1,. In
particular, if OJ market participants use forecasts of FDD when they decide how
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L

much they will buy or sell at a given price, then OJ prices, and thus the error term u,,

could incorporate information about future FDD that would make u, a useful pre-
dictor of FDD.This means that i, will be correlated with future values of FDD,

According to this logic, because u, includes forecasts of future Florida weather, FDD -
would be (past and present) exogenous but not strictly exogenous. The difference -

between this and the tomato/fertilizer example is that, while tomato plants are unaf-
fected by future fertilization, OJ market participants are influenced by forecasts of

future Florida weather, We return to the question of whether FDD is sirictly exoge-

nous when we analyze the orange juice price data in more detail in Section 15.6.
The two definitions of exogeneity are summarized in Key Concept 15.1.

Estimation of Dynamic Causal
Effects with Exogenous Regressors

If X is exogenous, then its dynamic causal effect on Y can be estimated by OLS esti-
mation of the distributed lag regression in Equation (15.4). This section summarizes
the conditions under which these OLS estimators lead to valid statistical inferences
and introduces dynamic multipliers and cumulative dynamic multipliers.

The Distributed Lag Model Assumptions

The four assumptions of the distributed lag regression model are similar to the four
assumptions for the cross-sectional multiple regression model (Key Concept 6.4),
modified for time series data.

The first assumption is that X is exogenous, which extends the zero conditional
mean assumption for cross-sectional data to include all lagged values of X. As dis-
cussed in Section 15.2, this assumption implies that the r distributed lag coefficients
in Equation (15.3) constitute all the nonzero dynamic causal effects. In this sense,
the population regression function summarizes the entire dynamic effect on Y of
a change in X.

The second assumption has two parts: Part (a) requires that the variables have
a stationary distribution, and part (b) requires that they become independently
distributed when the amount of time separating them becomes large. This assump-
tion is the same as the corresponding assumption for the ADL model (the second
assumption in Key Concept 14.6), and the discussion of this assumption in Sec-
tion 14.4 applies here as well. :

The third assumption is that large outliers are unlikely, made mathematically
precise by assuming that the variables have more than eight nonzero, finite moments.

The Distributed Lag Model Assumptions

The distributed lag model is given in Key Concept 15.1 [Equation (15.4)], where
‘1. Xis exogenous, that is, E(u|X,, X,_, X, »,...) = 0;
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. (a) The random variables Y, and X, have a stationary distribution, and
(b) (¥, X)) and (Y,_j, X,_;) become independent as j gets large;

. Large outliers are unlikely: ¥ and X, have more than eight nonzero, finite
moments; and

. There is no perfect multicollinearity.

This is stronger than the assumption of four finite moments that is used elsewhere
in this book. As discussed in Section 15.4, this sironger assumption is used in the
mathematics behind the HAC variance estimator. )

The fourth assumption, which is the same as in the cross-sectional multiple
regression model, is that there is no perfect multicollinearity.

The distributed lag regression model and assumptions are summarized in Key
Concept 15.2.

Extension to additional X’s. The distributed lag model extends directly to mul-
tiple X’s: The additional Xs and their lags are simply included as regressors in the
distributed lag regression, and the assumptions in Key Concept 15.2 are modified
to include these additional regressors. Although the extension to multiple X’s is
conceptually straightforward, it complicates the notation, obscuring the main ideas
of estimation and inference in the distributed lag model. For this reason, the case
of multiple X’s is not treated explicitly in this chapter but is left as a straightfor-
ward extension of the distributed lag model with a single X.

Autocorrelated v, Standard Errors, and Inference

In the distributed lag regression model, the error term 1, can be autocorrelated; that
1s, u, can be correlated with its lagged values. This autocorrelation arises because,
in time series data, the omitted factors included in u, can themselves be serially
correlated. For example, suppose that the demand for orange juice also depends
on income, so one factor that influences the price of orange juice is income, specif-
ically, the aggregate income of potential orange juice consumers. Then aggregate
income is an omitted variable in the distributed lag regression of orange juice
price changes against freezing degree days. Aggregate income, however, is serially
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correlated: Income tends to fall in recessions and rise in-expansions. Thus, income is
serially correlated, and, because it is part of the error term, 1z, will be serially corre-
lated. This example is typical: Because omitted determinants of Y are themselves
serially correlated, in general i, in the distributed lag model will be correlated.

The autocorrelation of 1, does not affect the consistency of OLS, nor does jt -

introduce bias. If, however, the errors are autocorrelated, then in general the usual
OLS standard errors are inconsistent and a different formula must be uséd. Thus

correlation of the errors is analogous to heteroskedasticity: The homoskedasticity- -

only standard errors are “wrong” when the errors are in fact heteroskedastic, in
the sense that using homoskedasticity-only standard errors results in misleading
statistical inferences when the errors are heteroskedastic. Similarly, when the
errors are serially correlated, standard errors predicated upon i.i.d. errors are
“wrong” in the sense that they result in misleading statistical inferences. The solu-
tion to this problem is to use heteroskedasticity- and autocorrelation-consistent
(HAC) standard errors, the topic of Section 15.4.

Dynamic Multipliers
and Cumulative Dynamic Multipliers

Another name for the dynamic causal effect is the dynamic multiplier. The cumu-
lative dynamic multipliers are the cumulative causal effects, up to a given lag; thus
the cumulative dynamic multipliers measure the cumulative effect on ¥ of a
change in X.

Dynamic multipliers. The effect of a unit change in X on Y after & periods, which
is Bj+1 in Equation (15.4), is called the h-period dynamic multiplier. Thus the
dynamic multipliers relating X to Y are the coefficients on X, and its lags in
Equation (15.4). For example, f; is the one-period dynamic muitiplier, B3 is the
two-period dynamic multiplier, and so forth. In this terminology, the zero-period
(or contemporaneous) dynamic multiplier, or impact effect; is B;, the effect on ¥
of a change in X in the same period.

Because the dynamic multipliers are estimated by the OLS regression coeffi-
cients, their standard errors are the HAC standard errors of the OLS regression

coefficients.

Cumulative dynamic multipliers. The h-period cumulative dynamic multiplier
is the cumulative effect of a unit change.in X on Y over the next h periods. Thus the
cumulative dynamic multipliers are the cumulative sum of the dynamic multipli-
ers. In terms of the coefficients of the distributed lag regression in Equation (15.4),
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- the zero=period cumulative multiplier is 8, the one-period cumulative multiplieris
" Bi+ By, and the h-period cumulative dynamic multiplier is 8; + B, + - + 8 Bl

The sum of all the individual dynamic multipliers, 8 + 8, + -+ + 8,41, is the
cumulative long-run effect on ¥ of a change in X and is called the long-run cumu-
lative dynamic multiplier.

For example, consider the regression in Equation (15.2). The immediate effect
of an additional freezing degree day is that the price of orange juice concentrate
rises by 0.47%. The cumulative effect of a price change over the next month is the
sum of the impact effect and the dynamic effect one month ahead; thus the cumu-
lative effect on prices is the initial increase of 0.47% plus the subsequent smaller
increase of 0.14% for a total of 0.61%. Similarly, the camulative dynamic multi-
plier over 2 months is 0.47% + 0.14% + 0.06% = 0.67%.

"The cumulative dynamic multipliers can be estimated directly using a modifica-
tion of the distributed lag regression in Equation (15.4). This modified regression is

Y=0+ 010X+ 8AX +&AX o+ - +8AX 8 X, . (157)
s

The coefficients in Equation (15.7), 8, 85, ..., 8,.y, are in fact the cumulative
dynamic multipliers. This can be shown by a bit of algebra (Exercise 15.5), which
demonstrates that the population regressions in Equations (15.7) and (15.4) are
equivalent, where 8y = B¢,8; = B1,8, = B + 2,83 = B + B, + B3, and so forth. The
coefficient on X,_,, 8,4, is the long-run cumulative dynamic multiplier; that is,
Orp1 = B1+ Ba+ B3+ -+ + B, Moreover, the OLS estimators of the coefficients
in Equation (15.7) are the same as the corresponding cumulative sum of the OLS
estimators in Equation (15.4). For example, 32 = él + éz. The main benefit of esti-
mating the cumulative dynamic multipliers using the specification in Equation (15.7)

- is that, because the OLS estimators of the regression coefficients are estimators of

the cumulative dynamic multipliers, the HAC standard errors of the coefficients in
Equation (15.7) are the HAC standard errors of the cumulative dynamic multipliers.

Heteroskedasticity- and
Autocorrelation-Consistent Standard Errors

If the error term , is autocorrelated, then OLS coefficient estimators are consis-
tent, but in general the usual OLS standard errors for cross-sectional data are not.
This means that conventional statistical inferences—hypothesis tests and confi-
dence intervals—based on the usual OLS standard errors will, in general, be mis-
leading. For example, confidence intervals constructed as the QLS estimator
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+ 1.96 conventional standard errors need not contain the true value in 95% of
repeated samples, even if the sample size is large. This section begins with a deriva-

tion of the correct formula for the variance of the OLS estimator with autocorre. *

lated errors, then turns to heteroskedasticity- and autocorrelation-consistent (HAC)
standard errors.

This section covers HAC standard errors for regression with time series data, .

Chapter 10 introduced a type of HAC standard errors, clustered standard errors,
which are appropriate for panel data. Although clustered standard errors for panel
data and HAC standard errors for time series data have the same goal, the differ-
ent data structures lead to different formulas. This section is self-contained, and
Chapter 10 is not a prerequisite.

Distribution of the OLS
Estimator with Autocorrelated Errors

To keep things simple, consider the OLS estimator 81 in the distributed lag regres-
sion model with no lags, that is, the linear regression model with a single regressor X;;

=B+ B1X +u, (15.8)

where the assumpnons of Key Concept 15.2 are satisfied. This section shows that
the variance of B ; can be written as the product of two terms: the expression for
var( Bl), applicable if 1, is not serially correlated, multiplied by a correction factor
that arises from the autocorrelation in u, or, more precisely, the autocorrelation in
(X Bt

As shown in Appendix 4.3, the formula for the OLS estimator ,81 in Key Con-
cept 4.2 can be rewritten as

(;(1 'X,)”r
BL=Bi+ , (15.9)
( t_)—()z

TJMNI I~

- *iIH

where Equation (15.9) is Equation (4. 30) with a change of notation so that i and

n are replaced by tand T, Because ¥ —2> iy and % 2r1(X X)? 1> o-X, in
large samples /3 { — B1 is approximately given by
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i . \ 1T
where v, = (X, — px)u, and v = 33 v, Thus

var(f;) = Var<iz> - var(v) (15.11)

ok/ (%)

If v, is 1.1.d. —as assumed for cross-sectional data in Key Concept 4.3—then
var(v) = var(v,)/T and the formula for the variance of /§1 from Key Concept 4.4
applies. If, however, u, and X, are not independently distributed over time, then in
general v, will be serially correlated, so var(v) # var(v,)/T and Key Concept 4.4
does not apply. Instead, if v, is serially correlated, the variance of ¥ is given by

var(v) = var[(vi + v + -+ +v)/T]
= [var(v;) + cov(vy, vp) + - + cov(vy, vy)
+ cov(vy, vp) 4A-Var(v2) + - +var(vy) 77 (15.12)
=[Tvar(v,) +2(T — 1)cov(v, v,-;)

+2(T = 2)cov(v, Vi) + -+ +2c0v(v, vy )YT
2

= TVfT,

where

fr—l +22< ‘>p,, (15.13)

where p; = corr(v, v,-;). In large samples, f7 tends to the limit, fr— foo =
1+ ZE;pj.

Combining the expressions in Equation (15.10) for ,231 and Equation (15.12)
for var(v) gives the formula for the variance of ﬁl when v, is autocorrelated:

R o2
var(By) = [% h(ag)z}fﬂ (15.14)

where fris given in Equation (15.13).

Equation (15.14) expresses the variance of Bl as the product of two terms. The
first, in square brackets, is the formula for the variance of ,81 given in Key Con-
cept 4.4, which applies in the absence of serial correlation. The second is the fac-
tor fr, which adjusts this formula for serial correlation. Because of this additional



598

CHAPTER 15  Estimation of Dynamic Causal Effects

factor f7in Equation (15.14), the usual OLS standard error computed using Equa-
tion (5.4) is incorrect if the errors are serially correlated: If v, = (X, — px)u, is seri-
ally correlated, the estimator of the variance is off by the factor f7.

HAC Standard Errors

If the factor fr, defined in Equation (15.13), was known, then the variance of [31

could be estimated by multiplying the usual cross-sectional estimator of the vari-

ance by fr. This factor, however, depends on the unknownAautocorrelations ofv,so
it must be estimated. The estimator of the variance of B; that incorporates this
adjustment is consistent whether or not there is heteroskedasticity and whether or
not v, is autocorrelated. Accordingly, this estimator is called the heteroslfedasticity-
and autocorrelation-consistent (HHAC) estimator of the variance of 8y, iind the
square root of the HAC variance estimator is the HHAC standard ervor of §;.

The HAC variance formula. The heteroskedasticity- and autocorrelation-
consistent estimator of the variance of 81 is

& =64 fr (15.15)

where (}/%1 is the estimator of the Varifmce of B, in the absence of serial correlation,
given in Equation (5.4), and where fris an estimator of the factor f7in Equation
(15.13). .

The task of constructing a consistent estimator fr is challenging. To see why,
consider two extremes. At one extreme, given the formula in Equation (15.13), it
might seem natural to replace the population autocorrelations p; withsthe sample
autocorrelations p; [defined in Equation (14.6}], yielding the estimator
1+2% IZI(LT——[) pj- But this estimator contains so many estimated autocorrelations
that it is inconsistent. Intuitively, because each of the estimated autocorrelations
contains an estimation error, by estimating so many autocorrelations the estimation
error in this estimator of fy remains large even in large samples. At the other
extreme, one could imagine using only a few sample autocorrelations, for exam-
ple, only the first sample autocorrelation, and ignoring all the higher autocorrela-
tions. Although this estimator eliminates the problem of estimating too many
autocorrelations, it has a different problem: It is inconsistent because it ignores the
additional autocorrelations that appear in Equation (15.13). In short, using too
many sample autocorrelations makes the estimator have a large variance, but using
too few autocorrelations ignores the autocorrelations at higher lags, so in either

of these extreme cases the estimator is inconsistent.

154 Heteroskedasticity- and Autocorrelation-Consistent Standard Errors 599

-Estimators of fr used in practice strike a balance beiween these two extreme
cases by choosing the number of autocorrelations to include in a way that depends
on the sample size T. If the sample size is small, only a few autocorrelations are
used, but if the sample size is large, more autocorrelations are included (but still
far fewer than 7). Specifically, let fT be given by

m—1 :
fT:1+2z<’"_’)ﬁj, (15.16)
= m
where 5, = Z,TZJHG,O,_]-/E;?%, where ¥, = (X; — X)il, (as in the definiticn of &5,)-
The parameter /2 in Equation (15.16) is called the truncation parameter of the
HAC estimator because the sum of autocorrelations is shortened, or truncated, to
include only m — 1 autocorrelations instead of the T — 1 autocorrelations appear-
ing in the population formula in Equation (15.13).

For fT to be consistent, 7 must be chosen so that it is large in large samples,
although still much less than 7. One guideline for choosing m in practice is to use
the formula

m=0.75T'5, (15.17)

rounded to an integer. This formula, which is based on the assumption that there
is a moderate amount of autocorrelation in v,, gives a benchmark rule for deter-
mining m as a function of the number of observations in the regression.!

The value of the truncation parameter m resulting from Equation (15.17) can
be modified using your knowledge of the series at hand. On the one hand, if there
is a great deal of serial correlation in v,, then you could increase m beyond the
value from Equation (15.17). On the other hand, if v, has little serial correlation,
you could decrease n1. Because of the ambiguity associated with the choice of 1,
it is good practice to try one or two alternative values of m for at least one speci-
fication to make sure your results are not sensitive to n1.

The HAC estimator in Equation (15.15), with fT given in Equation (15.16), is
called the Newey-West variance estimator, after the econometricians Whitney
Newey and Kenneth West, who proposed it. They showed that, when used along
with a rule like that in Equation (15.17), under general assumptions this estima-
tor is a consistent estimator of the variance of ,f% 1 (Newey and West, 1987). Their

Equation (15.17) gives the “best” choice of m if 1, and X, are first-order autoregressive processes with
. . . P ~7

first autocorrelation coefficients 0.5, where “best” means the estimator that minimizes E(Ug‘ - Ug‘)z.

Equation (15.17) is based on a more general formula derived by Andrews [1991, Equation (5.3)].
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proofs (and those in Andrews, 1991) assume that v, has more than four moments,
which in turn is implied by X, and u, having more than eight moments, and this is
the reason that the third assumption in Key Concept 15.2 is that X, and u, have
more than eight moments. :

Other HAC estimators. The Newey-West variance estimator is not the only
HAC estimator. For example, the weights (m — j)/m in Equation (15.16) can be
replaced by different weights. If different weights are used, then the rule for choos-
ing the truncation parameter in Equation (15.17) no longer applies and a differ-
ent rule, developed for those weights, should be used instead. Discussion of HAC
estimators using other weights goes beyond the scope of this book. For more infor-
mation on this topic, see Hayashi (2000, Section 6.6).

Extension to multiple regression. All the issues discussed in this section gen-
eralize to the distributed lag regression model in Key Concept 15.1 with multiple
lags and, more generally, to the multiple regression model with sexially correlated
errors. In particular, if the error term is serially correlated; then the usual OLS
standard errors are an unreliable basis for inference and HAC standard errors
should be used instead. If the HAC variance estimator used is the Newey-West
estimator [the HAC variance estimator based on the weights (m — j)/m], then the
truncation parameter 7 can be chosen according to the rule in Equation (15.17)
whether there is a single regressor or multiple regressors. The formula for HAC
standard errors in multiple regression is incorporated into modern regression soft-
ware designed for use with time series data. Because this formula involves matrix
algebra, we omit it here and instead refer the reader to Hayashi (2000, Section 6.6)
for the mathematical details.
HAC standard errors are summarized in Key Concept 15.3.

Estimation of Dynamic Causal Effects
with Strictly Exogenous Regressors

- When X, is strictly exogenous, two alternative estimators of dynamic causal effects

are available. The first such estimator involves estimating an autoregressive dis-
tributed lag (ADL) model instead of a distributed lag model and calculating the
dynamic multipliers from the estimated ADL coefficients. This method can entail
estimating fewer coefficients than OLS estimation of the distributed lag model,
thus potentially reducing estimation error. The second method is to estimate the
coefficients of the distributed lag model, using generalized least squares (GLS)
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HAC Standard Errors

The problem: 'The error term 1, in the distributed lag regression model in Key
Concept 15.1 can be serially correlated. If so, the OLS coefficient estimators are
consistent but in general the usual OLS standard errors are not, resulting in mis-
leading hypothesis tests and confidence intervals.
The solution: Standard errors should be computed using a heteroskedasticity- and
autocorrelation-consistent (HAC) estimator of the variance. The HAC estimator
involves estimates of m — 1 autocovariances as well as the variance; in the case of a
single regressor, the relevant formulas are given in Equations (15.15) and (15.16).
In practice, using HAC standard errors entails choosing the truncation param-
eter m."To do 50, use the formula in Equation (15.17) as a benchmark, then increase
or decrease m depending on whether your regressors and errors have high or low
serial correlation.
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instead of OLS. Although the same number of coefficients in the distributed lag
model are estimated by GLS as by OLS, the GLS estimator has a smaller vari-
ance. To keep the exposition simple, these two estimation methods are initially
laid out and discussed in the context of a distributed lag model with a single lag
and AR(1) errors. The potential advantages of these two estimators are greatest,
however, when many lags appear in the distributed lag model, so these estima-
tors are then extended (o the general distributed lag model with higher-order
autoregressive errors.

The Distributed Lag Model with AR(1) Errors

Suppose that the causal effect on Y of a change in X lasts for only two periods; that
is, it has an initial impact effect 8, and an effect in the next period of B,, but no
effect thereafter. Then the appropiiate distributed lag regression model is the dis-
tributed lag model with only current and past values of X,_;:

Y= po+ BrXi+ BoXm + 1y (15.18)
As discussed in Section 15.2, in general the error term v, in Equation (15.18)

is serially correlated. One consequence of this serial correlation is that, if the dis-
tributed lag coefficients are estimated by OLS, then inference based on the usual
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OLS standard errors can be misleading. For this reason, Sections 15.3 and 15.4
emphasized the use of HAC standard errors when f3; and B, in Equation (15.18)
are estimated by OLS.

In this section, we take a different approach toward the serial correlation in
u,. This approach, which is possible if X, is strictly exogenous, involves adopting an
autoregressive model for the serial correlation in u,, then using this AR model to

derive some estimators that can be more efficient than the OLS estimator in the

distributed lag model.
Specifically, suppose that i, follows the AR(1) model

u, = ity + 1, (15.19)

where ¢, is the autoregressive parameter, I, is serially uncorrelated, and no inter-
cept is needed because E(u,) = 0. Equations (15.18) and (15.19) imply that the
distributed lag model with a serially correlated error can be rewritten as an autore-
gressive distributed lag model with a serially uncorrelated error.To do so, lag each
side of Equation (15.18) and subtract ¢, multiplied by this lag from each side:

Y~ 1Yoy = (Bo + BrX, + BaXimy + 1) — d1(Bo+ BiXiy + BaXin + 1)
= Bo+ BrXi+ BaXici — d1Bo— d1B1Xict — p1BaXio + W, (15.20)

where the second equality uses T, = 1, — ¢yu,—;. Collecting terms in Equation
(15.20), we have that

Y=g+ ¢ Yoy + 86X + 8, X + 5 X0 + 1y (15.21)
where
ao= Bo(l— 1), 89 =PB1, 1= Po— $1fand Sy = — ¢ B, (15.22)

where By, B,, and B, are the coefficients in Equation (15.18) and ¢, is the auto-
correlation coefficient in Equation (15.19).

Equation (15.21) is an ADL model that includes a contemporaneous value of
X and two of its lags. We will refer to Equation (15.21) as the ADL representation
of the distributed lag model with autoregressive errors given in Equations (15.18)
and (15.19). i

The terms in Equation (15.20) can be reorganized differentlz to obtain an
expression that is equivalent to Equations (15.21) and (15.22). Let ¥; = Y—d1Y
be the quasi-difference of Y, (“quasi” because it is not the first difference, the
difference between Y, and Y,_; rather, it is the difference between Y, and ¢ Y1)
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Similarly, let X=X ¢1X, 1 be the quasi-difference of X,. Then Equation (15.20)
can be written

Y= g+ BiX, + oKy + 1. (15.23)

We will refer to Equation {15.23) as the quasi-difference representation of the dis-
tributed lag model with autoregressive errors given in Equations (15.18) and (15.19).

The ADL model Equation (15.21) [with the parameter restrictions in
Equation (15.22)] and the quasi-difference model in Equation (15.23) are equiv-
alent. In both models, the error term, 7, is serially uncorrelated. The two repre-
sentations, however, suggest different estimation strategies. But before discussing
those strategies, we turn to the assumptions under which they yield consistent esti-
mators of the dynamic multipliers, 81 and S,.

The conditional mean zero assumption in the ADL(1,2) and quasi-differenced
modeis. Because Equations (15.21) [with the restrictions in Equation (15.22)]
and (15.23) are equivalent, the conditions for their estimation are the same, so for
convenience we consider Equation (15.23).

The quasi-difference model in Equation (15.23) is a distributed lag model
involving the quasi-differenced variables with a serially uncorrelated error.
Accordingly, the conditions for OLS estimation of the coefficients in Equation (15.23)
are the least squares assumptions for the distributed lag model in Key Concept
15.2, expressed in terms of 7, and X’, The critical assumption here is the first
assumption, which, applied to Equation (15.23),is that )N(, is exogenous; that is,

E(i)X, X_,,...)=0, (15.24)

where letting the conditional expectation depend on distant lags of 5(, ensures that
no additional lags of X’, other than those appearing in Equation (15.23), enter the
population regression function.

Because X’, =X, — 1 X—q,50 X, = )N(, + ¢1X,_, conditioning on 2 and all of its
lags is equivalent to conditioning on X, and all of its lags. Thus the conditional expec-
tation condition in Equation (15.24) is equivalent to the condition that E(%,| X,
X,_1,...)=0.Furthermore, because 7, = u, — ¢;ut,_;, this condition in turn implies
that

0=E()X, X1,...)
=E(u,~ dru,_o| X, X 1,...) (15.25)
= B(u)X, Xy )~ B s X, Xy, ).
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For the equality in Equation (15.25) to hold for general values of ¢y, it

must be the case that both E(u{X,, X;_,...) =0 and E(u, | X, X,—1,...) =0. By
shifting the time subscripts, the-condition that E(zz,~1lx, X—1,---)=0can be - -

rewritten as
E(u) Xy, X, X, ) =0, (15.26)

which (by the law of iterated expectations) implies that E(ulX, X_y,...)=0.In
summary, having the zero conditional mean assumption in Equation (15.24) hold
for general values of ¢, is equivalent to having the condition in Equation (15.26)
hold.

The condition in Equation (15.26) is implied by X, being strictly exogenous,
but it is not implied by X, being (past and present) exogenous. Thus the least
squares assumptions for estimation of the distributed lag model in Equation
(15.23) hold if X, is strictly exogenous, but it is not enough that X, be (past and
present) exogenous.

Because the ADL representation [Equations (15.21) and (15.22)] is equiva-
lent to the quasi-differenced representation [Equation (15.23)], the conditional
mean assumption needed to estimate the coefficients of the quasi-differenced rep-
resentation [that E(u,| X, X, X,—1,...) = 0] is also the conditional mean assump-
tion for consistent estimation of the coefficients of the ADL representation.

We now turn to the two estimation strategies suggested by these two repre-
sentations: estimation of the ADL coefficients and estimation of the coefficients
of the quasi-differenced model.

OLS Estimation of the ADL Model

The first strategy is to use OLS to estimate the coefficients in the ADL model in
Equation (15.21). As the derivation leading to Equation (15.21) shows, including
the lag of ¥ and the extra lag of X as regressors makes the error term serially
uncorrelated (under the assumption that the error follows a first order autore-
gression). Thus the usual OLS standard errors can be used; that is, HAC standard
errors are not needed when the ADL model coefficients in Equation (15.21) are
estimated by OLS. '
The estimated ADL coefficients are not themselves estimates of the dynamic
multipliers, but the dynamic multipliers can be computed from the ADL coeff%—
cients. A general way to compute the dynamic multipliers is to express the esti-
mated regression function as a function of current and past values of X, that is, to
eliminate ¥, from the estimated regression function. To do so, repeatedly substitute

i
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. expressions for lagged values of ¥, into the estimated regression function. Specif-

ically, consider the estimated regression function
Y= Yoy + 50X, + 81Xy + 5yX, o, (15.27)

where the estimated intercept has been omitted because it does not enter any
expression for the dynamic rnulnphers Lagging both sides of Equation (15.27)
yields Yﬁl = quYw + BOXP +5 (X + 67X, 3,so replacing Yﬁl in Equation (15.27)
by this expression for Y_l and collecting terms yields

Y= i b1 Yo+ 8Xim + 8., + 8, 3) + 8oX; + 8, %) + 8,5

R R R A . (15.28)

= 80X, + (81 + $180) Xy + (83 + $181) Xy + 182X3 + STV,

Repeating this process by repeatedly substituting expressions for Y 5, Y3,
and so forth yields

50X + (51 + ¢’150) -1+ (52 + ¢’151 + ¢’150)Xx 2 (15.29)
+ ¢1(52 + by + ¢%50)X1—3 + 3By + iy + GB0) Xy + o

The coefficients in Equation (15.29) are the estimators of the dynamic multipli-
ers, computed from the OLS estimators of the coefficients in the ADL model in
Equation (15.21). If the restrictions on the coefficients in Equation (15.22) were to
hold exactly for the estimated coefficients, then the dynamic multipliers beyond the
second (that is, the coefficients on X,_,, X;.3, and so forth) would all be zero.2 How-
ever, under this estimation strategy those restrictions will not hold exactly, so the esti-
mated multipliers beyond the second in Equation (15.29) will generally be nonzero.

GLS Estimation

The second strategy for estimating the dynamic multipliers when X, is strictly
€xogenous is to use generalized least squares (GLS), which entails estimating
Equation (15.23). To describe the GLS estimator, we initially assume that Py is
known. Because in practice it is unknown, this estimator is infeasible, so it is called
the infeasible GLS estimator. The infeasible GLS estimator, however, can be mod-
ified using an estimator of ¢, which yields a feasible version of the GLS estimator.

2Substitute the equalities in Equation (15.22) to show that, if those equalities hold, then &, + ¢,8,
+ 18, =0.
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Inféasible GLS. "Suppose that ¢; were known; then the quasi-differenced vari-

ables X and Y could be computed directly. As discussed in the context of :

Equations (15.24) and (15.26), i X, is strictly exogenous, then E(ur]Xf, XP fe)=0.
Thus, if X, is strictly exogenous and if ¢, is known, the coefﬁcxenNts o, N‘Bl’ and~/32
in Equation (15.23) can be estimated by the OLS regression of ¥, on X, and X,
(including an intercept). The resulting estimator of 8, and B, —that is, the OLS
estimator of the slope coefficients in Equation (15.23) when ¢, is known—is

the infeasible GLS estimator. This estimator is infeasible because ¢; is unknown, -

S0 X and 3’; cannot be computed and thus these OLS estimators cannot actually

be computed.

Feasible GLS. The feasible GLS estimator modifies the infeasible GLS esti-
mator by using a preliminary estimator of ¢,, <;51, to compute the estimated quasi-
differences. Specifically, the feasible GLS estimators of 5, and B, are the OLS
estimators of 8, and By in Equatlon (15.23), computed by regressmg Y on X
and X_ (with an intercept), whereX X - ¢>1X ~yand Y Y - qSlY_

The preliminary estimator, q&l, can be computed by first estimating the dis-
tributed lag regression in Equation (15.18) by OLS, then using OLS to estimate
¢y in Equation (15.19) with the OLS residuals i, replacing the unobserved regres-
sion errors u,. This version of the GLS estimator is called the Cochrane-Orcutt
(1949) estimator.

An extension of the Cochrane—Orcutt method is to continue this process
iteratively: Use the GLS estimator of 8, and B, to compute revised estimators
of 11,; use these new residuals to re-estimate ¢y; use- this revised estimator of ¢
to compute revised estimated quasi-differences; use these revised estimated
quasi-differences to re-estimate B and ,; and continue this process until the
estimators of B, and 3, converge. This is referred to as the iterated Cochrane-

Orcutt estimator.

A nonlinear least squares interpretation of the GLS estimator. An equiva-
lent interpretation of the GLS estimator is that it estimates the ADL model in
Equation (15.21), imposing the parameter restrictions in Equation (15.22). These
restrictions are nonlinear functions of the original parameters By; B1, B2, and ¢,
so this estimation cannot be performed using OLS. Instead, the parameters can be
estimated by nonlinear least squares (NLLS). As discussed in Appendix 8.1,NLLS
minimizes the sum of squared mistakes made by the estimated regression func-
tion, recognizing that the regression function is a nonlinear function of the para-
meters being estimated. In general, NLLS estimation can require sophisticated
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-algorithms for minimizing nonlinear functions of unknown parameters. In the spe-
cial case at hand, however, those sophisticated algorithms are not needed; rather,
the NLLS estimator can be computed using the algorithm described previously
for the iterated Cochrane-Orcutt estimator, Thus the iterated Cochrane-Orcutt
GLS estimator is in fact the NLLS estimator of the ADL coefficients, subject to
the nonlinear constraints in Equation (15.22).

Efficiency of GLS.  The virtue of the GLS estimator is that when X is strictly
exogenous and the transformed errors 7, are homoskedastic, it is efficient among
linear estimators, at least in large samples. To see this, first consider the infeasible
GLS estimator. If 7, is homoskedastic, if ¢ is known (so that AN’, and 17[ can be
treated as if they are observed), and if X, is strictly exogenous, then the Gauss—
Markov theorem implies that the OLS estimator of «, 8, 2nd 8, in Equation (15.23)
is efficient among all linear conditionally unbiased estimators; that is, the OLS esti-
mator of the coefficients in Equation (15.23) is the best linear unbiased estimator,
or BLUE (Section 5.5). Because the OLS estimator of Equation (15.23) is the
infeasible GLS estimator, this means that the infeasible GLS estimator is BLUE.
The feasible GLS estimator is similar to the infeasible GLS estimator, except that
¢, is estimated. Because the estimator of ¢, is consistent and its variance is
inversely proportional to T, the feasible and infeasible GLS estimators have the
same variances in large samples. In this sense, if X is strictly exogenous, then the
feasible GLS estimator is BLUE in large samples. In particular, if X is strictly
exogenous, then GLS is more efficient than the OLS estimator of the distributed
lag coefficients discussed in Section 15.3.

The Cochrane-Orcutt and iterated Cochrane-Orcutt estimators presented
here are special cases of GLS estimation. In general, GLS estimation involves
transforming the regression model so that the errors are homoskedastic and seri-
ally uncorrelated, then estimating the coefficients of the transformed regression
model by OLS. In general, the GLS estimator is consistent and BLUE in large
samples if X is strictly exogenous, but is not consistent if X is only (past and pres-
ent) exogenous. The mathematics of GLS involve matrix algebra, so they are post-
poned to Section 18.6.

The Distributed Lag Model
with Additional Lags and AR({p) Errors
The foregoing discussion of the distributed lag model in Equations (15.18) and

(15.19), which has a single lag of X, and an AR(1) error term, carries over to the
general distributed lag model with multiple lags and an AR(p) error term.
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The general distributed lag model with autoregressive errois. The general .-

distributed lag model with r lags and an AR(p) error term is
Y=ot B+ BoXiy + o F B X, Ty - (15.30)

U= oy + oty + o T, + U, (15.31)

where By, ..., B+ are the dynamic multipliers and ¢y, . .., ¢, are the autoregres-: -
sive coefficients of the error term. Under the AR(p) model for the errors, T, is seri- -

ally uncorrelated.
‘Algebra of the sort that led to the ADL model in Equation (15.21) shows that
Equations (15.30) and (15.31) imply that Y, can be written in ADL form:

Y=gt il o G Yyt 8 XA B Xy e+ 8K+, (1532)

where ¢ =r + p and &, . .., §, are functions of the 8’s and ¢’s in Equations (15.30)
and (15.31). Equivalently, the model of Equations (15.30) and (15.31) can be writ-
ten in quasi-difference form as

Yi=ap+ X+ oKt + ProaXe, Ly (15.33)
where =Y - ¢~ - — Y pand X=X = Xy — -~ Xy

Conditions for estimation of the ADL coefficients. The foregoing discussion of
the conditions for consistent estimation of the ADL coefficients in the AR(1) case
extends to the general model with AR(p) errors. The conditional mean zero
assumption for Equation (15.33) is that

E(W)X, X, ,,...)=0. (15.34)
Because U, = u, — ¢yuy — ol — -+ — Py, and )N(, =X - Xm0 —

¢,X,p, this condition is equivalent to

E(udX, Xy, ) = (| X Xicr, )
= = (X, Xy, ) =0, (15.35)
For Equation (15.35) to hold for general values of ¢, ..., ¢p, it must be the

case that each of the conditional expectations in Equation (15.35) is zero; equiv-
alently, it must be the case that

E(ll1|AX;+p’ X‘ﬂ;‘lv A/H-p—29 v ) =0. (1536)
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This condition is not implied by X, being (past and present) exogenous, but it
is implied by X, being strictly exogenous. In fact, in the limit when p is infinite (so
that the error term in the distributed lag model follows an infinite-order autore-
gression), the condition in Equation (15.36) becomes the condition in Key Con-
cept 15.1 for strict exogeneity.

Estimation of the ADL model by OLS.  As in the distributed lag model with a
single lag and an AR(1) error term, the dynamic multipliers can be estimated from
the OLS estimators of the ADL coefficients in Equation (15.32). The general for-
mulas are similar to, but more complicated than, those in Equétion (15.29) and are
best expressed using lag multiplier notation; these formulas are given in Appen-
dix 15.2. In practice, modern regression software designed for time series regres-
sion analysis does these computations for you.

Estimation by GLS.  Alternatively, the dynamic multipliers can be estimated
by (feasible) GLS. This entails OLS estimation of the coefficients of the quasi-
differenced specification in Equation (15.33), using estimated quasi-differences.
The estimated quasi-differences can be computed using preliminary estimators of
the autoregressive coefficients ¢y, . .., ¢, as in the AR(1) case. The GLS estima-
tor is asymptotically BLUE, in the sense discussed earlier for the AR(1) case.

Estimation of dynamic multipliers under strict exogeneity is summarized in
Key Concept 154.

Which to use: OLS or GLS? The two estimation options, OLS estimation of the
ADL coefficients and GLS estimation of the distributed lag coefficients, have both
advantages and disadvantages.

The advantage of the ADL approach is that it can reduce the number of para-
meters needed for estimating the dynamic multipliers, compared to OLS estima-
tion of the distributed lag model. For example, the estimated ADL model in
Equation (15.27) led to the infinitely long estimated distributed lag representa-
tion in Equation (15 -29).To the extent that a distributed lag model with only r lags
is really an approximation to a longer-lagged distributed lag model, the ADL
model can provide a simple way to estimate those many longer lags using only a
few unknown parameters. Thus in practice it might be possible to estimate the
ADL model in Equation (15.39) with values of p and g much smaller than the
value of r needed for OLS estimation of the distributed lag coefficients in
Equation (15.37). In other words, the ADL specification can provide a compact,
or parsimonious, summary of a long and complex distributed lag (see Appendix 15.2
for additional discussion). '
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Esrtimatiorn 0’;‘ Dynrar"nicr M;ar,llrtipliéfs- Undér Stri& Exuéigenéiiy
The general distributed lag mod'el with r lags and AR(pS error tf:}fxn is -
Yi=Pot BiX+ BoXy + -0 .37+1Xm7+ Uy
U=ty g+ oty o+ o Hdpu, 4—17,.

If X, is strictly exogenous, then the dynamic multipliers By,. .., B+ can b¢ esti-
mated by first using OLS to estimate the coefficients of the ADL model

Y=op+ ¢ Yo+ - T dYiy

+ 86X, + 81 X+ H X+, (15.39) -

where g = r + p and then computing the dynamic multipliers using regression soft-" -
ware. Alternatively, the dynamic multipliers can be estimated by estimating the
distributed lag coefficients in Equation (15.37) by GLS. .

The advantage of the GLS estimator is that, for a given lag length r in the dis-
tributed lag model, the GLS estimator of the distributed lag coefficients is more
efficient than the OLS estimator, at least in large samples. In practice, then, the
advantage of using the ADL approach arises because the ADL specification can
permit estimating fewer parameters than are estimated by GLS.

Orange luice Prices and Cold Weather

This section uses the tools of time series regression to squeeze additional insights
from our data on Florida temperatures and orange juice prices. First, how long
lasting is the effect of a freeze on the price? Second, has this dynamic effect been
stable or has it changed over the 51 years spanned by the data and, if so, how?
We begin this analysis by estimating the dynamic causal effects using the
method of Section 15.3, that is, by OLS estimation of the coefficients of a distrib-
uted lag regression of the percentage change in prices (%ChgP,) on the number
of freezing degree days in that month (FDD,) and its lagged values. For the dis-
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tributed lag estimator to be consistent, FD D must be (past and present) exogenous.
As discussed in Section 15.2, this assumption is reasonable here. Humans cannot
influence the weather, so treating the weather as if it were randomly assigned
experimentally is appropriate. Because FDD is exogenous, we can estimate the
dynamic causal effects by OLS estimation of the coefficients in the distributed lag
model of Equation (15.4) in Key Concept 15.1.

As discussed in Sections 15.3 and 15.4, the error term can be serially corre-
lated in distributed lag regressions, so it is important to use HAC standard errors,
which adjust for this serial correlation. For the initial results, the truncation param-
eter for the Newey—West standard errors (m in the notation of Section 15.4) was
chosen using the rule in Equation (15.17): Because there are 612 monthly obser-
vations, according to that rule m = 0.757+* = 0.75 X 61217 = 6.37, but because m
must be an integer, this was rounded up to m = 7; the sensitivity of the standard

- errors to this choice of truncation parameter is investigated below.

The results of OLS estimation of the distributed lag regression of % ChgP, on
FDD,, FDD,_4,..., FDD, ;g are summarized in column (1) of Table 15.1. The
coefficients of this regression (only some of which are reported in the table) are
estimates of the dynamic causal effect on orange juice price changes (in percent)
for the first 18 months following a unit increase in the number of freezing degree
days in a month. For example, a single freezing degree day is estimated to
increase prices by 0.50% over the month in which the freezing degree day occurs.
The subsequent effect on price in later months of a freezing degree day is less:
After 1 month the estimated effect is to increase the price by a further 0.17%,
and after 2 months the estimated effect is to increase the price by an additional
0.07%. The R? from this regression is 0.12, indicating that much of the monthly
variation in orange juice prices is not explained by current and past values of
FDD.

Plots of dynamic multipliers can convey information more effectively than
tables such as Table 15.1. The dynamic multipliers from column (1) of Table 15.1
are plotted in Figure 15.2a along with their 95% confidence intervals, computed
as the estimated coefficient + 1.96 HAC standard errors. After the initial sharp
price rise, subsequent price rises are less, although prices are estimated to rise
slightly in each of the first 6 months after the freeze. As can be seen from
Figure 15.2a, for months other than the first the dynamic multipliers are not sta-
tistically significantly different from zero at the 5% significance level, although
they are estimated to be positive through the seventh month.

Column (2) of Table 15.1 contains the cumulative dynamic multipliers for this
specification, that is, the cumulative sum of the dynamic multipliers reported in
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“The Dynamic Effect of arFreezing Degree Day:(FDD) on the Price of Ora,ngé‘]ui‘c‘e:r
Selected Estimated Dynamic Multipliers and Cumulative Dynamic :

Rﬁe‘ljl S

m (2) 3) @
Lag Number Dynamic Multipliers  Cumulative Multipliers  Cumulative Multipliers  Cumulative Multipliers
0 0.50 0.50 0.50 0.51
(0.14) (0.14) (0.14) (0.15)
1 0.17 0.67 0.67 0.70
(0.09) (0.14) (0.13) (0.15)
2 0.07 0.74 0.74 0.76
(0.06) 0.17) (0.16) (0.18)
3 0.07 0.81 0.81 0.84
(0.04) (0.18) (0.18) (0.19)
4 0.02 0.84 0.84 0.87
(0.03 (0.19) 0.19) (0.20)
5 0.03 0.87 0.87 0.89
(0.03) (0.19) (0.19) (0.20)
6 0.03 0.90 0.90 091
(0.03) (0.20) (0.21) (0.21)
12 —0.14 0.54 0.54 0.54
(0.08) 0.27) (0.28) (0.28)
18 0.00 037 0.37 0.37
(0.02) (0.30) (0.31) (0.30)
Monthly indicators?  No No No Yes
F=1.01
(p=043)
HAC standard
error truncation -
parameter (1) 7 7 14 7
for a total of T = 612 monthly observations. The dependent variable is the monthly percentage change in the price of orange
juice (% ChgP,). Regression (1) is the distributed lag regression with the monthly number of freezing degree days and 18 of its
lagged values, that is, FDD,, FDD,_,, ..., FDD,.5, and the reported coefficients are the OLS estimates of the dynamic multipli-
ers. The cumulative multipliers are the cumulative sum of estimated dynamic multipliers. All regressions include an intercept,
which is not reported. Newey-West HAC standard errors, computed using the truncation number given in the final row, are
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The Dynamic Effect of a Freezing Degree Day (FDD) on the Price of Orange Juice
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(a) Estimated Dynamic Multipliers and 95% Confidence Interval
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(b) Estimated Cumulative Dynamic Multipliers and 95% Confidence Interval

The estimated dynamic multipliers show that a freeze leads to an immediate increase in prices. Future price rises are
much smaller than the initial impact. The cumulative multiplier shows that freezes have a persistent effect on the level of
orange juice prices, with prices peaking seven months after the freeze.
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column (1). These dynamic multipliers are plotted in Figure 15.2b along with their - -
95% confidence intervals. After 1 month, the cumulative effect of the freezing -

degree day is to increase prices by 0.67%, after 2 months the price is estimated to
have risen by 0.74%), and after 6 months the price is estimated to have risen by

0.90%. As can be seen in Figure 15.2b, these cumulative multipliers increase =

through the seventh month, because the individual dynamic multipliers are posi-
tive for the first 7 months. In the eighth month, the dynamic multiplier is negative,
so the price of orange juice begins to fall slowly from its peak. After 18 months, the’
cumulative increase in prices is only 0.37%; that is, the long-run cumulative
dynamic multiplier is only 0.37%. This long-run cumulative dynamic multiplier is
not statistically significantly different from zero at the 10% significance level
(r=0.37/0.30=1.23).

Sensitivity analysis. As in any empirical analysis, it is important to check
whether these results are sensitive to changes in the details of the empirical analy-
sis. We therefore examine three aspects of this analysis: sensitivity to the compu-
tation of the HAC standard errors; an alternative specification that investigates
potential omitted variable bias; and an analysis of the stability over time of the
estimated multipliers.

First, we investigate whether the standard errors reported in the second col-
umn of Table 15.1 are sensitive to different choices of the HAC truncation param-
eter m. In column (3), results are reported for m = 14, twice the value used in
column (2). The regression specification is the same as in column (2), so the esti-
mated coefficients and dynamic multipliers are identical; only the standard errors
differ but, as it happens, not by much. We conclude that the results are insensitive
to changes in the HAC truncation parameter.

Second, we investigate a possible source of omitted variable bias. Freezes in
Florida are not randomly assigned throughout the year, but rather occur in the
winter (of course). If demand for orange juice is seasonal (is demand for orange
juice greater in the winter than the summer?), then the seasonal patterns in orange
juice demand could be correlated with FDD, resulting in omitted variable bias.
The quantity of oranges sold for juice is endogenous: Prices and quantities are
simultaneously determined by the forces of supply and demand. Thus, as discussed
in Section 9.2, including quantity would lead to simultaneity bias. Nevertheless, the
seasonal component of demand can be captured by including seasonal variables
as regressors. The specification in column (4) of Table 15.1 therefore includes 11
monthly binary variables, one indicating whether the month is January, one indi-
cating February, and so forth (as usual one binary variable must be omitted to pre-
vent perfect multicollinearity with the intercept). These monthly indicator
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variables are not jointly statistically significant at the 10% level (p=0.43), dnd
the estimated cumulative dynamic multipliers are essentially the same as for the
specifications excluding the monthly indicators. In summary, seasonal fluctuations
in demand are not an important source of omitted variable bias.

Have the dynamic multipiiers been stable over time?3  To assess the stability
of the dynamic multipliers, we need to check whether the distributed lag regres-
sion coefficients have been stable over time. Because we do not have a specific
break date in mind, we test for instability in the regression coefficients using the
Quandt likelihood ratio (QLR) statistic (Key Concept 14.9). The QLR statistic
(with 15% trimming and HAC variance estimator), computed for the regression
of column (1) with all coefficients interacted, has a value of 21.19, with g =20
degrees of {reedom (the coefficients on FDD,, its 18 lags, and the intercept). The
1% critical value in Table 14.6 is 2.43, so the QLR statistic rejects at the 1% sig-
nificance level. These QLR regressions have 40 regressors, a large number; recom-
puting them for six lags only (so that there are 16 regressors and g = 8) also results
in rejection at the 1% level. Thus the hypothesis that the dynamic multipliers are
stable is rejected at the 1% significance level.

One way to see how the dynamic multipliers have changed over time is to
compute them for different parts of the sample. Figure 15.3 plots the estimated
cumulative dynamic multipliers for the first third (1950-1966), middle third
(1967-1983), and final third (1984-2000) of the sample, computed by running sep-
arate regressions on each subsample. These estimates show an interesting and
noticeable pattern. In the 1950s and early 1960s, a freezing degree day had a large
and persistent effect on the price. The magnitude of the effect on price of a freez-
ing degree day diminished in the 1970s, although it remained highly persistent. In
the late 1980s and 1990s, the short-run effect of a freezing degree day was the same
as in the 1970s, but it became much less persistent and was essentially eliminated
after a year. These estimates suggest that the dynamic causal effect on orange juice
prices of a Florida freeze became smaller and less persistent over the second half
of the twentieth century. The box “Orange Trees on the March” discusses one pos-
sible explanation for the instability of the dynamic causal effects.

ADL and GLS estimates.  As discussed in Section 15.5, if the error term in
the distributed lag regression is serially correlated and FDD is strictly exogenous,
it is possible to estimate the dynamic multipliers more efficiently than by OLS

3The discussion of stability in this subsection draws on material from Section 14.7 and can be skipped
if that material has not been covered. :
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estimation of the distributed lag coefficients. Before using either the GLS estima-
tor or the estimator based on the ADL model, however, we need to consider
whether FDD is in fact strictly exogenous. True, humans cannot affect the daily
weather, but does that mean that the weather is strictly exogenous? Does the error
term 1, in the distributed lag regression have conditional mean zero, given past,
present, and future values of FDD?

The error term in the population counterpart of the distributed lag regression
in column (1) of Table 15.1 is the discrepancy between the price and its popula-
tion prediction based on the past 18 months of weather. This discrepancy might
arise for many reasons, one of which is that traders use forecasts of the weather in
Orlando. For example, if an especially cold winter is forecasted, then traders would
incorporate this into the price, so the price would be above its predicted value
based on the population regression; that is, the error term would be positive. If this
forecast is accurate, then in fact future weather would turn out to be cold. Thus
future freezing degree days would be positive (X+; > 0) when the current price
is unusually high (i, > 0), so corr(X.sy, ;) is positive. Stated more simply,
although orange juice traders cannot influence the weather, they can—and do—
predict it (see the box). Consequently, the error term in the price/weather regression
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Why do the dynamic muitipliers in Figure 15.3
" vary over time? One possible explanation is
changes in markets, but another is that the trees
moved south.

According to the Florida Department of Citrus,
the severe freezes in the 1980s, which are visible in
Figure 15.1(c), spurred citrus growers to seek a
warmer climate. As shown in Figure 15.4, the num-
ber of acres of orange trees in the more frost-prone
northern and western counties fell from 232,000
acres in 1981 to 53,000 acres in 1985, and orange
acreage in southern and central counties subse-
quently increased from 413,000 in 1985 to 588,000 in

1993. With the groves farther south, northern frosts
damage a smaller fraction of the crop, and—as indi-
cated by the dynamic multipliers in Figure {5.3—
price becomes less sensitive to temperatures in the
more northern city of Orlando.

OK, the orange trees themselves might not have
been on the march—that can be left to MacBeth—
but southern migration of the orange groves does

give new meaning to the term “nonstationarity.”! -

'We are grateful to Professor James Cobbe of Florida State
University for telling us about the southern movement of
the orange groves.
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15.7

“is correlated with future weather: Irr other words, FDD is exogenous, but if this

reasoning is true, it is not strictly exogenous, and the GLS and ADL estimators wil]
not be consistent estimators of the dynamic multipliers. These estimators there-
fore are not used in this application.

Is Exogeneity Plausible? Some Examples

As in regression with cross-sectional data, the interpretation of the coefficients in
a distributed lag regression as causal dynamic effects hinges on the assumption that
X is exogenous. If X, or its lagged values are correlated with 1, then the conditional
mean of «, will depend on X, or its lags, in which case X is not (past and present)
exogenous. Regressors can be correlated with the error term for several reasons,
but with economic time series data a particularly important concern is that there
could be simultaneous causality, which (as discussed in Sections 9.2 and 12.1) results
in endogenous regressors. In Section 15.6, we discussed the assumptions of exo-
geneity and strict exogeneity of freezing degree days in detail. In this section, we
examine the assumption of exogeneity in four other economic applications.

U.S. Income and Australian Exports

The United States is an important source of demand for Australian exports. Pre-

cisely how sensitive Australian exports are to fluctuations in U.S. aggregate income

could be investigated by regressing Australian exports to the United States against
a measure of U.S. income. Strictly speaking, because the world economy is inte-
grated, there is simultaneous causality in this relationship: A decline in Australian
exports reduces Australian income, which reduces demand for imports from the
United States, which reduces U.S. income. As a practical matter, however, this effect
is very small because the Australian economy is much smaller than the U.S. econ-
omy. Thus U.S. income plausibly can be treated as exogenous in this regression.

In contrast, in a regression of European Union exports to the United States
against U.S. income, the argument for treating U.S. income as exogenous is less
convincing because demand by residents of the European Union for U.S. exports
constitutes a substantial fraction of the total demand for U.S. exports. Thus a decline
in U.S. demand for EU exports would decrease EU income, which in turn would
decfease demand for U.S. exports and thus decrease U.S. income. Because of these
linkages through international trade, EU exports to the United States and U.S.income
are simultaneously determined, so in this regression U.S. income arguably is not
exogenous. This example illustrates a more general point that whether a variable is

ﬂ& ithough the weather at Disney World in Orlando,
A\ Florida, is usually pleasant, now and then a cold

'
spell can settle in. If you are visiting Disney World on
a winter evening, should you bring a warm coat?
Some people might check the weather forecast on
TV, but those in the know can do better: They can
check that day’s closing price on the New York orange
juice futures market!

The financial economist Richard Roll undertook
a detajled study of the relationship between orange
juice prices and the weather. Roll (1984) examined
the effect on prices of cold weather in Orlando, but
he also studied the “effect” of changes in the price of
an orange juice futures contract (a contract to buy
frozen orange juice concentrate at a specified date in
the future) on the weather. Roll used daily data from
1975 to 1981 on the prices of OJ futures contracts
traded at the New York Cotton Exchange and on
daily and overnight temperatures in Orlando. He
found that a rise in the price of the futures contract
during the trading day in New York predicted cold
weather, in particular a freezing spell, in Orlando

over the following night. In fact, the market was so
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effective in predicting cold weather in Florida that a
price rise during the trading day actually predicted
forecast errors in the official U.S. government
weather forecasts for that night.

Roll’s study is also interesting for what he did not
find: Although his detailed weather data explained
some of the variation in daily OJ futures prices, most
of the daily movements in OJ prices remained unex-
plained. He therefore suggested that the OJ futures
market exhibits “excess volatility,” that is, more volatil-
ity than can be attributed to movements in funda-
mentals. Understanding why (and if) there is excess
volatility in financial markets is now an important
area of research in financial economics.

Roll’s finding also illustrates the difference between
forecasting and estimating dynamic causal effects.
Price changes on the OJ futures market are a useful
predictor of cold weather, but that does not mean that
commodity traders are so powerful that they can cause
the temperature to fall. Visitors to Disney World might
shiver after an OJ futures contract price rise, but they
are not shivering because of the price rise—unless, of
course, they went short in the OJ futures market.

exogenous depends on the context: U.S. income is plausibly exogenous in a regres-
sion explaining Australian exports, but not in a regression explaining EU exports.

Oil Prices and Inflation

Ever since the oil price increases of the 1970s, macroeconomists have been inter-
ested in estimating the dynamic effect of an increase in the international price of
crude oil on the U.S. rate of inflation. Because oil prices are set in world markets
in large part by foreign oil-producing countries, initially one might think that oil
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prices are exogenous. But oil prices are not like the weather: Members of OPEC - é 5 8 ‘Concdlusion

set oil production levels strategically, taking many factors, including the state of
the world economy, into account: To the extent that oil prices (or quantities) are
set based on an assessment of current and future world economic conditions,
mcluding inflation in the United States, oil prices are endogenous.

Monetary Policy and Inflation

The central bankers in charge of monetary policy need to know the effect on infla-
tion of monetary policy. Because the main tool of monetary policy is the short-
term interest rate (the “short rate”), they need to know the dynamic causal effect
on inflation of a change in the short rate. Although the short rate is determined by
the central bank, it is not set by the central bankers at random (as it would be in
an ideal randomized experiment) but rather is set endogenously: The central bank
determines the short rate based on an assessment of the current and future states
of the economy, especially including the current and future rates of inflation. The
rate of inflation in turn depends on the interest rate (higher interest rates reduce
aggregate demand), but the interest rate depends on the rate of inflation, its past
value, and its (expected) future value. Thus the short rate is endogenous, and the
causal dynamic effect of a change in the short rate on future inflation cannot be
consistently estimated by an OLS regression of the rate of inflation on current and
past interest rates.

The Phillips Curve

The Phillips curve investigated in Chapter 14 is a regression of the change in the rate
of inflation against lagged changes in inflation and lags of the unemployment rate.
Because lags of the unemployment rate happened in the past, one might initially
think that there cannot be feedback from current rates of inflation to past values of
the unemployment rate, so past values of the unemployment rate can be treated as
exogenous. But past values of the unemployment rate were not randomly assigned
in an experiment; instead, the past unemployment rate was simultaneously deter-
mined with past values of inflation. Because inflation and the unemployment rate
are simultaneously determined, the other factors that determine inflation contained
in u, are correlated with past values of the unemployment rate; that is, the unem-
ployment rate is not exogenous. It follows that the unemployment rate is not strictly
exogenous, so the dynamic multipliers computed using an empirical Phillips curve
[for example, the ADL model in Equation (14.17)] are not consistent estimates of
the dynamic causal effect on inflation of a change in the unemployment rate.

Time series data provide the opportunity to estimate the time path of the effect
on Y of a change in X, that is, the dynamic causal effect on ¥ of a change in X. To
estimate dynamic causal effects using a distributed lag regression, however, X
must be exogenous, as it would be if it were set randomly in an ideal randomized
experiment. If X is not just exogenous but is stricily exogenous, then the dynamic
causal effects can be estimated using an autoregressive distributed lag model or
by GLS.

In some applications, such as estimating the dynamic causal effect on the
price of orange juice of freezing weather in Florida, a convincing case can be
made that the regressor (freezing degree days) is exogenous; thus the dynamic
causal effect can be estimated by OLS estimation of the distributed lag coeffi-
cients. Even in this application, however, economic theory suggests that the
weather is not strictly exogenous, so the ADL or GLS methods are inappropri-
ate. Moreover, in many relations of interest to econometricians, there is simulta-
neous causality, so the regressor in these specifications are not exogenous, strictly
or otherwise. Ascertaining whether the regressor is exogenous (or strictly exoge-
nous) ultimately requires combining economic theory, institutional knowledge,
and careful judgment.

Summary

1. Dynamic causal effects in time series are defined in the context of a ran-
domized experiment, where the same subject (entity) receives different ran-
domly assigned treatments at different times. The coefficients in a distributed
lag regression of ¥ on X and its lags can be interpreted as the dynamic causal
effects when the time path of X is determined randomly and independently
of other factors that influence Y.

2. The variable Xis (past and present) exogenous if the conditional mean of the
error u, in the distributed lag regression of ¥ on current and past values of X
does not depend on current and past values of X, If in addition the conditional
mean of i, does not depend on future values of X, then X is strictly exogenous.

3. If X is exogenous, then the OLS estimators of the coefficients in a distrib-
uted lag regression of Y on current and past values of X are consistent esti-
mators of the dynamic causal effects. In general, the error i, in this regression
is serially correlated, so conventional standard errors are misleading and
HAC standard errors must be used instead.
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4. If X is strictly exogenous, then the dynamic multipliers can be estimated by
OLS estimation of an ADL model or by GLS.

5. Exogeneity is a strong assumption that often fails to hold in economic time
series data because of simultaneous causality, and the assumption of strict
exogeneity is even stronger.

Key Terms

dynamic causal effect (583)

distributed lag model (589)

exogeneity (590)

strict exogeneity (590)

dynamic multiplier (594)

impact effect (594)

cumulative dynamic multiplier (594)

long-run cumulative dynamic
multiplier (595)
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autocorrelation-consistent (HAC)
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Newey—West variance estimator (599)

generalized least squares (GLS) (600)

quasi-difference (602)

infeasible GLS estimator (606)

feasible GLS estimator (606)
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In the 1970s a common practice was to estimate a distributed lag model
relating changes in nominal gross domestic product (Y) to current and past
changes in the money supply (X). Under what assumptions will this regres-
sion estimate the causal effects of money on nominal GDP? Are these
assumptions likely to be satisfied in a modern economy like that of the
United States?

Suppose that X is strictly exogenous. A researcher estimates an ADL(L1)
model, calculates the regression residual, and finds the residual to be highly
serially correlated. Should the researcher estimate a new ADL model with
additional lags or simply use HAC standard errors for the ADL(1,1) esti-
mated coefficients?

Suppose that a distributed lag regression is estimated, where the dependent
variable is A Y, instead of ¥, Explain how you would compute the dynamic
multipliers of X, on Y. ’
Suppose that you added FD D, as an additional regressor in Equation (15.2).
If FDD is strictly exogenous, would you expect the coefficient on FDDy
to be zero or nonzero? Would your answer change if FDD is exogenous but
not strictly exogenous?

Exercises 623

Exercises

15.1

15.2

Increases in oil prices have been blamed for several recessions in devel-
oped countries. To quantify the effect of oil prices on real economic activ-
ity, researchers have done regressions like those discussed in this chapter.

~ Let GDP, denote the value of quarterly gross domestic product in the

United States and let ¥, = 100In{ GDF/GDF,_) be the quarterly percentage
change in GDP. James Hamilton, an econometrician and macroeconomist,
has suggested that oil prices adversely affect that economy only when they
jump above their values in the recent past. Specifically, let O, equal the
greater of zero or the percentage point difference between oil prices at
date t and their maximum value during the past year. A distributed lag
regression relating Y, and O, estimated over 1955:1-2000:1V, is

Y,=1.0 - 0.0550, ~ 0.0260,_, — 0.0310,_, — 0.1090,_5 — 0.1280,_,
(0.1) (0.054) (0.057)  (0.048)  (0.042)  (0.053)

+0.0080,5 + 0.0250,_4 — 0.0190,_; + 0.0670,_s.
(0.025)  (0.048)  (0.039)  (0.042)

a. Suppose that oil prices jump 25% above their previous peak value
and stay at this new higher level (so that 0, = 25 and O,y = O,y
= --» =(0). What is the predicted effect on output growth for each
quarter over the next 2 years?

b. Construct a 95% confidence interval for your answers in (a).

¢, What is the predicted cumulative change in GDP growth over eight
quarters?

d. The HAC F-statistic testing whether the coefficients on O, and its lags
are zero Is 3.49. Are the coefficients significantly different from zero?

Macroeconomists have also noticed that interest rates change following oil
price jumps. Let R, denote the interest rate on 3-month Treasury bills (in
percentage points at an annual rate). The distributed lag regression relat-
ing the change in R, (AR)) to O, estimated over 1955:1-2000:IV is
AR, = 0.07+ 0.0620, + 0.0480,_; — 0.0140,_, — 0.0860,_; — 0.000

V-4

(0.06) (0.045) (0.034)  (0.028)  (0.169)  (0.058)

+0.0230,_5 — 0.0100,_¢ — 0.1000,_; — 0.0140,_s.
(0.065)  (0.047)  (0.038)  (0.025)
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153

15.4

15.5

15.6

a. Suppose that oil prices jump 25% above their previous peak value
and stay at this new higher level (so that O,=25 and Oy, = O3,
=--- =0). What is the-predicted change in interest rates for each
quarter over the next 2 years? :

b. Construct 95% confidence intervals for your answers to (a).

¢. What is the effect of this change in oil prices on the level of interest
rates in period ¢ + 87 How is your answer related to the cumulative
multiplier?

d. The HAC F-statistic testing whether the coefficients on O, and its lags
are zero is 4.25. Are the coefficients significantly different from zero?

Consider two different randomized experiments. In experiment A, oil prices
are set randomly and the central bank reacts according to its usual policy
rules in response to economic conditions, including changes in the oil price.
In experiment B, oil prices are set randomly and the central bank holds
interest rates constant and in particular does not respond to the oil price
changes. In both, GDP growth is observed. Now suppose that oil prices are
exogenous in the regression in Exercise 15.1.To which experiment, A or B,
does the dynamic causal effect estimated in Exercise 15.1 correspond?

Suppose that oil prices are strictly exogenous. Discuss how you could
improve on the estimates of the dynamic multipliers in Exercise 15.1.

Derive Equation (15.7) from Equation (15.4) and show that 8;= By,
61=B1, 8, = B1+ Ba, 83= By + B2+ B3 (etc.). (Hint: Note that X, = AX]
FAX AKX,

Consider the regression model ¥, = By + 8,.X, + u,, where u, follows the sta-
tionary AR(1) model i, = ¢pyu,1 + 2, with o, i.i.d. with mean 0 and variance
o and |¢y| < 1, the regressor X, follows the stationary AR(1) model
X, = vy, X,-1 + e, with ¢, 1.i.d. with mean 0 and variance oZ and |y,| < 1,and
e, is independent of %; for all r and i.

a. Show that var(u,) = o and var( X)) = —zg—;.

' Co1-¢t -1

b. Show that cov(u,, u, ;) = ¢{var(u,) and cov(X, X,_;) = y{'var(X,).
Show that corr(uy, 4,;) = ¢{ and corr(X, X,;) = «/{

I

d. Consider the terms o2 and fin Equation (15.14).
i. Show that o2 = o%o2, where g% is the variance of X and o2 is the

variance of u.

Exercises [

ii. Derive an expression for fs.

15.7  Consider the regression model ¥, = 8¢ + 8,X, + u,, where u, follows the sta-
tionary AR(1) model u, = ¢yut,_1 + o, with 7, 11.d. with mean 0 and variance
o2 and || < 1.

a. Suppose that X, is independent of T; for all  and j. Is X, exogenous

" (past and present)? Is X, strictly exogenous (past, present, and
future)?

‘b. Suppose that X, =1,,,. Is X, exogenous? Is X, strictly exogenous?
15.8 - Consider the model in Exercise 15.7 with X, = Uiy

a. Is the OLS estimator of B consistent? Explain.

b. Explain why the GLS estimator of 8 is not consistent.

¢. Show that the infeasible GLS estimator ,2316” AN Bi— I fl prs
1
[Hint: Use the omitted variable formula (6.1) applied to the quasi-
differenced regression Equation (15.23)].

15.9 Consider the “constant-term-only” regression model Y, = By + u, where u,
follows the stationary AR(1) model i, = $u,_, + 7, with 1, 11.d. with mean
(0 and variance U'é and | < 1.
a. Show that the OLS estimator is ,éo = T"IELIXA
b. Show that the (infeasible) GLS estimator is BOGLS =
. (I—¢) T~ 1)‘1Z£§1(X~ 1Y) [Hint: The GLS estimator of
Bo is (1 — ¢;) ! multiplied by the OLS estimator of aq in Equation
(15.23). Why?]
¢. Show that B§ZS can be written as BGES =
(T="'Z5Y+ A=) (T- 1) (%~ 4, %).
[Hint: Rearrange the formula in (b).]
d. Derive the difference [30 - AOGLS and discuss why it is likely to be

small when T is large.

15.10 Consider the ADL model ¥;=3.1 + 04Y,_; +2.0X, - 0.8X,.; + T, where
X, is strictly exogenous.

a. Derive the impact effect of X on Y.
b. Derive the first five dynamic multipliers.
¢. Derive the first five cumulative multipliers.

d. Derive the long-run cumulative dynamic multiplier.
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Empirical Exercises

E15.1 In this exercise you will estimate the effect of oil prices on macroeconomic
activity using monthly data on the Index of Industrial Production (IP) and
the monthly measure of O, described in Exercise 15.1. The data can be
found on the textbook Web site www.pearsonhighered.com/stock_watson
in the file USMacro_Monthly.

E15.2

a.

Compute the monthly growth rate in IP expressed in percentage
points, ip_growth, = 100 X In(IF/IF, ;). What are the mean and stan-
dard deviation of ip_growth over the 1952:1-2009:12 sample period?
Plot the value of O, Why are so many values of O, equal to zero?
Why aren’t some values of O, negative?

Estimate a distributed lag model of ip_growth onto current and 18 lagged
values of O, What value of the HAC standard truncation parameter m
did you choose? Why? )

Taken as a group, are the coefficients on O, statistically significantly
different from zero?

Construct graphs like those in Figure 15.2 showing the estimated
dynamic multipliers, cumulative multipliers, and 95% confidence
intervals. Comment on the real-world size of the multipliers.

Suppose that high demand in the United States (evidenced by large val-
ues of ip_growth) leads to increases in oil prices. Is O, exogenous? Are
the estimated multipliers shown in the graphs in () reliable? Explain.

In the data file USMacro_Monthly, you will find data on two aggregate
price series for the United States: the Consumer Price Index (CPD) a}ld the
Personal Consumption Expenditures Deflator (PCED). These series are
alternative measures of consumer prices in the United States. The CF1
prices a basket of goods whose composition is updated every 5-10 years.
The PCED uses chain-weighting to price a basket of goods whose compo-
sition changes from month to month. Economists have argued that the CPI
will overstate inflation because it does not take into account the substitu-
tion that occurs when relative prices change. If this substitution bias is
important, then average CPI inflation should be systematically higher
than PCED inflation. Let 7% = 1200 X In[CPI(t)/CPI(t — 1)), wf “EP =
1200 X In[PCED(H)/PCED(t — 1)}, and ¥, = wF — 7P so (' is the
monthly rate of price inflation (measured in percentage points at an
annual rate) based on the CPL, wf 2 is the monthly rate of price inflation

APPENDIX

A

o

The Orange Juice Data Set 627

- from the PCED, and Y, is the difference. Using data from 1970:1 through
2009:12, carry out the following exercises.
a. Compute the sample means of 7 and wf“E2, Are these point esti-
mates consistent with the presence of economically significant substi-
tution bias in the CPI?

b. Compute the sample mean of ¥,. Explain why it is numerically equal
to the difference in the means computed in (a).

¢. Show that the population mean of Y is equal to the difference of the
- population means of the two inflation rates.

d. Congsider the “constant-term-only” regression: Y, = f3; + u,. Show that
Bo= E(Y). Do you think that u, is serially correlated? Explain.

e. Construct a 95% confidence interval for 85 What value of the HAC
standard truncation parameter m did you choose? Why?

f. Is there statistically significant evidence that the mean inflation rate
for the CPLis greater than the rate for the PCED?

g Is there evidence of instability in.B4? Carry out a QLR test.

The Orange Juice Data Set

The orange juice price data are the frozen orange juice component of processed foods and
feeds group of the Producer Price Index (PPI), collected by the U.S. Bureau of Labor Sta-
tistics (BLS series wpu02420301). The orange juice price series was divided by the overall

PPT for finished goods to adjust for general price inflation. The freezing degree days series

" was constructed from daily minimum temperatures recorded at Orlando-area airports,

obtained from the National Oceanic and Atmospheric Administration (NOAA) of the U.S.
Department of Commerce. The FDD series was constructed so that its timing and the tim-
ing of the orange juice price data were approximately aligned. Specifically, the frozen orange
Juice price data are collected by surveying a sample of producers in the middle of every
month, although the exact date varies from month to month. Accordingly, the FDD series
was constructed to be the number of freezing degree days from the 11" of one month to the
10" of the next month; that is, FD D is the maximum of zero and 32 minus the minimum daily
temperature, summed over all days from the 11" to the 10 Thus % ChgP, for February is
the percentage change in real orange juice prices from mid-January to mid-February, and
FDD, for February is the number of freezing degree days from January 11 to February 10.
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APPENDIX

15.2

The ADL Modéi and Generalized '
| east Squares in Lag Operator Notation

This appendix presents the distributed lag model in lag operator notation, derives the ADL

and quasi-differenced representations of the distributed lag model, and discusses the con-

ditions under which the ADL model can have fewer parameters than the original distrib- -

uted lag model.

The Distributed Lag, ADL, and Quasi-Differenced
Models, in Lag Operator Notation

As defined in Appendix 14.3, the lag operator, L, has the property that X, = Xi-j, and
the distributed lag BX, + 82X, + -+ + B, X, can be expressed as B(L)X., where
B(L) = SjoBjs1l/, where L% =1. Thus the distributed lag model in Key Concept 15.1

[Equation (15.4)] can be written in lag operator notation as
Y, = Bo+ BLIX, + 1. (15.40)
In addition, if the error term u, follows an AR(p), then it can be written as
¢(L)u, =1, (15.41)

where ¢(L) = SP_o;L/, where ¢ = 1 and ¥, is serially uncorrelated [note that ¢y,.... ¢,
as defined here are the negatives of ¢,, ..., ¢, in the notation of Equation (15.31)).
To derive the ADL model, premultiply each side of Equation (15.40) by ¢(L) so that

HL)Y = (L)[Bo+ B(L)X + i) = ap + S(LYX + 1y, (1542)
where
2
ag= ¢(1)By and 5(L) = $(L)B(L), where (1) = %aﬁ/- (15.43)

To derive the quasi-ditferenced model, note that ¢(L}B(L)X, = B(L)$(L)X = B(L)X,
where X’, = ¢(L)X,. Thus rearranging Equation (15.42) yields

Y=+ L)X + 1T, (15.44)

where T’, is the quasi-difference of Y,; that is, XN{ =¢(L)Y.
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The ADL and GLS Estimators

The OLS estimator of the ADL coefficients is obtained by OLS estimation of Equation (15.42).
The original distributed lag coefficients are 8(L), which, in terms of the estimated coeffi-
cients, is (L) = 8(L)/¢(L); that is, the coefficients in B(L) satisty the restrictions implied
by ¢(L)B(L) = 8(L). Thus the estimator of the dynamic multipliers based on the QLS esti-
mators of the coefficients of the ADL model, S(L) and QS(L) is

>
—

L)
(L).

The expressions for the coefficients in Equation (15.29) in the text are obtained as a spe-

BADL(L) -

|

(15.45)

)

cial case of Equation (1545) whenr=1and p =1.

The feasible GLS estimator is computed by obtaining a preliminary estimator of ¢(L),
computing estimated quasi-differences, estimating B(L) in Equation (15.44) using these esti-
mated quasi-differences, and (if desired) iterating until convergence. The iterated GLS esti-
mator is the NLLS estimator computed by NLLS estimation of the ADL model in Equation
(15.42), subject to the nonlinear restrictions on the parameters contained in Equation (15.43).

As stressed in the discussion surrounding Equation (15.36) in the text, it is not enough
for ., to be (past and present) exogenous to use either of these estimation methods, for
exogeneity alone does not ensure that Equation (15.36) holds. If, however, X is strictly
exogenous, then Equation (15.36) does hold, and, assuming that Assumptions 2 through 4
of Key Concept 14.6 hold, these estimators are consistent and asymptotically normal. More-
over, the usual (cross-sectional heteroskedasticity-robust) OLS standard érrors provide a

valid basis for statistical inference.

Parameter reduction using the ADL mode/. Suppose that the distributed lag poly-
nomial (L) can be written as a ratio of lag polynomials, 6,(L)/6,(L), where 6,(L) and
8,(L) are both lag polynomials of a low degree. Then ¢(L)B(L) in Equation (15.43) is
S(L)B(L) = ¢(L)0,(L)6,(L) = [¢(L)/6>(L))0;(L). If it s0 happens that ¢(L) = 6,(L), then
3(L) = ¢(L)B(L) = 6,(L). If the degree of §,(L) is low, then ¢, the number of lags of X,in
the ADL model, can be much less than r. Thus, under these assumptions, estimation of the
ADL model entails estimating potentially many fewer parameters than the original dis-
tributed lag model. It is in this sense that the ADL model can achieve more parsimonious
parameterizations (that is, use fewer unknown parameters) than the distributed lag model.

As developed here, the assumption that ¢(L) and 6,(L) happen to be the same seems
like a coincidence that would not occur in an application. However, the ADL madel is able

to capture a large number of shapes of dynamic multipliers with only a few coefficients.

ADL or GLS: Bias versus variance. A good way to think about whether to estimate dynamic
multipliers by first estimating an ADL model and then computing the dynamic multipliers
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from the ADL coefficients or, alternatively, by-estimating the distributed lag model directly
using GLS is to view the decision in terms of a trade-off between bias and variance. Esti-
mating the dynamic multipliers using an approximate ADL model introduces bias; how-
ever, because there are few coefficients, the variance of the estimator of the dynamic
multipliers can be small. In contrast, estimating a long distributed lag model using GLS pro-
duces less bias in the multipliers; however, because there are so many coefficients, their vari-

ance can be large. If the ADL approximation to the dynamic multipliers is a good one, then

the bias of the implied dynamic multipliers will be small, so the ADL approach will have a

smaller variance than the GLS approach with only a small increase in the bias. For this rea-
son, unrestricted estimation of an ADL model with small number of lags of ¥ and X is an

attractive way to approximate a long distributed lag when X is strictly exogenous.

Additional Topics
in Time Series Regression

his chapter takes up some further topics in time series regression, starting with

forecasting. Chapter 14 considered forecasting a single variable. In practice,
however, you might want to forecast two or more variables such as the rate of
inflation and the growth rate of the GDP. Section 16.1 introduces a model for
forecasting multiple variables, vector autoregressions (VARs), in which lagged values
of two or more variables are used to forecast future values of those variables.
Chapter 14 also focused on making forecasts one period (e.g., one quarter) into the
future, but making forecasts two, three, or more periods into the future is important
as well. Methods for making multiperiod forecasts are discussed in Section 16.2.

Sections 16.3 and 16.4 return to the topic of Section 14.6, stochastic trends.
Section 16.3 introduces additional models of stochastic trends and an alternative test
for a unit autoregressive root. Section 16.4 introduces the concept of cointegration,
which arises when two variables share a common stochastic trend, that is, when each
variable contains a stochastic trend, but a weighted difference of the two variables
does not.

In some time series data, especially financial data, the variance changes over
time: Sometimes the series exhibits high volatility, while at other times the volatility is
low, so the data exhibit clusters of volatility. Section 16.5 discusses volatility clustering
and introduces models in which the variance of the forecast error changes over time,
that is, models in which the forecast error is conditionally heteroskedastic. Models of
conditional heteroskedasticity have several applications. One application is
computing forecast intervals, where the width of the interval changes over time to
reflect periods of high or fow uncertainty. Another application is forecasting the
uncertainty of returns on an asset, such as a stock, which in turn can be useful in
assessing the risk of owning that asset.

Vector Autoregressions

Chapter 14 focused on forecasting the rate of inflation, but in reality economic
forecasters are in the business of forecasting other key macroeconomic variables
as well, such as the rate of unemployment, the growth rate of GDP, and interest
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