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Introduction

Introduction

Important QUESTIONS are:

Which variables have to be included in a model?

What defines a good model?

The Purpose of today’s lectures is to answer the following question:

How to select a model?

The answer is: with an information model selection criteria.
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Two Main Properties

Efficient Criteria

Model selection criteria have two main properties: efficiency and
consistency.
A common assumption is both regression and time series is that the
generating or true model is of infinite dimension: thus the set of candidate
madoels does not contain the true model.
The goal is to select one model that best approximate the true modle from
a set of finite-dimensional candidate model. The candidate model that is
closest to the true model is assumed to be the appropriate choice.

Definition

In large samples, a model selection criterion that chooses the model with
minimum mean squared error distribution is said to be asymptotically
efficient
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Two Main Properties

Consistent Criteria

Many researchers assume that the true model is of finite dimension and
that it is included in the set of candidate models.
Under this assumption the goal of model selection is to correctly choose
the true model from the list of candidate models.

Definition

A model selection criterion that identifies the correct model asymptotically
with probability one is said to be consistent.
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Measures of Discrepancy or Closeness

Measures of Discrepancy or Closeness

Let MT be the true model with density fT and distribution FT . MA

denote the candidate (approximating) model with density fA and let ∆
denote the discrepancy.
Two different discrepancy types are presented here:

The Kullback-Leibler discrepancy:

∆K−L(Mt ,MA) = EFT

[
log

(
fT (x)

fA(x)

)]
Let µMT

and µMA
denote the true and the candidate model means,

respectively. We can define:

∆L2(Mt ,MA) = ‖µMT
− µMA

‖2
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Measures of Discrepancy or Closeness

Measures of Discrepancy or Closeness

Two comments are important:

For ∆K−L:
I it is a number ;
I when errors are not normal it must be computed for each distribution

For ∆L2 :
I it can be a matrix in multivariate set-ups;
I it works independently of the errors’ distribution.
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Model Selection Criteria

Foundations of Model Selection Criteria

From minimizing ∆L2 we get the Final Prediction Error criterion :

FPEk = σ̂2
k

n + k

n − k
= σ̂2

k(1 +
2k

n − k
)

where k is the number of parameters.
From minimizing ∆K−L we get the Akaike information criterion:

AICk = ln(σ̂2
k) +

2(k + 1)

n
.
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Model Selection Criteria

Foundations of Model Selection Criteria

If now the investigator believes that the true model belongs to the set of
candidate models, the objective is to design criteria such that we choose
the true model with probability equal to one. In this way from a Bayesian
perspective we get the following Bayesian information criteria:

BICk = ln(σ̂2
k) +

ln(n)k

n
.

The other consistent criterion (strongly consistent) is the Hannan and
Quinn criterion:

HQk = ln(σ̂2
k) + 2

ln(ln(n))k

n
.
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Model Selection Criteria

Model Selection Criteria

The different way to select models choose k so as to minimize the
following information criterion:

IC (k) = log(σ̂2
k) + k

C (T )

T

where T is the sample size (it can be replaced by n); and kC(T )
T is the

penalty term:

for AIC we have C (T ) = 2

for BIC we have C (T ) = lnT

for HQ we have C (T ) = 2 ln(ln(T )).
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Model Selection Criteria

Model Selection Criteria
In the case of ARMA(p, q) models, p and q have to be chosen in order to
minimize the following criterion:

IC (p, q) = ln(σ̂2
p,q) + (p + q)

C (T )

T

However, It is easier to think and work in terms of the family of AR(p)
models. In this case, p̂(IC) has to be chosen such that:

IC (p̂(IC)) = min {IC (p) | p = 0, 1, ...,M}

An estimator p̂ of the AR order p is called consistent if

plim p̂T = p or lim
T→∞

Pr(p̂T = p) = 1

and strongly consistent if

Pr(lim p̂T = p) = 1.
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Model Selection Criteria

Model Selection Criteria

Proposition

Let yt be a stationary AR(p) process. Suppose the maximum order M ≥ p
and p̂ is chosen so as to minimize the following criterion over
m = 0, 1, ...M

IC (m) = ln σ̂2
m + m

C (T )

T

where C (T ) is a nondecreasing sequence of real numbers that depend on
the sample size T . Then, p̂ is consistent iff, as T →∞

C (T )→∞, C (T )

T
→ 0

and p̂ is strongly consistent iff, as T →∞

C (T )

2 ln(lnT )
> 1
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Model Selection Criteria

Model selection

Proof

The basic idea of this proof is to show that for p > m, the quantity ln σ̂2
m

ln σ̂2
p

will be greater than one in large samples since ln σ̂2
m is essentially the

maximum of (or the minimum of minus) the Gaussian log-likelihood
function for an AR(m) model.
Consequently, since the penalty terms behaves as follows, as T →∞

m
C (T )

T
, p

C (T )

T
→ 0

then IC (m) > IC (p) for large T .
Thus the probability of choosing too small order goes to zero as T →∞.
Similarly, if m > p, ln σ̂2

m
ln σ̂2

p
approaches one in probability as T →∞ and the

penalty term of the lower order model is smaller than that of a larger order
process. Thus the lower order ”p” will be chosen if T is too large.
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Model Selection Criteria

Model selection

Proof

Consider I (p) = S2
p = ln σ̂2

p + p
C (T )

T
and p̂ = minS2

p with p ∈ {1, ..., p̄}
where p̄ is fixed and known.
Then, recalling that 

C (T )→∞ as T →∞

C (T )

T
→ 0 as T →∞

We have to show the following facts:

1 Pr
[
S2

1 , ...,S
2
p0−1 > S2

p0

]
→ 1 : the probability of ”no-underfit” (S2

p0
)

2 Pr
[
S2
p0−1, ...,S

2
p̄ > S2

p0

]
→ 1 : the probability of ”no-overfit” (S2

p0
).
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Model Selection Criteria

Model selection

Proof

For the first point let us consider the difference S2
p − S2

p0
assuming p < p0 :

S2
p − S2

p0
= ln

(
σ̂2
p

σ̂2
p0

)
+ (p − p0)

C (T )

T
.

Recalling that σ2
p = V (yt | yt−1, ..., yt−r ), we have that under some

conditions (ergodicity):

ln

(
σ̂2
p

σ̂2
p0

)
p→ ln

(
σ2
p

σ2
p0

)
> 0 =⇒ S2

p − S2
p0

p→ ln

(
σ2
p

σ2
p0

)
> 0.

In this way we show that the probability of ”no-underfit” the true model
tends to one.
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Model Selection Criteria

Model selection

Proof

For the second point let us consider again the difference S2
p − S2

p0
:

S2
p − S2

p0
= ln

(
σ2
p

σ2
p0

)
+ (p − p0)

C (T )

T
.

Argue that −2T ln
(
σ̂2
p

σ̂2
p0

)
is a likelihood ratio (LR) test with the following

two hypotheses:

H0 : p = p0,Ha : p = p0 + 1.

Under H0 : p = p0, we have that LR
d→ χ2.
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Model Selection Criteria

Model selection

Proof

Accordingly, we have that:
−2T ln

(
σ̂2
p0+1/σ̂

2
p0

)
...

−2T ln
(
σ̂2
p̄/σ̂

2
p0

)
 d→

 χ2
1
...

χ2
p̄−p0


Therefore:

T (S2
p − S2

p0
) = T ln

(
σ̂2
p/σ̂

2
p0

)︸ ︷︷ ︸
Op(1)

+ (p − p0)C (T )︸ ︷︷ ︸→∞.
∞
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Model Selection Criteria

Model selection

Proof

Finally, we have that, with p > p0:

Pr
[
S2
p > S2

p0

]
= Pr

[
T (S2

p − S2
p0

) > 0
]

and

Pr
[
T (S2

p − S2
p0

) > 0
]

= Pr
[
T ln

(
σ̂2
p/σ̂

2
p0

)
+ (p − p0)C (T ) > 0

]
and since ln

(
σ̂2
p/σ̂

2
p0

)
→ −χ2

p−p0
and (p − p0)C (T )→∞, we have:

Pr
[
S2
p > S2

p0

]
= Pr

[
χ2
p−p0

<∞
]
→ 1.
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Model Selection Criteria

Model selection

Akaike criterion results to be not consistent, while BIC is consistent; still,
we have to be careful preferring BIC to Akaike since Akaike has only
problems in overfitting.
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Conclusion

Three Philosophies to Select a Model

From Particular to General : Box-Jenkins methodology

Identification
↓

Estimation
↓

Diagnostic Checking → YES or NO
↓

Identification
...

From General to Particular : Testing

Information Crtiteria: no testing

Form your own philosophy to select a model based on what do you need
your model for (Focused information criterion is an example).
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