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Jesús Gonzalo VAR Models Time Series 2 / 1



Goals of VAR models

Let Yt
K×1

be a vector of macro time series, and let εrt denote an

unanticipated (surprise, shock. . . ) monetary policy intervention. We
want to know the DYNAMIC CAUSAL EFFECT of εrt on Yt :

(∗) ∂Yt+h

∂εrt
, h = 1, 2, 3, . . . IRF (1)

given all the other possible interventions constant.

Exercise: Calculate the IRF for a univariable AR(1) model:
Yt = φYt−1 + εt , |φ| ≤ 1

The challenge is to estimate { ∂Yt+h

∂εrt
} from observational data.

(**) Granger causality: Does Y2t , ...,Ykt Granger cause Y1t?

(***) Do not forget prediction.
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Wold Decomposition

Everything starts from the Wold decomposition for Yt
K×1

(weak

stationary):

Yt
K×1

= C (L)
(K×K )

et
(K×1)

; C (0) = I ; Σe unrestricted

with {et} a vector white noise E (et) = 0, E (etet−j ) = 0, j 6= 0
Remark: Review univariate Wold Decomposition
Exercise: Following the same “reasoning” of the univariate Wold
Decomposition, obtain {et} and C (L).
C (L) gives us the response of Yt to unit impulses to each of the
elements of et .
We could calculate instead the responses of Yt to new shocks that
are linear combinations of the old shocks:

ε
2×1

= Q
(2×2)

et
(2×1)

=

[
1 0

0.5 1

] [
e1t

e2t

]
=

[
e1t

0.5e1t + e2t

]
The MA representation can be written as: Yt = C (L)Q−1Qet = D(L)εt
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Wold Decomposition

Question: Which linear combination of shocks should we look at?
Answer: It seems that the most interesting are the linear
combinations that produce orthogonal shocks: Σε = Diagonal
Orthogonal shocks ≡ Structural shocks
We are going to pick a Q matrix s.t E (εtε′t) = I . To do that choose
a Q s.t.

Q−1(Q−1)′ = Σe

Then
E (εtε

′
t) = E (Qete

′
tQ
′) = QΣeQ

′ = I

One way to construct such a Q is via Choleski decomposition: “The
Choleski decomposition of a Hermitian p.d matrix A is a
decomposition of the form:

A = LL∗

where L is a lower triangular matrix with real and positive diagonal
entries and L∗ is the conjugate transpose.”
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Wold Decomposition

Unfortunately there are many different Q ′s that act as “square root”
matrices for Σ−1

e . Given a Q we can form another Q∗ = RQ with R
an orthogonal matrix:

RR ′ = I , Q∗ΣeQ
∗′ = RQΣeQ

′R ′ = RR ′ = I

Example: Square roots of [
1 0
0 1

]
:

1

t

[
∓s ∓r
∓r ±s

]
;

1

t

[
±s ∓r
∓r ∓s

]
; ...;

[
1 0
0 ±1

]
and

[
±1 0
0 1

]
where (r , s, t) is any set of positive integers such that r2 + s2 = t2

So which Q should we choose? Problem
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Identification

An identification problem:
From sample et shocks, many different STRUCTURAL SHOCKS

We solve this identification issue by imposing extra restrictions:

Short Run Restrictions
Long Run Restrictions
Sign Restrictions
Heterokedasticity
.....
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Identification

MA models are very nice representations to calculate IRF; BUT the
models we estimate are VAR models.

Assumption: The MA representation Yt = D(L)εt is invertible: roots
of D(z) are all greater than 1 in modulus.

Exercise: Remember what invertibility is.

With this assumption we can obtain a VAR(∞) for {Yt}. Let’s
assume a finite VAR(p) is a good approximation.

For k = 2 we will have:

Y1t = B0,12Y2t +B1,12Y2t−1 + · · ·+Bp,12Y2t−p +B1,11Y1t−1 + ... +Bp,11Y1t−p + ε1t

Y2t = B0,21Y1t +B1,21Y1t−1 + · · ·+Bp,21Y1t−p +B1,22Y2t−1 + ... +Bp,22Y2t−p + ε2t

SVAR because ε1t , ε2t are orthogonal shocks
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SVAR

Exercise: Discuss the problems you encounter trying to estimate the
above SVAR system by OLS

B(L)Yt = εt Structural VAR

Yt = B(L)−1εt = D(L)εt

B(L) = B0 − B1L− B2L
2 − . . .− BpL

P

E (εtε
′
t) = Σε =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

K


This SVAR has a reduced form (Sims(1980)) which is identified:
Reduced form VAR(p): Yt = A1Yt−1 + . . . + ApYt−p + et

or A(L)Yt = et
where A(L) = 1− A1L− . . .− ApL

P

innovations: et = Yt − Proj(Yt |Yt−1, . . . ,Yt−p),E (ete ′t) = Σe
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Reduced form VAR

k = 2, Reduced form VAR:

y1t = A1,12Y2t−1 + . . .+Ap,12Y2t−p +A1,11Y1t−1 + . . .+Ap,11Y1t−p + e1t

y2t = A1,21Y1t−1 + . . .+Ap,21Y1t−p +A1,22Y2t−1 + . . .+Ap,22Y2t−p + e2t

From this VAR try to identify the parameters of the SVAR. What
happens?

Now is when we would wish the Σe not to be symmetric ha ha ha. . .
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Summary of VAR and SVAR notation

Reduced form VAR Structural VAR

A(L)Yt = et B(L)Yt = εt
Yt = A(L)−1et = C (L)et Yt = B(L)−1εt = D(L)εt
A(L) = 1− A1L− A2L

2 − . . .− ApL
p B(L) = B0 − B1L− . . .− BpL

p

E (ete ′t) = Σe(unrestricted) E (εt ε′t) = Σε =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

K


Qet = εt , B(L) = QA(L), (B0 = Q), D(L) = C (L)Q−1

IRF:
∂Yt+h

∂εt
= Dh

Some remarks:
1 A(L) is finite order p
2 A(L), Σe , R are time invariant
3 et spans the space of structural shocks εt , that is, εt = Qet

Question: When 3 doesn’t hold and how to solve the problem?
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Identification of shocks

(*) Short run restrictions

(**) Long run restrictions

(***) Sign restrictions

(****) Identification via Heteroskedasticity

Before discussing these options, let’s assume we have some extra
knowledge: 1. We know one of the shocks, εrt

Yt =

 Xt
(K−1)×1

rt
1×1

 , et =

[
ext
ert

]
, εt =

[
εxt
εrt

]
The IRF/MA form Yt = D(L)εt

Yt =
[
DYX (L) DYr (L)

] [εxt
εrt

]
= DYr (L)ε

r
t + vt

where vt = DYX (L)ε
x
t . Notice that E (εrtvt) = 0 then the IRF of Yt w.r.t εrt ,

DYr (L) is identified by the population OLS regression Yt onto εrt .
2. Suppose we know Q, Qet = εt . Then we can proceed as in 1
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Identification of shocks

3. Suppose you have an IV zt (not in Yt) s.t:

i E (ztert ) 6= 0 (relevance)
ii E (ztεxt ) = 0 (exogeneity)

Then you can estimate εrt and act as in 1. To show this
partion Yt

Yt =

[
Xt

r rt

]
, et =

[
ext
ert

]
, εt =

[
εxt
εrt

]
and Q =

[
Qxx Qxr

Qrx Qrr

]
so Qet = εt becomes:

Qxxe
x
t = −Qxre

r
t + εxt

Qrre
r
t = −Qrxe

x
t + εrt

or
ext = −Q−1

xx Qxre
r
t +Q−1

xx εxt (2)

ert = −Q−1
rr Qrxe

x
t +Q−1

rr εrt (3)
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Identification of shocks

i Estimate −Q−1
xx Qxr by IV estimation in (2)

ii Estimate ε̃xt = Q−1
xx εxt as ̂̃εxt = ext + Q̂−1

xx Qxre
r
t

iii Use ̂̃εxt as instrument for ext in (3) to estimate −Q−1
rr Qrx

iv Estimate ε̃rt = Q−1
rr εrt as ert + Q̂−1

rr Qrxe
x
t

v IRF as in (2) by regressing Yt on ε̃rt , ε̃rt−1,...

I don’t know why this IV approach has not been used more??? Any
answer or comments???
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Identification of shocks
Short run restrictions

(*) Short Run Restrictions:
Yt
K×1

= C (L) et
K×1

; Yt
K×1

= D(L) εt
K×1

Yt = Yt

C (L)et = D(L)εt
C0et = D0εt or Qet = εt

so Q︸︷︷︸
unknown

Σe︸︷︷︸
known

Q ′ = Σε︸︷︷︸
Diagonal

(4)

or Σe = D0ΣεD
′
0

There are
K (K+1)

2 different equations in 4, so the order condition

says that we can estimate at most
K (K+1)

2 parameters. If we set
Σε = I (a normalization), then we need:

K2 − K (K + 1)

2
=

K (K − 1)

2
restrictions on Q
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Identification of shocks
Short run restrictions

Example: If K=2, then we need to impose a single restriction on Q,
usually that Q is lower (Choleski) or upper triangular.

Instead of restrictions on Q you can think on restrictions on D0 (this
is why we call them short-run restrictions).

We could also have PARTIAL IDENTIFICATION where only a row of
Q is identified.
Partion εt = Qet and Yt so that:[

εxt
εrt

]
=

[
Qxx Qxr

Qrx Qrr

] [
εxt
εrt

]
Suppose Qrx and Qrr are identified, then εrt can be computed and
Dyr (L) can be computed by regressing Yt on εrt , εrt−1,εrt−2,...
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Identification of shocks
Short run restrictions

Some extra comment: The identification conditions discussed before
(pure accounting) are “order conditions”. We should not forget the
rank conditions:
r(Σε) = r(QΣeQ

′) (see Hamilton).
Intuitively this restriction rules out that any column of Q can be
expressed as a linear combination of the others. While the rank
condition is typically important in large-scale simultaneous equation
systems, it is almost automatically satisfied in small scale VARs.
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Identification of shocks
Long run restrictions

(**) Long Run Restrictions:

Reduced form VAR: A(L)Yt = et (Yt = C (L)et)

Structural VAR: B(L)Yt = εt (Yt = D(L)εt)

LRV from VAR: Ω = A(1)−1Σe(A(1)−1)′ = C (1)ΣeC (1)′

LRV from SVAR: Ω = B(1)−1Σε(B(1)−1)′ = D(1)ΣεD(1)′

Notice that D(1) is the long-run effect on Yt of εt :

Yt = D(L)εt = (D(1) + (1− L) ˜D(L))εt︸ ︷︷ ︸
Beveridge-Nelson decomposition

T

∑
t=1

Yt = D(1)
T

∑
t=1

εt + ε̃t − ε̃0
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Identification of shocks
Long run restrictions

System identification by long-run restrictions: The SVAR is identified
if:

A(1)−1Q−1Σε(Q
−1)′A(1)−1 = Ω

K×K

or

D(1)ΣεD(1)′ = Ω
K×K

(5)

can be solved for the unknown elements of Q and Σε (or D(1) and
Σε)

Some accounting:

There are K (K+1)
2 distinct equations in 5, so the order conditions say that

you can estimate (at most)
K (K+1)

2 parameters. If we set Σε = I , it is clear

that we need K2 − K (K+1)
2 = K (K−1)

2 restrictions on Q or D(1).
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Identification of shocks
Long run restrictions

If K = 2, then K (K−1)
2 = 1 which is delivered by imposing a single

exclusion restriction on Q or D(1) (for instance lower or upper
triangular).

If Σε = I then 5 can be rewritten:

Ω = D(1)D(1)′

If the zero restrictions on D(1) make D(1) lower triangular, then
D(1) is the Choleski factorization for Ω.
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Identification of shocks
Long run restrictions

Example: Blanchard and Quah (1984)
Goal to decompose GNP into permanent and transitory shocks. They
postulate demand side shocks have only temporary effect on GNP while
supply side shocks have permanent effect: ∆Yt

ut︸︷︷︸
unemployment

 =

[
D11(L) D12(L)
D21(L) D22(L)

] [
εs
εd

]
E (εtε

′
t) = I

•D12(1) = 0
Estimate a VAR(p) [

A11(L) A12(L)
A21(L) A22(L)

] [
∆Yt

ut

]
=

[
e1t

e2t

]
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Identification of shocks
Long run restrictions

From it get Ω = A(1)−1Σe(A(1)−1)′

LRV from SVAR: Ω = D(1)ΣεD(1)′

Ω11 = D2
11(0) +D2

12(0)

Ω22 = D2
21(0) +D2

21(0)

Ω12 = D11(0)D21(0) +D12(0)D22(0)

and we only need to get D11(0), D21(0), D22(0)

D(1)εt = C (1)et

εt = D(1)−1C (1)et
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Identification of shocks
Identification by Sign Restrictions

(***) Identification by Sign Restrictions:

Log-linearized version of DSGE models seldom deliver the whole set
of zero restrictions needed to recover all economic shocks.
Nevertheless, they contain a large number of sign restrictions usable
for identification purposes. An example is: a monetary shock:

does not decrease FF rate for months 1,...,G .
does not increase inflation for months G ,...,12

These are restrictions on the signs of elements on D(L).

Signs restrictions can be used to set-identify D(L). They are “weak”
conditions and sometimes may be unable to distinguish shocks with
somewhat similar features, i.e., labor supply and technology shocks.
On the other side we have “strong” conditions that may fail to
produce any meaningful economic shock.

“Weak” vs “strong”
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Identification of shocks
By Sign Restrictions

It is relatively complicated to impose sign restrictions on the
coefficients of the VAR as this requieres maximum likelihood
estimation of the full system under inequality constraints.

However, it is relatively easy to do it ex-post on IRF. For instance,
following Canova and De Nicolo (2002):

1. Estimate A(L)Σe

2. Get orthogonal shocks without imposing zero restrictions:

Σe = P︸︷︷︸
eigenvectors

V︸︷︷︸
eigenvalues

P ′ = P̃P̃ ′ = P̃RR ′P̃ ′ s.t RR ′ = I

3. For each of the orthogonalized shocks one can check whether the
identifying restrictions are satisfied. If a shock is found the process
terminates.

4. If we find more than one we could impose stronger conditions or take
the average of both shocks.
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Identification of shocks
From Heteroskedasticity, Rigobon (2003)

(****) Heterokedasticity:

Suppose

(a) The structural shock variance breaks at date “s”: Σε,1 before, Σε,2

after

(b) Q does not change between variance regimes

(c) Normalize Q to have 1’s on the diagonal, but no other restrictions

Then, unknowns are:

Q → k2 − k

Σε,1 → k

Σε,2 → k

=⇒ Summing up, we get: k2 + k
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Identification of shocks
From Heteroskedasticity, Rigobon (2003)

First period: QΣe,1Q
′ = Σε,1

k(k+1)
2 equations and k2 unknowns.

Second period: QΣe,2Q
′ = Σε,2

k(k+1)
2 equations and k unknowns.

Hence,

Number of equations= k(k+1)
2 + k(k+1)

2 = k(k + 1)

Number of unknowns= k2 + k = k(k + 1)

Questions:

1. Which is the strong assumption in this set-up?

2. What if Σe,1 is proportional to Σe,2?
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Some Asymptotic Results
Stability

VAR(1): yt = A1yt−1 + et = (1− A1L)−1et = At
1y0 + ∑t−1

i=0 Ai
1et−i

Result: If all eigenvalues of A1 have modulus less than 1, then the
sequence Ai

1 i = 0, 1, . . . is absolutely summable and we call the VAR(1)
STABLE. This condition is equivalent to:

|Ik − A1z | 6= 0 for |z | ≤ 1
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Some Asymptotic Results
Stability

VAR(p): yt = A1yt−1 + · · ·+ Apyt−p + et . Notice that any VAR(p) can
be written as a VAR(1).

Companion form

yt = Ayt−1 + et

Matrix forms

yt =


yt
yt−1

...
yt−p+1


︸ ︷︷ ︸

kp×1

A =


A1 A2 . . . Ap−1 Ap

Ik 0 . . . 0 0
0 Ik . . . 0 0
...

...
...

...
...

0 0 . . . Ik 0


︸ ︷︷ ︸

kp×kp

et =


et
0
...
0


︸ ︷︷ ︸
kp×1

Jesús Gonzalo VAR Models Time Series 28 / 1



Some Asymptotic Results
Stability

Thus, yt is stable if |Ikp −Az | 6= 0 for |z | ≤ 1. Because,

|Ikp −Az | = (Ik − A1z − · · · − Apz
p)

Then, the stability condition can be written as:

|Ik − A1z − · · · − Apz
p | 6= 0 for |z | ≤ 1
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Some Asymptotic Results
Stability

Example:

yt =

[
0.5 0.1
0.4 0.5

]
yt−1 +

[
0 0

0.25 0

]
yt−2 + et

∣∣∣∣[1 0
0 1

]
−
[

0.5 0.1
0.4 0.5

]
z −

[
0 0

0.25 0

]
z2

∣∣∣∣ = 1− z + 0.21z2 − 0.025z3

Roots: z1 = 1.3; z2 = 3.55 + 4.26i and z3 = 3.55− 4.26i . So, it is stable.

Exercise:

Find the MA representation of yt .

Find the ARMA representation of yt .

Jesús Gonzalo VAR Models Time Series 30 / 1



Estimation (Least-Squares)

yt = A1yt−1 + · · ·+ Apyt−p + et

In simultaneous equations format: y = Bz + e

y =

y1
...
yT


︸ ︷︷ ︸
T×K

B =
[
A1 · · · Ap

]︸ ︷︷ ︸
K×(Kp)

zt =

 yt
...

yt−p+1


︸ ︷︷ ︸

p×K

Or, vec(y) = vec(Bz) + vec(e) = (z ′ ⊗ Ik)vec(B) + vec(e)

Or, y = (z ′ ⊗ Ik)β + vec(e) with β = vec(B).

=⇒ β̂ =
(
(z ′z)−1z ⊗ Ik

)
y
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Estimation (Least-Squares)
Asymptotic properties

√
T (β̂− β) =

√
Tvec(B̂ − B)

d−→ N(0, Γ−1 ⊗ Σe)

with Γ = p lim z ′z
T .

It can also be proved that:

p lim Σ̂e = p lim
ee ′

T
= Σe

Exercise: Show that if there are not restrictions on the VAR, OLS
estimation of the parameters, equation by equation, is consistent and
efficient.
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Estimation (Least-Squares)
Inference

From the asymptotic distribution of β̂ it is straightforward to make
inference:

H0 : R︸︷︷︸
N×k2

p

β = c vs. H1 : Rβ 6= c

√
T (R β̂− Rβ)

d−→ N(0,R(Γ−1 ⊗ Σe)R
′)

And hence,

T (R β̂− c)′[R(Γ−1 ⊗ Σe)R
′]−1(R β̂− c)

d−→ X 2(N)

WALD-STATISTIC:

(R β̂− c)′[R((z ′z)−1 ⊗ Σ̂e)R
′]−1(R β̂− c)

d−→ X 2(N)
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Granger Causality
Granger (1969)

Let yt = (z ′t x
′
t)
′, zt(h|It) be the optimal (minimum MSE) h-step

predictor of the process zt given the information set It . The corresponding
MSE will be denoted by Σz (h|It). The process xt is said to cause zt in
Granger sense if:

Σz (h|It) < Σz (h|It − {xt |s ≤ t})

with It − {xt |s ≤ t} be all the information except the past and present of
xt .
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Characterization of Granger Causality

VAR: A(L)yt = et ; A(0) = I and E(ete ′t) = Σe

MA: yt = C (L)et ; C (0) = I

And let’s continue with yt = (z ′t x
′
t)
′. Thus,

zt(1|{ys |s ≤ t}) = zt(1|{zs |s ≤ t})

iff C12,i = 0 for i = 1, 2, . . . or, equivalently, A12,i = 0 for i = 1, 2, . . .
In this situation, we say xt does not Granger cause zt .

Think on how to test for Granger causality.
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Determining the VAR order

TESTING:

yt = A1yt−1 + · · ·+ AMyt−M + et

General to particular:

H1
0 : AM = 0 vs. H1

1 : AM 6= 0

H2
0 : AM−1 = 0 vs. H2

1 : AM−1 6= 0|AM = 0

...

HM
0 : A1 = 0 vs. HM

1 : A1 6= 0|AM = · · · = A2 = 0

In this scheme, each null hypothesis is tested conditionally on the
previous ones being true. The procedure terminates and the VAR
order is chosen accordingly, if one of the null hypothesis is rejected.

A big problem is how to calculate the type I error of the whole
procedure.
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Determining the VAR order

Model Selection via information criteria:

An alternatie procedure abandoning testing is model selection via
information criteria:

AIC (m) = ln |Σ̂e(m)|+ 2
Tmk2, where mk2 is the number of freely

estimated parameters.

SC (m) = ln |Σ̂e(m)|+ lnT
T mk2

HQ(m) = ln |Σ̂e(m)|+
2 ln(lnT )

T mk2
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Determining the VAR order

Result:

yt︸︷︷︸
k×1

∼ VAR(p); M ≥ p

And p̂ is chosen so as to minimize a criterion:

IC (m) = ln |Σ̂u(m)|+m
CT

T
over m = 0, 1, . . . ,M

The estimate p̂ is consistent iff:

CT → ∞ and
CT

T
→ 0 as T → ∞

And strongly consistent iff

CT

2 ln(lnT )
> 1
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Determining the VAR order

Exercise: Which IC is consistent and which one is not?

Result:

lim
T→∞

Prob(p̂(AIC ) < p) = 0

and,

lim
T→∞

Prob(p̂(AIC ) > p) > 0

In a great paper, “Lag Length estimation in Large Dimensional Systems,
JTSA”, Gonzalo and Pitarakis (2002) show that the latter probability goes
to zero as k → ∞.
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Impulse Response Function

Let’s consider a bivariate system yt = (y ′1t y
′
2t)
′. Thus, the MA

representation yt = C (L)et is given by:

[
y1t

y2t

]
=

[
e1t

e2t

]
+

[
C11,1 C12,1

C21,1 C22,1

] [
e1t−1

e2t−1

]
+

[
C11,2 C12,2

C21,2 C22,s

] [
e1t−2

e2t−2

]
+ · · ·

Impulse Response Function: For i = 1, 2, it is the effect of a unit
change in eit in yit+s ≈ dynamic multiplier. That is,

∂y1t+s

∂e1t
= ψ11,s

∂y1t+s

∂e2t
= ψ12,s

∂y2t+s

∂e1t
= ψ21,s

∂y2t+s

∂e2t
= ψ22,s
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Impulse Response Function

Notice that there is a serious problem on interpreting these partial
derivatives because e1t and e2t are correlated. This is one of the reasons
to orthogonalize shocks.

Exercise: In the bivariate case, using OLS, get orthogonal shocks from
(e ′1t e

′
2t)
′.
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IRF with orthogonal shocks

E(ete ′t) = Σe ; pick a matrix Q such that: QΣeQ
′ = I . Thus,

yt = C (L)Q−1Qet = D(L)εt ; Qet = εt

[
y1t+s

y2t+s

]
=

[
D11,0 D12,0

D21,0 D22,0

] [
ε1t+s

ε2t+s

]
+ · · ·+

[
D11,s D12,s

D21,s D22,s

] [
ε1t

ε2t

]
+ · · ·+

∂y1t+s

∂ε1t
= D11,s

∂y1t+s

∂ε2t
= D12,s

∂y1t+s

∂ε1t
= D11,s

∂y1t+s

∂ε2t
= D12,s
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IRF with orthogonal shocks

So, we have four IRF for the bivariate case:

Plot D11,s vs. ”s” (ε1t shocks on y1t)

Plot D12,s vs. ”s” (ε2t shocks on y1t)

Plot D21,s vs. ”s” (ε1t shocks on y2t)

Plot D22,s vs. ”s” (ε2t shocks on y2t)

Long-run effects on each shock on y1t

and y2t are:

(1)
∞

∑
s=0

D11,s (2)
∞

∑
s=0

D12,s

(3)
∞

∑
s=0

D21,s (4)
∞

∑
s=0

D22,s
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Variance decompositions

Goal: To determine the proportion of the variability of y1t+s , y2t+s that is
due to the shocks ε1t and ε2t . This allows us to determine the relative
importance of the exogenous shocks to the evolution of y1t and y2t .

The Forecast error (FE) is given by:

FE (s) = yt+s − E[yt+s |It ] = D0εt+s +D1εt+s−1 + · · ·+Ds−1εt+1

Or, [
y1t+s

y2t+s

]
−
[

E(y1t+s |It)
E(y2t+s |It)

]
=

[
D11,0 D12,0

D21,0 D22,0

] [
ε1t+s

ε2t+s

]
+

+

[
D11,1 D12,1

D21,1 D22,1

] [
ε1t+s−1

ε2t+s−1

]
+ · · ·+

[
D11,s−1 D12,s−1

D21,s−1 D22,s−1

] [
ε1t+1

ε2t+1

]
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Variance decompositions

Focusing on the first equation:

y1t+s − E(y1t+s |It) = D11,0ε1t+s + · · ·+D11,s−1ε1t+1

+D12,0ε2t+s + · · ·+D12,s−1ε2t+1

Thus,

MSE = E [y1t+s − E(y1t+s |It)]2 = δ2
1(s)

= δ2
1(D

2
11,0 +D2

11,1 + · · ·+D2
11,s−1)

+ δ2
2(D

2
12,0 +D2

12,1 + · · ·+D2
12,s−1)
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Variance decompositions

The proportion of δ2
1(s) due to shocks in ε1t is:

P11(s) =
δ2

1(D
2
11,0 +D2

11,1 + · · ·+D2
11,s−1)

δ2
1(s)

due to ε2t is:

P12(s) =
δ2

2(D
2
12,0 +D2

12,1 + · · ·+D2
12,s−1)

δ2
1(s)

and similarly, for P21(s) and P22(s)
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Variance decompositions

The previous results are reported usually in the following way:

s MSE P11(s) P12(s)

1 .0084 100% 0%

2 .0089 99% 1%

3 .0092 98.5% 1.5%

4 .0093 98.1% 1.9%
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Confidence intervals for IRF

1. δ-method

2. Bootstrap methods

3. Monte-Carlo methods

4. Bayesian Methods

We will only discuss the first two.
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Confidence intervals for IRF
δ-method

Remember the “delta” method:

If
√
T (θ̂ − θ0)

d∼ N(0, Σθ̂) and if g(·) has continuous derivatives then

√
T
(
g(θ̂)− g(θ0)

)
≈
√
T

∂g

∂θ̂

∣∣∣∣
θ0

(θ̂ − θ0)
d∼ N

(
0,

∂g

∂θ̂

∣∣∣∣
θ0

Σθ̂

∂g

∂θ̂

∣∣∣∣
θ0

)

For SVAR IRFs:

θ̂ = (Â(L),Q) and g(θ̂) = D̂(L) = Â(L)−1Q̂
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Confidence intervals for IRF
δ-method

Problems:

(i) g(·) is very non-linear so then even if Â(L) were exactly normally
distributed the IRF may not be. Let β̂ ∼ N(0.25, 1), which is the
distribution of β̂4 or 1

β̂
?

(ii) Â(L) is not real approximated by a normal if roots are large.
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Confidence intervals for IRF
Bootstrap methods

Algorithm:

(i.) Obtain VAR estimates Â(L), êt .

(ii.) Obtain ê l via bootstrap and construct Â(L)y lt = ê lt , for l = 1, . . . , L.

(iii.) Estimate Âl (L) by using data constructed in the previous apart.
Compute D̂ l (L).

(iv.) Report percentiles of the distribution of Dj .

Remarks:

êt should be white noise. Serious problems when it shows correlations
and/or heteroskedasticity.

Problem when there is a large persistence because then VAR
coefficients usually are downward biased.
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(+) & (-) of VAR models

(-)

Time aggregation

Large dimension

Sometimes we have VAR(∞)

Construction of confidence bands for the IRF

(+)

They require very little to be used. This is just the opposite than
DSGE models. Notice that people use VAR models to check DSGE
results.
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