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CHAPTER 11

Regression with a Binary Dependent Variable

Count Data

Count data arise when the dependent variable is a counting number, for example, the number

of restaurant meals eaten by a consumnier in a week. When these numbers are large, the variable

can be treated as approximately continuous, but when they are small, the contiruous approxi: -

mation is a poor one. The linear regtession model, estimated by OLS, can be used for count data,

even if the number of counts is small. Predicted values from the regression are interpreted as -

the expected value of the dependent variable, conditional on the regressors. So, when the depenr

dent variable is the number of restaurant meals eaten, a predicted value of 1.7 means, on aver- -

age, 1.7 restaurant meals per week. As in the binary regression model, however, OLS does not
take advantage of the special structure of count data and can yield nonsense predictions, for
example,—0.2 restaurant meal per week. Just as probit and logit eliminate nonsense predictions
whert the dependent variable is binary, special models do so for count data. The two most widely

used models are the Poisson and negative binomial regression models.

Ordered Responses

Ordered response data arise when mutually exclusive qualitative categories have a natural
ordering, such as obtaining a high school degree, some college education (but not graduat-
ing), or graduating from college. Like count data, ordered response data have a natural
ordering, but unlike count data, they do not have natural numerical values.

Because there are no natural numerical values for ordered response data, OLS is inap-
propriate. Instead, ordered data arc often analyzed using a generalization of probit called
the ordered probit model, in which the probabilities of each outcome (e.g., a college edu-
cation), conditional on the independent variables (such as parents’ income), are modeled

using the cumulative normal distribution.

Discrete Choice Data

A discrete choice or multiple choice variable can take on multiple unordered qualitative val-
ues. One example in economics is the mode of transport chosen by a commuter: She might
take the subway, ride the bus, drive, or make her way under her own power (walk, bicycle).
If we were to analyze these choices, the dependent variable would have four possible out-
comes (subway, bus, car, human-powered). These outcomes are not ordered in any natural
way. Instead, the outcomes are a choice among distinct qualitative alternatives.

The econometric task is to model the probability of choosing the various options, given
various regressors such as individual characteristics (how far the commuter’s house is from
the subway station) and the characteristics of each option (the price of the subway). As dis-
cussed in the box in Section 11.3, models for analysis of discrete choice data can be devel-
oped from principles of utility maximization. Individual choice probabilities can be
expressed in probit or logit form, and those models are called multinomial probit and

multinomial logit regression models.

Instrumental
Variables Regression

hapter 9 discussed several problems, including omitted variables, errors in

variables, and simultaneous causality, that make the error term correlated with
the regressor. Omitted variable bias can be addressed directly by indluding the
omitted variable in a multiple regression, but this is only feasible if you have data on
the omitted variable. And sometimes, such as when causality runs both from Xto ¥
and from Y to X so that there is simultaneous causality bias, multiple regression
simply cannot eliminate the bias. If a direct solution to these problems is either
infeasible or unavailable, a new method is required,

Instrumental variables (IV) regression is a general way to obtain a consistent
estimator of the unknown coefficients of the population regression function when
the regressor, X, is correlated with the error term, u. To understand how [V
regression works, think of the variation in X as having two parts: one part that, for
whatever reason, is correlated with v (this is the part that causes the problems) and a
second part that is uncorrelated with v. If you had information that allowed you to
isolate the second part, you could focus on those variations in X that are
uncorrelated with v and disregard the variations in X that bias the OLS estimates.
This is, in fact, what IV regression does. The information about the movements in X
that are uncorrelated with v is gleahed from one or more additional variables, called
instrumental variables or simply instruments. Instrumental variables regression uses
these additional variables as tools or “instruments” to isolate the movements in X that
are uncorrelated with v, which in turn permit consistent estimation of the regression
coefficients.

The first two sections of this chapter describe the mechanics and assumptions
of IV regression: why IV regression works, what is a valid instrument, and how to
implement and to interpret the most common IV regression method, two stage
least squares. The key to successful empirical analysis using instrumental variables
is finding valid instruments, and Section 12.3 takes up the question of how to
assess whether a set of instruments is valid. As an illustration, Section 12.4 uses IV
regression to estimate the elasticity of demand for cigarettes. Finally, Section 12.5
turns to the difficult question of where valid instruments come from in the first
place.
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(9.4)], one for each causal connection. As discussed in Section 9.2, because both

121 The IV Estimator with a Single

Regressor and a Single Instrument

We start with the case of a single regressor, X, which might be correlated with the
regression error, «. If X and u are correlated, the OLS estimator is inconsistent; -
that is, it may not be close to the true value of the regression coefficient even when
the sample is very large [see Equation (6.1)]. As discussed in Section 9.2, this cor-

relation between X and u can stem from various sources, including omitted vari- g

ables, errors in variables (measurement errors in the regressors), and simultaneous
causality (when causality runs “backward” from Y to X as well as “forward” from
X to Y). Whatever the source of the correlation between X and i, if there is a valid
instrumental variable, Z, the effect on Y of a unit change in X can be estimated
using the instrumental variables estimator.

The IV Model and Assumptions
The population regression model relating the dependent variable Y, and regres-

sor X is
Y=Bp+ B X+tu,i=1,...,n, (12.1)

where as usual u, is the error term representing omitted factors that determine ;.
If X; and i, are correlated, the OLS estimator is inconsistent. Instrumental vari-
ables estimation uses an additional, “instrumental” variable Z to isolate that part
of X that is uncorrelated with i,

Endogeneity and exogeneity. Instrumental variables regression has some spe-
cialized terminology to distinguish variables that are correlated with the popula-
tion error term u from ones that are not. Variables correlated with the error term
are called endogenous variables, while variables uncorrelated with the error term
are called exogenous variables. The historical source of these terms traces to mod-
els with multiple equations, in which an “endogenous” variable is determined
within the mode! while an “exogenous” variable is determined outside the model.
For example, Section 9.2 considered the possibility that if low test scores produced
decreases in the student—teacher ratio because of political intervention and
increased funding, causality would run both from the student-teacher ratio to test
-scores and from test scores to the student-teacher ratio. This was represented
mathematically as a system of two simultaneous equations [Equations (9.3) and

test scores and the student—teacher ratio are determined within the model, both
are correlated with the population error term u; that is, in this example, both vari-
ables are endogenous. In contrast, an exogenous variable, which is determined out-
side the model, is uncorrelated with .

The two conditions for a valid instrument. A valid instrumental variable
(“instrument”) must satisfy two conditions, known as the instrument relevance
condition and the instrument exogeneity condition:

1. Instrument relevance: corr(Z;, X;) # 0.

2. Imstrument exogeneity: corr(Z;, u;) = 0.

If an instrument is relevant, then variation in the instrument is related to varia-
tion in ;. If in addition the instrument is exogenous, then that part of the variation
of X; captured by the instrumental variable is exogenous. Thus an instrument that is
relevant and exogenous can capture movements in X; that are exogenous. This
exogenous variation can in turn be used to estimate the population coefficient 3,.

The two conditions for a valid instrument are vital for instrumental variables
regression, and we return to them (and their extension to a multiple regressors
and multiple instruments) repeatedly throughout this chapter.

The Two Stage Least Squares Estimator

If the instrument Z satisfies the conditions of instrument relevance and exogene-
ity, the coefficient B, can be estimated using an IV estimator called two stage least
squares (TSLS). As the name suggests, the two stage least squares estimator is cal-
culated in two stages. The first stage decomposes X into two components: a prob-
lematic component that may be correlated with the regression error and another
problem-free component that is uncorrelated with the error. The second stage uses
the problem-free component to estimate £;.
The first stage begins with a population regression linking X and Z:

K=mo+mZi+ v, ’ (12.2)

where 1 is the intercept, 7 is the slope, and v, is the error term. This regression
provides the needed decomposition of X;. One component is g + 7,7, the part
of X; that can be predicted by Z,. Because Z;is exogenous, this component of X;is
uncorrelated with i, the error term in Equation (12.1). The other component of
X is v;, which is the problematic component of X; that is correlated with 1.




422

CHAPTER 12

Instrumental Variables Regression

The idea behind TSLS is to use the problem-free component of X, 7o + 7 Z,
and to disregard v,. The only complication is that the values of 7y and 7 are
unknown, so g -+ 71 Z; cannot be calculated. Accordingly, the first stage of TSLS
applies OLS to Equation (12.2) and uses the predicted value from the OLS regres-
siom, ,i’,» = 4, + 1 Z, where 7 and 7 arc the OLS estimates.

The second-stage of TSLS is easy: Regress ¥; on X; using OLS. TheAresulting
estimators from the second-stage regression are the TSLS estimators, B35S
B}‘SLS‘

Why Does IV Regression Work?
Two examples provide some intuition for why IV regression solves the problem
of correlation between X and u;.

Example #1: Philip Wright's problem. The method of instrumental variables
estimation was first published in 1928 in an appendix to a book written by Philip
G. Wright (Wright, 1928), although the key ideas of IV regression appear to have
been developed collaboratively with his son, Sewall Wright (see the box). Philip
Wright was concerned with an important economic problem of his day: how to
set an import tariff (a tax on imported goods) on animal and vegetable oils and
fats, such as butter and soy oil. In the 1920s, import tariffs were a major source of
tax lrevenue for the United States. The key to understanding the economic effect
of a tariff was having quantitative estimates of the demand and supply curves of
the goods. Recall that the supply elasticity is the percentage change in the quan-
tity supplied arising from a 1% increase in the price and that the demand elas-
ticity is the percentage change in the quantity demanded arising from a 1%
increase in the price. Philip Wright needed estimates of these elasticities of sup-
ply and demand.

To be concrete, consider the problem of estimating the elasticity of demand
for butter. Recall from Key Concept 8.2 that the coefficient in a linear equation
relating In(Y;) to In(X,) has the interpretation of the elasticity of ¥ with respect to
X.In Wright’s problem, this suggests the demand equation

In(QFery = By + Biln(PP") + 1, (12.3)
where 0P is the i observation on the quantity of butter consumed, P2 isits
price, a;d 1, represents other factors that affect demand, such as income and con-
sumer tastes. In Equation (12.3), a 1% increase in the price of butter yields a B
percent change in demand, so 3 is the demand elasticity.

and
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nstrumental variables regression was first proposed

as a solution to the simultaneous causation prob-
lem in econometrics in the appendix to Philip G
Wright's 1928 book, The Tariff on Animal and Veg-
etable Oils. If you want to know how animal and veg-
ctable oils were produced, transported, and sold in
the early twentieth century, the first 285 pages of the
book are for you. Econometricians, however, will be
more interested in Appendix B. The appendix pro-
vides tv'o derivations of “the method of introducing
external factors”—what we now call the instrumen-
tal variables estimator—and uses IV regression to
estimate the supply and demand elasticities for but-
ter and flaxseed oil. Philip was an obscure economist
with a scant intellectual legacy other than this appen-
dix, but his son Sewall went on to become a preemi-
nent population geneticist and statistician. Because
the mathematical material in the appendix is so dif-
ferent than the rest of the book, many ¢conome-
tricians assumed that Philip’s son Sewall Wright
wrote the appendix anonymously. So who wrote
Appendix B?

In fact, either father or son could have been the
author. Philip Wright (1861-1934) received a master’s
degree in economics from Harvard University in 1887,
and he taught mathematics and economics (as well as
literature and physical education) at a small college in
Illinois. In a book review [Wright (1915)], he used a
figure like Figures 12.1a and 12.1b to show how a
regression of quantity on price will not, in general,
estimate a demand curve, but instead estimates a com-
bination of the supply and demand curves. In the early
1920s, Sewall Wright (1889-1988) was researching the

statistical analysis of multiple equations with multiple

causal variables in the context of genetics, research
that in part led to his assuming a professorship in 1930
ai the University of Chicago.

Although it is too late to ask Philip or Sewall who
wrote Appendix B, it is never too late to do some sta-
tistical detective work. Stylometrics is the subfield of
statistics, invented by Frederick Mosteller and David
Wallace (1963), that uses subtle, subconscious differ-
ences in writing styles to identify authorship of dis-
puted texts using statistical analysis of grammatical -
constructions and word choice. The field has had ver-
ified successes, such as Donald Foster’s (1996) uncov-
ering of Joseph Klein as the author of the political
novel Primary Colors. When Appendix B is com-
pared statistically to texts known to have been writ-
ten independently by Philip and by Sewall, the
results are clear: Philip was the author.

Does this mean that Philip G. Wright invented IV
regression? Not quite. Recently, correspondence
between Philip and Sewall in the mid-1920s has
come to light, and this correspondence shows that
the development of IV regression was a joint intel-
lectual collaboration between father and son. To
learn more, see Stock and Trebbi (2003).

Philip G. Wright

Sewall Wright
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Philip Wright had data on total annual butter consumption and its average
annual price in the United States for 1912 to 1922. It would have been easy to use

these data to estimate the demand elasticity by applying OLS to Equation (12.3), -

but he had a key insight: Because of the interactions between supply and demand,
the regressor, In( P?""), was likely to be correlated with the error term.

To see this, look at Figure 12.1a, which shows the market demand and supply
curves for butter for three different years. The demand and supply curves for the
first period are denoted D, and S, and the first period’s equilibrium price and
quantity are determined by their intersection. In year 2, demand increases from
D, to D, (say, because of an increase in income) and supply decreases from S, to
S, (because of an increase in the cost of producing butter); the equilibrium price
and quantity are determined by the intersection of the new supply and demand
curves. In year 3, the factors affecting demand and supply change again; demand
increases again to Dy, supply increases to S;, and a new equilibrium quantity and
price are determined. Figure 12.1b shows the equilibrium quantity and price pairs
for these three periods and for eight subsequent years, where in each year the sup-
ply and demand curves are subject to shifts associated with factors other than price
that affect market supply and demand. This scatterplot is like the one that Wright
would have seen when he plotted his data. As he reasoned, fitting a line to these
points by OLS will estimate neither a demand curve nor a supply curve, because

‘the points have been determined by changes in both demand and supply.

Wright realized that a way to get around this problem was to find some third
variable that shifted supply but did not shift demand. Figure 12.1c shows what hap-
pens when such a variable shifts the supply curve, but demand remains stable. Now
all of the equilibrium price and quantity pairs lie on a stable demand curve, and the
slope of the demand curve is easily estimated. In the instrumental variable formu-
lation of Wright’s problem, this third variable —the instrumental variable—is cor-
related with price (it shifts the supply curve, which leads to a change in price) but is

uncorrelated with i (the demand curve remains stable). Wright considered several .

potential instrumental variables; one was the weather. For example, below-average
rainfall in a dairy region could impair grazing and thus reduce butter production at
a given price (it would shift the supply curve to the left and increase the equilibrium
price), so dairy-region rainfall satisfies the condition for instrument relevance. But
dairy-region rainfall should not have a direct influence on the demand for butter, so
the correlation between dairy-region rainfall and u; would be zero; that is, dairy-
region rainfall satisfies the condition for instrument exogeneity.

Example #2: Estimating the effect on test scores of class size. Despite control-
ling for student and district characteristics, the estimates of the effect on test scores
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(a) Price and quantity are determined by the intersection of
the supply and demand curves. The equilibrium in the first
period is determined by the intersection of the demand
curve D, and the supply curve S,. Equilibrium in the sec-
ond period is the intersection of D, and S, and equilib-
rium in the third period is the intersection of Dy and S;.

(b) This scatterplot shows equilibrium price and quantity in
11 different time periods. The demand and supply curves
are hidden. Can you determine the demand and supply
curves from the points on the scatterplot?

(0 When the supply curve shifts from S, to 5, to S; but the
demand curve remains at D,, the equilibrium prices and
quantities trace out the demand curve.

Equilibrium Price and Quantity Data

Price| Period 2
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Period 3
equilibrium
\\ .DB
Pt ’
equilibrivm
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Quantity
(a) Demand and supply in three time periods
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@
@ &
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Quantity
(b) Equilibrium price and quantity for 11
time periods
Price

] Quantity
(c) Equilibrium price and quantity when only
the supply curve shifts
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of class size reported in Part IT still might have omitted variables bias resulting from
unmeasured variables such as learning opportunities outside school or the quality
of the teachers. If data on these variables are unavailable, this omitted variables bias
cannot be addressed by including the variables in the multiple regressions.
Instrumental variables regression provides an alternative approach to this prob-
lem. Consider the following hypothetical example: Some California schools are
forced to close for repairs because of a summer earthquake. Districts closest to the
epicenter are most severely affected. A district with some closed schools needs to
“double up” its students, temporarily increasing class size. This means that distance
from the epicenter satisfies the condition for instrument relevance because it is cor-
related with class size. But if distance to the epicenter is unrelated to any of the other
factors affecting student performance (such as whether the students are still learn-
ing English), then it will be exogenous because it is uncorrelated with the error term.
Thus the instrumental variable, distance to the epicenter, could be used to circum-
vent omitted variables bias and to estimate the effect of class size on test scores.

The Sampling Distribution of the TSLS Estimator

The exact distribution of the TSLS estimator in small samples is complicated. How-
ever, like the OLS estimator, its distribution in large samples is simple: The TSLS
estimator is consistent and is normally distributed.

Formula for the TSLS estimator.  Although the two stages of TSLS make the
estimator seem complicated, when there is a single X and a single instrument Z,
as we assume in this section, there is a simple formula for the TSLS estimator. Let
55y be the sample covariance between Z and Y and let s7x be the sample covari-
ance between Z and X. As shown in Appendix 12.2, the TSLS estimator with a sin-

gle instrument is

3 Szy
ISLS = o (12.4)

That is, the TSLS estimator of 8, is the ratio of the sample covariance between Z
and Y to the sample covariance between Z and X.

Sampling distribution of BT when the sample size is farge. The formula in
Equation (12.4) can be used to show that BI*15is consistent and, in large samples,
normally distributed. The argument is summarized here, with mathematical details

given in Appendix 12.3.
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The argument that 87°5 is consistent combines the assumptions that Z; is rel-
evant and exogenous with the consistency of sample covariances for population
covariances. To begin, note that because ¥, = 8, + B8,X; + u; in Equation (12.1),

cov(Zy, Y;) = cov| Z, (By + BX; + )] = Bieov(Z, X)) + cov(Z, u;), (12.5)

where the second equality follows from the properties of covariances [Equation
(2.33)]. By the instrument exogeneity assumption, cov(Z;, u;) = 0, and by the
instrument relevance assumption, cov(Z;, X;) # 0.Thus, if the instrument is valid,
Equation (12.5) implies that

_ cov(Z, X))

Y
A= cov(z, )

(12.6)

That is, the population coefficient B is the ratio of the population covariance
between Z and Y to the population covariance between Z and X.

As discussed in Section 3.7, the sample covariance is a consistent estimator of
the population covariance; that is, s7y ——> cov(Z, ¥) and sz cov(Z;, X;).
It follows from Equations (12.4) and (12.6) that the TSLS estimator is consistent:

~ S cov(Z, Y.
s (12.7)
The formulzi in Equation (12.4) also can be used to show that the sampling
distribution of B]5%S is normal in large samples. The reason is the same as for
every other least squares estimator we have considered: The TSLS estimator is
an average of random variables, and when the sample size is large, the central
limit theorem tells us that averages of random variables are normally distributed.
Specifically, the numerator of the expression for /.A31T SLS in Equation (12.4) is s7y =
1 n 2 RV 2 37
iam(Z - Z){(Y— Y), an average of (Z;—Z)(Y;— 7). A bit of algebra,
sketched out in Appendix 12.3, shows that because of this averaging the central
limit theorem implies that,in large samples, EITSLS has a sampling distribution that
is approximately N(, 0’% lTm), where

o2 L vatl(Zi— pp)u]
AL =4 [cov(Zi’lYi)]z ) (128)

Statistical inference using the large-sample distribution. The variance a'% rsis
can be estimated by estimating the variance and covariance terms appearingl in
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Equation (12.8),and the square root of the estimate of 0%1”"5 is the standard error

of the IV estimator. This is done automatically in TSLS regression commands in
TSLS

econometric software packages. Because [%1 is normally distributed in large -
samples, hypothesis tests about 8; can be performed by computing the r-statistic,

and a 95% large-sample confidence intcrval is given by BITSLSi 1.96SE(f31TSLS).

Application to the Demand for Cigarettes

Philip Wright was interested in the demand elasticity of butter, but today other
commodities, such as cigarettes, figure more prominently in public policy debates.
One tool in the quest for reducing illnesses and deaths from smoking—and the
costs, or externalities, imposed by those illnesses on the rest of society—is to tax
cigarettes so heavily that current smokers cut back and potential new smokers are
discouraged from taking up the habit. But precisely how big a tax hike isneeded to
make a dent in cigarette consumption? For example, what would the after-tax sales
price of cigarettes need to be to achieve a 20% reduction in cigarette consumption?

The answer to this question depends on the elasticity of demand for cigarettes.
If the elasticity is —1, then the 20% target in consumption can be achieved by a
20% increase in price. If the elasticity is —0.5, then the price must rise 40% to
decrease consumnption by 20%. Of course, we do not know the demand elasticity
of cigarettes: We must estimate it from data on prices and sales. But, as with but-
ter, because of the interactions between supply and demand, the elasticity of
demand for cigarettes cannot be estimated consistently by an OLS regression of
log quantity on log price.

We therefore use TSLS to estimate the elasticity of demand for cigarettes
using annual data for the 48 contiguous U.S. states for 1985 through 1995 (the data
are described in Appendix 12.1). For now, all the results are for the cross section
of states in 1995; results using data for earlier years (panel data) are presented in
Section 12.4.

The instrumental variable, Safes Tax,, is the portion of the tax on cigarettes aris-
ing from the general sales tax, measured in dollars per pack (in real dollars,
deflated by the Consumer Price Index). Cigarette consumption, Qfisaretes g the
number of packs of cigarettes sold per capita in the state, and the price, peigaretes,
is the average real price per pack of cigarettes including all taxes.

Before using TSLS it is essential to ask whether the two conditions for instru-
ment validity hold. We return to this topic in detail in Section 12.3, where we pro-
vide some statistical tools that help in this assessment. Even with those statistical
tools, judgment plays an important role, so it is useful to think about whether the
sales tax on cigarettes plausibly satisfies the two conditions.
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First consider instrument relevance. Because a high sales tax increases the
after-tax sales price PF84*1 the sales tax per pack plausibly satisfies the condi-
tion for instrument relevance.

Next consider instrument exogeneity. For the sales tax to be exogenous, it must
be uncorrelated with the error in the demand equation; that is, the sales tax must
affect the demand for cigarettes only indirectly through the price. This seems plau-
sible: General sales tax rates vary from state to state, but they do so mainly because
different states choose different mixes of sales, income, property, and other taxes
to finance public undertakings. Those choices about public finance are driven by
political considerations, not by factors related to the demand for cigarettes. We dis-
cuss the credibility of this assumption more in Section 12.4, but for now we keep
it as a working hypothesis.

In modern statistical software, the first stage of TSLS is estimated automati-
cally,so you do not need to run this regression yourself to compute the TSLS esti-
mator. Even so, it is a good idea to look at the first-stage regression. Using data
for the 48 states in 1995, it is

In( Pgisereiesy = 4,63 + 0.031SalesTax;. (12.9)
(0.03) (0.005)

As expected, higher sales taxes mean higher after-tax prices. The R? of this regres-
sion is 47%, so the variation in sales tax on cigareties explains 47% of the variance
of cigarette prices across states.

In the second stage of TSLS, In(Q#“¢"*") is regressed on In( P{¥**) using
OLS. The resulting estimated regression function is

In(Qf87reesy = 972 — 1.08In ( Peisareres) (12.10).

This estimated 1'egression‘f}_1£c£i&is written using the regressor in the second
stage, the predicted value ln(PE8¥es) Tt is, however, conventional and less cum-
bersome simMort the estimated regression function with In( P§isaretes)
rather than In(P{®"***). Reported in this notation, the TSLS estimates and het-
eroskedasticity-robust standard errors are

In(QF8ees) = 972 — 1,08In(Prisereres), (12.11)
(1.53) (0.32)

The TSLS estimate suggests that the demand for cigarettes is surprisingly
elastic, in light of their addictive nature: An increase in the price of 1% reduces
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consumption by 1.08%. But, recalling our discussion of instrument exogeneity,
perhaps this estimate should not yet be taken too seriously. Even though the elas-
ticity was estimated using an instrumental variable, there might still be omitted
variables that are correlated with the sales tax per pack. A leading candidate is
income: States with higher incomes might depend relatively less on a sales tax
and more on an income tax to finance state government. Moreover, the demand
for cigarettes presumably depends on income. Thus we would like to reestimate our
demand equation including income as an additional regressor. To do so, however,
we must first extend the IV regression model to include additional regressors.

The General IV Regression Model

The general IV regression model has four types of variables: the dependent variable,
Y, problematic endogenous regressors, like the price of cigarettes, which are corre-
lated with the error term and which we will label X; additional regressors, called
included exogenous variables, which we will label W; and instrumental variables, Z.
In general, there can be multiple endogenous regressors (X's), multiple included
exogenous regressors (W’s), and multiple instrumental variables (Z’s).

For 1V regression to be possible, there must be at least as many instrumental
variables (Z's) as endogenous regressors {X's). In Section 12.1, there was a single
endogenous regressor and a single instrument. Having (at least) one instrument
for this single endogenous regressor was essential. Without the instrument we
could not have computed the instrumental variables estimator: there would be no
first-stage regression in TSLS. ,

The relationship between the number of instruments and the number of
endogenous regressors has its own terminology. The regression coefficients are
said to be exactly identified if the number of instruments (1) equals the number
of endogenous regressors (k); that is, m = k. The coefficients are overidentified if
the number of instruments exceeds the number of endogenous regressors; that is,
m > k.They are underidentified if the number of instruments is less than the num-
ber of endogenous regressors; that is, m < k. The coefficients must be either
exactly identified or overidentified if they are to be estimated by IV regression.

The general IV regression model and its terminology are summarized in Key
Concept 12.1.

Included exogenous variables and control variables in IV regression.  The
W variables in Equation (12.12) either can be exogenous variables, in which
case E(u;|W,) =0, or they can be control variables that need not have a causal
interpretation but are included to ensure that the instrument is uncorrelated with
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The General Instrumental Variables
Regression Model and Terminology
The general IV regression model is
Yi=Bo+ BrXy+ - 4 BrXg + BieaWu + - + B, Wi+, (12.12)
i=1,...,n,where
o Y, is the dependent variable;

® B¢.B1...., Br+r are unknown regression coefficients; and

° Xj;..., Xy are k endogenous regressors, which are potentially correlated -

with u;

e Wi, ..., W,; are r included exogenous regressors, which are uncorrelated
with u; or are control variables;

e u; is the error term, which represents measurement error and/or omitted

factors;

e Zy;,...,2y; are m instrumental variables.

The coefficients are overidentified if there are more instruments than endogenous
regressors (i > k), they aré underidentified if m < k, and they are exactly iden-
tified if m = k. Estimation of the IV regression model requires exact identification
or overidentification.
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the error term. For example, Section 12.1 raised the possibility that the sales tax
might be correlated with income, which economic theory tells us is a determinant
of cigarette demand. If so, the sales tax would be correlated with the error term in
the cigarette demand equation, In(Q§897¢%5) = B + B,In(PE¥“*"*) + 1, and thus
would not be an exogenous instrument. Including income in the regression, or
including variables that control for income, would remove this source of potential
correlation between the instrument and the error term. In general, if W is an effec-
tive control variable in IV regression, then including W makes the instrument
uncorrelated with 1, so the TSLS estimator of the coefficient on X is consistent; if
Wis correlated with u, however, then the TSLS coefficient on W is subject to omit-
ted variable bias and does not have a causal interpretation. The logic of contro}
variables in IV regression therefore parallels the logic of control variables in OLS,
discussed in Section 7.5.
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The mathematical condition for W to be an effective conirol variable in [V
regression is similar to the condition on control variables in OLS discussed in
Section 7.5. Specifically, including W must ensure that the conditional mean of
does not depend on Z, so conditional mean independence holds; that is,
E(u1] 2, W) = E{u,|W,). For clarity, in the body of this chapter we focus on the case
that W variables are exogenous so that £(u;|W) = 0. Appendix 12.6 explains how
the results of this chapter extend to the case that Wis a control variable, in which
case the conditional mean zero condition, E(1|W;) = 0, is replaced by the condi-

tional mean independence condition, E(u]Z, W) = E(u|W).

Two Stage Least Squares

The TSLS estimator in the general IV regression model in Equation (12.12) with
multiple instrumental variables is computed in two stages:

1. First-stage regression(s): Regress X;; on the instrumental variables
(Zir- -+ Zy;) and the included exogenous variables (W, .. .., W,;) using OLS,
mdudmg an intercept. Compute the predicted values from this regression; call
these Xl, Repeat this for all the endogenous Tegressors Xy, ..., X, thereby
computing the predicted values Xl,, S in~

TSLS in the General IV Model

TSLS with a single endogenous regressor. When there is a single endogenous
regressor X and some additional included exogenous variables, the equation of

2. Second-stage regressmn Regress ¥; on the predicted values of the endogenous
variables (Xl,, .. X,\,) and the included exogenous variables (Wl,,. LW
using OLS, 1nclud1ng an intercept. The TSLS estimators BI55, ..., BISLS are

interest is the estimators from the second-stage regression.

In practice, the two stages are done automatically within TSLS estimation com-

Yi=Bo+ BiX+ BoWit o + B Wi g, (12.13) mands in modern econometric software.

where, as before, X, might be correlated with the error term, but Wy, .. ., W; are not.
The population first-stage regression of TSLS relates X to the exogenous vari-

ables, that is, the W’s and the instruments (Z's): variable is one of the Xs, and the regressors are all the instruments (Z’s) and all

the included exogenous variables (W's). Together, these first-stage regressions pro-

Xi=ag+mZy+ o+ TZogi T T Wit o e, Wt v (12.14) duce predicted values of each of the endogenous regressors
- N ‘ In the second stage of TSLS, Equation (12.12) is estimated by OLS, except that
where 7. 1, . . . , T4, are unknown regression coefficients and v, is an error term. - the endogenous regressors (Xs) are replaced by their respective predicted values

Equation (12.14) is sometimes called the reduced form equation for X It
relates the endogenous variable X to all the available exogenous variables, both
those included in the regression of interest (W) and the instruments (Z).

In the first stage of TSLS, the unknown coefficients in Equation (12.14) are
estimated by OLS, and the predicted values from this regression are 5(1, R :,,.

In the second stage of TSLS, Equation (12.13) is estimated by OLS, except that

(X s). The resulting estimator of By, B, .., Brs, is the TSLS estimator.

In practice, the two stages of TSLS are done automatically within TSLS esti-
mation commands in modern econometric software. The general TSLS estimator
is summarized in Key Concept 12.2.

X is replaced by its predicted value from the first stage. That is, ¥; is regressed on
X,, Wis - .., W, using OLS. The resulting estimator of B¢, B, .., Bi+,is the TSLS
estimator.

Extension to multiple endogenous regressors. When there are multiple
endogenous regressors Xj; . . ., X, the TSLS algorithm is similar, except that each
endogenous regressor requires its own first-stage regression. Each of these first-
stage regressions has the same form as Equation (12.14); that is, the dependent

I

instrument Relevance
and Exogeneity in the General IV Model
The conditions of instrument relevance and exogeneity need to be modified for
the general IV regression model. V
When there is one included endogenous variable but multiple instruments, the
condition for instrument relevance is that at least one Z is useful for predicting X,
given W. When there are multiple included endogenous variables, this condition is
more complicated because we must rule out perfect multicollinearity in the second-
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The Two Conditions for Valid Instruments

A set of m instruments Zy, .. ., Z,,; must satisfy the following two conditions tobe

valid:
" 1. Instrument Relevance

e In general, let X 1 be the predicted value of X}, from the population regres-
sion of X}; on the instruments (Z’s) and the included exogenous regressors
(W’s), and let “1” denote the constant regressor that takes on the value 1 for

all observations. Then (5( [ X i Wi ..., W, 1) are not perfectly multi- -

collinear.

o If there is only one X, then for the previous condition to hold, at least one Z

must have a non-zero coefficient in the population regression of X on the Z’s

and the W’s,

2. Imstrument Exogeneity ‘
The instruments are uncorrelated with the error term; that .is,

corr(Zy, u;) = 0,..., corr{Zyy, ;) = 0.

stage population regression. Intuitively, when there are multiple included endoge-
nous variables, the instruments must provide enough information about the exoge-
nous movements in these variables to sort out their separate effects on Y.

The general statement of the instrument exogeneity condition is that each
instrument must be uncorrelated with the error term u;. The general conditions for

valid instruments are given in Key Concept 12.3.

The IV Regression Assumptions

and Sampling Distribution of the TSLS Estimator

Under the I'V regression assumptions, the TSLS estimator is consistent and has a
sampling distribution that, in Jarge samples, is approximately normal.

The !V regression assumptions, The IV regression assumptions are modifica-
tions of the least squares assumptions for the multiple regression model in Key
Concept 6.4. ‘
The first IV regression assumption modifies the conditional mean assumption
in Key Concept 6.4 to apply to the included exogenous variables only. Just like the
second least squares assumption for the multiple regression model, the second IV
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 The IV Regression Assumptions

" The variables and errors in the IV regression model in Key Concept 12.1 satisfy
the following:

L E(u|Wy,..., W) =0;
2. (Koo Xy W, Wy Zyja o, Zay Y) are iid. draws from their joint
distribution;

3. Large outliers are unlikely: The X’s, W’s, Z’s, and ¥ have nonzero finite fourth
moments; and

4. The two conditions for a valid instrument in Key Concept 12.3 hold.

regression assumption is that the draws are i.i.d., as they are if the data are col-
lected by simple random sampling. Similarly, the third TV assumption is that large
outliers are unlikely.

The fourth I'V regression assumption is that the two conditions for instrument
validity in Key Concept 12.3 hold. The instrument relevance condition in Key Con-
cept 12.3 subsumes the fourth least squares assumption in Key Concept 4.6 (no
perfect multicollinearity) by assuming that the regressors in the second-stage
regression are not perfectly multicollinear. The IV regression assumptions are
summarized in Key Concept 12.4.

Sampling distribution of the TSLS estimator.  Under the IV regression assump-
tions, the TSLS estimator is consistent and normally distributed in large samples.
This is shown in Section 12.1 (and Appendix 12.3) for the special case of a single
endogenous regressor, a single instrument, and no included exogenous variables.
Conceptually, the reasoning in Section 12.1 carries over to the general case of mul-
tiple instruments and multiple included endogenous variables. The expressions in
the general case are complicated, however, and are deferred to Chapter 18.

Inference Using the TSLS Estimator

Because the sampling distribution of the TSLS estimator is normal in large sam-
ples, the general procedures for statistical inference (hypothesis tests and confi-
dence intervals) in regression models extend to TSLS regression. For example,
95% confidence intervals are constructed as the TSLS estimator £1.96 standard
errors. Similarly, joint hypotheses about the population values of the coefficients
can be tested using the F-statistic, as described in Section 7.2.
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Calculation of TSLS standard errors. There are two points to bear in mind

about TSLS standard errors. First, the standard errors reported by OLS estimation *

of the second-stage regression are incorrect because they do not recogunize that it
is the second stage of a two-stage process. Specifically, the second-stage OLS stan-
dard errors fail to adjust for the second-stage regression using the predicted values
of the included endogenous variables. Formulas for standard errors that make the
necessary adjustment are jncorporated into (and automatically used by) TSLS
regression commands in econometric software. Therefore, this issue is not a con-
cern in practice if you use a specialized TSLS regression command. '

Sccond, as always the error u might be heteroskedastic. It is therefore impor-
tant to use heteroskedasticity-robust versions of the standard errors for precisely
the same reason as it is important to use heteroskedasticity-robust standard errors
for the OLS estimators of the multiple regression model.

Application to the Demand for Cigarettes

In Section 12.1, we estimated the elasticity of demand for cigarettes using data on
annual consumption in 48 U.S. states in 1995 using TSLS with a single regressor
(the logarithm of the real price per pack) and a single instrument (the real sales
tax per pack). Income also affects demand, however, so it is part of the error term
of the population regression. As discussed in Section 12.1, if the state sales tax. is
related to state income, it is correlated with a variable in the error term of the cig-
arette demand equation, which violates the instrument exogeneity condition. If so,
the IV estimator in Section 12.1 is inconsistent. That is, the IV regression suffers
from a version of omitted variable bias. To solve this problem, we need to include
income in the regression.

We therefore consider an alternative specification in which the logarithm of
income is included in the demand equation. In the terminology of Key Concept
12.1, the dependent variable Y is the logarithm of consumption, In( Q¢iserenes): the
endogenous regressor X is the logarithm of the real after-tax price, In( pgiearetesy,
the included exogenous variable W is the logarithm of the real per capita state
income, In(Znc;); and the instrument Z is the real sales tax per pack, SalesTax;. The
TSLS estimates and (heteroskedasticity-robust) standard errors are

=9.43 — 1.14In( P57} + 0.21n(Inc;). (12.15)

(126) (037) (0.31)

ln( Q gigareueS)
1

This regression uses a single instrument, Sales Tax;, but in fact another candidate
instrument is available. In addition to general sales taxes, states levy special taxes that

[
éy’l@)
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apply only to cigarettes and other tobacco products. These cigarette-specific taxes
(CigTax;) constitute a possible second instrumental variable. The cigarette-specific
tax increases the price of cigarettes paid by the consumer, so it arguably meets the
condition for instrument relevance. If it is uncorrelated with the error term in the
state cigarette demand equation, it is an exogenous instrument.

With this additional instrument in hand, we now have two instrumental vari-
ables, the real sales tax per pack and the real state cigarette-specific tax per pack.
With two instruments and a single endogenous regressor, the demand elasticity is
overidentified; that is, the number of instruments (SalesTax; and CigTax,, 50 m = 2)
exceeds the number of included endogenous variables (PgiEaretes sq k= 1). We can
estimate the demand elasticity using TSLS, where the regressors in the first-stage
regression are the included exogenous variable, In(Inc;), and both instruments.

The resulting TSLS estimate of the regression function using the two instru-
ments SalesTax; and CigTax; is

ln(quigarenzs) = 9.89 — 1‘2811_1(Pl("ig(!/'81/€$) + 0-28111(]’1(‘[)
(0.96) (0.25) (0.25)

(12.16)

Compare Equations (12.15) and (12.16): The standard error of the estimated
price elasticity is smaller by one-third in Equation (12.16) [0.25 in Equation (12.16)
versus 0.37 in Equation (12.15)]. The reason the standard error is smaller in
Equation (12.16) is that this estimate uses more information than Equation
(12.15): In Equation (12.15), only one instrument is used (the sales tax), but in
Equation (12.16), two instruments are used (the sales tax and the cigarette-spe-
cific tax). Using two instruments explains more of the variation in cigarette prices
than using just one, and this is reflected in smaller standard errors on the estimated
demand elasticity.

Are these estimates credible? Ultimately, credibility depends on whether the
set of instrumental variables—here, the two taxes— plausibly satisfies the two con-
ditions for valid instrumeuts. It is therefore vital that we assess whether these
instruments are valid, and it is to this topic that we now turn.

.Checking Instrument Validity

Whether instrumental variables regression is useful in a given application hinges
on whether the instruments are valid: Invalid instruments produce meaningless
results. It therefore is essential to assess whether a given set of instruments is valid
in a particular application.
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Assumption #1: Instrument Relevance

The role of the instrurnent relevance condition in IV regressibn is subtle. One way
to think of instrument relevance is that it plays a role akin to the sample size: The -
more relevant the instruments— that is, the more the variation in X is explained
by the instruments— the more information is available for use in IV regression. A
more relevant instrument produces a more accurate estimator, just as a larger sam-
ple size produces a more accurate estimator. Moreover, statistical inference using,
TSLS is predicated on the TSLS estimator having a normal sampling distribution,
but according to the central limit theorem the normal distribution is a good
approximation in large — but not necessarily small—samples. If having a more rel-
evant instrument is like having a larger sample size, this suggests, correctly, that
the more relevant is the instrument, the better is the normal approximation to the
sampling distribution of the TSLS estimator and its t-statistic.

Instruments that explain little of the variation in X are called weak instru-

ments. In the cigarette example, the distance of the state from cigarette manufac- =

turing plants arguably would be a weak instrument: Although a greater distance
increases shipping costs (thus shifting the supply curve in and raising the equilib-
rium price), cigarettes are lightweight, so shipping costs are a small component of
the price of cigarettes. Thus the amount of price variation explained by shipping
costs, and thus distance to manufacturing plants, probably is quite small.

This section discusses why weak instruments are a problem, how to check for =

weak instruments, and what to do if you have weak instruments. It is assumed
throughout that the instrumeints are eXogenous.

Why weal instruments are a problem. 1f the instruments are weak, then the
normal distribution provides a poor approximation to the sampling distribution
of the TSLS estimator, even if the sample size is large. Thus there is no theoretical
justification for the usual methods for performing statistical inference, even in

large samples. In fact, if instruments are weak, then the TSLS estimator can be -

badly biased in the direction of the OLS estimator. In addition, 95% confidence
intervals constructed as the TSLS estimator £1.96 standard errors can contain the
true value of the coefficient far less than 95% of the time. In short, if instruments

are weak, TSLS is no longer reliable. -

To see that there is a problem with the large-sample normal approximation to
the sampling distribution of the TSLS estimator, consider the special case, intro-
duced in Section 12.1, of a single included endogenous variable, a single instru-
ment, and no included exogenous regressor. If the instrument is valid, then BlTSLS
is consistent because the sample covariances s and sy are consistent; that is,

A Rule of Thumb for Checking for Weak Instruments
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-~ The first-stage F-statistic is the F-statistic testing the hypothesis that the coeffi- o
cients on the instruments Zy;, . .., Z,,; equal zero in the first stage of two stage Ieasf
squares. When there is a single endogenous regressor, a first-stage F-statistic less
than 10 indicates that the instruments are weak, in which case the TSLS estimator
is biased (evenin lal'ge samples) and TSLS r-statistics and confidence intervals are

ATSLS _ P )
177 = 5zy/5zx > cov(Z Yi)/cov(Z;, X;) = B, [Equation (12.7)]. But now

suppose that the instrument is not just weak but irrelevant so that cov(Z, X)=0.
Then sy —5— cov(Z;, X;) =0, so, taken literally, the denominator on the right-
}}e;?ziss‘ide of‘the limit cov(Z;, ¥})/cov(Z;, X;) is zero! Clearly, the argument that

1777 1s consistent breaks down when the instrument relevance condition fails. As
shown in Appendix 12.4, this breakdown results in the TSLS estimator having a
nonnormal sampling distribution, even if the sample size is very large. In fact, thn
the instrument is irrelevant, the large-sample distribution of ,f%lTSLS isnot that of a
normal random variable, but rather the distribution of a ratio of two normal ran-
dom variables!

While this circumstance of totally irrelevant instruments might not be encoun-
tered in practice, it raises a question: How relevant must the instruments be for
the normal distribution to provide a good approximation in practice? The answer
to this question in the general TV model is complicated. Fortunately, however
there is a simple rule of thumb available for the most common situation in pracj
tice, the case of a single endogenous regressor.

Checking for weak instruments when there is a single endogenous l'egfes-
sor. Ome way to check for weak instruments when there is a single endogenous
regressor is to compute the F-statistic testing the hypothesis that the coefficients
on the instruments are all zero in the first-stage regression of TSLS. This first-stage
F-statistic provides a measure of the information content contained in the instru-
ments: The more information content, the larger is the expected value of the
.F-statistic.:One simple rule of thumb is that you do not need to worry about weak
instruments if the first-stage F-statistic exceeds 10. (Why 10? See Appendix 12.5.)
This is summarized in Key Concept 12.5.
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What do | do if I have weak instruments? 1f you have many instruments, some
of those instruments are probably weaker than others. If you have a srn‘all nu.m-
ber of strong instruments and mahy weak ones, you will be better off discarding
the weakest instruments and using the most relevant subset for your TSLS analy-
sis. Your TSLS standard errors might increase when you drop weak instruments,
but keep in mind that your original standard errors were not meaningful anyway!
If, however, the coefficients are exactly identified, you cannot discard the weak
instruments. Even if the coefficients are overidentified, you might not have enough
strong instruments to achieve identification, so discarding some? we.ak 1ns.trument.s
will not help. In this case, you have two options. The first OptIOIl.IS to fll.ld ‘addl-
tional, stronger instruments. This is easier said than done: It requires an nilmate
knowledge of the problem at hand and can entail redesigning the .data set and t.h.e
nature of the empirical study. The second option is to proceed with your empiri-
cal analysis using the weak instruments, but employing methods othe‘r than TSLS.
Although this chapter has focused on TSLS some other methods for instrumental
variable analysis are less sensitive to weak instruments than TSLS, and some of

these methods are discussed in Appendix 12.5.

Assumption #2: Instrument Exogeneity

If the instruments are not exogenous, then TSLS is inconsistent: The TSLS estima-
tor converges in probability to something other than the population coefficient in
the regression. After all, the idea of instrumental variables regression is that the
instrument contains information about variation in X; that is unrelated to the error
term u,. If, in fact, the instrument is not exogenous, it cannot pinpoint this exogenous
variation in X;, and it stands to reason that IV regression fails to provide a consis-
tent estimator. The math behind this argument is summarized in Appendix 12.4.

Can you test statistically the assumption that the instruments are e,.woge~
nous? Yes and no. On the one hand, it is not possible to test the hypothesis that
the instruments are exogenous when the coefficients are exactly identified. On the
other hand. if the coefficients are overidentified. it is possible to test the overiden-
tifying restrictions, that is, to test the hypothesis that the “extra” mstrurr.m.]ts are
exogenous under the maintained assumption that there are enough valid instru-
ments to identify the coefficients of interest.

First counsider the case that the coefficients are emctly identified, so you have
as many instruments as endogenous regressors. Then it is impossible to develop a
* statistical test of the hypothesis that the instruments are in fact exogenous. That is,
empirical evidence cannot be brought to bear on the question of whether these
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ne way to estimate the percentage increase in
@eamings from going to school for another year
(the “return to education”) is to regress the logarithm
of earnings against years of school using data on indi-
viduals. But if more able individuals are both more suc-
cessful in the labor market and attend school longer
(perhaps because they find it easier), then years of
schooling will be correlated with the omitted variable,
innate ability, and the OLS estimator of the return to
education will be biased. Because innate ability is
extremely difficult to measure and thus cannot be used
as a regressor, some labor economists have turned to
1V regression to estimate the return to education. But
what variable is correlated with years of education but
not the error term in the earnings regression? That is,
what is a valid instrumental variable?

Your birthday, suggested labor economists Joshua
Angrist and Alan Krueger. Because of mandatory
schooling laws, they reasoned, your birthday is corre-
lated with your years of education: If the law requires
you to attend school until your 16th birthday and you
turn 16 in January while you are in tenth grade, you
might drop out—but if you turn 16 in July you already
will have completed tenth grade. If so, your birthday sat-
isfies the instrument relevance condition. But being
born in January or July should have no direct effect on
your earnings (other than through years of education),
so your birthday satisfies the instrument exogeneity
condition. They implemented this idea by using the
individual’s quarter (three-month period) of birth as

an instrumental variable. They used a very large sam-

" ple of data from the U.S. Census (their regressions had

at least 329,000 observations!), and they controlled for
other variables such as the worker’s age.

But John Bound, another labor economist, was
skeptical. He knew that weak instruments cause TSLS
to be unreliable and worried that, despite the extremely

large sample size, the quarter of birth might be a weak
instrument in some of their specifications. So when
Bound and Krueger next met over funch, the conver-
sation inevitably turned to whether the Angrist—
Krueger instruments were weak. Krueger thoﬁght not
and suggested a creative way to find out: Why not rerun
the regressions using a truly irrelevant instrument—
replace each individual’s real quarter of birth by a
fake quarter of birth, randomly generated by the
computer—and compare the results using the real and
fake instruments? What they found was amazing;: It did-
n’t matter whether you used the real quarter of birth or
the fake one as the instrument—TSLS gave basically
the same answer!

This was a scary regression for labor econometri-
cians. The TSLS standard error computed using the real
data suggests that the return to education is precisely.
estimated—but so does the standard error computed
using the fake data. Of course, the fake data cannot
estimate the return to education precisely, because
the fake instrument is totally irrelevant. The worry,
then, is that the TSLS estimates based on the real data
are just as unreliable as those based on the fake data.

The problem is that the instruments are in fact very
weak in some of Angrist and Krueger’s regressions. In
some of their specifications; the first-stage F-statistic is
less than 2, far less than the rule-of-thumb cutoff of 10.
In other specifications, Angrist and Krueger have larger
first-stage F-statistics, and in those cases the TSLS
inferences are not subject to the problem of weak
instruments. By the way, in those specifications the
Teturn to education is estimated to be approximately
8%, somewhat greater than estimated by OLS.!

The original IV regressions are reported in Angrist and
Krueger (1991), and the re-analysis using the fake instru-
ments is published in Bound, Jaeger, and Baker (1995).
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instruments satisfy the exogeneity restriction. In this case, the only wa}f to assess
whether the instruments are exogenous is to draw on expert opinion and your per-
sonal knowledge of the empirical problem at hand. For example, Philip Wright’s
knowledge of agricultural supply and demand led him to suggest that below-average
rainfall would plausibly shift the supply curve for butter but would not divectly
shift the demand curve.

Assessing whether the instruments are exogenous necessarily requires making
an expert judgment based on personal knowledge of the application. If, however,
there are more instruments than endogenous regressors, then there is a statistical tool
that can be helpful in this process: the so-called test of overidentifying restrictions.

The overidentifying restrictions test. Suppose that you have a single endoge-
nous regressor and two instruments. Then you could compute two different TSLS
estimators: one using the first instrument, the other using the second. These two
estimators will not be the same because of sampling variation. but if both instru-
ments are exogenous, then they will tend to be close to each other. But what it
these two instruments produce very different estimates? You might sensibly con-
clude that there is something wrong with one or the other of the instruments, or
both. That is, it would be reasonable to conclude that one or the other, or both, of
the instruments are not €xogenous.

The test of overidentifying restrictions implicitly makes this comparison. We
say implicitly, because the test is carried out without actually computing all of the
different possible TV estimates. Here is the idea. Exogeneity of the instruments
means that they are uncorrelated with ;. This suggests that the instruments
shouid be approximately uncorrelated with 7755 where st = y— (AKSLS +
BISLS X, + -+ + BISESW,) is the residual from the estimated TSLS regression
using all the instruments (approximately rather than exactly because of sampling
variation). (Note that these residuals are constructed using the true X’s rather than
their first-stage predicted values.) Accordingly. if the instruments are in fact exoge-
nous, then the coefficients on the instruments in a regression of 7*%S on the instru-
ments and the included exogenous variables should all be zero, and this hypothesis
can be tested.

This method for computing the overidentifying restriction test is summarized
in Key Concept 12.6. This statistic is computed using the homoskedasticity-only
F-statistic. The test statistic is commonly called the J-statistic.

In large samples, if the instruments are not weak and the errors are
homoskedastic, then, under the null hypothesis that the instruments are exoge-
nous, the J-statistic has a chi-squared distribution with m — k degrees of freedom
(x2,—). It is important to remember that even though the number of restrictions
being tested is 1, the degrees of freedom of the asymptotic distribution of the
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The Overidentifying Restrictions Test (The /-Statistic)

Let i1f*S be the residuals from TSLS estimation of Equation (12.12). Use OLS to
estimate the regression coefficients in

NTSLS
u; - 80 + BLZIi +oeee ot 6mZmi + 6m+lvvli R 6171+r“/ri +e;, (1217)

where e; is the regression error term. Let F denote the homoskedasticity-only
F—steftis.tic testing the hypothesis that §; = --- = 3,,=0. The overidentifying
restrictions test statistic is J = mF. Under the null hypothesis that all the instru-
menis are exogenous, if ¢; is homoskedastic, in large samples J is distributed x2,_,
where m — k is the “degree of overidentification,” that is, the number of instru-
ments minus the number of endogenous regressors.
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J—sta.tistic is m — k. The reason is that it is only possible to test the overidentifying
restrictions, of which there are m — k. The modification of the J-statistic for het-
eroskedastic errors is given in Section 18.7.

The easiest way to see that you cannot test the exogeneity of the regressors
when the coefficients are exactly identified {7 = k) is to consider the case of a sin-
gle included endogenous variable (k = 1). If there are two instruments, then you
can compute two TSLS estimators, one for each instrument, and you can compare
them to see if they are close. But if you have only one instrument, then you can
compute only one TSLS estimator and you have nothing to compare it to. In fact,

if the coefficients are exactly identified, so that m = k, then the overidentifying test
statistic J is exactly zero.

Application to the Demand for Cigareties!

Our attempt to estimate the elasticity of demand for cigafettes left off with the
TSLS estimates summarized in Equation (12.16), in which income was ap included
exogenous variable and there were two instruments, the general sales tax and the

cigarette-specific tax. We can now undertake a more thorough evaluation of these
instruments.

[— ; : . .
Thxs secAuon assumes knowledge of the material in Sections 10.1 and 10.2 on panel data with T=2
time periods.
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As in Section 12.1, it makes sense that the two instruments are relevant
because taxes are a big part of the after-tax price of cigarettes, and shortly \Ye will
look at this empirically. First, however, we focus on the difficult question of
whether the two tax variables are plausibly exogenous. . ‘

The first step in assessing whether an instrument is exogenou.s 1s- to think
through the arguments for why it may or may not be. This requires thmklng about
which factors account for the error term in the cigarette demand equation and
whether these factors are plausibly related to the instruments. .

Why do some states have higher per capita cigarette consumption .than otl?A
ers? One reason might be variation in incomes across states, but state income is
included in Equation (12.16),so this is not part of the error term. Another reason
is that there are historical factors influencing demand. For example, state§ that
grow tobacco have higher rates of smoking than most other states. Could this fac-
tor be related to taxes? Quite possibly: If tobacco farming and cigarett§ produc-
tion are important industries in a state, then these industries could exert m.ﬂuepm
to keep cigarette-specific taxes low. This suggests that an omitted factor in ciga-
rette demand—whether the state grows tobacco and produces cigarettes—could
be correlated with cigarette-specific taxes.

One solution to this possible correlation between the error term and the
instrument would be to include information on the size of the tobacco aer ciga-
rette industry in the state; this is the approach we took when we included mc9me
as a regressor in the demand equation. But because we have panel data gn mga'l-
rette consumption, a different approach is available that does not requ.n'e. this
information. As discussed in Chapter 10, panel data make it possible to eliminate
the influence of variables that vary across entities (states) but do not change over
time. such as the climate and historical circumstances that lead to a large tobacco
and cigarette industry in a state. Two methods for doing this were given in' Chapte.r

10: cogstructing data on changes in the variables between two differe.:nt time peri-
ods and using fixed effects regression. To keep the analysis here as simple as Pos—
sible, we adopt the former approach and perform regressions of the type described
in Section 10.2, based on the changes in the variables between two differenF years.

The time span between the two different years influences how the estllmat‘ed
elasticities are to be interpreled. Because cigarettes are addictive, changes in price
will take some time to alter behavior. At first, an increase in the price of cigareAtteS
might have little effect on demand. Over time, however, the price mcre:'ase might
contribute to some smokers’ desire to quit. and, importantly, it could dlscoura‘ge
nonsmokers from taking up the habit. Thus the response of demand to a price
increase could be small in the short run but large in the long run. Said differently,
for an addictive product like cigarettes, demand might be inelastic in the short

124 Application to the Demand for Cigarettes 445

moking imposes costs that are not fully borne by

tfle smoker; that is, it generates externalities. One
economic justification for taxing cigarettes therefore
is to “internalize” these externalities. In theory, the
tax on a pack of cigarettes should equal the dollar
value of the externalities created by smoking that
pack. But what, precisely, are the externalities of
smoking, measured in dollars per pack?

Several studies have used econometric methods
to estiinate the externalities of smoking, The nega-
tive externalities—costs—borne by others include
medical costs paid by the government to care for ill
smokers, health care costs of nonsmokers associ-
ated with secondhand smoke, and fires caused by
cigarettes.

But, from a purely economic point of view, smok-

ing also has positive externalities, or benefits. The

biggest economic benefit of smok'mgk is that smokers
tend to pay much more in Social Security (public
pension) taxes than they ever get back. There are
also large savings in nursing home expenditures on
the very old—smokers tend not to live that long.
Because the negative externalities of smoking occur

while the smoker is alive but the positive ones accrue

after death, the net present value of the per-pack
externalities (the value of the net costs per pack, dis-
counted to the present) depends on the discount
rate.

The studies do not agree on a specific dollar value
of the net externalities. Some suggest that the net
externalities, properly discounted, are quite small,
less than current taxes. In fact, the most extreme esti-
mates suggest that the net externalities are positive,
so smoking should be subsidized! Other studies,
which incorporate costs that are probably important
but difficult to quantify (suéh as caring for babies
who are unhealthy because their mothers smoke),
suggest that externalities might be $1 per pack, pos-
sibly even more. But all the studies agree that, by
tending to die in late middle age, smokers pay far
more in taxes than they ever get back in their brief
retirement.!

'An early calculation of the externalities of smoking was
reported by Willard G. Manning et al. (1989). A calculation
suggesting that health care costs would go up if everyone
stopped smoking is presented in Barendregt et al. (1997).
Other studies of the externalities of smoking are reviewed
by Chaloupka and Warner (2000).

run—that is, it might have a short-run elasticity near zero—but it might be more
elastic in the long run.

In this analysis, we focus on estimating the long-run price elasticity. We do this
by considering quantity and price changes that occur over 10-year periods. Specif-
ically, in the regressions considered here, the 10-year change in log quantity,
In( Qlf:if;'g'g’”"’) —1In( Qlf:iél”g"éi.”e*'), is regressed against the 10-year change in log price,
In(P756E" ) — In(P{45), and the 10-year change in log income, In(Inc; 1g95)
~ In(Jnc; 4g5). Two instruments are used: the change in the sales tax-over 10 years,
SalesTax; g5 — SalesTax, 1o55, and the change in the cigarette-specific tax over 10
years, CigTax; 495 — CigTax; gss-
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We think that the case for the exogeneity of the general sales tax is stronger
than that for the cigarette-specific tax, because the political process can link
changes in the cigarette-specific tax to changes in the cigarette @arket and srfnok-
ing policy. For example, if smoking decreases in a state becat%se it falls out of a.sfl.
jon. there will be fewer smokers and a weakened lobby against cxggrette-spemhc
tax increases, which in turn could lead to higher cigarette-s.pemflc taxe's‘ T'hus
changes in tastes (which are part of u) could be corrfalated \fmh changes l? ciga-
rette-specific taxes (the instrument). This suggests dlscom?tmg the I.V estlm.at.es
that use the cigarette-only tax as an instrument and adopting the price elasticity
estimated using the general sales tax as an instrument, ~0.94. .

The estimate of —0.94 indicates that cigarette consumption is somewhat elaé-
tic: An increase in price of 1% leads to a decrease in consumption of 0.94%. This
may seem surprising for an addictive product like cigaretteé. But 1'§§1ember that
this elasticity is computed using changes Over a ten-year period,soitisa Ic?ng-run
elasticity. This estimate suggests that increased taxes can make a substantial dent
in cigarette consumption, at least in the long run. ‘ '

When the clasticity is estimated using 5-year changes from 198.5 to 1990 .1athe1
than the 10-year changes reported in Table 12.1, the elasticity (estimated with the
general sales tax as the instrument) is —0.79; for changes‘ from 1990.t0 1995, th'e
elasticity is —0.68. These estimates suggest that demand is }ess elas.tl'c over hori-
zons of 5 years than over 10 years. This finding of greater price e.last1c1ty at longer
horizons is consistent with the large body of research on cigarette demand.
Demand elasticity estimates in that literature typically fall in the range —03 to

—0.5. but these are mainly short-run elasticities; some studies suggest that the long-

N
run elasticity could be perhaps twice the short-run elasticity.

Where Do Valid Instruments Come From?

In practice the most difficult aspect of IV estimation is finding instrmTlentAs that
are both relevant and exogenous. There are two main approacﬁes, which reflect
two different perspectives on econometric and statistical n?odehng.

The first approach is to use economic theory to suggest m.struments. For examc;
ple, Philip Wright’s understanding of the economics of agricultural markets led
him to look for an instrument that shifted the supply curve but not the de@an
curve: this in turn led him to consider weather conditions in agricultural regions.

< . -higher
2A sobering economic study by Adda and Cornaglia (2006) suggests that smokers compensale for highe

i icoti ¢l interested in’
taxes by smoking more inlensively. thus extracting more nicotine per cigarette. If you are inter

rming m g r d

learning more about the economics of smoking. see Chaloupka and Warner (2000), Gruber (2001), an
g

Carpenter and Cook (2008). -
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One area where this approach has been particularly successful is the field of finan-
cial economics. Some economic models of investor behavior involve statements
about how investors forecast, which then imply sets of variables that are uncorre-
lated with the error term. Those models sometimes are nonlinear in the data and
in the parameters, in which case the IV estimators discussed in this chapter can-
not be used. An extension of IV methods to nonlinear models, called generalized
method of moments estimation, is used instead. Economic theories are, however,
abstractions that often do not take into account the nuances and details necessary
for analyzing a particular data set. Thus this approach does not always work.

The second approach to constructing instruments is to look for some exoge-
nous source of variation in X arising from what is, in effect, a random phenome-
non that induces shifts in the endogenous regressor. For example, in' our
hypothetical example in Section 12.1, earthquake damage increased average class
size in some school districts, and this variation in class size was unrelated to poten-
tial omitted variables that affect student achievement. This approach typically
requires knowledge of the problem being studied and careful attention to the
details of the data, and it is best explained through examples.

Three Examples

We now turn to three empirical applications of IV regression that provide exam-
ples of how different researchers used their expert knowledge of their empirical
problem to find instrumental variables.

Does putting criminals in jail reduce ciime?  This is a question only an econo-
mist would ask. After all, a criminal cannot commit a crime outside jail while in
prison, and that some criminals are caught and jailed serves to deter others. But
the magnitude of the combined effect—the change in the crime rate associated
with a 1% increase in the prison population—is an empirical question.

One strategy for estimating this effect is to regress crime rates (crimes per
100,000 members of the general population) against incarceration rates (prisoners
per 100,000), using annual data at a suitable level of jurisdiction (for example, U.S.
states). This regression could include some control variables measuring economic
conditions (crime increases when general economic conditions worsen), demo-
graphics (youths commit more crimes than the elderly); and so forth. There is, how-
ever, a serious potential for simultaneous causality bias that undermines such an
analysis: If the crime rate goes up and the police do their job, there will be more pris-
oners. On the one hand, increased incarceration reduces the crime rate; on the other
hand, an increased crime rate increases incarceration. As in the butter example in
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Figure 12.1, because of this simultaneous causality an OLS regressi'on (?f the crime :
rate on the incarceration rate will estimate some complicated combmat@n of these
two effects. This problem cannot be solved by finding better control varlgbles. .
This simultaneous causality bias, however, can be eliminated by finding a suit-
able instrumental variable and using TSLS. The instrument must be correlated with
the incarceration rate (it must be relevant), but it must also be uncorrelated with
the error term in the crime rate equation of interest (it must be exogenous).Thgt
is, it must affect the incarceration rate but be unrelated to any of the unobserved
factors that determine the crime rate. .

Where does one find something that affects incarceration but has no direct
effect on the crime rate? One place is exogenous variation in the capacity of e)'gist-
ing prisons. Because it takes time to build a prison, short-term capacity réstrmnons
can force states to release prisoners prematurely or otherwise reduce mc.arcera-
tion rates. Using this reasoning, Levitt (1996) suggested that 1awst.lits aimed at
reducing prison overcrowding could serve as an instrumental variable, and he
implemented this idea using panel data for the U.S. states from 1972 to 1993.

Are variables measuring overcrowding litigation valid mstruments? Although
Levitt did not report first-stage F-statistics, the prison overcrowding, li'tigatlon sloweld
the growth of prisoner incarcerations in his data, suggesting that thl,s mstrum.eflt is
relevant. To the extent that overcrowding litigation is induced by prison conditions
but not by the crime rate or its determinants, this instrument is exogenous. Because
Levitt breaks down overcrowding legislation into several types and thus has several
instruments. he is able to test the overidentifying restrictions and fails to reject them
using the J-statistic, which bolsters the case that his instruments are valid. .

bsing these instruments and TSLS, Levitt estimated the effect or'1 the crime
rate of incarceration to be substantial. This estimated effect was three times larger
than the effect estimated using OLS, suggesting that OLS suffered from large

simultaneous causality bias.

Does cutting ciass sizes increase test scores?  As we saw in the emph:ical analy-
sis of Part IL. schools with small classes tend to be wealthier, and their students
have access to enhanced learning opportunities both in and out of the class¥oom.
In Part 11, we used multiple regression to tackle the threat of omitted variables
bias by controlling for various measures of student affluence, e}bﬂxty to speak Eng-
Jish, and so forth. Still, a skeptic could wonder whether we did enough: If w'e left
out something important. our estimates of the-class size effect \vquld st1'11 be blaéed.

This potential omitted variables bias could be addressed by mclud.mg the nght
control variables, but if these data are unavailable {(some, like outside learning
opportunities, are hard to measure). then an alternative approach is to use IV
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regression. This regression requires an instrumental variable correlated with class
size (relevance) but uncorrelated with the omitted determinants of test perfor-
mance that make up the error term, such as parental interest in learning, learning
opportunities outside the classroom, quality of the teachers and school facilities,
and so forth (exogeneity).

Where does one look for an instrument that induces random, exogenous vari-
ation in class size, but is unrelated to the other determinants of test performance?
Hoxby (2000) suggested biology. Because of random fluctuations in timings of
births, the size of the incoming kindergarten class varies from one year to the next.
Although the actual number of children entering kindergarten might be endoge-
nous (recent news about the school might influence whether parents send a child
to a private school), she argued that the potential number of children entering
kindergarten—the number of 4-year-olds in the district—is mainly a matter of ran-
dom fluctuations in the birth dates of children.

Is potential enrollment a valid instrument? Whether it is exogenous depends
on whether it is correlated with unobserved determinants of test performance.
Surely biological fluctuations in potential enrollment are exogenous, but poten-
tial enrollment also fluctuates because parents with young children choose to
move into an improving school district and out of one in trouble. If so, an increase
in potential enrollment could be correlated with unobserved factors such as the
quality of school management, rendering this instrument invalid. Hoxby addressed
this problem by reasoning that growth or decline in the potential student pool for
this reason would occur smoothly over several years, whereas random fluctuations
in birth dates would produce short-term “spikes” in potential enrollment. Thus,
she used as her instrument not potential enrollment, but the deviation of poten-
tial enrollment from its long-term trend. These deviations satisfy the criterion for
instrument relevance (the first-stage F-statistics all exceed 100). She makes a good
case that this instrument is exogenous, but, as in all IV analysis, the credibility of
this assumption is ultimately a matter of judgment.

Hoxby implemented this strategy using detailed panel data on elementary
schools in Connecticut in the 1980s and 1990s. The panel data set permitted her to
include school fixed effects, which, in addition to the instrumental variables strat-
egy, attack the problem of omitted variables bias at the school level. Her TSLS
estimates suggested that the effect on test scores of class size is small; most of her
estimates were statistically insignificantly different from zero.

Does aggressive treatment of heart attacks prolong lives? Apggressive treat-
ments for victims of heart attacks (technically, acute myocardial infarctions, or
AMI) hold the potential for saving lives. Before a new medical procedure—in this
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example, cardiac catheterization®—is approved for general use, it goes through
clinical trials, a series of randomized controlled experiments designed to measure
its effects and side effects. But strong performance in a clinical trial is one thing;
actual performance in the real world is another.

A natural starting poiat for estimating the real-world effect of cardiac catheter- -
ization is to compare patients who received the treatment to those who did not. This
leads to regressing the length of survival of the patient against the binary treatment
variable (whether the patient received cardiac catheterization) and other control
variables that affect mortality (age, weight, other measured health conditions, and
so forth). The population coefficient on the indicator variable is the increment to th'e
patient’s life expectancy provided by the treatment. Unfortunately, the OLS e.stl-
mator is subject to bias: Cardiac catheterization does not “just happen” to a.pat%ent
randomly; rather, it is performed because the doctor and patient decide that it might
be effective. If their decision is based in part on unobserved factors relevant to heaith
outcomes not in the data set, the treatment decision will be correlated with the
regression error term. If the healthiest patients are the ones who receive .the treat‘-
ment, the OLS estimator will be biased (treatment is correlated with an omitted vari-
able). and the treatment will appear more effective than it really is. o

This potential bias can be eliminated by IV regression using a valid instru-
mental variable. The instrument must be correlated with treatment (must be rel-
evant) but must be uncorrelated with the omitted health factors that affect survival
(must be exogenous).

Where does one look for something that affects treatment but not the health out-
come, other than through its effect on treatment? McClellan, McNeil, and NewAhouse
(1994) suggested geography. Most hospitals in their data set did not specialize 1'n car-
diac catheterization, so many patients were closer to “regular” hospitals that did not
offer this treatment than to cardiac catheterization hospitals. McClellan, McNeil, and
Newhouse therefore used as an instrumental variable the difference between the dis-
tance from the AMI patient's home to the nearest cardiac catheterization hospital
and the distance to the nearest hospital of any sort; this distance is zero if the near-
est hospital is a cardiac catheterization hospital, and otherwise it is positi-ve, If this rel-
ative distance affects the probability of receiving this treatment, then it is relevant. It
it is distributed randomly across AMI victims, then it is exogenous.

Is relative distance to the nearest cardiac catheterization hospital a valid instru- .

ment? McClellan, McNeil, and Newhouse do not report first-stage F-statistics,
but they do provide other empirical evidence that it is not weak. [s this distance

t
3Cardiac catheterization is a procedure in which a catheter, or tube, is inserted into a blood vesse
and guided all the way to the heart to obtain information about the heart and coronary arteries.
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measure exogenous? They make two arguments. First, they draw on their medical
expertise and knowledge of the health care system to argue that distance to a hos-
pital is plausibly uncorrelated with any of the unobservable variables that deter-
mine AMI outcomes. Second, they have data on some of the additional variables
that affect AMI outcomes, such as the weight of the patient, and in their sample
distance is uncorrelated with these observable determinants of survival; this, they
argue, makes it more credible that distance is uncorrelated with the unobservable
determinants in the error term as well.

Using 205,021 observations on Americans aged at least 64 who had an AMI
in 1987, McClellan, McNeil, and Newhouse reached a striking conclusion: Their
TSLS estimates suggest that cardiac catheterization has a small, possibly zero,
effect on health outcomes; that is, cardiac catheterization does not substantially
prolong life. In contrast, the OLS estimates suggest a large positive effect, They
interpret this difference as evidence of bias in the OLS estimates.

McClellan, McNeil, and Newhouse’s IV method has an interesting interpre-
tation. The OLS analysis used actual treatment as the regressor, but because actual
treatment is itself the outcome of a decision by patient and doctor, they argue that
the actual treatment is correlated with the error term. Instead, TSLS uses predicted
treatment, where the variation in predicted treatment arises because of variation
in the instrumental variable: Patients closer to a cardiac catheterization hospital
are more likely to receive this treatment.

This interpretation has two implications. First, the IV regression actually esti-
mates the effect of the treatment not on a “typical” randomly selected patient, but
rather on patients for whom distance is an important consideration in the treat-
ment decision. The effect on those patients might differ from the effect on a typi-
cal patient, which provides one explanation of the greater estimated effectiveness
of the treatment in clinical trials than'in McClellan, McNeil, and Newhouse’s IV
study. Second, it suggests a general strategy for finding instruments in this type of
setting: Find an instrument that affects the probability of treatment, but does so

for reasons that are unrelated to the outcome except through their effect on the
likelihood of treatment. Both these implications have applicability to experimen-
tal and “quasi-experimental” studies, the topic of Chapter 13.

Condusion

From the humble start of estimating how much less butter people will buy if its
price rises, IV methods have evolved into a general approach for estimating regres-
sions when one or more variables are correlated with the error term. Instrumental
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variables regression uses the instruments to isolate variation in the endogenous
regressors that is uncorrelated with the error in the regression of interest; this is
the first stage of two stage least squares. This in turn permits estimation of the
effect of interest in the second stage of two stage least squares. b

Successful IV regression requires valid instruments, that is, instruments that
are both relevant (not weak) and exogenous. If the instruments are weak, then the -
TSLS estimator can be biased, even in large samples, and statistical inferences
based on TSLS r-statistics and confidence intervals can be misleading. Fortunately,
when there is a single endogenous regressor, it is possible to check for weak instru-
ments simply by checking the first-stage F-statistic.

If the instruments are not exogenous—that is, if one or more instruments is
correlated with the error term—the TSLS estimator is inconsistent. If there are
more instruments than endogenous regressors, instrument exogeneity can be
examined by using the J-statistic to test the overidentifying restrictions. However,
the core assumption —that there are at least as many €x0genous instruments as
there are endogenous regressors —cannot be tested. It is therefore incumbent on
both the empirical analyst and the critical reader to use their own understanding
of the empirical application to evaluate whether this assumption is reasonable.

The interpretation of IV regression as a way to exploit known exogenous
variation in the endogenous regressor can be used to guide the search for poten-
tial instrumental variables in a particular application. This interpretation under-
lies much of the empirical analysis in the area that goes under the broad heading
of program evaluation, in which experiments or quasi-experiments are used to
estimate the effect of programs, policies, or other interventions on some outcome
measure. A variety of additional issues arises in those applications—for exam-
ple, the interpretation of TV results when, as in the cardiac catheterization exam-
ple, different “patients” might have different responses to the same “treatment‘.”
These and other aspects of empirical program evaluation are taken up in
Chapter 13.

Summary

. Instrumental variables regression is a way to estimate regression coefficients

when one or more regressors are correlated with the error term.

Endogenous variables are correlated with the error term in the equation of

interest; exogenous variables are uncorrelated with this error term.

3 For an instrument to be valid. it must (1) be correlated with the included
endogenous variable and (2) be exogenous.

!\)
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1V regression requires at least as many instruments as included endogenous
variables.

The TSLS estimator has two stages. First, the included endogenous variables
are regressed against the included exogenous variables and the instruments.
Second, the dependent variable is regressed against the included exogencus
variables and the predicted values of the included endogenous variables
from the first-stage regression(s).

Weak instruments (instruments that are nearly uncorrelated with the
included endogenous variables) make the TSLS estimator biased aud TSLS
confidence intervals and hypothesis tests unreliable,

If an instrument is not exogenous, the TSLS estimator is inconsistent.

Key Terms

instrumental variables (IV)
instrumental variable (instrument)

endogenous variable (420)
exogenous variable (420)

instrument relevance condition (421)
instrument exogeneity condition (421)

two

included exogenous variables (430)

exactly identified (430)

overidentified (430)

underidentified (430)

(419) reduced form (432)

first-stage regression (433)

second-stage regression (433)

weak instruments (438)

first-stage F-statistic (439)

test of overidentifying restrictions
(442)

regression (419)

stage least squares (421)
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12,1

123

In the demand curve regression model of Equation (12.3),is In(P?*"") pos-
itively or negatively correlated with the error,u,? If B, is estimated by OLS,
would you expect the estimated value to be larger or smaller than the true
value of 8,? Explain.

In the study of cigarette demand in this chapter, suppose that we used as
an instrument the number of trees per capita in the state. Is this instrument
relevant? Is it exogenous? Is it a valid instrument?

In his study of the effect of incarceration on crime rates, suppose that Levitt
had used the number of lawyers per capita as an instrument. Is this instru-
ment relevant? Is it exogenous? Is it a valid instrument?
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12.4  In their study of the effectiveness of cardiac catheterization, McClellan,

McNeil, and Newhouse (1994) used as an instrument the difference in dis- -

tance to cardiac catheterization and regular hospitals. How could you deter-

mine whether this instrument is relevant? How could you determine -

whether this instnizment is exogenous?

Exercises

121 This question refers to the panel data regressions summarized in Table 12.1.

a. Suppose that the federal government is considering a new tax on ciga-
rettes that is estimated to increase the retail price by $0.50 per pack. If
the current price per pack is $7.50, use the regression in column (1) to
predict the change in demand. Construct a 95% confidence interval
for the change in demand.

b. Suppose that the United States enters a recession and income falls by
2%. Use the regression in column (1) to predict the change in demand.

¢. Suppose that the recession lasts less than 1 year. Do you think that
the regression in column (1) will provide a reliable answer to the
question in (b)? Why or why not?

d. Suppose that the F-statistic in column (1) was 3.6 instead of 33.6.
Would the regression provide a reliable answer to the question posed
in (a)? Why or why not?

12.2  Consider the regression model with a single regressor: ¥, = Bq + 1. + ;.

Suppose that the assumptions in Key Concept 4.3 are satisfied.

a. Show that X is a valid instrument. That is, show that Key Concept 12.3
is satisfied with Z; = Xj.

b. Show that the I'V regression assumptions in Key Concept 12.4 are sat-
isfied with this choice of Z,

¢. Show that the IV estimator constructed using Z; = X; is identical to
the OLS estimator.

12.3 A classmate is interested in estimating the variance of the error term in
Equation (12.1).

a. Suppose that she uses the estimator from the second-stage regression

Of TSLS: 62 = Lo S (Y, — BISES — BISLSXG)?, where X; s the fitted

n=12

value from the first-stage regression. Is this estimator consistent? (For
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the purposes of this question suppose that the sample is very large
and the TSLS estimators are essentially identical to 8, and B

~2 1 n S A .
b, Is 6f =525 Sin(Y — B ~ BI¥LSX)? consistent?
124 Consider TSLS estimation with a single included endogenous variable and
a smgleA instrument. Then the predicted value from the first-stage regres-
sion is X; = g + 7, Z;. Use the definition of the sample variance and covari-

ance to show tl?at Spy = Ti5zy and s3 = 7ris%. Use this result to fill in the
steps of the derivation in Appendix 12.2 of Equation (12.4).

125  Consider the instrumental variable regression model
Y= Bo+ BiX + BaW +

where JX; is correlated with 1;; and Z; is an instrument. Suppose that the first
three assumptions in Key Concept 12 4 are satisfied. Which IV assumption
is not satisfied when:

a. Z;is independent of (Y, X, W,)?

b. Z;=W?
c. Wi=1"{oralli?
d. Z;=X7?

12.6 In an instrumental variable regression model with one regressor, X, and
one instrument, Z, the regression of X; onto Z; has R? = 0.05 and n =l 100.
Is Z; a strong instrument? [Hint: See Equation (7.14).] Would your answer
change if R* = 0.05 and n = 5007

12.7 In an instrumental variable regression model with one regressor, X, and
two mstruments, Z; and Z,;, the value of the J-statistic is J = 18.2.
a. Does this suggest that E(u|Z,;, Z,;) # 07 Explain.
b. Does this suggest that E(1;{Z;;) # 0? Explain.

12.8 Consider a product market with a supply function Qf = Bo+ BF A+,
a demand function Q%= v, + 1Y, and a market equilibrium condition

—d .

O} = Of, where uf and u are mutually independent i.i.d. random variables,
both with a mean of zero.
a. Show that P; and uj are correlated.
b. Show that the OLS estimator of 3, is inconsistent.

¢. How would you estimate B, 81, and y,?
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12.9 A researcher is interested in the effect of military service on human capi-

tal. He collects data from a random sample of 4000 workers aged 40 and
runs the OLS regression Y= o+ B1.X; + u;, where Y is the worker’s
annual earnings and X; is a binary variable that is equal to 1 if the person
served in the military and is equal to 0 otherwise.

a. Explain why the OLS estimates are likely to be unreliable. (Hint:
Which variables are omitted from the regression? Are they correlated
with military service?)

b. During the Vietnam War there was a draft, where priority for the
draft was determined by a national lottery. (Birthdates were ran-
domly selected and ordered 1 through 365. Those with birthdates
ordered first were drafted before those with birthdates ordered sec-
ond, and so forth.) Explain how the lottery might be used as an
instrument to estimate the effect of military service on earnings.
(For more about this issue, see Joshua D. Angrist, “Lifetime Earn-
ings and the Vietnam Era Draft Lottery: Evidence from Social
Security Administration Records,” American Economic Review,
June 1990: 313-336.)

12.10 Consider the instrumental variable regression model ¥; = By + 8, + B,W,

+ u;, where Z, is an instrument. Suppose that data on W, are not available
I i
and the model is estimated omitting W, from the regression.

a. Suppose that Z; and W, are uncorrelated. Is the IV estimator consistent?

b. Suppose that Z; and W, are correlated. Is the IV estimator consistent?

Empirical Exercises

E12.1 During the 1880s, a cartel known as the Joint Executive Committee (JEC)

controlled the rail transport of grain from the Midwest to eastern cities in
the United States. The cartel preceded the Sherman Antitrust Act of 1890,
and it legally operated to increase the price of grain above what would have
been the competitive price. From time to time, cheating by members of Fhe
cartel brought about a temporary collapse of the collusive price—setn’ng
agreement. In this exercise, you will use variations in supply associated with
the cartel’s collapses to estimate the elasticity of demand for rail transport
of grain. On the textbook Web site www.pearsonhighered.comlstock_watsm?,
you will find a data file JEC that contains weekly observations on the rail

E12.2
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shipping price and other factors from 1880 to 1886.* A detailed description
of the data is contained in JEC_Description available on the Web site.

Suppose that the demand curve for rail transport of grain is specified
as In(Q;) = By + B1In(B) + Bolce; + E;EIBZJereas]-J + 1, where Q; is the
total tonnage of grain shipped in week 7, P; is the price of shipping a ton of
grain by rail, Ice; is a binary variable that is equal to 1 if the Great Lakes
are not navigable because of ice, and Seas; is a binary variable that captures
seasonal variation in demand. Jce is included because grain could also be
transported by ship when the Great Lakes were navigable.

a. Estimate the demand equation by OLS. What is the estimated value

of the demand elasticity and its standard error?

by

b. Explain why the interaction of supply and demand could make the
OLS estimator of the elasticity biased.

¢. Consider using the variable carfel as instrumental variable for In(P).
Use economic reasoning to argue whether cartel plausibly satisfies the
two conditions for a valid instrument.

d. Estimate the first-stage regression. Is cartel a weak instrument?

e. Estimate the demand equation by instrumental variable regression.
What is the estimated demand elasticity and its standard error?

o]

Does the evidence suggest that the cartel was charging the profit-
maximizing monopoly price? Explain. (Hint: What should a monopo-
list do if the price elasticity is less than 1?)

How does fertility affect labor supply? That is, how much does a woman’s
labor supply fail when she has an additional child? In this exercise you will
estimate this effect using data for married women from the 1980 U.S. Census.’
The data are available on the textbook Web site www.pearsonhighered.com/
stock_watson in the file Fertility and described in the file Fertility Description.
The data set contains information on married women aged 21-35 with two or
more children. :

a. Regress weeksworked on the indicator variable morekids nsing OLS.
On average, do women with more than two children work less than
women with two children? How much less?

“These data were provided by Professor Robert Porter of Northwestern University and were used in
his paper “A Study of Cartel Stability: The Joint Executive Committee, 1830~1886," The Bell Journal
of Economics. 1983, 14(2), 301314,

>These data were provided by Professor William Evans of the University of Maryland and were used
in his paper with Joshua Angrist, “Children and Their Parents’ Labor Supply: Evidence from Exoge-
nous Variation in Family Size,” American Economic Review, 1998, 88(3): 450-477.
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b. Explain why the OLS regression estimated in (a) is inappropriate for
estimating the causal effect of fertility (morekids) on labor supply
(weeksworked).

¢. The data set contains the variable sanesex, which is equal to 1 if the
first two children are of the same sex {boy-boy or girl-girl) and equal
to 0 otherwise. Are couples whose first two children are of the same
sex more likely to have a third child? Is the effect large? Is it statisti-
cally significant?

d. Explain why samesex is a valid instrument for the instrumental vari-
able regression of weeksworked on morekids.

e. Issamesex a weak instrument?

f. Estimate the regression of weeksworked on morekids using samesex
as an instrument. How large is the fertility effect on labor supply?

g. Do the results change when you include the variables ageml, black,
hispan, and othrace in the labor supply regression (treating these vari-
able as exogenous)? Explain why or why not.

(This requires Appendix 12.5) On the textbook Web site www.pearsonhighered
.com/stock_watson you will find the data set WeakInstrument that con-
tains 200 observations on (Y}, X,, Z;) for the instrumental regression
Yi=Bo+ BNt u,

E12.3

a. Construct B[TSLS, its standard error, and the usual 95% confidence
interval for 3.

b. Compute the F-statistic for the regression of X; on Z;. Is there evi-
dence of a “weak instrument” problem?

¢. Compute a 95% confidence interval for 8, using the Anderson-Rubin
procedure. (To implement the procedure, assume that —5 = 8, = 5.)

d. Comment on the differences in the confidence intervals in (a) and (¢).

Which is more reliable?

The Cigarette Consumption Panel Data Set

The data set consists of annual data for the 48 contiguous U.S. states from 1985 to 1995.
Quantity consumed is measured by annual per capita cigarette sales in packs per fiscal
year, as derived from state tax collection data. The price is the real (that is, inflation-
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adjusted) average retail cigarette price per pack during the fiscal year, including taxes.
Income is real per capita income. The general sales tax is the average tax, in cents per pack,
due to the broad-based state sales tax applied to all consumption goods. The cigarette-spe-
cific tax is the tax applied to cigarettes only. All prices, income, and taxes used in the regres-
sions in this chapter are deflated by the Consumer Price Index and thus are in constant
(real) dollars. We are grateful to Professor Jonathan Gruber of MIT for providing us with
these data.

Derivation of the Formula
for the TSLS Estimator in Equation (12.4)

The first stage of TSLS is to regress X; on the instrument Z; bi/ OLS and then compute the
OLS predicted value )%,-, and the second stage is to regress Y; on 5&1 by OLS. Accordingly,
the formula for the TSLS estimator, expressed in terms of the predicted value j’}, is the for-
mula for the OLS estimator in Key Concept 4.2, with 5(, replacing X, That is, é{SLS = Spy /s\z,,
where x/%, is the sample variance of X’, and s;, is the sample covariance between Y; and 5(,

Because i’} is the predicted value of X; from the first-stage regression, 5(, = 7+ M2,
the definitions of sample variances and covariances imply that Spy = Szy and sf,z it
(Exercise 12.4). Thus, the TSLS estimator can be written as /§1TSLS = SX'Y/S,‘%' =szv/(715%).
Finally, 7, is the OLS slope coefficient from the first stage of TSLS, so ) = s5y/s%. Substi-
tution of this formula for 77| into the formula [A};TSLS = 5zv/(75%) yields the formula for the
TSLS estimator in Equation (12.4).

Large-Sample
Distribution of the TSLS Estimator

This appendix studies the large-sample distribution of the TSLS estimator in the case con-
sidered in Section 12.1, that is, with a single instrument, a single included endogenous vari-
able, and no included exogenous variables.

To start, we derive a formula for the TSLS estimator in terms of the errors that forms

the basis for the remaining discussion, similar to the expression for the OLS estimator in
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Equation (4.30) in Appendix 4.3. From Equation (12.1), ¥ — Y=p(X—-X)+ (y— i),

Accordingly, the sample covariance between Z and Y can be expressed as

1 i . .
Sz =T ;(ZJ‘Z)(K‘ Y)

:,'7'1_1‘ i(zi_j)[ﬁl(f\’i_)?) + ()]

=1

12 o
=Buszxt 2 (Zi— Z){u;~ 1)

1 i .
=Biszyt A Zi— Z)uy,
=1

(12.19)

where szv = [1/(n ~ D] 2= (Z— Z)(X; — X) and where the final equality follows because

>

e

1(Z;—Z) = 0. Subslituting the definition of 5,y and the final expression in Equation

(12.19) into the definition of ETSLS and multiplying the numerator and denominator by

(n—1)/nyields

Large-Sample Distribution of ,@,TSLS When

the IV Regression Assumptions in Key Concept 12.4 Hold
Equation (12.20) for the TSLS estimator is similar to Equation (4.30) in Appendix 4.3 for
the OLS estimator, with the exceptions that Z rather than .Y appears in the numerator and
the denominator is the covariance between Z and X rather than the variance of X. Because

of these similarities. and because Z is exogenous, the argument in Appendix 4.3 that the

fetr . . ATSLS
OLS estimator is normally distributed in large samples extends to 8{°7".

(12.20)

Specifically. when the sample is large, 7 = py.so the numerator is approximately

7={1/n)3i-q, where g; = (Z; — uz)u;. Because the instrument is exogenous, E(g;)=0.

. ) . 7_
By the 1V regression assumptions in Key Concept 12.4. g; is L.i.d. with variance o, =
var[(Z,v — uz)u;). 1t follows that var(g) = 0;77 = ai/m and, by the central limit theorem, §/oy

is, in large samples, distributed N(O, 1).

Because the sample covariance is consistent for the population covariance, szy

£,

cov(Z;, X;). which, because the instrument is relevant, is nonzero. Thus, by Equation (12.20)
ETSLS = B, +§/cov(Z. X;).so in large samples ETSLS is approximately distributed N(B1,
U%v’l"‘"‘)‘ where 0;;""“‘ = (rfi/[cov(Z,-. X,-)]: = (l/n)var{(Z,- - /,Lz)zzi]/{cov(Zi, X,-)]“, which is

B
the expression given in Equation (12.8).
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Large-Sample Distribution of the TSLS |
Estimator When the Instrument Is Not Valid

This appendix considers the large-sample distribution of the TSLS estimator in the setup
of Section 12.1 (one X, one Z) when one or the other of the conditions for instrument valid-
ity fails. If the instrument relevance condition fails, the large-sample distribution of TSLS
estimator is not normal; in fact, its distribution is that of a ratio of two normal random vari-

ables. If the instrument exogeneity condition fails, the TSLS estimator is inconsistent.

Large-Sample Distribution of 375
When the Instrument Is Weak

First consider the case that the instrument is irrelevant so that cov(Z,X;) = 0. Then the argu-
ment in Appendix 12.3 entails division by zero. To avoid this problem, we need to take a
closer look at the behavior of the term in the denominator of Equation (12.20) when the
population covariance is zero.

We start by rewriting Equation (12.20). Because of the consistency of the sample average,
in large samples, Z is close to iz and X is close to ex. Thus the term in the denominator of
Equation (12.20) is approximately (1/n) Z/L(Z; — puy)(X; — py) = (1/n) Sio1; = F, where
117 (Zi = pz)(X — py). Let a7 = var[{Z; = pz) (X — py) ] let o2 = o2/n, and let 7, o3, and
U,ZI be as defined in Appendix 12.3. Then Equation (12.20) implies that, in large samples,

/o oy

If the instrument is irrelevant, then E(r;) = cov(Z, X;) = 0. Thus 7 is the sample aver-
age of the random variables r;, i=1,..., 1, which are i.i.d. (by the second least squares
assumption), have variance o2 = Var[(Z,- = ) (X — /,LX)] (which is finite by the third IV
regression assumption), and have a mean of zero (because the instruments are irrelevant).
It follows that the central limit theorem applies to ¥, specifically, 7/o; is approximately dis-
tributed N(0, 1). Therefore, the final expression of Equation (12.21) implies that, in large

TSLS

samples, the distribution of [31 — BB; is the distribution of S, where a = o,/o.and S is

the ratio of two random variables, each of which has a standard normal distribution (these

“two standard normal random variables are correlated).

In other words, when the instrument is irrelevant, the central limit theorem applies to
the denominator as well as the numerator of the TSLS estimator, so in large samples the

distribution of the TSLS estimator is the distribution of the ratio of two normal random
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variables. Because X; and u; are correlated, these normal random variables are correlated,
and the large-sample distribution of the TSLS estimator when the instrument is irrelevant |
is complicated. In fact, the large-sample distribution of the TSLS estimator with irrelevantr
instruments is centered on the probability limit of the OLS estimator. Thus, when the instri
ment is irrelevant, TSLS does not eliminate the bias in OLS and, moreover, has a nonnor
mal distribution, even in large samples.

A weak instrument represents an intermediate case between an irrelevant instrument and
the normal distribution derived in Appendix 12.3. When the instrument is weak but not irrel-
evant, the distribution of the TSLS estimator continues to be nonnormal, so the general lesson

here about the extreme case of an irrelevant instrument carries over to weak instruments.

Large-Sample Distribution of [§1T5L5

When the Instrument Is Endogenous

The numerator in the final expression in Equation (12.20) converges in probability to
cov(Z;, w;). If the instrument is exogenous, this is zero and the TSLS estimator is consistent
(assuming the instrument is not weak). If, however, the instrument is not exogenous, then,
if the instrument is not weak, /ASTSLS s g+ cov(Zyu;)/cov(Z,X;) # B, . That s, if the
instrument is not exogenous, the TSLS estimator is inconsistent.

Instrumental Variables
Analysis with Weak Instruments

This appendix discusses some methods for instrumental variables analysis in the presence
of potentially weak instruments. The appendix focuses on the case of a sir}gle included

endogenous regressor [Equations (12.13) and (12.14)].

Testing for Weak Instruments
The rule of thumb in Key Concept 12.5 says that a first-stage F-statistic less than 10 indi-
cates that the instruments are weak. One motivation for this rule of thumb arises from an
approximate expression for the bias of the TSLS estimator. Let BYLS denote the probabil-
ity limit of the OLS estimator §,and let BPLS — B, denote the asymptotic bias of the OLS
estimator (if the regressor is endogenous, then Bl —E gOLs = g Itis possibleAto show
that, when there are many instruments, the bias of the TSLS is approximately £( B3 —
B =~ (BPYS — Bl)/[E(F) - 1}, where E(F) is the expectation of the first-stage F-statistic.

Instrumental Variables Analysis with Weak Instruments 465

If E(F) = 10, then the bias of TSLS, relative to the bias of OLS, is approximately 1/9, or just
over 10%, which is small enough to be acceptable in many applications. Replacing
E(F) > 10 with F > 10 yields the rule of thumb in Key Concept 12.5.

The motivation in the previous paragraph involved an approximate formula for the
bias of the TSLS estimator when there are many instruments. In most applications, how-
ever, the number of instruments, 7, is small. Stock and Yogo (2005) provide a formal test
for weak instruments that avoids the approximation that m is large. In the Stock-Yogo
test, the null hypothesis is that the instruments are weak and the alternative hypothesis
is that the instruments are strong, where strong instruments are defined to be instruments
for which the bias of the TSLS estimator is at most 10% of the bias of the OLS estima-
tor. The test entails comparing the first-stage F-statistic (for technical reasons, the
homoskedasticity-only version) to a critical value that depends on the number of instru-
ments. As it happens, for a test with a 5% significance level, this critical value ranges
between 9.08 and 11.52, so the rule of thumb of comparing F to 10 is a good approxima-
tion to the Stock—Yogo test.

Hypothesis Tests and Confidence Sets for 8

If the instruments are weak, the TSLS estimator is biased and has a nonnormal distribu-
tion. Thus the TSLS r-test of 8, = B, is unreliable, as is the TSLS confidence interval for
B There are, however, other tests of B; = B, along with confidence intervals based on
those tests, that are valid whether instruments are strong, weak, or even irrelevant. When
there is a single endogenous regressor, the preferred test is Moreira’s (2003) conditional
likelihood ratio (CLR) test. An older test, which works for any number of endogenous
regressors, is based on the Anderson-Rubin (1949) statistic. Because the Anderson-Rubin
(1949) statistic is conceptually less 'complicated, we describe it first.

The Anderson-Rubin test of 8, = 8, o proceeds in two steps. In the first step, compute a
new variable, Y7 = ¥ — B; gX. In the second step, regress Y7 against the included €X0genous
regressors (W's) and the instruments (Z’s). The Anderson-Rubin statistic is the F-statistic
testing the hypothesis that the coefficient on the Z’s are all zero. Under the null hypothe-
sis that By = B, if the instruments satisfy the exogeneity condition (condition 2 in Key
Concept 12.3), they will be uncorrelated with the error term in this regression and the nult
hypothesis will be rejected in 5% of all samples.

As discussed in Sections 3.3 and 7.4, a confidence set can be constructed as the set of
values of the parameters that are not rejected by a hypothesis test. Accordingly, the set of
values of B that are not rejected by a 5% Anderson-Rubin test constitutes a 95% confidence
set for B,. When the Anderson-Rubin F-statistic is computed using the homoskedasticity-
only formula, the Anderson-Rubin confidence set can be constructed by solving a quadratic
equation (see Empirical Exercise 12.3). The logic behind the Anderson-Rubin statistic
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never assumes instrument relevance, and the Anderson—Rubin confidence set will have

coverage probability of 95% in large samples whether the instruments are strong, weak, or-

even irrelevant. .

The CLR statistic also tests the hypothesis that 8; = . Likelihood ratio statistics -

compare the value of the likelihood (see Appendix 11.2) under the null hypothests to its

value under the alternative and reject it if the likelihood under the alternative is sufficiently

greater than under the null. Familiar tests in this book, such as the homoskedasticity—only' :

F-test in multiple regression, can be derived as likelihood ratio tests under the assumption -

of homoskedastic normally distributed errors. Unlike any of the other tests discussed in this
book, however, the critical value of the CLR test depends on the data, specifically on a sta-
tistic that measures the strength of the instruments. By using the right critical value, the
CLR test is valid whether instruments are strohg, weak, or irrelevant. CLR confidence inter-
vals can be computed as the set of 3, that are not rejected by the CLR test.

The CLR test is equivalent to the TSLS r-test when instruments are strong and has very
good power when instruments are weak. With suitable software, the CLR test is easy to use.
The disadvantage of the CLR test is that it does not generalize readily to more than one
endogenous regressor. In that case, the Anderson-Rubin test (and confidence set) is rec-
ommended; however, when instruments are strong (so TSLS is valid) and the coefficients
are overidentified, the Anderson-Rubin test is inefficient in the sense that it is less power-

ful than the TSLS r-test.

Estimation of 3

If the instruments are irrelevant, it is not possible to obtain an unbiased estimator of 3,,even
in large samples. Nevertheless, when instruments are weak, some IV estimators tend to be
more centered on the true value of 8, than is TSLS. One such estimator is the limited infor-
mation maximum likelihood (LIML) estimator. As its name implies, the LIML estimator is
the maximum likelihood estimator of 8, in the system of Equations (12.13) and (12.14) (for
a discussion of maximum likelihood estimation, see Appendix 11.2). The LIML estimator
also is the value of 8, that minimizes the homoskedasticity-only Anderson-Rubin test sta-
tistic. Thus, if the Anderson—Rubin confidence set is not empty. it will contain the LIML esti-
mator. In addition, the CLR confidence interval contains the LIML estimator.

If the instruments are weak, the LIML estimator is more nearly centered on the true
value of 8, than is TSLS. If instruments are strong, the LIML and TSLS estimators coin-
cide in large samples. A drawback of the LIML estimator is that it can produce extreme
outliers. Confidence intervals constructed around the LIML estimator using the LIML stan-
dard error are more reliable than intervals constructed around the TSLS estimator using
the TSLS standard error, but are less reliable than Anderson-Rubin or CLR intervals when

the instruments are weak.
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The problems of estimation, testing, and confidence intervals in IV regression with weak
instruments constitute an area of ongoing research. To leatn more about this topic, visit the
Web site for this book.

TSLS with Control Variables

In Key Concept 12.4, the W variables are assumed to be exogenous. This appendix consid-
ers the case in which W is not exogenous, but instead is a control variable included to make
Z exogenous. The logic of control variables in TSLS parallels the logic in OLS: If a control
variable effectively controls for an omitted factor, then the instrument is uncorrelated with
the error term. Because the control variable is correlated with the error term, the coeffi-
cient on a control variable does not have a causal interpretation. The mathematics of con-
trol variables in TSLS also parallels the mathematics of control variables in OLS and entails
relaxing the assumption that the error has conditional mean zero, given Z and W, to be that
the conditional mean of the error does not depend on Z. This appendix draws on Appen-
dix 7.2 (Conditional Mean Independence), which should be reviewed first.

Consider the IV regression model in Equation (12.12) with a single X and a single W:

Y= Bo+ BiXi+ W + ;. (12.22)

We replace IV Regression Assumption #1 in Key Concept 12.4 [which states that E(u W) = 0]

with the assumption that, conditional on W, the mean of 1; does not depend on Z;:
E(u|W, Z;) = E(u|W). (12.23)

Following Appendix 7.2, we further assume that E{u|W) is linear in W, so E(u]W) =
Yo+ v2W,, where vy and 1, are coefficients. Letting &; = 1; — E(w|W, Z;) and applying the
algebra of Equation (7.25) to Equation (12.22), we obtain

Yi=6+ B+ W+ e, (12.24)

where 8= fg+vyp and 8 =g, +v,. Now E(efW, Z) = E[u;— E(u{W, Z)|W, Z} =
E(u|W, Z;) — E(u|W, Z;) = 0, which in turn implies corr{Z;, ;) = 0. Thus IV Regression
Assumption #1 and the instrument exogeneity requirement (condition #2 in Key Concept
12.3) both hold for Equation (12.24) with error term &, Thus, if IV Regression Assumption
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#1 is replaced by conditional mean independence in Equation (12.23), the original IV
regression assumptions in Key Concept 12.4 apply to the modified regression in Equation
(12.24).

Because the IV regression assumptions of Key Concept 12.4 hold for Equation (12.24),
all the methods of inference (both for weak and strong instruments) discussed in this chap-
ter apply to Equation (12.24). In particular, if the instruments are strong, the coefficients in
Equation (12.24) will be estimated consistently by TSLS and TSLS tests and confidence
intervals will be valid. ’

Just as in OLS with control variables, in general the TSLS coefficient on the control
variable W does not have a causal interpretation. TSLS consistently estimates 8, in
Equation (12.24), but &, is the sum of the direct causal effect of W (B2) and 7,, which
reflects the correlation between W and the omitted factors in i; for which W controls.

In the cigarette consumption regressions in Table 12.1, it is tempting to interpret the
coefficient on the 10-year change in log income as the income elasticity of demand. If, how-
ever, income growth is correlated with increases in education and if more education reduces
smoking, income growth would have its own causal effect (85, the income elasticity) plus
an effect arising from its correlation with education (y;). If the latter effect is negative
(v2 < 0),the income coefficients in Table 12.1 (which estimate &, = B, + v,) would under-
estimate the income elasticity, but if the conditional mean independence assumption in

Equation (12.23) holds, the TSLS estimator of the price elasticity is consistent.

Experiments and
Juasi-Experiments

many fields, such as psychology and medicine, causal effects are commonly

i estimated using experiments. Before being approved for widespread medical use,
for example, a new drug must be subjected to experimental trials in which some
patients are randomly selected to receive the drug while others are given a harmless
ineffective substitute (@ “placebo”); the drug is approved only if this randomized
controlled experiment provides convincing statistical evidence that the drug is safe
and effective.

There are three reasons to study randomized controlled experiments in an
econometrics course. First, an ideal randomized controlled experiment provides a
conceptual benchmark to judge estimates of causal effects made with observational
data. Second, the results of randomized controlled experiments, when conducted,
can be very influential, so it is important to understand the limitations and threats to -
validity of actual experiments as well as their strengths. Third, external circumstances
sometimes produce what appears to be randomization; that is, because of external
events, the treatment of some individual occurs “as if” it is random, possibly conditional
on some control variables. This “as if” randomness produces a “quasi-experiment” or
“natural experiment,” and many of the methods developed for analyzing randomized
experiments can be applied with some modifications) to quasi-experiments.

This chapter examines experiments and quasi-experiments in economics. The
statistical tools used in this chapter are muitiple regression analysis, regression
analysis of panel data, and instrumental variables (IV) regression. What distinguishes
the discussion in this chapter is not the tools used, but rather the type of data
analyzed and the special opportunities and challenges posed when analyzing
experiments and quasi-experiments.

The methods developed in this chapter are often used for evaluating social or
economic programs. Program evaluation is the field of study that concerns
estimating the effect of a program, policy, or some other intervention or “treatment.”
What is the effect on earnings of going through a job training program? What is the
effect on employment of low-skilled workers of an increase in the minimum wage?
What is the effect on college attendance of making low-cost student aid loans
available to middle-class students? This chapter discusses how such programs or
policies can be evaluated using experiments or quasi-experiments.
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