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Short overview:

(1) What is time series? What is Stochastic processes
(2) Important steps for the Econometric Analsis
(3) Descriptive statistics
(4) Autocorrelation function
(5) Partial autocorrelation function
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Time series and economic data

Definition: A time series is a set of observations xt observed in se-
quence over time, t = 1, ...,T .

To indicate the dependence on time, we adopt new notation, and use
the subscript t to denote the individual observation, and T to denote
the number of observations.

Because of the sequential nature of time series, we expect that xt and
xt−1 are not independent, so classical assumptions are not valid:

The past can affect the future, but not vice versa.
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Time series and economic data

We can separate time series into two categories:

1) Univariate where xt ∈ R is scalar

Example: GDPt =Gross Domestic Product at time t

2) Multivariate where xt ∈ Rm is vector-valued

Example: 
GDPt

rt
Pt
Mt


GDPt = Gross Domestic Product at time t , r t = Interest rate at time
t , Pt =Price level at time t , Mt =Money at time t .
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5/29 Chapter 1: Characteristics of economic time series data

Time series and economic data

We distinguish between discrete and continuos time series:

If t are discrete⇒ discrete time series

Example: GDP, Consumption,...

If t are continuos⇒ continuous time series

Example: Stock price

In this course we focus on the discrete time series.
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6/29 Chapter 1: Characteristics of economic time series data

Stochastic process

Definition: A stochastic process is a collection of random variables
such that to each element t ∈ T0 is associated a random variable Yt .

→ The process can be written {Yt : t ∈ T0}.

If T0 = R (real numbers) we have a process in continuous time.

If T0 = Z (integers) or T0 = Z we have a discrete time process.

→ To observe a time series is equivalent to observing a realization of
a process {Yt : t ∈ T0} or a portion of such a realization
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Important steps for the Econometric Analysis

Suppose we have time series data (one or several economic variables)
and we wish to study its evolution in time or/and to understand the
relationship between the variables (how one variable affect another
one). We have to follow the following main steps:

1) Descriptive statistics, graphical analysis and visual inspection of the
data =⇒ Mean, variance, covariance,..., Plot (figures) and analyze vi-
sually the data: stationary & non stationary, seasonality,...

2) Analyze the properties of the data: Autocorrelation and partial auto-
correlation functions

3) Model selection and Estimation

4) Validation

5) Forecasting.
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8/29 Chapter 1: Characteristics of economic time series data

Descriptive statistics

• Mean:
E(Yt) = µt =

∫
Yt f (yt)dyt

• Variance:

Var(Yt) = E [(Yt − E(Yt))
2] = E(Y 2

t )− E(Yt)
2

• Standard deviation:
σX =

√
Var(·)

• Covariance:

Cov(X ,Y ) = E [(X − E(X ))(Y − E(Y ))] = E(XY )− E(X )E(Y )
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Descriptive statistics

• Correlation:

Corr(X ,Y ) =
Cov(X ,Y )

σX σY
∈ [−1,1]

• Cov(X ,Y ) = 0⇔ E(XY ) = E(X )E(Y )⇔ no correlation between X
and Y .

• X and Y independent⇒ Cov(X ,Y ) = 0, but not vice versa

• Useful properties:
(1) Expectation is linear: E(aX + bY ) = aE(X ) + bE(Y )

(2) Variance is NOT linear: Var(aX + b) = a2Var(X )

(3) and Var(X ± Y ) = Var(X ) + Var(Y )± 2Cov(X ,Y )
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Autocorrelation Function (ACF)

• Covariance:

Cov(X ,Y ) = E [(X − E(X ))(Y − E(Y ))] = E(XY )− E(X )E(Y )

• Autocovariance:
The autocovariance function of a stochastic process Yt is a covariance
between two elements of the series, i.e.,

γt1,t2 = cov(Yt1 ,Yt2),

is the autocovariance between element t1 and t2. If t1 = t2 = t , then
the autocovariance function is equal to the variance.

γt1,t2 = σ2
t

Variances and autocovariances are all expressed in terms of the squa-
red unit of measure of Yt .
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Autocorrelation Function (ACF)

• Correlation:

Corr(X ,Y ) =
Cov(X ,Y )

σX σY
∈ [−1,1]

• Autocorrelation Function (ACF): Useful normalization of autoco-
variance function is given by Autocorrelation Function ρt1,t2

ρt1,t2 =
γt1,t2

σt1σt2
,

where
σt1 =

√
Var(Yt1), σt2 =

√
Var(Yt2)

For t1 = t2 = t =⇒ ρt1,t2 = 1.

• ACF is a (crucial) starting point to describe time dependencies in a
stochastic process.
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The Partial Autocorrelation Function (PACF)

An important part of the correlation between Yt and Yt−k may arise
from their correlation with the intermediate variables Yt−1, ...,Yt−k+1.
To control for this, we define the Partial Autocorrelation Function Pk
(PACF):

Pk = Corr(Yt ,Yt−k |Yt−1, ...,Yt−k+1).

The PACF varies between −1 and 1 (like ACF), with values near ± in-
dicating stronger correlation. The PACF filters out the effect of “shorter”
lags autocorrelation from the correlation at “longer” lags.
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The Partial Autocorrelation Function (PACF)

• How to calculate PACF? We can obtain from Yule-Walker equati-
ons:

Pk =

1 ρ1 ... ρk−2 ρ1
ρ1 1 ... ρk−3 ρ2
... ... ... ...
ρk−1 ρk−2 ... ρ1 ρk

1 ρ1 ... ρk−2 ρk−1
ρ1 1 ... ρk−3 ρk−2
... ... ... ...
ρk−1 ρk−2 ... ρ1 1

.

• Examples for P1, P2 and P3?

Nazarii Salish | Universidad Carlos III de Madrid, Economics Department | WS 2018/19



14/29 Chapter 1: Characteristics of economic time series data

Stationarity and Ergodicity
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Motivation for additional assumptions

• A stochastic process can be described by n-dimentional probability
distributions. In particular,

Definition (Distribution of a stochastic process)

A distribution function of a stochastic process {Yt : t ∈ T0} can be
defined by specifying, for each subset t1, ..., tn ∈ T with n ≥ 1, the
joint distibution function of (Yt1 , ...,Ytn), i.e.,

F (y1, ..., yn; t1, ..., tn) = P[Yt1 ≤ y1, ...,Ytn ≤ yn].
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16/29 Chapter 1: Characteristics of economic time series data

Motivation for additional assumptions

Remark
Specifying the complete shape of the distribution is too ambitious.
Why?Consider only first and second moments of a stochastic
process:
• E(Yt) = µt for each t = 1, ...,T . This gives T values.
• E(Yt − µt)

2 = σ2
t for each t = 1, ...,T . Also gives T values.

• E[(Yt1−µt1)(Yt2−µt2)] = γt1,t2 for each t1, t2 = 1, ...,T , which gives
T (T−1)

2 .

=⇒This means that we have 2T + T (T−1)
2 unknown parameters, but

only T observations
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17/29 Chapter 1: Characteristics of economic time series data

Motivation for additional assumptions

Conclusion
Therefore we need to make additional (simplifying) assumptions:

(1) Stationarity

(2) Ergodicity
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18/29 Chapter 1: Characteristics of economic time series data

Stationarity

There are two concepts of stationarity of stochastic processes: Strict
and weak stationarity.

Definition (Strict stationarity)

A process is said to be strictly stationary if for any values of (s1, s2, ..., sn)
the joint distribution of (Yt+s1 , ...,Yt+sn) depends only on the intervals
separating the dates s1, s2, ..., sn and not on the date itself (t).

Strick stationarity is a strong assumption. Very often in practice we
need to have only the first and the second moments independent of
time. Then strict stationarity can be relaxed to weak stationarity.
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19/29 Chapter 1: Characteristics of economic time series data

Stationarity

Definition (Weak stationarity)

The process Yt is said to be weakly-stationary or covariance-stationary
if
• E(Yt) = µ for all t ;
• E[(Yt1 − µ)(Yt−j − µ)] = γj for all t and any j .
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20/29 Chapter 1: Characteristics of economic time series data

Examples of stationary stochastic processes

One of the most basic processes:

Example (White Noise)
A sequence of random variables {εt} is called a white noise if the
following holds

E(εt) = 0 for all t ;
E(ε2

t ) = σ2 for all t ;
E(εtεs) = 0 for all t 6= s.
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Example (Example 2)
We have a process:

Zt =

{
Yt , if t is odd,
Yt + 1, if t is even,

where Yt is a stationary series. Is Zt weakly stationary?

Example (Example 3)
Define the process

St = Y1 + ...+ Yt ,

where Yt is iid (0, σ2). Show that for h > 0

Cov(St+h,St) = tσ2

Is it weakly stationary?
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22/29 Chapter 1: Characteristics of economic time series data

Ergodicity

In order to do the empirical analysis with time series observations sta-
tionarity assumption is not enough. Why?

Until now, we only defined theoretical moments(population moments)
of a stochastic process. However these moments are unknown in prac-
tice and we need to estimate them from a single observed realization
{Yt}T

t=1 of a stochastic process.

In order to make use the population moments we need to estimate
them and for that we need to assume additionally ergodicity.
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• Informally speaking, a stochastic process {Yt} is ergodic if any two
collections of random variables partitioned far apart in the sequence
are almost independently distributed.
• The formal definition is a bit technical:

Definition (Ergodicity)

A stationary stochastic process {Yt} is called ergodic if for any t , k , l
and any bounded functions g and h

lim
T→∞

Cov (g(Yt , ...Yt+k ),h(Yt+k+T , ...,Yt+k+T+l)) = 0.
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24/29 Chapter 1: Characteristics of economic time series data

Example
Consider a process Yt = Z + Ut , where {Ut} are iid[0,1] and Z is
random variable distributed as N(0,1). Z and Ut are independent. Is
Yt weakly stationary? Is it ergodic for the mean?
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One of the most important implications is consistency of the sample
estimators:

• Sample mean: Y T = 1
T

∑T
t=1 Yt is an estimator of E[Yt ].

• Sample Covariance: γ̂k = 1
T

∑T
t=1(Yt −Y T )(Yt−k −Y T ) is an esti-

mator of Cov(Yt ,Yt−1)

• Sample Correlation: ρ̂k = γ̂k
γ̂0

is an estimator of Corr(Yt ,Yt−1)
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Theorem (Law of Large Numbers,LLN)

Let {Yt} be a stationary and ergodic stochastic process. Then

Y T =
1
T

T∑
t=1

Yt
p→ E[Yt ].

Theorem
If Yt is strictly stationary and ergodic and E(Y 2

t ) <∞, then as
T →∞,

(1) γ̂k
p→ γk ;

(2) ρ̂k
p→ ρk .
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27/29 Chapter 1: Characteristics of economic time series data

Discussion: Sufficient conditions

• LLN tells us that Y T is a consistent estimator of E[Yt ].
• Recall from Econometrics I: Sufficient conditions for the consistency
of an estimator θ̂T are

lim
T→∞

E(θ̂T ) = θ, and lim
T→∞

Var(θ̂T ) = 0. (1)

• Then we can also derive a sufficient condition for LLN (or ergodicity)
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28/29 Chapter 1: Characteristics of economic time series data

Discussion: Sufficient conditions

We have:
1 E[Y T ] =

1
T

∑
t E(Yt) =

1
T

∑
t µ = µ;

2 Var(Y T ) =
1

T 2

∑T
t=1
∑T

s=1 Cov(Yt ,Ys) =
1

T 2

∑T
t=1
∑T

s=1 γt−s

= 1
T 2

∑T−1
k=−(T−k)(T − |k |)γk = 1

T

∑
k (1−

|k|
T )γk

Finally, when do we have

lim
T→∞

Var(Y T ) = lim
T→∞

(
1
T

)(∑
k

(
1− |k |

T

)
γk

)
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∑
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Discussion: Sufficient condition for ergodicity

Remark
A sufficient condition for ergodicity for the mean∑

k

|γk | <∞.
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