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Introduction to Time Series
egression and Forecasting

ime series data—data collected for a single entity at multiple points in time—can

be used to answer quantitative questions for which cross-sectional data are
inadequate. One such question is, what is the causal effect on a variable of interest, Y,
of a change in another variable, X, over time? In other words, what is the dynamic
causal effect on Y of a change in X? For example, what is the effect on traffic fatalities
of a law requiring passengers to wear seatbelts, both initiaily and subsequently as
drivers adjust to the law? Another such question is, what is your best forecast of the
value of some variable at a future date? For exarmple, what is your best forecast of
next month’s rate of inflation, interest rates, or stock prices? Both of these questions—
one about dynamic causal effects, the other about economic forecasting—can be
answered using time series data. But time series data pose special challenges, and
overcoming those challenges requires some new techniques.

Chapters 14 through 16 introduce techniques for the econometric analysis of
time series data and apply these techniques to the problems of forecasting and
estimating dynamic causal effects. Chapter 14 introduces the basic concepts and
tools of regression with time series data and applies them to economic forecasting.
In Chapter 15, the concepts and tools developed in Chapter 14 are applied to the
problem of estimating dynamic causal effects using time series data. Chapter 16
takes up some more advanced topics in time series analysis, including forecasting
multiple time series and modeling changes in volatility over time.

The empirical problem studied in this chapter is forecasting the rate of inflation,
that is, the percentage increase in overall prices. While in a sense forecasting is just an
application of regression analysis, forecasting is quite different from the estimation of
causal effects, the focus of this book untii now. As discussed in Section 14.1, models
that are useful for forecasting need not have a causal interpretation: If you see
pedestrians carrying umbrellas you might forecast rain, even though carrying an
umbrella does not cause it to rain. Section 14.2 introduces some basic concepts of time
series analysis and presents some examples of economic time series data. Section 14.3
presents time series regression models in which the regressors are past values of the
dependent variable; these "autoregressive” models use the history of inflation to
forecast its future. Often, forecasts based on autoregressions can be improved by
adding additional predictor variables and their past values, or “lags,” as regressors, and
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these so-called autoregressive distributed lag models are introduced in Section 14.4.
For example, we find that inflation forecasts made using lagged values of the rate of
unemployment in addition to lagged inflation—that is, forecasts based on an empirical
Phillips curve-——improve upon the autoregressive inflation forecasts. A practical issue is
deciding how many past values to include in autoregressions and autoregressive
distributed lag models, and Section 14.5 describes methods for making this decision.
The assumption that the future will be like the past is an important one in time
series regression, sufficiently so that it is given its own name, “stationarity.” Time
series variables can fail to be stationary in various ways, but two are especially
relevant for regression analysis of economic time series data: (1) the series can have
persistent, long-run movements, that is, the series can have trends; and (2) the
population regression can be unstable over time, that is, the population regression
can have breaks. These departures from stationarity jeopardize forecasts and
inferences based on time series regression. Fortunately, there are statistical
procedures for detecting trends and breaks and, once detected, for adjusting the
model specification. These procedures are presented in Sections 14.6 and 14.7.

Using Regression Models for Forecasting

The empirical application of Chapters 4 through 9 focused on estimating the causal
effect on test scores of the student-teacher ratio. The simplest regression model
in Chapter 4 related test scores to the student-teacher ratio (STR):

TestScore = 989.9 — 2.28 X STR. (14.1)

As was discussed in Chapter 6, a school superintendent, contemplating hiring more
teachers to reduce class sizes, would not consider this equation to be very helpful.
The estimated slope coefficient in Equation (14.1) fails to provide a useful esti-
mate of the causal effect on test scores of the student—teacher ratio because of
probable omitted variable bias arising from the omission of school and student
characteristics that are determinants of test scores and that are correlated with the
student-teacher ratio.

In contrast, as was discussed in Chapter 9, a parent who is considering moving
to a school district might find Equation (14.1) more helpful. Even though the coef-
ficient does not have a causal interpretation, the regression could help the parent
forecast test scores in a district for which they are not publicly available. More gen-
erally, a regression model can be useful for forecasting even if none of its coefficients
has a causal interpretation. From the perspective of forecasting, what is important
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is that the model provides as accurate a forecast as possible. Although there is no
such thing as a perfect forecast, regression models can nevertheless provide fore-
casts that are accurate and reliable.

The applications in this chapter differ from the test score/class size prediction

problem because this chapter focuses on using time series data to forecast future
events. For example, the parent actually would be interested in test scores next
year, after his or her child has enrolled in a school. Of course, those tests have not
yet been given, so the parent must forecast the scores using currently available
information. If test scores are available for past years, then a good starting point
is to use data on current and past test scores to forecast future test scores. This rea-
soning leads directly to the autoregressive models presented in Section 14.3,in

. which past values of a variable are used in a linear regression to forecast future

values of the series. The next step, which is taken in Section 14.4, s to extend these
models to include additional predictor variables such as data on class size. Like
Equation (14.1), such a regression mode] can produce accurate and reliable fore-
casts even if its coefficients have no causal interpretation. In Chapter 15, we return
to problems like that faced by the school superintendent and discuss the estima-
tion of causal effects using time series variables.

Introduction to Time
Series Data and Serial Correlation

This section introduces some basic concepts and terminology that arise in time
series econometrics. A good place to start any analysis of time series data is by
plotting the data, so that is where we begin.

The Rates of Inflation
and Unemployment in the United States

Figure 14.1a plots the U.S. rate of inflation —the annual percentage change in prices
in the United States, as measured by the Consumer Price Index (CPI)—from 1960
to 2004 (the data are described in Appendix 14.1). The inflation rate was low in the
1960s, rose through the 1970s to a post-World War II peak of 15.5% in the first
quarter of 1980 (that is, January, February, and March 1980), and then fell to less
than 3% by the end of the 1990s. As can be seen in Figure 14.1a, the inflation rate
also can fluctuate by one percentage point or more from one quarter to the next.
The U.S. unemployment rate —the fraction of the labor force out of work, as
measured in the Current Population Survey (see Appendix 3.1)—is plotted in
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nflation and Unemployment in the United States, 1960-2004
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Price inflation in the United States (Figure 14.1a) drifted upward from 1960 until 1980 and then fell sharply during the

early 1980s. The unemployment rate in the United States (Figure 14.1b) rises during recessions (the shaded episodes)
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Figure 14.1b. Changes in the unemployment rate are mainly associated with the
business cycle in the United States. For example, the unemployment rate increased
during the recessions of 1960-1961, 1970, 19741975, the twin recessions of 1980

and 19811982, and the recessions of 1990-1991 and 2001, episodes dencted by

shading in Figure 14.1b.

Lags, First Differences, Logarithms, and Growth Rates

The observation on the time series variable ¥ made at date ¢is denoted ¥, and the
total number of observations is denoted 7. The interval between observations, that
is, the period of time between observation ¢ and observation ¢ + 1, is some unit of
time such as weeks, months, quarters (three-month units), or years. For example,
the inflation data studied in this chapter are quarterly, so the unit of time (a
“period”) is a quarter of a year.

Special terminology and notation are used to indicate future and past values
of Y. The value of Y in the previous period is called its first lagged value or, more
simply, its first lag, and is denoted Y. Its /* lagged value (or simply its jM™lag) is
its value j periods ago, which is ¥;. Similarly, ¥4, denotes the value of ¥ one
period into the future.

The change in the value of ¥ between period 1 — 1 and period ris ¥, — ¥_; this
change is called the first difference in the variable Y, In time series data, “A” is
used to represent the first difference,so AY, =¥ - Y.

Fconormic time series are often analyzed after computing their logarithms or the
changes in their logarithms. One reason for this is that many economic series, such as
gross domestic product (GDP), exhibit growth that is approximately exponential, that
is, over the long run the series tends to grow by a certain percentage per year on aver-
age: if so, the logarithm of the series grows approximately linearly. Another reason is
that the standard deviation of many economic time series is approximately propor-
tional to its level, that is, the standard deviation is well expressed as a percentage of
the level of the series: if so, then the standard deviation of the logarithm of the
series is approximately constant. In either case, it is useful to transform the series
so that changes in the transformed series are proportional (or percentage) changes
in the original series, and this is achieved by taking the logarithm of the series.!

'The change of the logarithm of a variable is approximately equal to the proportional change of that vari-
able; that is, In(X +a) — In(X) = a/X, where the approximation works best when a/X is small [see
Equation (8.16) and the surrounding discussion]. Now, replace X with Y_;,and a with AT, and note that
Y,= Y., + AY, This means that the proportional change in the series Y, between periods ¢~ 1 and ¢ is
approximately In(¥) — In(¥,) = In(¥_, + AY) - In(Y-)) = AY/Y, . The expression In(%) - In(¥-1)
is the first difference of In(¥)). Aln(¥)). Thus Aln(¥) = AY/Y,_;. The percentage change is 100 times the
fractional change, so the percentage change in the series Y, is approximately 100AIn(Y)).

14.2  Introduction to Time Series Data and Serial Correlation 521

Lags, First Differénceé, Ldgéritiﬁms, anrd Growth Rates

~ o The first lag of a time series Y, is ¥,_y;its j® lag is Y

= The first difference of a series, AY, is its change between periods 1 — 1 and 1;
thatis, A, =Y —Y_;.

o The first difference of the logarithm of ¥/is Aln(¥) = In(¥;) —In(¥_y).

e The percentage change of a time series Y] between periods t—1 and ¢ is
approximately 100AIn(Y;), where the approximation is most accurate when
the percentage change is small.

Lags. first differences, and growth rates are summarized in Key Concept 14.1.

Lags, changes, and percentage changes are illustrated using the U.S. inflation
rate in Table 14.1. The first column shows the date, or period, where the first quar-
ter of 2004 is denoted 2004:I, the second quarter of 2004 is denoted 2004:11, and so
forth. The second column shows the value of the CPI in that quarter, and the third
column shows the rate of inflation. For example, from the first to the second quar-
ter of 2004, the index increased from 186.57 to 188.60, a percentage increase of
100 x (188.60 — 186.57)/186.57 = 1.09%. This is the peréentage increase from one

Inflation in the United States in 2004 and the First Quarter of 2005

Rate of Inflation at an First Lag Change in
Guarter U.s. CPi Annual Rate (nf) Unf,_) Inflation (Alnf)
2004:1 186.57 3.8 0.9 2.9
2004:11 188.60 h 3.8 o - Oﬂé‘w
2004:111 189.37 —s :ZySM’?“
2004:1V 191.03 1.9 .
2005:1 192,17 —171 ‘‘‘‘‘‘
The annualized rate of i.nﬂat%on is the percentage change in the CPI from the previous quarter to the current quarter, mulnphe;j -
?y four. The first lag of inflation is its value in the previous quarter, and the change in inflation is the current inflation rate minus
its first lag. All entries are rounded to the nearest decimal.
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quarter to the next. It is conventional to report rates of inflation (and other growth
rates in macroeconomic time series) on an annual basis, which is the percentage
increase in prices that would occur over a year, if the series were to continue to

increase at the same rate. Because there are four quarters a year, the annualized

rate of inflation in 2004:1L is 1.09 X 4 = 4.36, or 4.4% per year after rounding.
This percentagé change can also be computed using the differences-of-logarithmg
approximation in Key Concept 14.1. The difference in the logarithm of the CPI
from 2004:1 to 2004:11 is In(188.60) — In(186.57) = 0.0108, yielding the approxi-
mate quarterly percentage difference 100 X 0.0108 = 1.08%. On an annualized
basis, this is 1.08 X 4 = 4.32, or 4.3% after rounding, essentially the same as obtained
by directly computing the percentage growth. These calculations can be summa-

rized as

Annualized rate of inflation = Inf; = 400[In(CPL) — In(CPI_;)]

142
= 400Aln(CPL), (142)

where CPI, is the value of the Consumer Price Index at date 7. The factor of 400 arises

from converting fractional change to percentages (multiplying by 100) and convert-

ing quarterly percentage change to an equivalent annual rate (multiplying by 4),
The final two columns of Table 14.1 illustrate lags and changes. The first lag

of inflation in 2004:11 is 3.8%, the inflation rate in 2004:I. The change in the rate
of inflation from 2004:1 to 2004:11 was 4.4% — 3.8% = 0.6%.

Autocorrelation (Serial Correlation) and Autocovariance

. . . S h
The jt* autocovariance of a series Y] is the covariance between ¥ and its j** lag,

Y, and the j™ autocorrelation coefficient is the correlation between ¥ and Y. ¢

That is,

j™ autocovariance = cov(¥;, ¥—;) (14.3)
COV( Yt: X—])

i lation = p; = corr(Y, ¥_;) = ———.
j™ autocorrelati i (Y, %) T

The j autocorrelation coefficient is.sometimes called the j® serial correlation

coefficient.

(144)
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Autocorrelation

In time series data, the value of ¥ in one period typically is correlated with its value
in the next period. The correlation of a series with its own lagged values is called
autocorrelation or serial correlation. The first autocorrelation (or autocorrelation
coefficient) is the correlation between ¥, and Y,_y, that is, the correlation between
values of Y at two adjacent dates. The second autocorrelation is the correlation
between Y, and Y/_,, and the jt autocorrelation is the correlation between Y, and
Y- Similarly, the j™ autocovariance is the covariance between ¥ and Y_;. Auto-
correlation and autocovariance are summarized in Key Concept 14.2.

The " population autocovariances and autocorrelations in Key Comcept 14.2
can be estimated by the / sample autocovariances and autocorrelations, m
and p;:

T

1 —_— —
cov(¥, Yy) =7 -+1(Y;_ Y, r) (Yo~ Yiry) (14.5)
1=

. _cov(Y, Y

(D) (14.6)

where ?HJ denotes the sample average of ¥, computed over the observations
t=j+1,..., T and where m is the sample variance of Y.2

The first four sample autocorrelations of the inflation rate and of the change in
the inflation rate are listed in Table 14.2. These entries show that inflation is strongly
positively autocorrelated: The first autocorrelation is 0.84. The sample autocorrela-
tion declines as the lag increases, but it remains large even at a lag of four quarters.
The change in inflation is negatively autocorrelated: An increase in'the rate of infla-
tion in‘one quarter tends to be associated with a decrease in the next quarter.

At first, it might seem contradictory that the level of inflation is strongly pos-
itively correlated but its change is negatively correlated. These two autocorrela-
tions, however, measure different things. The strong positive autocorrelation in
inflation reflects the long-term trends in inflation evident in Figure 14.1: Inflation
was low in the first quarter of 1965 and again in the second; it was high in the first
quarter of 1981 and again in the second. In contrast, the negative autocorrelation
of the change of inflation means that, on average, an increase in inflation in one
quarter is associated with a decrease in inflation in the next. '

?The summation in Equation (14.5) is divided by T, whereas in the usual formula for the sample covari-
ance [see Equation (3.24)] the summation is divided by the number of observations in the summation,
minus a degrees-of-freedom adjustment. The formaula in Equation (14.5) is conventional for the pur-
pose of computing the autocovariance. Equation (14.6) uses the assumption that var(Y) and var(Y_;)
are the same—an implication of the assumption that ¥ is stationary, which is discussed in Section 14.4.
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First Four Sample Autacorrelations of the. =
U.S. Inflation Rate and Its'Change, 1960:1-2004:1V. -

Autocorrelation of:

Lag Infiation Rate Unf) Change of Inflation Rate {Alnf)

1 0.84 —-0.26
_z‘m_ S 076 e e e —
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Other Examples of Economic Time Series

Economic time series differ greatly. Four examples of economic time series are
plotted in Figure 14.2: the U.S. federal funds interest rate; the rate of exchange
between the dollar and the British pound; the logarithm of Japanese gross domes-
tic product; and the daily return on the Standard and Poor’s 500 (S&P 500) stock
market index.

The U.S. federal funds rate (Figure 14.2a) is the interest rate that banks pay
to each other to borrow funds overnight. This rate is important because it is con-
trolled by the Federal Reserve and is the Fed's primary monetary policy instru-
ment. If you compare the plots of the federal funds rate and the rates of
unemployment and inflation in Figure 14.1, you will see that sharp increases in the
federal funds rate often have been associated with subsequent recessions.

The dollar/pound exchange rate (Figure 14.2b) is the price of a British pound
(£) in U.S. dollars. Before 1972, the developed economies ran a system of fixed
exchange rates—called the “Bretton Woods” system —under which governments
worked to keep exchange rates from fluctuating. In 1972, inflationary pressures
led to the breakdown of this system; thereafter, the major currencies were allowed
to “float™; that is, their values were determined by the supply and demand for cur-
rencies in the market for foreign exchange. Prior to 1972, the exchange rate was
approximately constant, with the exception of a single devaluation in 1968 in which
the official value of the pound, relative to the dollar, was decreased to $2.40. Since
1972 the exchange rate has fluctuated over a very wide range.

Quarterly Japanese GDP (Figure 14.2¢) is the total value of goods and ser-
vices produced in Japan during a quarter. GDP is the broadest measure of total
economic activity. The logarithm of the series is plotted in Figure 14.2¢, and
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) Four Economic Time Series
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The four time series have markedly different patterns. The federal funds rate (Figure 14.2a) has a pattern similar to price
inflation. The exchange rate between the U.S. dollar and the British pound (Figure 14.2b) shows a discrete change after
the 1972 collapse of the Bretton Woads system of fixed exchange rates. The logarithm of GDP in Japan (Figure 14.20
shows relatively smooth growth, although the growth rate decreases in the 1970s and again in the 1990s. The daily per-
centage changes in the NYSE stock price index (Figure 14.2d) are essentially unpredictable, but its variance changes:

This series shows “volatility clustering.”

_ A )

changes in this series can be interpreted as (fractional) growth rates. During the
1960s and early 1970s, Japanese GDP grew quickly, but this growth slowed in the
late 1970s and 1980s. Growth slowed further during the 1990s, averaging only 1.2%
per year from 1990 to 2004.

The NYSE Composite market index is a broad index of the share prices of all
firms traded on the New York Stock Exchange. Figure 14.2d plots the daily percent-
age changes in this index for trading days from January 2,1990, to November 11,2005
(a total of 4003 observations). Unlike the other series in Figure 14.2, there is very
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little seyrial correlation in these daily percent changes: If there were, then you could -
predict them using past daily changes and make money by buying when you expect.-

the market to rise and selling when you expect it to fall. Although the changes are

essentially unpredictable, inspection of Figure 14.2d reveals patterns in their -

volatility. For example, the standard deviation of daily percentage changes was
relatively large in 1990-1991 and 1998-2003, and relatively small in 1995 and 2005
This “volatility clustering” is found in many financial time series, and economet-
ric models for modeling this special type of heteroskedasticity are taken up in
Section 16.5.

Autoregressions

What will the rate of price inflation— the percentage increase in overall prices—
be next year? Wall Street investors rely on forecasts of inflation when deciding
how much to pay for bonds. Economists at central banks, like the U.S. Federal
Reserve Bank, use inflation forecasts when they set monetary policy. Firms use
inflation forecasts when they forecast sales of their products, and local govern-
ments use inflation forecasts when they develop their budgets for the upcoming
year. In this section, we consider forecasts made using an auteregression, a regres-
sion model that relates a time series variable to its past values.

The First Order Autoregressive Model

If you want to predict the future of a time series, a good place to start is in the
immediate past. For example, if you want to forecast the change in inflation from
this quarter to the next, you might see whether inflation rose or fell last quarter.
A systematic way to forecast the change in inflation, Afnf, using the previous quar--
ter’s change, Alnf._,, is to estimate an OLS regression of Alnf, on Alnf,_,. Esti-
mated using data from 1962 to 2004, this regression is

A[nf, 0.017 — 0.238AInf_4, . (14.7)
(0.126) (0.096)

where, as usual, standard errors are given in parentheses under the estimated coef-
ficients, and m is the predicted value of Alnf, based on the estimated regression
line. The model in Equation (14.7) is called a first order autoregression: an auto.re-
gression because it is a regression of the series onto its own lag, Alntfi_;, and first
order because only one lag is used as a regressor. The coefficient in Equation (14.7)
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Is negative, so an increase in the inflation rate in one quarter is associated with a
decline in the inflation rate in the next quarter.

A first order autoregression is abbreviated AR(1), where the “1” indicates that
it is first order. The population AR(1) model for the series Y, is

=Bo+ BiY; +u, (14.8)

where 1, is an error term.

Forecasts and forecast errors.  Suppose that you have historical data on ¥ and
youwant to forecast its future value. If ¥; follows the AR(1) model in Equation (14.8)
and if By and B, are known, then the forecast of Yy, based on Yris By + B Yr.

In practice, By and B, are unknown, so forecasts niust be based on estimates
of By and B;. We will use the OLS estimators Bo and ﬂl, which are constructed
using historical data. In general, YT+1[T will denote the forecast of Y7, based on
information through period 7 using a model estimated with data through period T.
Accordingly, the forecast based on the AR(1) model in Equation (14.8) is

f/T+1|T = Bo+ BiYr, (14.9)

where [30 and ,é 1 are estimated using historical data through time 7.

The forecast error is the mistake made by the forecast; this is the difference
between the value of Y7, that actually occurred and its forecasted value based
on Yr :

Forecast error = Yz, — )A’T+1|T' (14.10)

forecasts versus predicted values. The forecast is not an OLS predicted value,
and the forecast error is 70t an OLS residual. OLS predicted values are calculated
for the observations in the sample used to estimate the regression. In contrast, the
forecast is made for some date beyond the data set used to estimate the regression,
so the data on the actual value of the forecasted dependent variable are not in the
sample used to estimate the regression. Similarly, the OLS residual is the difference
between the actual value of ¥ and its predicted value for observations in the sam-
ple, whereas the forecast error is the difference between the future value of Y, which
is not contained in the estimation sample, and the forecast of that future value. Said
differently, forecasts and forecast errors pertain to “out-of-sample” observations,
whereas predicted values and residuals pertain to “in-sample” observations.
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Root mean squared forecast error. The root mean squared forecast ervor

(RMSFE) is a measure of the size of the forecast error, that is, of the magnitude -
of a typical mistake made using a forecasting model. The RMSFE is the square

root of the mean squared forecast error:
RMSFE = VE[(Y1 — Vo)) (14.11)

The RMSFE has two sources of error: the error arising because future values
of u, are unknown and the error in estimating the coefficients By and 3. If the
first source of error is much larger than the second, as it can be if the sample size
is large, then the RMSFE is approximately V/var(u,), the standard deviation of the
error 1, in the population autoregression [Equation (14.8)]. The standard devia-
tion of u, is in turn estimated by the standard error of the regression (SER; see
Section 4.3). Thus, if uncertainty arising from estimating the regression coefficients
is small enough to be ignored, the RMSFE can be estimated by the standard error
of the regression. Estimation of the RMSFE including both sources of forecast

error is taken up in Section 14.4.

Application to inflation. 'What is the forecast of inflation in the first qua.rter of
2005 (2005:1) that a forecaster would have made in 2004:1V, based on the estimated
AR(1) model in Equation (14.7) (which was estimated using data through
2004:1V)? From Table 14.1, the inflation rate in 2004:1V was 3.5% (50 Infrppsav =
3.5%), an increase of 1.9 percentage points from 2004:1I1 (so Alnfagpary = 1.9).
Plugging these values into Equation (14.7), the forecast of the change in inflation
from 2004:1V to 2005:1 is /_\Trz(m_;;,[g”m:w =0.017 = 0.238 X Alnfipeuqv = 0.017 —
0.238 X 1.9 = —0.43 = —0.4 (rounded to the nearest tenth). The predicted rate of
inflation is the past rate of inflation plus its predicted change:

[”/?7'+1|T = Infr+ A/IECTH!T- (14.12)

Because Infygury = 3.5% and the predicted change in the mﬂatlon rate from
2004:1V to 2005 Iis —0.4, the predicted rate of inflation in 2005:1is 111/’2005 10041V =
Infrogurv + A]nf-,UOS ooV = =13.5% — 0.4% = 3.1%. Thus, the AR(1) model fore-
casts that inflation will drop slightly from 3.5% in 2004:1V to 3.1% in 2005:1.
How accurate was this AR(1) forecast? From Table 14.1, the actual value of
inflation in 2005:1 was 2.4%,s0 the AR(l) forecast is high by 0.7 percentage point;
that is. the forecast error is —0.7. The R? of the AR(1) model in Equation (14.7)is
only 0.05, so the lagged change of inflation explains a very small fraction of the
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variation in-inflation in the sample used to fit the autoregression. This low R>is con:
sistent with the poor forecast of inflation in 2005:1 produced using Equation (14.7).
More generally, the low R? suggests that this AR(1) model will forecast only a
small amount of the variation in the change of inflation.

The standard error of the regression in Equation (14.7) is 1.65;ignoring uncer-
tainty arising from estimation of the coefficients, our estimate of the RMSFE for
forecasts based on Equation (14.7) therefore is 1.65 percentage points. ’

The p-Order Autoregressive Model

The AR(1) model uses ¥,_, to forecast ¥, but doing so ignores potentially useful
information in the more distant past. One way to incorporate this information is
to include additional lags in the AR(1) model; this yields the p™-order autore-
gressive, or AR(p), model.

The p™-order antoregressive model [the AR(p) model] represents Y] as a lin-
ear function of p of its lagged values; that is, in the AR(p) model, the regressors
ave Y1, ¥,..., ¥, plus an intercept. The number of lags, p, mcluded in an
AR(p) model is called the order, or lag length, of the autoregression.

For example, an AR(4) model of the change in inflation uses four lags of the

change in inflation as regressors. Estimated by OLS over the period 1962-2004,
the AR(4) model is

Alnf, =002 — 026 Alnfi_, — 0.32AInf_y + 0.16AInf_s — 0.03AInf—y.  (14.13)
(0.12) (0.09) (0.08) (0.08) (0.09)

The coefficients on the final three additional lags in Equation (14.13) are jointly
significantly different from zero at the 5% significance level: The F-statistic is 6.91
(p-value < 0.001). This is reflected in an improvement in the R? from 0.05 for
the AR(1) model in Equation (14.7) to 0.18 for the AR(4) model. Similarly, the
SER of the AR(4) model in Equation (14.13) is 1.52, an improvement over the
SER of the AR(1) model, which is 1.65.

The AR(p) model is summarized in Key Concept 14.3.

Properties of the forecast and error term in the AR(p) model. The assump-
tion that the conditional expectation of u, is zero given past values of ¥, [that is,
E(w|Y1, ¥-5,...) = 0] has two important implications.

The first implication is that the best forecast of Y7, based on its entire his-
tory depends on only the most recent p past values. Specifically, let Yrpr= !
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The pB-order autoregressive model [the AR(p) modél] ~r§:p'réséntsv Y; as a linear
function of p of its lagged values: B e

Y= Bot BiYt BoYigt b BpYipt w,

where £(u¥1, ¥, ..) = 0.The number of lags p is called the order, or the lag

length, of the autoregression.

E(Yp| Yy, Yroy, ... ) denote the conditional mean of ¥y, given its entire history.
Then Y7,y has the smallest RMSFE of any forecast based on the history of Y
(Exercise 14.5). If ¥, follows an AR(p), then the best forcast of Yy, based on Y7,
YT‘I’ I

Yroyr=Bo+ BiYr + oYy + 0+ BpYrpi1, (14.15)

which follows from the AR(p) model in Equation (14.14) and the assumption that
E(u|Y,_, Y_,,...) = 0.In practice, the coefficients 8o, B, .., B, are unknr?\)?/n,so
actual forecasts from an AR(p) use Equation (14.15) with estimated coefficients.

The second implication is that the errors u, are serially uncorrelated, a resul
that follows from Equation (2.27) (Exercise 14.5).

Application to inflation. What is the forecast of inflation in 2005:.1 using data
through 2004:1V, based on the AR(4) model of inflation in Equation (1.4.]3)?
To compute this forecast, substitute the values of the chan/gi of inflation in each
of the four quarters of 2004 into Equation (14.13): Alnfyospoosry = 0.02 —
0.26AInfogiry — 0.32AInfopnqmn + 0.16 A Infagesy — 0.03A Infygee = 0.02 — 026 X
1.9 —0.32 X (—2.8) + 0.16 X 0.6 — 0.03 X 2.9 = 0.4, where the 2004 values for the
change of inflation are taken from the final column of Table 14.1. o

The corresponding forecast of inflation in 2005:1 is the value of inflation in
2004:1V, plus the forecasted change; that is, 3.5% + 0.4% = 3.9%. The forecast
error is the actual value, 2.4 %, minus the forecast,or 2.4% — 3.9% = —1.5, greater
in absolute value than the AR(1) forecast error of —0.7 percentage point.

(14.14)
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] ave you ever dreamed of getting rich quick by
beating the stock market? If you think that the
market will be going up, you should buy stocks today
and sell them later, before the market turns down. If
you are good at forecasting swings in stock prices,
then this active trading strategy will produce better
returns than a passive “buy and hold” strategy in
which you purchase stocks and just hang onto them.
The trick, of course, is having a reliable forecast of
future stock returns.

Férecasts based on past values of stock returns
are sometimes called “momentum” forecasts: If the
value of a stock rose this month, perhaps it has
momentum and will also rise next month. If so, then
returns will be autocorrelated and the autoregressive
model will provide useful forecasts. You can imple-
ment a momentum-based strategy for a specific stock
or for a stock index that measures the overall value
of the market.

continued

@LEETD) Autoregressive Models of Monthly Excess Stock Returns, 1960:1-2002:12
Dependent variable: excess returns on the CRSP value-weighted index.
(€)) ) 3)
Specification AR(1) AR(2) AR(4)
Regressors
excess return, . 0.050 0.053 0.054
(0.051) (0.051) (0.051)
excess returmn, _, —0.053 ~0.054
(0.048) (0.048)
eXCesS Fetiirn, 3 0.009
(0.050)
excess renurn, -0.016
(0.047)
Intercept 0.312 0.328 0.331
(0.197) (0.199) (0.202)
F-statistic for coefficients on . 0.968 1.342 0.707
lags of excéss return (p-value) (0.325) (0.261) (0.587)
R? 0.0006 0.0014 —-0.0022
Notes: Excess returas are measured in percent per month. The data are described in Appendix 14.1. All regressions are esti-
mated over 1960:1-2002:12 (T = 516 observations), with earlier observations used for initial values of lagged variables.
Entries in the regressor rows are coefficients, with standard errors in parentheses. The final two rows report the F-statistic
testing the hypothesis that the coefficients on lags of excess return in the regression are zero, with its p-value in parentheses,
and the adjusted R*.
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Table 14.3 presents autoregressive models of the
excess return on a broad-based index of stock prices
called the CRSP value-weighted index, using monthly
data from 1960:1 to 2002:12. The monthly excess
return is what you earn, in percentage terms, by pur-
chasing a stock at the end of the previous month and
selling it at the end of this month, minus what you
would have earned had you purchased a safe asset (a
U.S. Treasury bill). The return on the stock includes
the capital gain (or loss) from the change in price,
plus any dividends you receive during the month.
The data are described further in Appendix 14.1.

Sadly, the results in Table 14.3 are negative.The
coefficient on lagged returns in the AR(1) model is
not statistically significant, and we cannot reject the
null hypothesis that the coefficients on lagged
returns are all zero in the AR(2) or AR(4) model.

In fact, the adjusted R? of one of the models is neg- -
ative and the other two are only slightly ?ositive, X
suggesting that none of these models is-useful for
forecasting. o T

These neéative results are consistent with the the-.
ory of efficient capital markets, which holds that =
excess returns should be unpredictable because stock = -
prices already embody all currently available infor-—
mation. The reasoning is simple: If market partici-
pants think that a stock will have a positive excess
return next month, then they will buy that stock now;
but doing so will drive up the price of the stock to
exactly the point at which there is no expected excess
return. As a result, we should not be able to forecast
future excess returns by using past publicly available
information, nor can we, at least using the regressions
in Table 14.3.
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In 1982, the U.S. unemployment
rate was 9.7% and the rate of
inflation in 1983 fell by 2.5% (he 5

large dob). in general, high values . L °
of the unemployment rate in N o
year ¢ tend to be followed by i ‘
decreases in the rate of price infla- 2= :
tion in the next year, year t + 1; 1
with a correlation of —0.36. o
1
2
A ‘ . ©
-4 °
_5 Il i 1 1 1 ]
0 2 4 6 8 10 12

) Scatterplot of Change in Inflation Between Year t and Year t 4 1

versus the Unemployment Rate in Year ¢, 19612004

Change in inflation
between year ¢ and
year £+ 1

Unemployment rate in year ¢

Time Series Regression
with Additional Predictors and the
Autoregressive Distributed Lag Model

Economic theory often suggests other variables that could help to forecast the
variable of interest. These other variables, or predictors, can be added to an autore-
gression to produce a time series regression model with multiple predictors. When
other variables and their lags are added to an autoregression, the result is an

autoregressive distributed lag model.

Forecasting Changes in the

Inflation Rate Using Past Unemployment Rates

A high value of the unemployment rate tends to be associated with a future
decline in the rate of inflation. This negative relationship, known as the short-run
Phillips curve. is evident in the scatterplot of Figure 14.3, in which year-to-year
changes in the rate of price inflation are plotted against the rate of unemployment

in the previous year. For example, in 1982 the unemployment rate averaged 9.7%,
and during the next year the rate of inflation fell by 2.9%. Overall, the correlation
in Figure 14.3 is —0.36.

The scatterplot in Figure 14.3 suggests that past values of the unemployment
rate might contain information about the future course of inflation that is not
already contained in past changes of inflation. This conjecture is readily checked
by augmenting the AR(4) model in Equation (14.13) to include the first lag of the
unemployment rate:

Alnf, =128 — 031AInf_; — 0.39AInf,_; + 0.09AInf,_;

(0.53) (0.09) (0.09) (0.08)
—0.08Alnf,_, — 021Unemp,_,. (14.16)
(0.09) (0.09)

'I_he t-statistic on Unemp,_; is —2.23,s0 this term is'significant at the 5% level.
The R? of this regression is 0.21, an improvement over the AR(4) R? of 0.18.

The forecast of the change of inflation in 2005:1 is obtained by substituting the
2004 values of the change of inflation into Equation (14.16), along with the value
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of the unemployment rate in 2004:1V (which is 5.4%); the resulting forecast is
Klnfyosuponsay = 04. Thus the forecast of inflation in 2005:L is 3.5% +0.4% =
3.9%, and the forecast error is —1.3%.

If one lag of the unemployment rate is helpful for forecasting inflation, sev-
eral lags might be even more helpful; adding three more lags of the unemployment

rate yields

KInf =130 — 0.42AInfi_y — 037AInfi_s + 0.06AInf;_3 — 0.04AInf_y

(0.44) (0.08) (0.09) (0.08) (0.08) (14.17)
—2.64Unemp,_, + 3.04Unemp,, — 0.38Unemp,_3 — 0.25Unemp,4.
(0.46) (0.86) (0.89) (0.45)

The F-statistic testing the joint significance of the second through fourth lags
of the unemployment rate is 10.76 (p-value < 0.001), so they are jointly signifi-
cant. The R? of the regression in Equation (14.17) is 0.34, a solid improvement over
0.21 tor Equation (14.16). The F-statistic on all the unemployment poefficiefnts. is
8.91 (p-value < 0.001), indicating that this model represents a statistically signifi-
cant improvement over the AR(4) mode] of Section 14.3 [Equation (14.13)]. The
standard error of the regression in Equation (14.17) is 1.36, a substantial improve-
ment over the SER of 1.52 for the AR(4).

The forecasted change in inflation from 2004:IV to 2005:I using Equation
(14.17) is computed by substituting the values of the variables into the equa-
tion.The unemployment rate was 5.7% in 2004:1,5.6% in 2004:11, and 54% in
2004:111 and 2004:TV. The forecast of the change in inflation from 2004:1V to 20051,
based on Equation (14.17),1s

Kinfunsiponiry = 1.30 — 042 X 1.9 = 0.37 X (~2.8) +0.06 X 0.6 = 0.04 N
%20 =266 % 5.4 +034%54—038%x56-025%57=01. (1418

Thus the forecast of inflation in 2005:1 is 3.5% + 0.1 % = 3.6%. The forecast error
is —1.2.

The autoregressive distributed lag model. Each model in Equations (14..16)
and (14.17) is an autoregressive distributed lag (ADL) model: “autoregressxve.z”
because lagged values of the dependent variable are included as regressors, as 1o
an autoregression, and “distributed lag” because the regression also includes mul-
tiple lags (a “distributed lag™) of an additional predictor. In general, an autore-
gressive distributed lag model with p lags of the dependent variable ¥, and q lags
of an additional predictor X, is called an ADL(p, ) model. In this notation, the
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The Autoregressi?e Distributed Lag Model

. . A A
The autoregressive distributed lag model with p lags of ¥, and g lags of X, denoted /g R
ADL(p, q),is
Y=pBotPiYa+BaY+ - +8,7, (14.19
+ 51}(1_1 + 62)(;_2 + o (Sq)(r—q + Uy, ’ )
where Bg, B1,-- -, By, 01, - -, 64 are unknown coefficients and u, is the error term

with E(uY-1, Y, ., X, Xpy ... ) = 0.

model in Equation (14.16) is an ADL(4,1) model and the model in Equation (14.17)
is an ADL(4,4) model.

The autoregressive distributed lag model is summarized in Key Concept 14.4.
With all these regressors, the notation in Equation (14.19) is somewhat cumber-
some, and alternative optional notation, based on the so-called lag operator, is pre-
sented in Appendix 14.3,

The assumption that the errors in the ADL model have a conditional mean
of zero given all past values of ¥ and X, that is, that E(u|Y_;, Yp. ..., Xy,
Xi—3....) = 0, implies that no additional lags of either ¥ or X belong in the ADL
model. In other words, the lag lengths p and g are the true lag lengths, and the coef-
ficients on additional lags are zero.

The ADL model contains lags of the dependent variable (the autoregressive
component) and a distributed lag of a single additional predictor, X. In general,
however, forecasts can be improved by using multiple predictors. But before turn-
ing to the general time series regression mode! with multiple predictors, we first
introduce the concept of stationarity, which will be used in that discussion.

Stationarity

Regression analysis of time series data necessarily uses data from the past to quan-
tify historical relationships. If the future is like the past, then these historical rela-
tionships can be used to forecast the future. But if the future differs fundamentally
from the past, then those historical relationships might not be reliable guides to
the future.

In the context of time seties regression, the idea that historical relationships
can be generalized to the future is formalized by the concept of stationarity. The
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Stationarity

‘

A time series Y,is stationary if its probability distribution ddé’é ﬁotéhang@' over time, .
, Y;..7) does not depend on s regard-

that is, if the joint distribution of (Y41, Y542, - .-
less of the value of T otherwise, Y, is said to be nonstationary. A pair of time
series, X, and Y,, are said to be jointly stationary if the joint distribution of (X4,
Yoir, K12 Yoo
Stationarity requires the future to be like the past, at least in a probabilistic sense.

precise definition of stationarity, given in Key Concept 14.5, is that the probabil-
ity distribution of the time series variable does not change over time.

Time Series Regression with Multiple Predictors

The general time series regression model with multiple predictors extends the
ADL model to include multiple predictors and their lags. The model is summa-
rized in Key Concept 14.6. The presence of multiple predictors and their lags leads
to double subscripting of the regression coefficients and regressors.

The time series regression model assumptions. The assumptions in Key Con-
cept 14.6 modify the four least squares assumptions of the multiple regression
model for cross-sectional data (Key Concept 6.4) for time series data.

The first assumption is that i, has conditional mean zero, given all the regres-
sors and the additional lags of the regressors beyond the lags included in the
regression. This assumption extends the assumption used in the AR and ADL
models and implies that the best forecast of Y, using all past values of Y and the
Xs is given by the regression in Equation (14.20).

The second least squares assumption for cross-sectional data (Key Concept
6.4)is that (X;,..., X, ¥),i=1,....nare independently and identically distrib-
uted (i.i.d.). The second assumption for time series regression replaces the i.i.d.
assumption by a more appropriate one with two parts. Part (a) is that the data are
drawn from a stationary distribution so that the distribution of the data today is
the same as its distribution in the past. This assumption is a time series version of
the “identically distributed” part of the i.i.d. assumption: The cross-sectional
requirement of each draw being identically distributed is replaced by the time series
requirement that the joint distribution of the variables, including lags, does not
change over time. In practice, many economic time series appear to be nonstation-
ary, which means that this assumption can fail to hold in applications. If the time
series variables are nonstationary, then one or more problems can arise in time

. X..7, Y..7) does not depend on s Tegardiess of the value of 7. -
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Time Series Regression with Multipie Predictors

The general time series regression model allows for k additional predictors, where

gy lags of the first predictor are included, ¢, lags of the second predictor are
included, and so forth:

Y=Bo+ B1¥ o+ BaYat - + BV,

+ 81Ky F 812X+ o+ 8y, X,

(14.20)

o F S XMy T 8Nt + 8 Kig T Ut

where

L E(uxflﬁz, AT
2. (a) The random variables (¥, X,, ..

(®) (%, X,
large;

Xty Xy oy Xt Xz - )= 0

., Xi,) have a stationary distribution, and
s Xi) and (Y., Xy, - ., Xyy;) become independent as j gets

3. Large outliers are unlikely: Xj,,..., Xj, and Y, have nonzero, finite fourth

moments; and

4. There is no perfect multicollinearity.

series regression: The forecast can be biased, the forecast can be inefficient (there
can be alternative forecasts based on the same data with lower variance). or con-
ventional OLS-based statistical inferences (for example, performing a hypothesis
test by comparing the OLS r-statistic to +1.96) can be misleading. Precisely which
of these problems occurs, and its remedy, depends on the source of the nonsta-
tionarity: In Sections 14.6 and 14.7, we study the problems posed by, tests for, and
solutions to two empirically important types of nonstationarity in economic time
series, trends and breaks. For now, however, we simply assume that the series are
jointly stationary and accordingly focus on regression with stationary variables.
Part (b) of the second assumption requires that the random variables become
independently distributed when the amount of time separating them becomes
large. This replaces the cross-sectional requirement that the variables be inde-
pendently distributed from one observation to the next with the time series
requirement that they be independently distributed when they are separated by
long periods of time. This assumption is sometimes referred to as weak depen-
dence, and it ensures that in large samples there is sufficient randomness in the
data for the law of large numbers and the central limit theorem to hold. We do not
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Granger Causality Tests (Tests of Predictive antent)

The Granger causality statistic is the F-statistic tésﬁng the'hypothesis that the coéf.
ficients on all the values of one of the variables in Equation (14.20) (for example
the coefficients on Xj,—y, Xj—2, - - - » Xir—q,) ar€ ZeT0. This null hypothesm implies that
these regressors have no predictive content for Y, beyond that gontamed in the other
regressors, and the test of this null hypothesis is called the Granger causality test,

provide a precise mathematical statement of the weak dependence condition;
rather, the reader is referred to Hayashi (2000, Chapter 2).

The third assumption, which is the same as the third least squares assumption
for cross-sectional data, is that large outliers are unlikely, made mathematically pre-
cise by the assumption that all the variables have nonzero finite fourth moments.

Finally, the fourth assumption, which is also the same as for cross-sectional
data, is that the regressors are not perfectly multicollinear.

.

Statistical inference and the Granger causality test. Under the assumptions
of Key Concept 14.6,inference on the regression coefficients using OLS proceeds
in the same way as it usually does using cross-sectional data.

One useful application of the F-statistic in time series forecasting is to test
whether the lags of one of the included regressors has useful predictive content,
above and beyond the other regressors in the model. The claim that a variable has
no predictive content corresponds to the null hypothesis that the coefficients on
all lags of that variable are zero. The F-statistic testing this null hypothesis is called
the Granger causality statistic, and the associated test is called a Granger causal-
ity test (Granger, 1969). This test is summarized in Key Concept 14.7.

Granger causality has little to do with causality in the sense that it is used else-
where in this book. In Chapter 1, causality was defined in terms of an ideal random-
ized controlled experiment, in which different values of X are applied experimentally
and we observe the éubsequent effect on Y. In contrast, Granger causality means that
if X Granger-causes Y, then X is a useful predictor of ¥, given the other variables in
the regression. While “Granger predictability” is a more accurate term than “Granger
causality,” the latter has become part of the jargon of econometrics.

As an example, consider the relationship between the change in the inflation
rate and its past values and past values of the unemployment rate. Based on the
OLS estimates in Equation (14.17), the F-statistic testing the null hypothesis that
the coefficients on all four lags of the unemployment rate are zero is 8.91 (p-value
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< 0.001): In the jargon of Key Concept 14.7, we can conclude (at the 1% signifi-
cance level) that the unemployment rate Granger-causes changes in the inflation
rate. This does not necessarily mean that a change in the unemployment rate will
cause—in the sense of Chapter 1—a subsequent change in the inflation rate. It
does mean that the past values of the unemployment rate appear to contain infor-
mation that is useful for forecasting changes in the inflation rate, beyond that con-
tained in past values of the inflation rate.

Forecast Uncertainty and Forecast Intervals

In any estimation problem, it is good practice to report a measure of the uncer-
tainty of that estimate, and forecasting is no exception. One measure of the uncer-
tainty of a forecast is its root mean square forecast error. Under the additional
assumption that the errors u, are normally distributed, the RMSFE can be used to
construct a forecast interval, that is, an interval that contains the future value of
the variable with a certain probability.

Forecast uncertainty. The forecast error consists of two components: uncer-
tamty arising from estimation of the regression coefticients and uncertainty asso-
ciated with the future unknown value of u,. For regression with few coefficients
and many observations, the uncertainty arising from future u , can be much larger
than the uncertainty associated with estimation of the parameters. In general, how-
ever, both sources of uncertainty are important, so we now develop an expression
for the RMSFE that incorporates these two sources of uncertainty.

To keep the notation simple, consider forecasts of ¥}, based on an ADL(1,1)
model with a single predictor, that is, ¥, = 8, + BlY,_l + 8%~ Ly, and suppose
that u, is homoskedastic. The forecast is YTHT = Bo + B]YT + 81XT, and the fore-
cast error is

Ve = Yror=ure = [(Bo— Bo) + (Bi — B)) Yy + (6, - 81)X7]. (14.21)
Because u7,; has conditional mean zero and is homoskedastic, 1, has vari-
ance o and is uncorrelated with the final expression in brackets in Equation (14.21).

Thus the mean squared forecast error (MSFE) is

MSFE = E[(YT+1 Ymn) (I .
=an+var[(Bo— Bo) + (BL~ B)Yr + (B, - 8.)X,],  (14.22)

and the RMSFE is the square root of the MSFE.
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“Estimation of the MSFE entails estimation of the two parts in Equation (14.22).
The first term, o2, can be estimated by the square of the standard error of the
regression, as discussed in Section 14.3. The second term requires estimating the
variance of a weighted average of the regression coefficients, and methods for
doing so were discussed in Section 8.1 [see the discussion following Equation
(8.7)].

An alternative method for estimating the MSFE is to use the variance of
pseudo out-of-sample forecasts, a procedure discussed in Section 14.7.

Forecast intervals. A forecast interval is like a confidence interval except that
it pertains to a forecast. That is, a 95% forecast interval is an interval that contains
the future value of the series in 95% of repeated applications.

One important difference between a forecast interval and a confidence inter-
valis that the usual formula for a 95% confidence interval (the estimator + 1.96
standard errors) is justified by the central limit theorem and therefore holds for a
wide range of distributions of the error term. In contrast, because the forecast error
in Equation (14.21) includes the future value of the error 174, to compute a fore-
cast interval requires either estimating the distribution of the error term or mak-
ing some assumption about that distribution.

In practice, it is convenient to assume that 7y, is normally distributed. If so,
Equation (14.21) and the central limit theorem applied to [30, ,f%l, and 51 imply
that the forecast error is the sum of two independent, normally distributed
terms, so the forecast error is itself normally distributed with variance equaling
the MSFE. It follows that a 95% confidence interval is given by i’T+1,Ti
1.96 SE(Yyyy — Vroqr), where SE(Yry — Yraypr) is an estimator of the RMSFE.

This discussion has focused on the case that the error term, Ug.(, is
homoskedastic. If instead ur, is heteroskedastic, then one needs to develop a
model of the heteroskedasticity so that the term o2 in Equation (14.22) can be
estimated, given the most recent values of ¥ and X, and methods for modeling this
conditional heteroskedasticity are presented in Section 16.5.

Because of uncertainty about future events—that is, uncertainty about iy, —
959 forecast intervals can be so wide that they have limited use in decision mak-
ing. Professional forecasters therefore often report forecast intervals that are
tighter than 95%, for example. one standard error forecast intervals (which are
68% forecast intervals if the errors are normally distributed). Alternatively, some
forecasters report multiple forecast intervals, as is done by the economists at the
Bank of England when they publish their inflation forecasts (see “The River of
Blood” on the following page).
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" A spart of its efforts to inform the public about

monetary policy decisions, the Bank of England
regularly publishes forecasts of inflation. These fore-
casts combine output from econometric models
maintained by professional econometricians at the
bank with the expert judgment of the members of the
bank’s senior staff and Monetary Policy Committee.
The forecasts are presented as a set of forecast inter-
vals designed to reflect what these economists con-
sider to be the range of probable paths that inflation
might take. In its Inflation Report, the bank prints
these ranges in red, with the darkest red reserved for
the central band. Although the bank prosaically
refers to this as the “fan chart,” the press has called

these spreading shades of red the “river of blood.”

The river of blood for November 2009 is shown in
Figure 14.4 (in this figure the blood is blue, not red,
so you will need to use your imagination). This chart
shows that, as of November 2009, the bank’s econo-
mists expected the rate of inflation to increase
sharply to roughly 3% in early 2010, fall to approxi-
mately 1% by the end of 2010, and then climb steadily
back to 2% by 2012. The economists expressed con-
siderable uncertainty about the forecast, however.
They cited an increase in the VAT (sales tax) as an
important factor increasing inflation in the short run
and discussed uncertainty associated with inflation’s
response to the slack in economy and the timing and
strength of the economic recovery as important sources

of inflation uncertainty. As it turns out, their near-

The River of Blood

The Bank of England’s fan chart for November
2009 shows forecast ranges for inflation. The
dashed line indicates the second quarter of
2011, two years after the release of the report.
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term forecast was very close to actual inflation —
inflation in the second quarter of 2010 was 3.5%.
The Bank of England has been a pioneer in the
movement toward greater openness by central
banks, and other central banks now also publish
inflation forecasts. The decisions made by monetary
policymakers are difficult ones and affect the lives—
and wallets—of many of their fellow citizens. In a

democracy in the information age, reasoned the

economists ét the Bégk of Englai}q, itis Partiqﬁlérl); 3

important for citizens to undefstand the bank’s eca-
nomic outlook and the reasoning behind its difficult
decisions. S i i

To see the river of blood in its original red hue,ff
visit the Bank of England's Web site" at "v'vww‘f"
.bankefengland.co.uk. To learn more about the;kper- >

formance of the Bank of England inflation forecasts,- .

see Clements (2004).

14.5 Lag Length Selection
Using Information Criteria

The estimated inflation regressions in Sections 14.3 and 14.4 have either one or
four lags of the predictors. One lag makes some sense, but why four? More gen-
erally, how many lags should be included in a time series regression? This section
discusses statistical methods for choosing the number of lags, first in an autore-

gression and then in a time series regression model with multiple predictors.

Determining the Order of an Autoregression

In practice, choosing the order p of an autoregression requires balancing the mar-
. ginal benefit of including more lags against the marginal cost of additional esti-
mation uncertainty. On the one hand, if the order of an estimated autoregression
is too low, you will omit potentially valuable information contained in the more
distant lagged values. On the other hand, if it is too high, you will be estimating
more coefficients than necessary, which in turn introduces additional estimation

error into your forecasts.

The F-statistic approach. One approach to choosing p is to start with a model
with many lags and to perform hypothesis tests on the final lag. For example, you
might start by estimating an AR(6) and test whether the coefficient on the sixth
lag is significant at the 5% level;if not, drop it and estimate an AR(5), test the coef-
ficient on the fifth lag, and so forth. The drawback to this method is that it will pro-
duce too large a model, at least some of the time: Even if the true AR order is five,
so the sixth coefficient is zero, a 5% test using the r-statistic will incorrectly reject
this null hypothesis 5% of the time just by chance. Thus, when the true value of p

is five, this method will estimate p to be six 5% of the time.

e
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The BIC. A way around this problem is to estimate p by minimizing an “infor-
mation criterion.” One such information criterion is the Bayes information crite-
rion (BIC), also called the Schwarz information criterion (SIC), which is

BIC(p) = m{ﬁl%@} +(p+ 1)1”(TT) : (14.23)

where SSR(p) is the sum of squared residuals of the estimated AR(p). The BIC
estimator of p, p, is the value that minimizes BIC(p) among the possible choices
p=0,1,..., pyuar. where p,,, is the largest value of p considered and p = 0 corre-
sponds to the model that contains only an intercept.

The formula for the BIC might look a bit mysterious at first, but it has an intu-
itive appeal. Consider the first term in Equation (14.23). Because the regression
coefficients are estimated by OLS, the sum of squared residuals necessarily
decreases (or at least does not increase) when you add a lag. In contrast, the sec-
ond term is the number of estimated regression coefficients (the number of lags,
P plus one for the intercept) times the factor In(T)/T. This second term increases
when you add a lag. The BIC trades off these two forces so that the number of lags
that minimizes the BIC is a consistent estimator of the true lag length. The math-
ematics of this argument is given in Appendix 14.5.

As an example, consider estimating the AR order for an autoregression of the
change in the inflation rate. The various steps in the calculation of the BIC are car-
ried out in Table 14.4 for autoregressions of maximum order six (Piax = 6). For
example, for the AR(1) model in Equation (14.7), SSR(1)/T=2.737, so
In[SSR(1)/T] =1.007. Because T=172 (43 years, four quarters per year),
In(T)/T=10.030 and (p+ 1)In(7)/T =2 X 0.030 = 0.060. Thus BIC(1) =1.007
+0.060 = 1.067.

The BIC is smallest when p = 2 in Table 14.4. Thus the BIC estimate of the lag
length is 2. As can be seen in Table 14.4, as the number of lags increases the R?
increases and the SSR decreases. The increase in the R? is large from one to two
lags, smaller from two to three, and quite small from three to four. The BIC helps
decide precisely how large the increase in the R? must be to justify including the
additional lag.

The AIC.  The BIC is not the only information criterion; another is the Akaike
information criterion (AIC):

AIC(p) = ln[&#)} +p+1)2 (14.24)
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The Bayes Information Cntenon (BIO): : :
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The difference between the AIC and the BIC is that the term “In(T)” in the
BIC is replaced by “2” in the AIC, so the second term in the AIC is smaller: For
example, for the 172 observations used to estimate the inflation autoregresgons,
In(7T) = In(172) = 5.15, s0 that the second term for the BIC is more than twice as
large as the term in AIC. Thus a smaller decrease in the SSR is needed in the AIC
to justify including another lag. As a matter of theory, the second term in the AICis
not large enough to ensure that the correct lag length is chosen, even in larce sam-
ples, so the AIC estimator of p is not consistent. Asis discussed in Appendix 14.5,in
Jarge samples the AIC will overestimate p with nonzero probability.

Despite this theoretical blemish, the AIC is widely used in practice. If you_ are
concerned that the BIC might yield a model with too few lags; the AIC provides

a reasonable alternative.

A note on calculating information criteria.  How well two estimated regres-
sions fit the data is best assessed when they are estimated using the same data sets.
Because the BIC and AIC are formal methods for making this comparison. the
autoregressions under consideration should be estimated using the same obser-
vations. For example, in Table 14.4 all the regressions were estimated using data
from 1962:1 to 20041V, for a total of 172 observations. Because the autoregressions
involve lags of the change of inflation, this means that earlier values of the change
of inflation (values before 1962:1) were used as regressors for the preliminary
observations. Said differently, the regressions examined in Table 14. 4 each include
observations on Alnf, Alnf_y,..., Alnf, for t=19621,.. .,2004:1V, corre-
sponding to 172 observations on the dependent variable and regressors,so T = 172
in Equations (14.23) and (14.24).
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Lag Length Selection in Time
Series Regression with Multiple Predictors

The trade-off involved with lag length choice in the general time series regression
model with multiple predictors [Equation (14.20)] is similar to that in an autore-
gression: Using too few lags can decrease forecast accuracy because valuable infor-
mation is lost, but adding lags increases estimation uncertainty. The choice of lags
must balance the benefit of using additional information against the cost of esti-
mating the additional coefficients.

The F-statistic approach.  As in the univariate autoregression, one way to deter-
mine the number of lags to include is to use F-statistics to test joint hypotheses that
sets of coefficients equal zero. For example, in the discussion of Equation (14.17),
we tested the hypothesis that the coefficients on the second through fourth lags of
the unemployment rate equal zero against the alternative that they are nonzero; this
hypothesis was rejected at the 1% significance level, lending support to the longer-
lag specification. If the number of models being compared is small, then this F-
statistic method is easy to use. In general, however, the F-statistic method can produce
models that are too large, in the sense that the true lag order is overestimated.

Information criteria.  As in an autoregression, the BIC and AIC can be used to
estimate the number of lags and variables in the time series regression model with
multiple predictors. If the regression model has K coefficients (inctuding the inter-
cept), the BIC is

BIC(K) = m[g%@} +K IH(TT). (14.25)

The AIC is defined in the same way, but with 2 replacing In(7) in Equation (14.25).
For each candidate model, the BIC (or AIC) can be evaluated, and the model with
the lowest value of the BIC (or AIC) is the preferred model, based on the infor-
mation criterion.

There are two important practical considerations when using an information
criterion to estimate the lag lengths. First, as is the case for the autoregression, all
the candidate models must be estimated over the same sample; in the notation of
Equation (14.25), the number of observations used to estimate the model, 7, must
be the same for all models. Second, when there are multiple predictors, this
approach is computationally demanding because it requires computing many dif-
ferent models (many.combinations of the lag parameters). In practice, a convenient
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14.6

shortcut is to require all the regressors to have the same number of lags, that is, to

require that p = q; = - - = g, 50 that only p,,q + 1 models need to be compared "

(corresponding top = 0, 1,. .., Pyax)-

Nonstationarity I: Trends

In Key Concept 14.6, it was assumed that the dependent variable and the regressors E

are stationary. If this is not the case, that is, if the dependent variable and/or regres-
sors are nonstationary, then conventional hypothesis tests, confidence intervals, and
forecasts can be unreliable. The precise problem created by nonstationarity, and the
solution to that problem, depends on the nature of that nonstationarity.

In this and the next section, we examine two of the most important types of
nonstationarity in economic time series data: trends and breaks. In each section,
we first describe the nature of the nonstationarity and then discuss the consequences
for time series regression if this type of nonstationarity is present but is igHOfed.We
next present tests for nonstationarity and discuss remedies for, or SOh‘ltIODS t‘o,
the problems caused by that particular type of nonstationarity. We begin by dis-

cussing trends.

What Is a Trend?
A trend is a persistent long-term movement of a variable over time. A time series
variable fluctuates around its trend.

Inspection of Figure 14.1a suggests that the U.S. inflation rate has a trend con-
sisting of a general upward tendency through 1982 and a downward tendency
thereafter. The series in Figures 14.2a, b, and c also have trends, but their trends
are quite different. The trend in the U.S. federal funds interest rate is similar to the
trend in the U.S. inflation rate. The $/£ exchange rate clearly had a prolonged
downward trend after the collapse of the fixed exchange rate system in 1972.The
logarithm of Japanese GDP has a complicated trend: fast growth at first, then mod-
erate growth, and finally slow growth.

Deterministic and stochastic trends. There are two types of trends seen in time
series data: deterministic and stochastic. A deterministic trend is a nonrandom
function of time. For example, a deterministic trend might be linear in time; if
inflation had a deterministic linear trend so that it increased by 0.1 percentage
point per quarter, this trend could be written as 0.1¢, where tis measured in quar-
ters. In contrast, a stochastic trend is random and varies over time. For example,
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a stochastic trend in inflation might exhibit-a prolenged period of increase fol-
lowed by a prolonged period of decrease, like the inflation trend in Figure 14.1.

Like many econometricians, we think it is more appropriate to model eco-
nomic time series as having stochastic rather than deterministic trends. Econom-
ics is complicated stuff. It is hard to reconcile the predictability implied by a
deterministic trend with the complications and surprises faced year after year by
workers, businesses, and governments. For example, although U.S. inflation rose
through the 1970s, it was neither destined to rise forever nor destined to fall again.
Rather, the slow rise of inflation is now understood to have occurred because of
bad luck and monetary policy mistakes, and its taming was in large part a conse-
quence of tough decisions made by the Board of Governors of the Federal
Reserve. Similarly, the $/£ exchange rate trended down from 1972 to 1985 and sub-
sequently drifted up, but these movements too were the consequences of complex
economic forces; because these forces change unpredictably, these trends are use-
fully thought of as having a large unpredictable, or random, component.

For these reasons, our treatment of trends in economic time series focuses on
stochastic rather than deterministic trends, and when we refer to “trends” in time
series data we mean stochastic trends unless we explicitly say otherwise. This sec-
tion presents the simplest model of a stochastic trend, the random walk model:
other models of trends are discussed in Section 16.3.

The random walk model of a trend. The simplest model of a variable with a
stochastic trend is the random walk. A time series ¥, is said to follow a random
walk if the change in ¥/ is i.i.d., that is, if

Y=Y +u, (14.26)

where u, is i.1.d. We will, however, use the term random walk more generally to
refer to a time series that follows Equation (14.26), where «, has conditional mean
zero; thatis, E(u|Y_1, Y5, ... ) = 0.

The basic idea of a random walk is that the value of the series tomorrow is its
value today, plus an unpredictable change: Because the path followed by ¥, con-
sists of random “steps” u,, that path is a “random walk.” The conditional mean of
¥, based on data through time ¢ — 1 is ¥_y; that is, because E(u,|l{_1, Yoa...)=0,
E(YY_,%,,... ) = Y_;.In other words, if Y, follows a random walk, then the best
forecast of tomorrow’s value is its value today.

Some series, such as the logarithm of Japanese GDP in Figure 14.2¢, have an
obvious upward tendency, in which case the best forecast of the series must include
an adjustment for the tendency of the series to increase. This adjustment leads to



548

CHAPTER 14

Introduction to Time Series Regression and Forecasting-

an extension of the random walk model to include-a tendeney-to-move, or “drift,” in
one direction or the other. This extension is referred to as a random walk with drift:

Y,=Bg+ Y- tu, (14.27

where E(u]Y_|, Y2,...) = 0 and Bgis the “drift” in the random walk.If By is pos-

itive, then Y, increases on average. In the random walk with drift model, the best '

forecast of the series tomorrow is the value of the series today, ptus the drift 8.
The random walk model (with drift as appropriate) is simple yet versatile, and
it is the primary model for trends used in this book.

"A random walk is nonstationary. 1f Y, follows a random walk, then it is not

stationary: The variance of a random walk increases over time, so the distribution
of ¥, changes over time. One way to see this is to recognize that, because u, is
uncorrelated with Y_; in Equation (14.26), var(Y,) = var(Y¥,_,) + var(u,): for % to
be stationary, var(¥;) cannot depend on time, so in particular var(¥)) = var(}.,)
must hold, but this can happen ouly if var(x,) = 0. Another way to see this is to
imagine that ¥, starts out at zero; that is, Yy=0.Then ¥ =uy, ¥, = 1) + u15, and
so forth so that ¥, =uy +u,+ --- +u,. Because u, is serially uncorrelated,
var(Y) =var(u; +up+ - 1) = tor. Thus the variance of ¥, depends on t; in
fact, it increases as ¢ increases. Because the variance of Y depends on t,its distrib-
ution depends on ; that is, it is nonstationary.

Because the variance of a random walk increases without bound, its population
autocorrelations are not defined (the first autocovariance and variance are infi-
nite, and the ratio of the two is not well defined). However, a feature of a random
walk is that its sample autocorrelations tend to be very close to 1;in fact, the o
sample autocorrelation of a random walk converges to 1 in probability.

Stochastic trends, autoregressive models, and a unit root. The random walk
model is a special case of the AR(1) model [Equation (14.8)] in which 8, =1.In
other words, if ¥, follows an AR(1) with 8; ='1, then ¥, contains a stochastic trend
and is nonstationary. If, however, | ,] < 1 and u, is stationary, then the joint dis-
tribution of ¥, and its lags does not depend on # (a resuit shown in Appendix 14.2),
50 Y is stationary.

The analogous condition for an AR(p) to be stationary is more complicated
than the condition |8, < 1 for an AR(1). Its formal statement involves the roots
of the polynomial, 1 — 8,z — Bott— B — - — BpzP. (The roots of this polyno-
mial are the values of z that satisfy 1 — 812 = Baz% — Bsz° — -+ — BpzF =0.) For
an AR(p) to be stationary, the roots of this polynomial must all be greater than
1 in absolute value. In the special case of an AR(1), the root is the value of z that

T

T
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solves 1 — Bz = 0;s0 its root is-z = 1/8,. Thusthe statement that the root be
greater than 1 in-absolute value is equivalent to | 8| < 1.

If an AR(p) has a root that equals 1, the series is said to have a unit aurore-
gressive root or,more simply, a unit root. If ¥ has a unit root, then it contains a sto-
chastic trend. If Y, is stationary (and thus does not have a unit root), it does not
contain a stochastic irend. For this reason, we will use the terms stochastic trend
and unit root interchangeably.

Problems Caused by Stochastic Trends

If a regressor has a stochastic trend (has a unit root), then the OLS estimator of
its coefficient and its OLS t-statistic can have nonstandard (that is, nonnormal)
distributions, even in large samples. We discuss three specific aspects of this prob-
lem: (1) The estimator of the autoregressive coefficient in an AR(1) is biased
toward 0 if its true value is 1; (2) the r-statistic on a regressor with a stochastic trend
can have a nonnormal distribution, even in large samples; and (3) an extreme
example of the risks posed by stochastic trends is that two series that are inde-
pendent will, with high probability, misleadingly appear to be related if they both
have stochastic trends, a situation known as spurious regression.

Problem #1: Autoregressive coefficients that are biased toward zero. Suppose
that Y, follows the random walk in Equation (14.26) but this is unknown to the econo-
metrician, who instead estimates the AR(1) model in Equation (14.8). Because Y] is
nonstationary, the least squares assumptions for time series regression in Key Con-
cept 14.6 do not hold, so as a general matter we cannot rely on estimators and test
statistics having their usual large-sample normal distributions. In fact, in this exam-
ple the OLS estimator of the autoregressive coefficient, él, is consistent, but it has a
nonnormal distribution, even in large samples The asymptotic dlstnbunon of 61 is
shifted toward zero. The expected value of /31 is approximately E( B 1)=1-53/T.
This results'in a large bias in sample sizes typically encountered in economic appli-
cations. For example, 20 ) years of quarterly data contain 80 observations, in which case
the expected value of ,B 118 E( Bl) =1-5. 3/ 80 = 0.934. Moreover, this distribution
has a long left tail: The 5% percentile of ,B 1 is approximately 1 — 14.1/ T, which, for
T = 80, corresponds to 0.824,50 5% of the time ,él < 0.824.

One implication of this bias toward zero is that if ¥, follows a random walk,
then forecasts based on the AR(1) model can perform substantially worse than
those based on the random walk model, which imposes the true value 81 = 1, This
conclusion also applies to higher-order autoregressions, in which there are fore-
casting gains from imposing a unit root (that is, from estimating the autoregression
in first differences instead of in levels) when in fact the series contains a unit root.
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chastic trend, then its usual OLS r-statistic can have a nonnormal distribution under

the null hypothesis, even in large. samples. This nonnarmal distribution means that

conventional confidence intervals are not valid and hypothesis tests cannot be con-
ducted as usual. In general, the distribution of this t-statistic is not readily tabulated
because the distribution depends on the relationship between the regressor in ques-

tion and the other regressors. An important example of this problem arises in regres. -

sions that attempt to forecast stock returns using regressors that could have
stochastic trends (see the box in Section 14.7,“Can You Beat the Market? Part IT”),

One important case in which it is possible to tabulate the distribution of the
t-statistic when the regressor has a stochastic trend is in the context of an autore-
gression with a unit root. We return to this special case when we take up the prob-
lem of testing whether a time series contains a stochastic trenq.

Problem #3: Spurious regression.  Stochastic trends can lead two time series to
appear related when they are not, a problem called spurious regression.

For example, U.S. inflation was steadily rising from the mid-1960s through
the early 1980s, and at the same time Japanese GDP (plotted in logarithms in
Figure 14.2¢) was steadily rising. These two trends conspire to produce a regres-
sion that appears to be “significant” using conventional measures. Estimated by
OLS using data from 1965 through 1981, this regression is .

.S, Inflation, = —37.78 + 3.83 X In(Japanese GDP), R? = 0.56. (14.28)
(3.99) (0.36)

The r-statistic on the slope coefficient exceeds 10, which by usual standards
indicates a strong positive relationship between the two series, and the RZis high.
However, running this regression using data from 1982 through 2004 yields

T.S. Inflation, = 31.20 — 217 X In(Japanese GDE), R2= 0.08. (14.29)
(10.41) (0.80)

The regressions in Equations (14.28) and (14.29) could hardly be more differ-
ent. Interpreted literally, Equation (14.28) indicates a strong positive relationship,
while Equation (14.29) indicates a weak, but apparently statistically significant,
negative relationship. A

The source of these conflicting results is that both series have stochastic trends.
These trends happened to align from 1965 through 1981, but did not align from
1982 through 2004. There is, in fact, no compelling economic or political reason to
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~think that the trends in these two series are related. In short, these regressions are

spurious.

The regressions in Equations (14.28) and (14.29) illustrate empirically the the-

oretical point that OLS can be misleading when the series contain stochastic trends
(see Exercise 14.6 for a computer simulation that demonstrates this result). One
‘'special case in which certain regression-based methods are reliable is when the
trend component of the two series is the same, that is, when the series contain a
common stochastic trend; if so, the series are said to be cointegrated. Economet-
tic methods for detecting and analyzing cointegrated economic time series are dis-
cussed in Section 16.4.

Detecting Stochastic Trends:
Testing for a Unit AR Root

Trends in time series data can be detected by informal and formal methods. The
informal methods involve inspecting a time series plot of the data and computing
the autocorrelation coefficients, as we did in Section 14.2. Because the first auto-
correlation coefficient will be near 1 if the series has a stochastic trend, at least in
large samples, a small first autocorrelation coefficient combined with a time series
plot that has no apparent trend suggests that the series does not have a trend. If
doubt remains, however, there are formal statistical procedures that can be used
to test the hypothesis that there is a stochastic trend in the series against the alter-
native that there is no trend.

In this section, we use the Dickey-Fuller test (named after its inventors David

" Dickey and Wayne Fuller, 1979) to test for a stochastic trend. Although the

Dickey-Fuller test is not the only test for a stochastic trend (another test is dis-
cussed in Section 16.3), it is the most commonly used test in practice and is one of
the most reliable.

The Dickey—Fuller test in the AR(1) model. The starting point for the Dickey-
Fuller test is the autoregressive model. As discussed earlier, the random walk in
Equation (14.27) is a special case of the AR(1) model with 8, =1. If 8, = 1, Y]is
nonstationary and contains a (stochastic) trend. Thus, within the AR(1) model, the
hypothesis that ¥, has a trend can be tested by testing

Hy Bi=1vs. Hi: By <1in Y=gy + B,Y, +u, (14.30)

If By =1, the AR(1) has an autoregressive Toot of 1, so the null hypothesis in
Equation (14.30) is that the AR(1) has a unit root, and the alternative is that it is
stationary.
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~This test is most easily implemented by estimating a modified version of
Equation (14.30) obtained by subtracting ¥/, from both sides.Let § = B1— 1;then
Equation (14.30) becomes

Hy §=0vs. Hi8 < 0in AY,= By + 8%, + 1, (1431)

The OLS t-statistic testing & = 0 in Equation (14.31) is called the Dickey—Fuller

statistic. The formulation in Equation (14.31) is convenient because regression”

software automatically prints out the t-statistic testing 8 = 0. Note that the Dickey-
Fuller test is one-sided, because the relevant alternative is that Y/ is stationary, so
B, < 1or,equivalently, 8 < 0.The Dickey-Fuller statistic is computed using “non-
robust” standard errors, that is, the “homoskedasticity-only” standard erross pre-
sented in Appendix 5.1 [Equation (5.29) for the case of a single regressor and in
Section 18.4 for the multiple regression model] *

The Dickey—Fuller test in the AR(p) model. The Dickey-Fuller statistic pre-
sented in the context of Equation (14.31) applies only to an AR(1). As discussed
in Section 14.3, for some series the AR(1) model does not capture all the serial
correlation in Y,,in which case a higher-order autoregression is more appropriate.

The extension of the Dickey—Fuller test to the AR(p) model is summarized in
Key Concept 14.8. Under the null hypothesis,8 =0 and AY/isa stationary AR(p).
Under the alternative hypothesis, 8 < 0 so that Y, is stationary. Because the regres-
sion used to compute this version of the Dickey-Fuller statistic is augmented by
lags of AY, the resulting r-statistic is referred to as the augmented Dickey-Fulier
(ADF) statistic.

In general the lag length p is unknown, but it can be estimated using an infor-
mation criterion applied to regressions of the form in Equation (14.32) for vari-
ous values of p. Studies of the ADF statistic suggest that it is better to have too
many lags than too few, so it is recommended to use the AIC instead of the BIC
to estimate p for the ADF statistic.*

Testing against the alternative of stationarity around a linear deterministic
time trend. The discussion so far has considered the null hypothesis that the
series has a unit root and the alternative hypothesis that it is stationary. This alterna-
tive hypothesis of stationarity is appropriate for series, such as the rate of inflation,

3Under the null hypothesis of a unit root, the usual “nonrobust™ standard errors produce a f-statistic
that is in fact robust to heteroskedasticity, a surprising and special result.

4See Stock (1994) and Haldrup and Jansson (2006) for reviews of simulation studies of the finite-sample
properties of the Dickey~Fuller and other unit root test statistics.
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Thé Augméni;.ed Dickey—Fuller
Test for a Unit Autoregressive Root

The augmented Dickey—Fuller (ADF) test for a unit autoregressive root tests the null
hypothesis Hy: 6 = 0 against the one-sided alternative H;: § < 0in the regression

AY =B+t 0¥+ nAY  + 7AYo+ - +y,AY  +u. (1432)

Under the null hypothesis, ¥ has a stochastic trend; under the alternative hypoth-
esis, ¥ is stationary. The ADF statistic is the QLS t-statistic testing § =0 in
Equation (14.32).

If instead the alternative hypothesis is that Y is stationary around a determin-
istic linear time trend, then this trend, “¢” (the observation number), must be added
as an additional regressor, in which case the Dickey-Fuller regression becomes

AY, = Bo+at +8Y 1+ AY +yAY 5+ - +y, AV, +uy, (14.33)

where o is an unknown coefficient and the ADF statistic is the OLS #-statistic test-
ing 8 = 0 in Equation (14.33).

The lag length p can be estimated using the BIC or AIC. When p = 0, lags of
AY, are not included as regressors in Equations (14.32) and (14.33), and the ADF

- test simplifies to the Dickey-Fuller test in the AR(1) model. The ADF statistic does

not have a normal distribution, even in large samples. Critical values for the one-
sided ADF test depend on whether the test is based on Equation (14.32) or (14.33)
and are given in Table 14.5.
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that do not exhibit long-term growth. But other economic time series, such as Japan-
ese GDP (Figure 14.2¢), exhibit long-run growth, and for such series the alterna-
tive of stationarity without a trend is inappropriate. Instead, a commonly used
alternative is that the series are stationary around a deterministic time trend, that
is, a trend that is a deterministic function of time.

One specific formulation of this alternative hypothesis is that the time trend is
linear, that is, the trend is a linear function of t; thus the null hypothesis is that the
series has a unit root, and the alternative is that it does not have a unit root but does
have a deterministic time trend. The Dickey-Fuller regression must be modified to
test the null hypothesis of a unit root against the alternative that it is stationary
around a linear time trend. As summarized in Equation (14.33) in Key Concept 14.8,
this is accomplished by adding a time trend (the regressor X, = 1) to the regression.
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A linear time trend is not the only way to specify a deterministic time trend; for
example, the deterministic time trend could be quadratic, or it could be linear but
have breaks (that is, be linear withslopes that differ in two parts of the sample). The
use of alternatives like these with nonlinear deterministic trends should be mot-
vated by economic theory. For a discussion of unit root tests against stationarity .-
around nonlinear deterministic trends, see Maddala and Kim (1998, Chapter 13).

Critical values for the ADF statistic. Under the null hypothesis of a unit root,
the ADF statistic does not have a normal distribution, even in large samples.
Because its distribution is nonstandard, the usual critical values from the normal
distribution cannot be used when using the ADF statistic to test for a unit root; a
special set of critical values, based on the distribution of the ADF statistic under
the null hypothesis, must be used instead.

The critical values for the ADF test are given in Table 14.5. Because the alter-
native hypothesis of stationarity implies that § < 0 in Equations (14.32) and
(14.33), the ADF test is one-sided. For example, if the regression does not include 3
a time trend, then the hypothesis of a unit root is rejected at the 5% significance £
level if the ADF statistic is less than —2.86. If a time trend is included in the regres- o
sion, the critical value is instead —3.41. .

The critical values in Table 14.5 are substantially larger (more negative) than
the one-sided critical values of —1.28 (at the 10% level) and —1.645 (at the 5%

ADF statistic is an example of how OLS t-statistics for regressors with stochastic
trends can have nonnormal distributions. Why the large-sample distribution of the
ADF statistic is nonstandard is discussed further in Section 16.3.

I L
level) from the standard normal distribution. The nonstandard distribution of the }

Does U.S. inflation have a stochastic trend? The null hypothesis that inflation
has a stochastic trend can be tested against the alternative that it is stationary by
performing the ADF test for a unit autoregressive root. The ADF regression with

four lags of Inf, is

Alnf, =051 — 0.11Inf_; — 0.19AInf, — 0.26AInf,_ + 0.20AInf,_s + 0.01 Alnf_y.

(0.21) (0.04) (0.08) (0.08) (0.08) (0.08)
(14.34)

The ADF t-statistic is the t-statistic testing the hypothesis that the coefficient on }

Inf_, is zero: this is 1 = —2.69. From Table 14.5, the 5% critical value is —2.86.
Because the ADF statistic of —2.69 is less negative than —2.86, the test does not
reject the null hypothesis at the 5% significance level. Based on Fhe regression in
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Large-Sample Critical Valties of the Augmented Dickey—Fuller Statistic

Deterministic Regressors 10% 5% ) 1%
-2.57 -2.86 —3.43
Intercept and time trend -3.12 —3.41 -3.96

Equation (14.34), we therefore cannot reject (at the 5% significance level) the nuil
hypothesis that inflation has a unit autoregressive root, that is, that inflation con-
tains a stochastic trend, against the alternative that it is stationary.

The ADF regression in Equation (14.34) includes four lags of Alnf, to com-
pute the ADF statistic. When the number of lags is estimated using the ATC, where
0 = p = 5,the AIC estimator of the lag length is, however, three. When three lags
are used (that is, when AInf,_;, Alnf,_,, and Alnf_; are included as regressors), the
ADF statistic is —2.72, which is less negative than —2.86. Thus, when the number
of lags in the ADF regression is chosen by AIC, the hypothesis that inflation con-
tains a stochastic trend is not rejected at the 5% significance level.,

These tests were performed at the 5% significance level. At the 10% signifi-
cance level, however, the tests reject the null hypothesis of a unit root: The ADF
statistics of —2.69 (four lags) and —2.72 (three lags) are more negative than the
10% critical value of —2.57. Thus the ADF statistics paint a rather ambiguous pic-
ture, and the forecaster must make an informed judgment about whether to model
inflation as having a stochastic trend. Clearly, inflation in Figure 14.1a exhibits long-
Iun swings, consistent with the stochastic trend model. In practice, many forecast-
ers treat ULS, inflation as having a stochastic trend, and we follow that strategy here.

Avoiding the Problems Caused by Stochastic Trends

The most reliable way to handle a trend in a series is to transform the series so
that it does not have the trend. If the series has a stochastic trend, that is, if the
series has a unit root, then the first difference of the series does not have a trend, For
example, if ¥ follows a random walk so that ¥, = 8¢ + ¥_; + u,, then AY, = By +u,
is stationary. Thus using first differences eliminates random walk trends in a series.

In practice, you can rarely be sure whether a series has a stochastic trend. Recall
that, as a general point, failure to reject the null hypothesis does not necessarily mean
that the null hypothesis is true; rather, it simply means that you have insufficient evi-
dence to conclude that it is false. Thus failure to reject the null hypothesis of a unit
root using the ADF test does not mean that the series actually Aas a unit root. For
example, in an AR(1) model the true coefficient 8, might be very close to 1, say 0.98,
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in which case the ADT test would have low power, that is, a low probability of cor-.
rectly rejecting the null hypothesis in samples the size of our inflation series. Even
though failure to reject the null hypothesis of a unit root does not mean the series
has a unit root, it still can be reasonable to approximate the true autoregressive root
as equaling 1 and therefore to use differences of the sexies rather than its levels’

Nonstationarity II: Breaks

A second type of nonstationarity arises when the population regression function

changes over the course of the sample. In economics, this can occur for a variety
of reasons, such as changes in economic policy, changes in the structure of the econ-
omy, or an invention that changes a specific industry. If such changes, or “breaks,”
occur, then a regression model that neglects those changes can provide a mis-
leading basis for inference and forecasting.

This section presents two strategies for checking for breaks in a time series
regression function over time. The first strategy looks for potential breaks from the
perspective of hypothesis testing and entails testing for changes in the regression
coefficients using F-statistics. The second strategy looks for potential breaks from the
perspective of forecasting: You pretend that your sample ends sooner than it actually
does and evaluate the forecasts you would have made had this been so. Breaks are
detected when the forecasting performance is substantially poorer than expected.

What Is a Break?

Breaks can arise either from a discrete change in the population regression coef-
ficients at a distinct date or from a gradual evolution of the coefficients over a
longer period of time. ‘
One source of discrete breaks in macroeconomic data is a major change in
macroeconomic policy. For example, the breakdown of the Bretton Woods system
of fixed exchange rates in 1972 produced the break in the time series behavior of
the $/£ exchange rate that is evident in Figure 14.2b. Prior to 1972, the exchange
rate was essentially constant, with the exception of a single devaluation in 1968 in
which the official value of the pound, relative to the dollar, was decreased. in con-
trast, since 1972 the exchange rate has fluctuated over a very wide range.
Breaks also can occur more slowly as the population regression evolves over
time. For example, such changes can arise because of slow evolution of economic

SFor additional discussion of stochastic trends in economic time series variables and of the problems
they pose for regression analysis, see Stock and Watson (1988).
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- policy and ongoing changes in the structure of the economy. The methods for -

detecting breaks described in this section can detect both types of breaks, distinct
changes and slow evolution.

Problems caused by breaks. If a break occurs in the population regression func-
tion during the sample, then the OLS regression estimates over the full sample will
estimate a relationship that holds “on average,” in the sense that the estimate com-
bines the two different periods. Depending on the location and the size of the
break, the “average” regression function can be quite different from the true
regression function at the end of the sample, and this leads to poor forecasts.

Testing for Breaks

One way to detect breaks is to test for discrete changes, or breaks, in the regres-
sion coefficients. How this is done depends on whether the date of the suspected

break (the break date) is known.

Testing for a break at a known date. In some applications you might suspect
that there is a break at a known date. For example, if you are studying interna-
tional trade relationships using data from the 1970s, you might hypothesize that
there is a break in the population regression function of interest in 1972 when the
Bretton Woods system of fixed exchange rates was abandoned in favor of floating
exchange rates.

If the date of the hypothesized break in the coefficients is known, then the null
hypothesis of no break can be tested using a binary variable interaction regression
of the type discussed in Chapter 8 (Key Concept 8.4). To keep things simple, con-
sider an ADL(1,1) model, so there is an intercept, a single lag of ¥, and a single
lag of X,. Let 7 denote the hypothesized break date and let D,(7) be a binary vari-
able that equals 0 before the break date and 1 after, so D,(7) =0 if t = 7 and
D7) =11ifr > 1. Then the regression including the binary break indicator and all
interaction terms is

Y= Bo+ B1Yy + 8 X1 +yoD(r) + yi[ D7) X Yiq ] + 2 D7) X Xy | + e
(14.35)

If there is not a break, then the population regression function is the same over
both parts of the sample, so the terms involving the break binary variable D,(7)
do not enter Equation (14.35). That is, under the null hypothesis of no break,
vo =71 = v2 = 0. Under the alternative hypothesis that there is a break, then the
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population regression function is different before and after the break date 7,in which
case at least one of the y’s is nonzero. Thus the hypothesis of a break can be tested

using the Fstatistic that tests, the hypothesis that o=y, =, =0 against the -

hypothesis that at Jeast one of the y’s is nonzero. This is often called a Chow test for -
a break at a known break date, named for its inventor, Gregory Chow (1960).
If there are multiple prediciors or more lags, then this test can be extended by

constructing binary variable interaction variables for all the regressors and test

ing the hypothesis that all the coefficients on terms involving D,(r) are zero.
‘This approach can be modified to check for a break in a subset of the coeffi-

_cients by including only the binary variable interactions for that subset of regres-

sors of interest.

Testing for a break at an unknown break date. Often the date of a possible
break is unknown or known only within a range. Suppose, for example, that you
suspect that a break occurred sometime between two dates, 75 and 7;. The Chow
test can be modified to handle this by testing for breaks at all possible dates 7 in
between 7 and 71, and then using the largest of the resulting F-statistics to test for
a break at an unknown date. This modified Chow test is variously called the
Quandt likelihood ratio (QLR) statistic (Quandt, 1960) (the term we shall use) or,
more obscurely, the sup-Wald statistic.

Because the QLR statistic is the largest of many F-statistics, its distribution is
not the same as an individual F-statistic. Instead, the critical values for the QLR
statistic must be obtained from a special distribution. Like the F-statistic, this dis-
tribution depends on the number of restrictions being tested, g, that is, the number
of coefficients (including the intercept) that are being allowed to break, or change,
under the alternative hypothesis. The distribution of the QLR statistic also depends
on 7o/ T and /T, that is, on the endpoints, 7 and 7, of the subsample over which
the F-statistics are computed, expressed as a fraction of the total sample size.

For the large-sample approximation to the distribution of the QLR statistic
to be a good one, the subsample endpoints, 7y and 7y, cannot be too close to the
beginning or the end of the sample. For this reason, in practice the QLR statistic
is computed over a “trimmed” range, or subset, of the sample. A common choice
is to use 15% trimming, that is, to set for 7o = 0.157 and 7 = 0.857 (rounded to
the nearest integer). With 15% trimming, the F-statistic is computed for break
dates in the central 70% of the sample.

The critical values for the QLR statistic, computed with 15% tfimming, are
given in Table 14.6. Comparing these critical values with those of the F, o distrib-
ution (Appendix Table 4) shows that the critical values for the QLR statistics are
larger. This reflects the fact that the QLR statistic looks at the largest of many indi-
vidual F-statistics. By examining F-statistics at many possible break dates, the QLR

147 Nonstationarity II: Breaks 559

Critical Values of the QLR Statistic with 15% Trimming
Number of Restrictions (g) 10% 5% 1%
1‘« o 712 8.68 12.16
2 5w s s
3 4.09 4.71 6.02
4 7 3.59 ) 4.09 - ;12 ) o
5 ) ] 3.26 366 ) 4.53 i
6 3.02 R 3.37 o . 4.12 -
7 o ;8:11 - 315 B 3.82
8 ) 2.69 2.98 357
9. B ;5:3 o 2.84 - 3.38 N
1(1 ) 248 2l;i o 323
11 o “ 2.40 2,67; o 3.09 )
12 - *WVZ‘33 i ) 2.54 2.9777
13 o - 227 2216 o 2.87 i
_}:‘, o 221 2.40 2.78
15 o m;16 o 2.34 - —ZA.;;N*A—MWM
16 ) 212 i ?;.29 o AZ 64 :
17 o 2 E)S 225 2.58 )
18 ' 2 &)5 220 o 2.53
41.9 2.01 R i 27177 2.48
20 1.9‘9> VVVVV 2.13 - 2.43
These crit:u:al values apply when 7y=0.15T and 7 = 0.857 (rounded to the nearest integer), so the F-statistic is computed for
all pqten}@l break dates in the central 70% of the sample. The number of restrictions q is the number of restrictions tested by
each individual F-statistic. Critical values for other trimming percentages are given in Andrews (2003).

-

statistic has many opportunities to reject the null hypothesis, leading to QLR crit-
ical values that are larger than the individual F-statistic critical values.

Like the Chow test, the QLR test can be used to focus on the possibility that
there are breaks in only some of the regression coefficients. This is done by first
computing the Chow tests at different break dates using binary variable interac-
tions only for the variables with the suspect coefficients, then computing the max-
imum of those Chow tests over the range 7y =< 7 = 7. The critical values for this
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The QLR Test for Ceefﬁaent Stablhty

Let F(7) denote the F-statistic testing the hypothesxs of a break in the regressi )
coefficients at date 7;in the regression in Equation (14.35), for éxamiple, this is th
F-statistic testing the null hypothesis that vy =y, =7y, =0.The QLR {or'sup
Wald) test statistic is the largest of statistics in the range 7 = 7 = 1y

QLR = max{F(rp), F(rg +1),..., F(r1)]. (14.36).

1. Like the F-statistic, the QLR statistic can be used to test for a break in all or:
just some of the regression coefficients. :
2. In large samples, the distribution of the QLR statistic under the null hypoth-
esis depends on the number of restrictions being tested, ¢, and on the end-
points 7y and 7y as a fraction of 7. Critical values are given in Table 14.6 for
15% trimming (7 =0.15T and 7, = 0.857T, rounded to the nearest integer).

3. The QLR test can detect a single discrete break, multiple discrete breaks,
and/or slow evolution of the regression function.

4. If there is a distinct break in the regression function, the date at which the
largest Chow statistic occurs is an estimator of the break date. ,

version of the QLR test are also taken from Table 14.6, where the number of
restrictions (g) is the number of restrictions tested by the constituent F-statistics.
If there is a discrete break at a date within the range tested, then the QLR sta-
tistic will reject with high probability in large samples. Moreover, the date at which
the constituent F-statistic is at its maximum, 7, is an estimate of the break date 7.
This estimate is a good one in the sense that. under certain technical conditions,
7/T —£> 7/T; that is, the fraction of the way through the sample at which the
break occurs is estimated consistently.
The QLR statistic also rejects the null hypothesis with high probability in large
samples when there are multiple discrete breaks or when the break comes in the
form of a slow evolution of the regression function. This means that the QLR sta-
tistic detects forms of instability other than a single discrete break. As a result, if
the QLR statistic rejects the null hypothesis, it can mean that there is a single dis-
crete break, that there are multiple discrete breaks, or that there is slow evolution
of the regression function.
The QLR statistic is summarized in Key Concept 14.9.
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Warning: You probably don‘t know the break date even if you think you
do. Sometimes an expert might believe that he or she knows the date of a pos-
sible break so that the Chow test can be used instead of the QLR test. But if this
knowledge is based on the expert’s knowledge of the series being analyzed, then
in fact this date was estimated using the data, albeit in an informal way. Prelimi-
nary estimation of the break date means that the usual F critical values cannot be
used for the Chow test for a break at that date. Thus it remains appropriate to use
the QLR statistic in this circumstance.

Application: Has the Phillips curve been stable? The QLR test provides a way
to check whether the Phillips curve has been stable from 1962 to 2004. Specifically,
we focus on whether there have been changes in the coefficients on the lagged val-
ues of the unemployment rate and the intercept in the ADI(4,4) specification in
Equation (14.17) containing four lags each of Alnf, and Unemp,.

The Chow F-statistics testing the hypothesis that the intercept and the coef-
ficients on Unemp,, ..., Unemp,_, in Equation (14.17) are constant against the
alternative that they break at a given date are plotted in Figure 14.5 for breaks
in the central 70% of the sample. For example, the F-statistic testing for a break
in 1980:1is 2.85, the value plotted at that date in the figure. Each F-statistic tests
five restrictions (no change in the intercept and in the four coefficients on lags
of the unemployment rate), so g = 5. The largest of these F-statistics is 5.16,
which occurs in 1981:1V; this is the QLR statistic. Comparing 5.16 to the criti-
cal values for ¢ =5 in Table 14.6 indicates that the hypothesis that these coef-
ficients are stable is rejected at the 1% significance level (the critical value is
4.53). Thus there is evidence that at least one of these five coefficients changed
over the sample.

Pseudo Out-of-Sample Forecasting

The ultimate test of a forecasting model is its out-of-sample performance, that is,
its forecasting performance in “real time,” after the model has been estimated.
Pseudo out-of-sample forecasting is a method for simulating the real-time per-
formance of a forecasting model. The idea of pseudo out-of-sample forecasting is
simple: Pick a date near the end of the sample, estimate your forecasting model
using data up to that date, then use that estimated model to make a forecast. Per-
forming this exercise for multiple dates near the end of your sample yields a series
of pseudo forecasts and thus pseudo forecast errors. The pseudo forecast errors
can then be examined to see whether they are representative of what you would
expect if the forecasting relationship were stationary.
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F-Statistics Testing for a Break in Equatiori (14.17) at Different Da@
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At a given break date, the Fstatistic plotted here tests the null hypothesis of a break in at least
one of the coefficients on Unemp,._,, Unemp,_,, Unemp,_3, Unemp,_,, or the intercept in
Equation (14.17). For example, the Fstatistic testing for a break in 1980: is 2.85. The QLR statis-

tic is the largest of these Fstatistics, which is 5.16. This exceeds the 1% critical value of 4.53.

The reason this is called “pseudo” out-of-sample forecasting is that it is not true
out-of-sample forecasting. True out-of-sample forecasting occurs in real time; that is,
you make your forecast without the benefit of knowing the future values of the series.
In pseudo out-of-sample forecasting, you simulate real-time forecasting using your
model, but you have the “future” data against which to assess those simulated, or
pseudo, forecasts. Pseudo out-of-sample forecasting mimics the forecasting process
that would occur in real time, but without having to wait for new data to arrive.

Pseudo out-of-sample forecasting gives a forecaster a sense of how well the
model has been forecasting at the end of the sample. This can provide valuable
information, either bolstering confidence that the model has been forecasting well
or suggesting that the model has gone off track in the recent past. The methodol-
ogy of pseudo out-of-sample forecasting is summarized in Key Concept 14.10.

Other uses of pseudo out-of-sample forecasting. A second use of pseudo out-
of-sample forecasting is to estimate the RMSFE. Because the pseudo out-of-sample

Pseudo Out-of-Sample Forecasts

'Pseudo out-of-sample forecasts are computed using the following steps:

4
d.

™
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Choose a number of observations, P, for which you will generate pseudo out-
of-sample forecasts; for example, P might be 10% or 15% of the sample size.
Tets=T-P.

. Estimate the forecasting regression using the shortened data set for

t=1,...,s.

. Compute the forecast for the first period beyond this shortened sample, s + 1;

call this ¥y

. Compute the forecast error, if, ;= ¥, — }7; i

s

5. Repeat steps 2 through 4 for the remaining dates,s =T— P+ 1to T — 1 (re-

estimate the regression at each date). The pseudo out-of-sample forecasts are
{Y41» s =T—P,..., T—1}, and the pseudo out-of-sample forecast errors
are {il,,,,s=T—P,...,T—1}.

forecasts are computed using only data prior to the forecast date, the pseudo out-
of-sample forecast errors reflect both the uncertainty associated with future values
of the error term and the uncertainty arising because the regression coefficients
were estimated; that is, the pseudo out-of-sample forecast errors include both
sources of error in Equation (14.21). Thus the sample standard deviation of the
pseudo out-of-sample forecast errors is an estimator of the RMSFE. As discussed
in Section 14.4, this estimator of the RMSFE can be used to quantify forecast
uncertainty and to construct forecast intervals.

A third use of pseudo out-of-sample forecasting is to compare two or more
candidate forecasting models. Two models that appear to fit the data equally well
can perform quite differently in a pseudo out-of-sample forecasting exercise. When
the models are different, for example, when they include different predictors,
pseudo out-of-sample forecasting provides a convenient way to compare the two
models that focuses on their potential to provide reliable forecasts.

Application: Did the Phillips curve change during the 1990s? Using the QLR
statistic, we rejected the null hypothesis that the Phillips curve has been stable
against the alternative of a break at the 1% significance level (see Figure 14.5).
The maximal F-statistic occurred in 1981:1V, indicating that a break occurred in
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P erhaps you have heard the advice that you should
buy a stock when its earnings are high relative to
its price. Buying a stock is, in effect, buying the
stream of future dividends paid by that company out
of its earnings. If the dividend stream is unusually
large relative to the price of the company’s stock,
then the company could be considered undervalued.
If current dividends are an indicator of future divi-
dends, then the dividend yield—the ratio of current
dividends to the stock price—might forecast future
excess stock returns. If the dividend yield is high, the
stock is undervalued and returns would be fore-
casted to go up.

This reasoning suggests examining autoregressive
distributed lag models of excess returns, where the
predictor variable is the dividend yield. But a diffi-
culty arises with this approach: The dividend yield is
highly persistent and might even contain a stochas-
tic trend. Using monthly data from 1960:1 to 2002:12
on the logarithm of the dividend-price ratio for the
CRSP value-weighted index (the data are described
in Appendix 14.1), a Dickey—Fuller unit root test
including an intercept fails to reject the null hypoth-
esis of a unit root at the 10% significance level. As
always, this failure to reject the null hypothesis does
not mean that the null hypothesis is true, but it does
underscore that the dividend yield is a highly persis-
tent regressor. Following the logic of Section 14.6,
this result suggests that we should use the first dif-
ference of the log dividend yield as a regressor, not
the level of the log dividend yield.

Table 14.7 presents ADL models of excess returns
on the CRSP value-weighted index. In columns (1)
and (2), the dividend yield appears in first differ-
ences, and the individual t-statistics and joint F-sta-
tistics fail to reject the null hypothesis of no
predictability. But while these specifications accord

with the modeling recommendations of Section 14.6,

they do not correspond to the economic reasoning in

the introductory paragraph, which relates returns to. -

the level of the dividend yield. Column (3) of Table
14.7 therefore reports an ADL(1,1) model of excess

returns using the log dividend yield, estimated .

through 1992:12. The r-statistic is 2.25, which exceeds
the usual 5% critical value of 1.96. However, because
the regressor is highly persistent, the distribution of
this t-statistic is suspect and the 1.96 critical value
may be inappropriate. (The F-statistic for this regres-
sion is not reported because it does not necessarily
have a chi-squared distribution, even in large sam-
ples, because of the persistence of the regressor.)

One way to evaluate the apparent predictability
found in column (3) of Table 14.7 is to conduct a
pseudo out-of-sample forecasting analysis. Doing so
over the out-of-sample period 1993:1-2002:12 pro-
vides a sample root mean square forecast error of
4.08%. In contrast, the sample RMSFEs of always
forecasting excess returns to be zero is 4.00%, and the
sample RMSFE of a “constant forecast” (in which the
recursively estimated forecasting model inctudes only
an intercept) is 3.98%. The pseudo out-of-sample
forecast based on the ADL(1,1) model with the log
dividend yield does worse than forecasts in which
there are no predictors!

This lack of predictability is consistent with the
strong form of the efficient markets hypothesis, which
holds that all publicly available information is incor-
porated into stock prices so that returns should not
be predictable using publicly available information
(the weak form concerns forecasts based on past
returns only). The core message that excess returns
are not easily predicted makes sense: If they were, the
prices of stocks would be driven up to the point that
no expected excess returns would exist.

The interpretation of results like those in Table

14.7 is a matter of heated debate among financial

economists. Some consider the lack of predictabil-
ity in predictive regressions to be a vindication of
the efficient markets hypothesis (see, for example,
Goyalh and Welch, 2003). Others say that regres-
sions over longer time periods and ionger horizons,
when analyzed using tools that are specifically
designed to handle persistent regressors, show evi-
dence of predictability (see Campbell and Yogo,
2006). This predictability might arise from rational
economic behavior, in which investor attitudes

toward risk change over the business cycle (Camp-
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bell, 2003), or it might reflect “irrational exuber-
ance” (Shiller, 2005),

The results in Table 14.7 concern monthly returns,
but some financial econometricians have focused on
ever-shorter horizons. The theory of “market
microstructure” —the minute-to-minute movements
of the stock market—suggests that there can be fleet-
ing periods of predictability and that money can be
made by the clever and nimble. But doing so requires
nerve, plus lots of computing power—and a staff of
talented econometricians.

7 Autoregressive Distribuied Lag Models of Monthiy Excess Stock Returns )
Dependent variable: excess returns on the CRSP value-weighted index.
(¢)] 2) 3)
Specification ADL(L1) ADL(2,2) ADL(1,1)
Estimation period 1960:1- 1960:1- 7 19601— o
o 2002:12 2002:12 1992:12
Regressors - -
excess refurm,_y 0.059 o 0.042 0.078
S (0.158) (0.162) (0.057)
excess returi,_» —0.213 ‘ -
(0.193)
Aln(dividend yield,_,) 0.009 - —70.012 - o ) i
- (0.157) (0.163)
Aln(dividend yield,_») a —0.161 - o
(0.185)
In(dividend yield, ) 0.026°
o (0.012)
Intercept 0.0031 0.0037 QO&(‘)""
(0.0020) (0.0021) (0.039)
F-statistic on all coefficients (p-value) 0.501 ) 6.843 7
7 (0.606) (0.497)
Rr? -0.0014 —0.0008 0.0134 7
Notes: The data are described in Appendix 14.1. Entries in the regressor rows are coefficients, with standard errors in
parentheses. The final two rows report the F-statistic testing the hypothesis that all the coefficients in the regression are
ztero, with its p-value in parentheses, and the adjusted R?.
2>1.96.
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the early 1980s. This suggests that a forecaster using lagged unemployment to fore- ;
cast inflation should use an estimation sample starting after the break in 1981:1v.+

Even 50, a question remains: Does the Phillips curve provide a stable fmecastmg
model subsequent to the 1981:TV break?

If the coefficients of the Phillips curve changed some time -during tuc
1982:1-2004:1 period, then pseudo out-of-sample forecasts computed using data
starting in 1982:1 should deteriorate. The pseudo out-of-sample forecasts of infla-
tion for the period 1999:1-2004:1V, computed using the four-lag Phillips curve esti-

mated with data starting 1982:[, are plotted in Figure 14.6 along with the actual ©

values of inflation. For example, the forecast of inflation for 1999:1 was computed
by regressing Alnf, on Alnfoy,. .., Anf_y, Unemp,_1, ..., Unemp,_, with an inter-
cept using the data through 1998:1V, then computing the forecast A/I/\1ﬁ999 A1998TV
using these estimated coefficients and the data through 1998:1V. The inflation fore-
cast for 1999:1 is then Alﬂflggg Auwosv = Ifiegry + Alnflggg fji99s:1v- This entire pro-
cedure was repeated using data through 1999:I to compute the forecast
A/I—\nﬁgggznhggg:x. Doing this for all 24 quarters from 1999:1 to 2004:1V creates 24
pseudo out-of-sample forecasts, which are plotted in Figure 14.6. The pseudo out-
of-sample forecast errors are the differences between actual inflation and its
pseudo out-of-sample forecast, that is, the differences between the two lines in
Figure 14.6. For example, in 2000:1V, the inflation rate fell by 0.8 percentage point,
but the pseudo out-of-sample forecast of Alnfigpprv was 0.3 percentage point, so
the pseudo out-of-sample forecast error was Alnferv — ’—g”\fzooo:wlzoomn = —0.8
— 0.3 = —1.1 percentage points. In other words, a forecaster using the ADL(4,4)
model of the Phillips curve, estimated through 2000:I1], would have forecasted that
inflation would increase by 0.3 percentage point in 2000:IV, whereas in reality it
fell by 0.8 percentage point. .

How do the mean and standard deviation of the pseudo out-of-sample fore-
cast errors compare with the in-sample fit of the model? The standard error of
the regression of the four-lag Phillips curve fit using data from 1982:I through
1998:1V is 1.30, so based on the in-sample fit we would expect the out-of-sample
forecast errors to have mean zero and root mean square forecast error of 1.30.
In fact, over the 1999:1-2004:1V pseudo out-of-sample forecast period, the aver-

age forecast error is 0.11 and the -statistic testing the hypothesis that the mean

forecast error equals zero is 0.41; thus the hypothesis that the forecasts have
mean zero is not rejected. In addition, the RMSFE over the pseudo out-of-sam-
ple forecast period is 1.32, very close to value of 1.30 for the standard error of
the regression for the 1982:1-1998:1V period. Moreover, the plot of the forecasts
and the forecast errors in Figure 14.6 shows no major outliers or unusual dis-

crepancies.
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—

' U.S. Inflation and Pseudo Out-of-Sample Forecasts

Percent per annum 4 5

The pseudo out-of-sample forecasts made using a four-lag Phillips curve of the form in Equation (14.17) generally track
actual inflation and are consistent with a stable post-1982 Phillips curve forecasting model.
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According to the pseudo out-of-sample forecasting exercise, the performance
of the Phillips curve forecasting model during the pseudo out-of-sample period of
1999:1-2004:1V was comparable to its performance during the in-sample period of
1982:1-1998:1V. Although the QLR test points to instability in the Phillips curve
in the early 1980s, this pseudo out-of-sample analysis suggests that, after the early
1980s break, the Phillips curve forecasting mode! has been stable.

Avoiding the Problems Caused by Breaks

"The best way to adjust for a break in the population regression function depends
on the source of that break. If a distinct break occurs at a specific date, this break
will be detected with high probability by the QLR statistic, and the break date can
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be estimated. Thus the regression function can be estimated using a binary vari.

able indicating the two subsamples associated with this break, interacted with the =

other regressors as needed. If all.the coefficients break, then this regression takes
the form of Equation (14.35), where 7 is replaced by the estimated break date, 7;
while if only some of the coefficients break, then only the relevant interaction

terms appear in the regression. If there is in fact a distinct break, then inference
on the regression coefficients can proceed as usual, for example, using the usual
normal critical values for hypothesis tests based on #-statistics. In addition, fore- -
casts can be produced using the estimated regression function that applies to the -

end of the sample.
If the break is not distinct but rather arises from a slow, ongoing change in the
parameters, the remedy is more difficult and goes beyond the scope of this book.$

Conclusion

In time series data, a variable generally is correlated from one observation, or date,
to the next. A consequence of this correlation is that linear regression can be used
to forecast future values of a time series based on its current and past values. The
starting point for time series regression is an autoregression, in which the regres-
sors are lagged values of the dependent variable. If additional predictors are avail-
able, then their lags can be added to the regression.

This chapter has considered several technical issues that arise when estimat-
ing and using regressions with time series data. One such issue is determining the
number of lags to include in the regressions. As discussed in Section 14.5, if the
number of lags is chosen to minimize the BIC, then the estimated lag length is con-
sistent for the true lag length.

Another of these issues concerns whether the series being analyzed are sta-
tionary. If the series are stationary, then the usual methods of statistical inference
(such as comparing ¢-statistics to normal critical values) can be used, and because
the population regression function is stable over time, regressions estimated using
historical data can be used reliably for forecasting. If, however, the series are non-
stationary, then things become more complicated, where the specific complication
depends on the nature of the nonstationarity. For example, if the series is nonsta-
tionary because it has a stochastic trend, then the OLS estimator and -statistic can

6For additional discussion of estimation and testing in the presence of discrete breaks, see'Hansen
(2001). For an advanced discussion of estimation and forecasting when there are slowly evolving coef-
ficients, see Hamilton (1994, Chapter 13).
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have nonstandard (nonnormal) distributions, even in large samples, and forecast
performance can be improved by specifying the regression in first differences. A
test for detecting this type of nonstationarity —the augmented Dickey—Fuller test
for a unit root—was introduced in Section 14.6. Alternatively, if the population
regression function has a break, then neglecting this break results in estimating an
average version of the population regression function that in turn can lead to
biased and/or imprecise forecasts. Procedures for detecting a break in the popu-
Iation regression function were introduced in Section 14.7.

In this chapter, the methods of time series regression were applied to eco-
nomic forecasting, and the coefficients in these forecasting models were not given

a causal interpretation. You de not need a causal relationship to forecast, and

ignoring causal interpretations liberates the quest for good forecasts. In some
applications, however, the task is not to develop a forecasting model but rather to
estimate causal relationships among time series variables, that is, to estimate the
dynamic causal effect on Y over time of a change in X. Under the right conditions,
the methods of this chapter, or closely related methods, can be used to estimate
dynamic causal effects, and that is the topic of the next chapter.

Summary

1. Regression models used for forecasting need not have a causal interpretation.
A time series variable generally is correlated with one or more of its lagged
values; that is, it is serially correlated.

3. An autoregression of order p is a linear multiple regression model in which
the regressors are the first p lags of the dependent variable. The coefficients
of an AR(p) can be estimated by OLS, and the estimated regression func-
tion can be used for forecasting. The lag order p can be estimated using an
information criterion such as the BIC.

4. Adding other variables and their lags to an autoregression can improve fore-
casting performance. Under the least squares assumptions for time series
regression (Key Concept 14.6), the OLS estimators have normal distribu-
tions in large samples and statistical inference proceeds the same way as for
cross-sectional data.

5. Forecast intervals are one way to quantify forecast uncertainty. If the errors
are normally distributed, an approximate 68% forecast interval can be con-
structed as the forecast plus or minus an estimate of the root mean squared
forecast error.
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6.

A series that contains a stochastic trend is nonstationary, violating the sec-

ond least squares assumption in Key Concept 14.6. The OLS estimator and
r-statistic for the coefficient of a regressor with a stochastic trend can have a
nonstandard distribution, potentially leading to biased estimators, inefficient

forecasts, and misieading inferences. The ADF statistic can be used to test

for a stochastic trend. A random walk stochastic trend can be eliminated by
using first differences of the series.

If the population regression function changes over time, then OLS estimates’

neglecting this instability are unreliable ﬁor statistical inference or forecast-
ing. The QLR statistic can be used to test for a break, and, if a discrete break
is found, the regression function can be re-estimated in a way that allows for
the break.

Pseudo out-of-sample forecasts can be used to assess model stability toward
the end of the sample, to estimate the root mean squared forecast error, and
to compare different forecasting models.
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first lag (520)

Bayes information criterion (BIC)
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(543)
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random walk with drift (548)

unit root (549)

spurious regression (550)

Dickey-Fuller test (551)

Dickey-Fuller statistic (552)

augmented Dickey-Fuller (ADF)
statistic (552)

break date (557)

Quandt likelihood ratio (QLR)
statistic (558)

pseudo out-of-sample forecasting
(561)
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Review the Concepts

141 Look at the plot of the logarithm of GDP for Japan in Figure 14.2¢. Does this

14.2

14.3

14.4

time series appear to be stationary? Explain. Suppose that you calculated the
first difference of this series. Would it appear to be stationary? Explain.

Many financial economists believe that the random walk model is a good
description of the logarithm of stock prices. It implies that the percentage
changes in stock prices are unforecastable. A financial analyst claims to have
a new model that makes better predictions than the random walk model.
Explain how you would examine the analyst’s claim that his model is superior.

A researcher estimates an AR(1) with an intercept and finds that the OLS
estimate of B, is 0.95, with a standard error of 0.02. Does a 95% confidence
interval include 8, = 1? Explain.

Suppose that you suspected that the intercept in Equation (14.17) changed
in 1992:1. How would you modify the equation to incorporate this change?
How would you test for a change in the intercept? How would you test for
a change in the intercept if you did not know the date of the change?

Exercises

141

14.2

Consider the AR(1) model ¥, = 8y + $,Y,_; -+ 11, Suppose that the process
is stationary.

a. Show that E(Y,) = E(Y_,). (Hint: Read Key Concept 14.5.)
b. Show that E(Y]) = Bo/(1 — B;).

The index of industrial production (IP,) is a monthly time series that mea-
sures the quantity of industrial commodities produced in a given month.
This problem uses data on this index for the United States. All regressions
are estimated over the sample period 1960:1 to 2000:12 (that is, January
1960 through December 2000). Let ¥; = 1200 X In(IB/IP._;).

a. The forecaster states that Y, shows the monthly percentage change in
IP, measured in percentage points per annum. Ts this correct? Why?

b. Suppose that a forecaster estimates the following AR(4) model for Yy

¥ =1377 +0.318Y_; + 0.123%_, + 0.068Y_s + 0.001Y,_,.
(0.062) (0.078)  (0.055)  (0.068)  (0.056)
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Use this AR(4) to forecast the value of Y, in January 2001 using the fol-
lowing values of IP for August 2000 through December 2000:

| Date 20007 2000:8 2000:9 2000:10 2000:11 2000:12

‘ i 147.595 148.650 148.973 148.660 148.206 147.300

¢. Worried about potential seasonal fluctuations in production, the fore-

caster adds Y,_;, to the autoregression. The estimated coefficient on
Y,_y5is —0.054 with a standard error of 0.053. Is this coefficient statis-
tically significant? )

d. Worried about a potential break, she computes a QLR test (with 15%
trimming) on the constant and AR coefficients in the AR(4) model.
The resulting QLR statistic was 3.45. Is there evidence of a break?
Explain.

e. Worried that she might have included too few or too many lags in the
model, the forecaster estimates AR(p) models forp=1,..., 6 over
the same sample period. The sum of squared residuals from each of
these estimated models is shown in the table. Use the BIC to estimate the
number of lags that should be included in the autoregression. Do the
results differ if you use the AIC?

| AR Order 1 2 3 4 5 6 W

1 SSR 29,175 28,538 28,393 28,391 28,378 28317 l

14.3 Using the same data as in Exercise 14.2, a researcher tests for a stochastic
trend in In(/P,) using the following regression:

AIn(IP) = 0.061 + 0.00004¢ — 0.018In(1P_;) + 0.333Aln(IF_,) + 0.162AIn(1P—)
(0.024) (0.00001) (0.007) (0.075) (0.055)

where the standard errors shown in parentheses are computed using the
homoskedasticity-only formula and the regressor “¢”is a linear time trend.‘

a. Use the ADF statistic to test for a stochastic trend (unit root) in
In(IP).

b. Do these results support the specification used in Exercise 14.27
Explain.
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14.4 The forecaster in Exercise 14.2 augments her AR (4) model for IP growth

14.5

i4.6

to include four lagged values of AR, ,where R, is the interest rate on three-
month US. Treasury bills (measured in percentage points at an annual
rate).

a. The Granger-causality F-statistic on the four lags of AR, is 2.35. Do
interest rates help to predict IP growth? Explain.

b. The researcher also regresses AR, on a constant, four lags of AR, and
four lags of IP growth. The resulting Granger-causality F-statistic on
- the four lags of /P growth is 2.87. Does IP growth help to predict
interest rates? Explain.

Prove the following results about conditional means, forecasts, and forecast
erTors:

a. Let W be a random variable with mean pyy and variance 0% and let ¢
be a constant. Show that E[(W — ¢)?] = o}, + (uy — ¢)>

b. Consider the problem of forecasting ¥, using dataon ¥_, ¥_,,.. ..
Let f,_, denote some forecast of ¥, where the subscript t — 1 on f._,
indicates that the forecast is a function of data through date ¢ — 1.
Let E[(Y, = f-1)Y, Y. .. ] be the conditional mean squared
error of the forecast f,_, conditional on Y observed through date
t — 1. Show that the conditional mean squared forecast error is
minimized when f;_; = ¥;,_;, where Yy = EY|Y .Y ...).
(Hint: Review Exercise 2.27.)

¢. Letu, denote the error in Equation (14.14). Show that cov(,, 1,
for j # 0.[Hint: Use Equation (2.27).]

=0
In this exercise you will conduct a Monte Carlo experiment that studies the
phenomenon of spurious regression discussed in Section 14.6. In a Monte
Carlo study, artificial data are generated using a computer, and then these
artificial data are used to calculate the statistics being studied. This makes
it possible to compute the distribution of statistics for known models when
mathematical expressions for those distributions are complicated (as they
are here) or even unknown. In this exercise, you will generate data so that
two series, ¥ and X}, are independently distributed random walks. The spe-
cific steps are as follows:

1. Use your computer to generate a sequence of T = 100 i.i.d. standard
normal random variables. Call these variables ey, e,, . . ., €,4y. Set
Yi=eand Y=Y _;+eforr=2,3,...,100.
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14.7

14.8

ii. Use your computer to generate a new Sequence, ay, Gy, . - -, dygp, Of
T =100 i.i.d. standard normal random variables. Set X1 =gy and
X=X_+afort=2,3,...,100.

iii. Regress Y, onto a constant and X,. Compute the OLS estimator, the
regression R?, and the (homoskedastic-only) t-statistic testing the null
hypothesis that §8; (the coefficient on X)) is zero.

Use this algorithm to answer the following questions:

a. Run the algorithm (i) through (iii) once. Use the r-statistic from (iif)
to test the null hypothesis that 8, = 0 using the usual 5% critical
value of 1.96. What is the R? of your regression?

b. Repeat (a) 1000 times, saving each value of R? and the t-statistic. Con-
struct a histogram of the R? and t-statistic. What are the 5%, 50%, and
95% percentiles of the distributions of the R? and the ¢-statistic? In
what fraction of your 1000 simulated data sets does the r-statistic
exceed 1.96 in absolute value?

¢. Repeat (b) for different numbers of observations, for example, T'= 50
and T = 200. As the sample size increases, does the fraction of times
that you reject the null hypothesis approach 5%, as it should because
you have generated Y and X to be independently distributed? Does
this fraction seem to approach some other limit as 7 gets large? Whai
is that limit?

Suppose that ¥, follows the stationary AR(1) model ¥, = 2.5+ 0.7Y_; +u,
where 1, is i.i.d. with E(1t,) = 0 and var(u,) = 9.

a. Compute the mean and variance of ¥, (Hint: See Exercise 14.1.)

b. Compute the first two autocovariances of ¥, (Hint: Read Appendix 142)
¢. Compute the first two autocorrelations of ¥.

d. Suppose that Yy = 102.3. Compute Yryijr = E(Yrot| ¥, Yigs - )-

Suppose that ¥, is the monthly value of the number of new home construc-
tion projects started in the United States. Because of the weather, ¥ has a
pronounced seasonal pattern; for example, housing starts are low in Janu-
ary and high in June. Let u1,, denote the average value of housing starts in
January and g, fagars - - - » KDec denote the average values in the other
months. Show that the values of fjas, reps - - - » MDec CAN be estimated from
the OLS regression Y, = By + B1Feb, + B,Mar, + -+ + BnDer -+ u,, where
Feb, is a binary variable equal to 1if ¢ is February, Mar, is a binary variable

14.9

14.10

14.11 Suppose that AY, follows the AR(1) model AY, = By + 8,AY_; + u
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equal to 1 if 7is March, and so forth: Show that B+ B> =t and so
forth.

The moving average model of order g has the form
Y=PBp+ethbe 1+be+ -+ boei—ys

where e, is a serially uncorrelated random variable with mean 0 and vari-
ance o2.

a. Show that E(Y]) = Bq.

b. Show that the variance of ¥ is var(¥)) = o2(1+ b} + B3+ --- + b,zi).
¢. Show that p;=0forj > ¢.

d. Suppose that g = 1. Derive the autocovariances for Y.

A researcher carries out a QLR test using 25% trimming, and there are g = 5
restrictions. Answer the following questions using the values in Table 14.6
(“Critical Values of the QLR Statistic with 15% Trimming”) and Appendix
Table 4 (“Critical Values of the F}, o Distribution”).

a. The QLR F-statistic is 4.2. Should the researcher reject the null
hypothesis at the 5% level?

b. The QLR F-statistic is 2.1. Should the researcher reject the null
hypothesis at the 5% level?

¢. The QLR F-statistic is 3.5. Should the researcher reject the null
hypothesis at the 5% level?

-
a. Show that ¥ follows an AR(2) model.
b. Derive the AR(2) coefficients for ¥, as a function of 8¢ and j;.

Empirical Exercises

On the textbook Web site www.pearsonhighered.com/stock_watson, you will
find a data file USMacro_Quarterly that contains quarterly data on several
macroeconomic series for the United States; the data are described in the file
USMacro_Description. Compute ¥, = In(GDP,), the logarithm of real GDP,
and AY, the quarterly growth rate of GDP. In Empirical Exercises 14.1
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E14.1

E14.2

E14.3

El4.4
E14.5

E14.6

through 14.6, use the sample period 1955:1-2009:4 (where data before 1955
may be used, as necessary, as initial values for lags in regressions).

a. Estimate the mean of AY,.

b. Express the mean growth rate in percentage points at an annual rate.
[Hint: Multiply the sample mean in (a) by 400.]

¢. Estimate the standard deviation of AY,. Express your answer in per-
centage points at an annual rate.

d. Estimate the first four autocorrelations of A'Y, What are the units of
the autocorrelations (quarterly rates of growth, percentage points at
an annual rate, or no units at ail)?

a. Estimate an AR(1) model for AY, What is the estimated AR(1) coeffi-
cient? Is the coefficient statistically significantly different from zero? Con-
struct a 95% confidence interval for the population AR(1) coefficient.

b. Estimate an AR(2) model for AY,. Is the AR(2) coefficient statisti-
cally significantly different from zero? Is this model preferred to the
AR(1) model?

c. Estimate AR(3) and AR(4) models. (i) Using the estimatgd AR(D)
through AR(4) models, use BIC to choose the number of lags in the -
AR model. (if) How many lags does AIC choose? s

Use an augmented Dickey-Fuller statistic to test for a unit autogressive 5{
root in the AR model for Y, As an alternative, suppose that Y; is stationary .

around a deterministic trend. s

reak i AR(1) model for AY, using a QLR test.
Test for a break in the AR(1) f g APPENDIX

141

a. Let R, denote the interest rate for three-month treasury bills. Estimate
an ADL(1,4) model for AY, using lags of AR, as additional predictors.
Comparing the ADL(1,4) model to the AR(1) model, by how much has
the R? changed?

b. Is the Granger causality F-statistic significant?

¢. Test for a break in the coefficients on the constant term and coeffi-
cients on the lagged values of AR using a QLR test. Is there evidence
of a break?

a. Construct pseudo out-of-sample forecasts using the AR(1) modfal
beginning in 1989:4 and going through the end of the sample. (That 1s,
compute A/171990:111939:4, K?wc)o:zjmo:b and so forth.)

b. Construct pseudo out-of-sample forecasts using the ADE(1,4) model.
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. Construct pseudo out-of-sample using the following “naive” model:
A= (AN + AY + AY , + AY 3)/4.

d. Compute the pseudo out-of-sample forecast errors for each model.
Are any of the forecasts biased? Which model has the smallest root
mean squared forecast error (RMSFE)? How large is the RMSFE
(expressed in percentage points at an annual rate) for the best model?

E14.7 Read the boxes “Can You Beat the Market? Part I” and “Can You Beat the

Market? Part II” in this chapter. Next, go to the course Web site, where you
will find an extended version of the data set described in the boxes; the data
are in the file Stock_Returns_1931_2002 and are described in the file
Stock_Returns_1931_2002_Description.

a. Repeat the calculations reported in Table 14.3 using regressions esti-
mated over the 1932:1-2002:12 sample period.

b. Repeat the calculations reported in Table 14.7 using regressions esti-
mated over the 1932:1-2002:12 sample period.

¢. Is the variable In(dividend yield) highly persistent? Explain.

d. Construct pseudo out-of-sample forecasts of excess returns over the
1983:1-2002:12 period using regressions that begin in 1932:1.

e. Do the results in (a) through (d) suggest any important changes to the
conclusions reached in the boxes? Explain.

Time Series Data Used in Chapter 14

Macroeconomic time series data for the United States are collected and published by var-
ious government agencies. The U.S. Consumer Price Index is measured using monthly sur-
veys and is compiled by the Bureau of Labor Statistics (BLS). The unemployment rate is
computed from the BLS's Current Population Survey (see Appendix 3.1). The quarterly
data used here were computed by averaging the monthly values. The federal funds rate data
are the monthly average of daily rates as reported by the Federal Reserve, and the dollar/
pound exchange rate data are the monthly average of daily rates; both are for the final
month in the quarter. Japanese GDP data were obtained from the OECD. The daily per-
centage change in the NYSE Composite Index was computed as 100Aln(NYSE,), where
NYSE, is the value of the index at the daily close of the New York Stock Exchange; because
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the stock exchange is not openon weekends and holidays, the time period of analysis is a

business day. These and thousands of other economic time series are freely available on the :

Web sites maintained by various data-collecting agencies.

The regressions in Tables 14.3 and 14.7 use monthly financial data for the United
States. Stock prices (P,) are measured by the broad-based (NYSE and AMEX) value-
weighted index of stock prices constructed by the Center for Research in Security Prices

(CRSP). The monthly percent excess return is 100 X {In{(P,+ Div,)/P.—1] — In(TBIill,)},

where Div, is the dividends paid on the stocks in the CRSP index and TBill, is the gross |

return (1 plus the interest rate) on a 30-day Treasury bill during month r. The dividend-price
ratio is constructed as the dividends over the past 12 months, divided by the price in the
current month. We thank Motohiro Yogo for his help and for providing these data.

Lag Operator Notation 579

The means and variances of ¥, and ¥+, can be computed using Equation (14.37),
with the subscript s + 1 or s+ 2 replacing r. First, because E(u)=0forall 1, E(Y)) =
E(Ef:U,B’iu,_i) = Z,:OB‘QE(U,A{) =0, s0 the mean of ¥, and ¥,, are both zero and in par-
ticular do not depend on 5. Second, var(¥;) = var( 2Z8u—;) = Z(B1) var(u,_;) =
2T (B = al/(1~ B}), where the final equality follows from the fact that if |a| < 1,
Sl =1/(1- a); thus var{¥..1) = var(¥4,) = o/(1— B}), which does not depend on
s as long as |B1| < 1.Finally, because ¥,» = B, Y11 + ty49, cov( Yy, ¥pa) = E( YY) =
E[%1(B1%41 + tp9)] = Brvar(Y,,) + cov(¥oy, Usia) = Bvar(Yuy) = Bioy/ (1 — 7). The
covariance does not depend on 5,50 ¥, and ¥, have a joint probability distribution that
does not depend on s; that is, their joint distribution is stationary. If 181] = 1, this calcula-
tion breaks down because the infinite sum in Equation (14.37) does not converge and the
variance of ¥/is infinite. Thus ¥ is stationary if |8,] < 1, but not if 18 = 1.

The preceding argument was made under the assumptions that 8, = 0 and 1, is nor-

mally distributed. If By # 0, the argument is similar except that the means of ¥, and Y,

are Bo/(1 — B,) and Equation (14.37) must be modified for this nonzero mean. The assump-
tion that i, is i.i.d. normal can be replaced with the assumption that u, is stationary with a
finite variance because, by Equation (14.37), ¥, can still be expressed as a function of cur-
rent and past 1,'s, so the distribution of Y] is stationary as long as the distribution of 1, is sta-
tionary and the infinite sum expression in Equation (14.37) is meaningful in the sense that
it converges, which requires that |8,] < 1.
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This appendix shows that if |B1] < 1 and u, is stationary, then Y] is stationary. Recall from
Key Concept 14.5 that the time series variable Y] is stationary if the joint distribution of
(Y41,--., ¥7) does not depend on s regardless of the value of T. To streamline the
argument, we show this formally for T=2 under the simplifying assumptions that
By =0 and {u,} are i.i.d. N(0,c2).

The first step is deriving an expression for Y, in terms of the u,'s. Because B =0,
Equation (14.8) implies that ¥, = B, Y, + 1, Substituting ¥, = B, Y2 + 11, into this expres-
sion yields ¥,= By(B1 Y-z T ) T 14, = B1Y, 5+ By + u,. Continuing this substitution
another step yields Y= BiY 5+ B> + By, + 1, and continuing indefinitely yields

APPENDIX

14.3 Lag Operator Notation

The notation in this and the next two chapters is streamlined considerably by adopting what
is known as lag operator notation. Let L denote the lag operator, which has the property
that it transforms a variable into its lag. That is, the lag operator L has the property LY, =
¥-1. By applying the lag operator twice, one obtains the second lag: L’ =L(LY) =
LY¥_, = Y_, More generally, by applying the lag operator  times, one obtains the M lag. In
summary, the lag operator has the property that

Y=, Butmy + Bl + Bz + o = Z(}.Bﬁllm- (14.37)

Thus ¥, is a weighted average of current and past u,’s. Because the u,’s are normally
distributed and because the weighted average of normal random variables is normal (Sec- 7 -
tion 2.4), Y,,| and Y, have a bivariate normal distribution. Recall from Section 2.4 that LY, = ¥, 12} =Yy, and /Y, = Y., (1438)

ivari istribution is completely determined by the means of the two vari- ' . ‘ . o
the biveria(e normal dhribut ’ ’ The lag operator notation permits us to define the lag polynomial, which is a polyno-

i i i i i to
i d their covariance. Thus, to show that ¥, is stationary, we need o
ables, their variances, an f I

show that the means, variances, and covariance of (¥, ¥;42) do not depend on s. An
extension of the argument used below can be used to show that the distribution of

14
= 2o =Nali 2
@ ANTD STHNN Y.+r) does not depend on s. a(L) =ay+a,L + aLs + aPLP 2 ll]L R (14.39)
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where ay, ..., a, are the coefficients of the fag polynomnial and L9 = 1. The degree of the lag
polynomial a(L) in Equation (14.39) is p. Multiplying ¥, by a(L) yields

po p . p
a(L)Y;= (EajL’>Yr= SaUn) = Say = akt el Fa Y, (1440)
= 70 =

The expression in Equation (14.40) implies that the AR(p) model in Equation (14.14)

can be written compactly as
a(LYY,= Bo + uy, (14.41)

where ag=1and ;= —f;,forj=1,..., p. Similarly, an ADL{p,q) model can be written

a(L)Y,= By + (L) Xy + ity (14.42) .

where a(L) is a lag polynomial of degree p (with ag=1) and ¢(L) is a lag polynomial of

degree g — 1.

APPENDIX

14.4

ARMA Models

The autoregressive-moving average (ARMA) model extends the autoregressive model by
modeling u, as serially correlated, specifically as being a distributed lag (or “moving aver-
age”) of another unobserved error term. In the lag operator notation of Appendix 14.3, let
u, = b(L)e, where b(L) is a lag polynomial of degree g with by =1 and e, is a serially uncor-
related, unobserved random variable. Then the ARMA(p,q) model is

a(LyY; = By + b(L)e, (14.43)

where a(L) is a lag polynomial of degree p with ag = 1.

Both AR and ARMA models can be thought of as ways to approximate the autoco-
variances of ¥. The reason for this is that any stationary time series ¥; with a finite variance
can be written either as an AR or as a MA with a serially uncorrelated error term, although
the AR or MA models might need to have an infinite order. The second of these results,
that a stationary process can be written in moving average form, is known as the Wold
decomposition theorem and is one of the fundamental results underlying the theory of sta-

tionary time series analysis.

bt b e el
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T

i
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--As atheoretical matter, the families of AR, MA, and ARMA models are equally rich,
as long as the lag polynomials have a sufficiently high degree. Still, in some cases the auto-
covariances can be better approximated using an ARMA(p,q) model with small p and ¢
than by a pure AR model with only a few lags. As a practical matter, however, the estima-
tion of ARMA models is more difficult than the estimation of AR models, and ARMA

models are more difficult to extend to additional regressors than are AR models.

Consistency of the BIC Lag Length
Estimator

This appendix summarizes the argument that the BIC estimator of the lag length, p, in an
autoregression is correct in large samples; that is, Pr(p = p) — 1.This is not true for the

AIC estimator, which can overestimate p even in large samples.

BIC

First consider the special case that the BIC is used to choose among autoregressions with
zero, one, or two lags, when the true lag length is one. It is shown below that (i)
Pr(p =0) — 0 and (i) Pr(p =2) — 0, from which it follows that Pr(p = 1) — 1.
The extension of this argument to the general case of searching over 0 < p < p,,.. entails

showing that Pr(p < p) — 0 and Pr(p > p) — 0; the strategy for showing these is
the same as used in (i) and (ii) below.

Proof of () and @D

Proofof (). To choose p = 0 it must be the case that BIC(0) < BIC(1); that is, BIC(0) —
BIC(1) < 0. Now BIC(0) —BIC(1) =[In(SSR(0)/T) + (InT)/T] - [In(SSR(1)/T) +
2(InT)/T] = In(SSR(0)/T) ~ In(SSR(1)/T) — (InT)/T. Now SSR(0)/T=[(T~1)/T}s}
—L o4, SSR(IYT —£— o2,and (InT)/T ~—> 0; putting these pieces together, BIC(0) —-
BIC(1) —%> Inoy—Ingh >0 because of > o2 It follows that Pr[BIC(0) <
BIC(1)] — 0,50 Pr(p=0) —> 0.

Proof of (i). To choose p =2 it must be the case that BIC(2) < BIC(1) or BIC(2) —

" BIC(1) < 0.Now T[BIC(2) — BIC(1)] = T{[In{SSR(2)/T) +3(InT)/T] - [ln(SSR(1)/T)

+2(InT)/T}} = Tl[SSR(2)/SSR(1)] +InT = ~ TIn[l + F/(T - 2)] + InT, where F =
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[SSR(1) — SSR(2))/[SSR(2)/(T ~ 2)} is the homoskedasticity-only F-statistic (Equation - i

7.13) testing the null hypothesis that B, = 0 in the AR(2). If ut, is homoskedastic,then Fhas a
X1 asymptotic distribution; if not, it has some other asymptotic distribution. Thus pr[BIC(2) —

BIC(1) < 0] = Pe{T[BIC(2) — BIC(1)] < 0} = Pr(—TIn[L + F/(T~2)] + (InT) < 0} =

Pr{Tla{l + F/(T = 2)] > InT}. As T increases, Tin[l + F/(T - 2)] - F ~£5 0 [a conse-
quence of the logarithmic approximation In(1 + a) = a, which becomes exactasa —— 0],
Thus Pr[BIC(2) — BIC(1) < 0] — Pr(F > InT) — 0,s0 Pr(p=2) — 0.

AlIC

In the special case of an AR(1) when zero, one, or two lags are considered, (i) applies to the

AIC where the term InT is replaced by 2,50 Pr(p = 0) —— 0. Ali the steps in the proof of

(ii) for the BIC also apply to the AIC, with the modification that InT is replaced by 2; thus

Pr{AIC(2) ~ AIC(1) < 0] — Pr(F > 2) > 0. If u, is homoskedastic, then Pr(F > 2)
— Pr(x} > 2) =0.16,50 Pr(p =2) —— 0.16. In general, when D is chosen using the
AIC,Pr(p < p) — Obut Pr(p > p) tends to a positive number,so Pr (5 = p) does not

tend to 1.

Estimation of
Dynamic Causal Effects

E n the 1983 movie Trading Places, the characters played by Dan Aykroyd and Eddie
Murphy used inside information on how well Florida oranges had fared over the
winter to make millions in the orange juice concentrate futures market, a market for
contracts to buy or sell large quantities of orange juice concentrate at a specified
price on a future date. In real life, traders in orange juice futures in fact do pay close
attention to the weather in Florida: Freezes in Florida kill Florida oranges, the source
of almost all frozen orange juice concentrate made in the United States, so its supply
falls and the price rises. But precisely how much does the price rise when the
weather in Florida turns sour? Does the price rise all at once, or are there delays; if
so, for how long? These are questions that real-life traders in orange juice futures
need to answer if they want to succeed.

This chapter takes up the problem of estimating the effect on ¥ now and in the
future of a change in X; that is, the dynamic causal effect on Y of a change in X.
What, for example, is the effect on the path of orange juice prices over time of a
freezing spell in Florida? The starting point for modeling and estimating dynamic
causal effects is the so-called distributed lag regression model, in which Y,is
expressed as a function of current and past values of X, Section 15.1 introduces the
distributed lag model in the context of estimating the effect of cold weather in
Florida on the price of orange juice concentrate over time. Section 15.2 takes a closer
look at what, precisely, is meant by a dynamic causal effect.

One way to estimate dynamic causal effects is to estimate the coefficients of the
distributed lag regression model using OLS. As discussed in Section 15.3, this
estimator is consistent if the regression error has a conditional mean of zero given
current and past values of X, a condition that (as in Chapter 12) is referred to as
exogeneity. Because the omitted determinants of Y, are correlated over time —that is,
because they are serially correlated—the error term in the distributed lag model can
be serially correlated. This possibility in turn requires “heteroskedasticity- and
autocorrelation-consistent” (HAC) standard errors, the topic of Section 15.4.

A second way to estimate dynamic causal effects, discussed in Section 15.5,is to
model the serial correlation in.the error term as an autoregression and then to use
this autoregressive model to derive an autoregressive distributed lag (ADL) model.
Alternatively, the coefficients of the original distributed lag model can be estimated
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