TER 1.

ﬁxq.niple 1.1.13 (Autocorrelations of a time series)

- For a time series Xp, X1, X9,... the autocorrelation at lag h is defined by
"corr(Xg,Xh), h = 0,1,.... A claim which can frequently be found in the
i literature is that financial time series (derived from stock indices, share prices,
{ “exchange rates, etc.) are nearly uncorrelated. This is supported by the sample
1 autocorrelations of the daily log-returns X, of the S&P index; see Figure 1.1.14.
" Iﬂ’contrast to this observation, the estimated autocorrelations of the absolute
" 11, valiies | X¢| are different from zero even for large lags h. This indicates that
«* there is dependence in this time series. ' m)
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Figure 1.1.14 The estimated autocorrelations of the S&P index (left) and of its
‘absolute values (right); see Ezample 1.1.13; cf. the comments in Figure 1.1.4.

In what follows, we will often deal with infinite collections (X;,t € T) of
random variables X;, i.e. T is an infinite index set. In this set-up, we may also
introduce independence:

The collection of random variables (X;,t € T') is independent if for every
choice of distinct indices ty,...,t, € T and n > 1 the random variables
Xt,,..., X, are independent. This collection is independent and iden-
tically distributed (iid) if it is independent and all random variables X,
have the same distribution.

Notes and Comments

In this section we recalled some elementary probability theory which can be
found in every textbook on the topic; see for instance Pitman (1993) for an
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elementary level and Gut (1995) for an intermediate course. Also many text-
books on statistics often begin with an introduction to probability theory; see
for example Mendenhall, Wackerly and Scheaffer (1990).

1.2 Stochastic Processes

We suppose that the exchange rate NZ$/US$ at every fixed instant ¢ between
9 am. and 10 a.m. this morning is random. Therefore we can interpret it
as a realization X;(w) of the random variable X, and so we observe Xi(w),
9 <t < 10. In order to make a guess at 10 a.m. about the exchange rate X1 (w)
at 11 a.m. it is reasonable to look at the whole evolution of X,(w) between
9 am. and 10 a.m. This is also a demand of the high standard technical
devices which provide us with almost continuous information about the process

considered. A mathematical model for describing such a phenomenon is called
a stochastic process.

A stochastic process X is a collection of random variables

(‘Yfﬁrej‘):('\'F{“")!ieT:wen)v

defined on some space (2.

For our purposes, T is often an interval, for example T = [a, b], [a, b) or [a, 00)
for a < b. Then we call X a continuous-time process in contrast to discrete-
time processes. In the latter case, T is a finite or countably infinite set. For
obvious reasons. the index t of the random variable X; is frequently referred
to as time, and we will follow this convention.

A stochastic process X is a function of two variables.

For a fixed instant of timme £, it is a random variable:
Xi=X(w), wen.

For a fixed random outcome w € 2, it is a function of time:
N =X(w), teT.

This function is called a realization. a trajectory or a sample path of the
process .\,

These two aspects of a stochastic process are illustrated in Figure 1.2.1.
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Figure 1.2.1 5 sample paths of a stochastic process (X:,t € [0,1]). Top: every path
corresponds to a different w € . Middle and bottom: the values on the vertical lines
at t = 0.1,...,0.9 visualize the random variables Xo.1,...,Xo.9; they occur as the
projections of the sample paths on the vertical lines.
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Figure 1.2.2 The (scaled) daily values of the S&P indez over a period of 7,422
days. The graph suggests that we consider the S&P time series as the sample path
of a continuous-time process. If there are many values in a time series such that the
instants of time t € T are “dense” in an interval, then one may want to interpret this
discrete-time process as a continuous-time process. The sample paths of a real-life
continuous-time process are always reported at discrete instants of time. Depending
on the situation, one has to make a decision which model (discrete- or continuous-
time) is more appropriate.

Example 1.2.3 A time series
Xeo t=0,%£1,£2,.. .,

is a discrete-time process with T'= Z = {0, £1, £2,...}. Time series constitute
an important class of stochastic processes. They are relevant models in many
applications, where one is interested in the evolution of a real-life process.
Such series represent, for example, the daily body temperature of a patient in
a hospital, the daily returns of a price or the monthly number of air traffic
passengers in the US. The most popular theoretical time series models are
the ARMA (AutoRegressive Moving Average) processes. They are given by
certain difference equations in which an iid sequence (Z;) (see p. 22), the so-
called noise, is involved. For example, a moving average of order ¢ > 1 is
defined as

XNe=Z+00Z 44642y, tEL,
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and an autoregressive process of order 1 is given by
Xe=¢Xe-1+2Z:, tel.

- Here 6y,...,0; and ¢ are given real parameters. Time series models can be
‘understood as discretizations of stochastic differential equations. We will see
this for the autoregressive process on p. 141.

Figure 1.2.4 shows two examples. O
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Figure 1.2.4 Two time series X;, t = 1,...,100. Left: 100 successive daily log-
returns of the S&P inder; see Figure 1.1.4. Right: a simulated sample path of the
_autoregressive process X; = 0.5X;_1+ Z;, where Z; are iid N(0,1) random variables;
see Ezample 1.2.5.

* We see that the concepts of a random variable X and of a stochastic process
(X:,t € T) are not so much different. Both have random realizations, but the
realization X (w) of a random variable is a number, whereas the realization
Xi(w),t € T, of a stochastic process is a function on T. So we are completely
correct if we understand a stochastic process to be a “random element” tak-
ing functions as values. Moreover, we can interpret a random variable and a
random vector as special stochastic processes with a finite index set T'.

Distribution

In analogy to random variables and random vectors we want to introduce
non-random characteristics of a stochastic process such as its distribution,
expectation, etc. and describe its dependence structure. This is a task much
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more complicated than the description of a random vector. Indeed, a non-
trivial stochastic process X = (X;,t € T) with infinite index set T is an
infinite-dimensional cbject; it can be understood as the infinite collection of
the random variables Xy, t € T'. Since the values of X are functions on T, the
distribution of X should be defined on subsets of a certain “function space”,
i.e.

P(XeA), AeF, (1.8)
where F is a collection of suitable subsets of this space of functions. This
approach is possible, but requires advanced mathematics, and so we try to
find some simpler means.

The key observation is that a stochastic process can be interpreted as a
collection of random vectors.

The finite-dimensional distributions (fidis) of the stochastic process X
are the distributions of the finite-dimnensional vectors

(‘\’“‘.“1‘X'f"), tl:"wt!lETs

for all possible choices of times t;,...,t, € T and every n > 1.

We can imagine the fidis much easier than the complicated distribution (1.8) of
a stochastic process. It can be shown that the fidis determine the distribution
of X. In this sense, we refer to the collection of the fidis as the distribution of
the stochastic process.

Stochastic processes can be classified according to different criteria. One
of them is the kind of fidis.

Example 1.2.5 (Gaussian process)

Recall from (1.6) the definition of an n-dimensional Gaussian density. A
stochastic process is called Gaussian if all its fidis are multivariate Gaussian.
We learnt in Example 1.1.9 that the parameters g and £ of a Gaussian vector
are its expectation and covariance matrix, respectively. Hence the distribution
of a Gaussian stochastic process is determined only by the collection of the
expectations and covariance matrices of the fidis.

A simple Gaussian process cn T = [0, 1] consists of iid N(0,1) random vari-
ables. In this case the fidis are characterized by the distribution functions
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The sample paths of this process are very irregular. See Figure 1.2.6 for an
illustration. m]

L

Figure 1.2.6 A sample path of the Gaussian process (X, t € [0, 1]), where the X;s
are iid N(0,1); see Ezample 1.2.5. The ezpectation function is ux(t) = 0 and the
dashed lines indicate the curves 20 x (t) = £2; see Ezample 1.2.7.

. Expectation and Covariance Function

For a random vector X = (Xj,...,X,) we defined the expectation pux =

(EXy,...,EX,) and the covariance matrix £x = (cov(X;, X;),1,j =1,...,n).

A stochastic process X = (X;,t € T') can be considered as the collection of
the random vectors (Xy,,...,X;.) for t1,...,t, € T and n > 1. For each of
them we can determine the expectation and covariance matrix. Alternatively,
we can consider these quantities as functions of t € T

The ezpectation function of X is given by
px(t) =px, =EX,, teT.
The covariance function of X is given by

cx(t,8) = cov( Xy, X;) = B[(X¢ — ux (8)) (Xs — ux(s))], t,seT.
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The variance function of X is given by

o%(t) = cx(t,t) = var(X,), teT.

We learnt in Example 1.2.5 that Gaussian processes are determined only via
their expectation and covariance functions. This is not correct for a non-
Gaussian process.

As for a random vector, the expectation function px (t) is a deterministic
quantity around which the sample paths of X are concentrated. The covariance
function cx (f,s) is a measure of dependence in the process X. The variance
function o% (t) can be considered as a measure of spread of the sample paths
of X around px(t). In contrast to the one-dimensional case, a statement
like “95% of all sample paths lie between the graphs of ux(t) — 20x(t) and
px(t) + 20x(t)" is very difficult to show (even for Gaussian processes), and
is in general not correct. We will sometimes consider computer graphs with
paths of certain stochastic processes and also indicate the curves ux(t) and
px(t) £ 20x(t), t € T. The latter have to be interpreted for every fixed t, i.e.
for every individual random variable X;. Only in a heuristic sense, do they
give bounds for the paths of the process X. See Figure 1.2.6 for an illustration.

Example 1.2.7 (Continuation of Example 1.2.5)
Consider the Gaussian process (\Xy,t € [0,1]) of iid N(0,1) random variables
X¢. Its expectation and covariance functions are given by

1 if t=s,

px{t) =0 and cx(t,s) =
g 0 i t#s, =

Dependence Structure

We have already introduced Gaussian processes by specifying their fidis as
multivariate Gaussian. Another way of classifying stochastic processes consists
of imposing a special dependence structure.

The process X = (X, t € T'), T C R, is strictly stationary if the fidis are
invariant under shifts of the index t:

(i) & s Ko (1.9)

for all possible choices of indices t;,...,t, € T, n > 1 and h such that ¢; +
h,....,t, + h € T. Here £ stands for the identity of the distributions; see
p. 211 for the definition. For the random vectors in (1.9) this means that their
distribution functions are identical.
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Ern‘ ple l 2.8 (Stationary Gaussian processes)

Consider a process X = (X;,t € T) with T = [0,00) or T = Z. A trivial
example of a strictly stationary process is a sequence of iid random variables
X, t € Z. Since a Gaussian process X is determined by its expectation and
_ covariance functions, condition (1.9) reduces to

i g broggeos

£08 & o ?p,x(t-i- h) =px(t) and ecx(t,s)=cx(t+h,s+h)

20
20

15

. for all:s;t € T such that s + h,t + h € T. But this means that ux(t) =
-~ ux(0) for all ¢, whereas cx(t,s) = ¢x(|t — s|) for some function ¢x of one
variable. Hence, for a Gaussian process, strict stationarity means that the
expectation function is constant and the covariance function only depends on
the distance [t — s|. More generally, if a (possibly non-Gaussian) process X has
the two aforementioned properties, it is called a stationary (in the wide sense)
or (second-order) stationury process. O

Poisson process
10

Poisson process
10

5
5

If we describe a real-life process by a (strictly or in the wide sense) stationary e
stochastic process, then we believe that the characteristic properties of this ' .
process do not change when time goes by. The dependence structure described
by the fidis or the covariance function is invariant under shifts of time. This
is a relatively strong restriction on the underlying process. However, it is a
. standard assumption in many probability related fields such as statistics and
time series analysis. o
Stationarity can also be imposed on the increments of a process. The
process itself is then not necessarily stationary.
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Posson process

Let X = (X;,t € T') be a stochastic process and T C R be an interval.
X is said to have stationary increments if

Poisson process

L]

5

icolts |

Xi—X, £ Xpon— Xoynforall t,s€ T and h witht+h,s+heT.

X is said to have independent increments if for every choice of t; € T ‘
witht; <---<tpand n > 1, ’

X, — X4, ., X, — X )
A R e Figure 1.2.9 Sample paths of a homogeneous Poisson process (Xi,t € [0, 00)) with

intensity A = 1: sec Example 1.2.10. The straight solid line stands for the ezpectation
function px(t) =1.

are independent random variables.

One of the prime examples of processes with independent, stationary incre-
ments is the homogeneous Poisson process. Homogeneity is here another word-
ing for stationarity of the increments.
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‘ Example 1.2.10 (Homogeneous Poisson process)

'A stochastic process (X¢,t € [0,00)) is called an homogeneous Poisson pro-
cess or simply a Poisson process with intensity or rate A > 0 if the following
gqnditions are satisfied:

é"'! o_-: It starts at zero: Xo = 0.

i
¥

. o It has stationary, independent increments.

e For every t > 0, X; has a Poisson Poi()t) distribution; see Example 1.1.1
for the definition of the Poisson distribution.

Figure 1.2.9 shows several Poissonian sample paths.

Notice that, by stationarity of the increments, X; — X; with ¢ > s has the
same distribution as X;_, — Xg = X¢_s, i.e. a Poi(A(t — s)) distribution.
An alternative definition of the Poisson process is given by

Xe=#{n:T, <t}, t>0, (1.10)

where #A denotes the number of elements of any particular set 4, T;, =
Y1 +---+Y, and (¥;) is a sequence of iid exponential Ezp()A) random variables
with common distribution function

PYi<z)=1-e, z>0.

This definition shows nicely what kind of sample path a Poisson process has.
.1t is a pure jump function: it is constant on [Ty, T+1) and has upward jumps
of size 1 at the random times T},.

~ The role of the Poisson process and its modifications and ramifications is com-

- parable with the réle of Brownian motion. The Poisson process is a counting
process; see (1.10). It has a large variety of applications in the most different
fields. To name a few: for a given time interval [0,t], X; is a model for the
number of

¢ telephone calls to be handled by an operator,
e customers waiting for service in a queue,

e claims arriving in an insurance portfolio. o
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Notes and Comments

Introductions to the theory of stochastic processes are based on non-elementary

facts from measure theory and functional analysis. Standard texts are Ash and

Gardner (1975), Gikhman and Skorokhod (1975), Karlin and Taylor (1975,1981)
and many others. An entertaining introduction to the theory of applied stochas-
tic processes is Resnick (1992). Grimett and Stirzaker (1994) is an introduction

“without burdening the reader with a great deal of measure theory”.

1.3 Brownian Motion

1.3.1 Defining Properties

Brownian motion plays a central role in probability theory, the theory of
stochastic processes, physics. finance,. .., and also in this book. We start with
the definition of this important process. Then we continue with some of its
elementary properties.

A stochastic process B = (By.t € [0,00)) is called (standard) Brownian
motion or a Wiener process if the following conditions are satisfied:

o It starts at zero: By = 0. ;

e It has stationary. independent increments; see p. 30 for the defini-
tion.

e For every t > 0. I5; has a normal N(0,t) distribution.

e It has continuous sample paths: “no jumps”.

See Figure 1.3.1 for a visualization of Brownian sample paths.

Brownian motion is named after the biologist Robert Brown whose research
dates to the 1820s. Early in this century, Louis Bachelier (1900), Albert Ein-
stein (1905) and Norbert Wiener (1923) began developing the mathematical
theory of Brownian motion. The construction of Bachelier (1900) was erro-
neous but it captured many of the essential properties of the process. Wiener
(1923) was the first to put Brownian motion on a firm mathematical basis.

Distribution, Expectation and Covariance Functions

The fidis of Brownian motion are multivariate Gaussian, hence B is a Gaus-
sian process. Check this statement by observing that Brownian motion has
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Figure 1.3.1 Sample paths of Brownian motion on [0,1].
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independent Gaussian increments and by using the formula for linear transfor-
mations of a Gaussian random vector; see p. 18.

The random variables By — B; and B;_,; have an N(0,t — s) distribution
for s < t.

This follows from the stationarity of the increments. Indeed, B; — B, has the
same distribution as B;_; — By = B;_, which is normal with mean zero and
variance t — s. Thus the variance is proportional to the length of the interval
[s,t]. This means intuitively: the larger the interval, the larger the fluctuations
of Brownian motion on this interval. This observation is also supported by
simulated Brownian sample paths; see for example Figure 1.3.2.

Notice:
The distributional identity B, — By g By_, does not imply pathwise identity:
in general,

Bi(w) — Bs(w) # Bi-s(w).

It is worthwhile to compare Brownian motion with the Poisson process; see
Example 1.2.10. Their definitions coincide insofar that they are processes
with stationary, independent increments. The crucial difference is the kind
of distribution of the increments. The requirement of the Poisson distribution
makes the sample paths pure jump functions, whereas the Gaussian assumption
makes the sample paths continuous.

It is immediate from the definition that Brownian motion has expectation

function
“H“):EBl’:Oﬁ tZU‘

and, since the increments B, — By = B, and By — B, are independent for t > s,
it has covariance function (recall its definition from p. 28)
cp(t,s) = E[[(B - B;)+ B,] B;] = E[(B, — B,) B;] + EB?
= EB -B)EB;+s=0+s=3s, 0 <8<t

Since a Gaussian process is characterized by its expectation and covariance
functions (see Example 1.2.5), we can give an alternative definition:

Brownian motion is a Gaussian process with

np(t) =0 and ep(t,s) = min(s,t). (1.11)
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ggﬁg}?;ppeyﬁes:,.Non-Diﬁ'erentiability and Unbounded Variation

In what follows, we fix one sample path By(w), t > 0, and consider its proper-
ties.“We already know from the definition of Brownian motion that its sample
“paths are continuous. However, a glance at simulated Brownian paths imme-
‘diately convinces us that these functions of ¢ are extremely irregular: they
oscillate wildly. The main reason is that the increments of B are independent.
In particular, increments of Brownian motion on adjacent intervals are inde-
pendent whatever the length of the intervals. Since we can imagine the sample
-path as constructed from its independent increments on adjacent intervals, it
is rather surprising that continuity of the path results.

; Thus:
v How irregular is a Brownian sample path?
D._ Before we answer this question we make a short excursion to a class of stochas-
) tic processes which contains Brownian motion as a special case. All members
) of this class have irregular sample paths.
) A stochastic process (X;,t € [0,00)) is H -self-similar for some H > 0 if
) its fidis satisfy the condition
b
: d
) (THBh}--'tTHBtn) = (Brtys- s Brt,) (1.12)
’ for every T' > 0, any choiceof t; > 0,i=1,...,n,and n > 1.
)
) Notice:
) Self-similarity is a distributional, not a pathwise property. In (1.12), one must
) ‘not replace 2 with =.
b Roughly speaking, self-similarity means that the properly scaled patterns of a
) sample path in any small or large time interval have a similar shape, but they
) - are not identical. See Figure 1.3.2 for an illustration.
l The sample paths of a self-similar process are nowhere differentiable; see
, Proposition A3.1 on p. 188. And here it comes:
) Brownian motion is 0.5-self-similar, i.e.
I
d
: (T/2By,...,T"/?B;,) £ (Bru,..., Br,) (1.13)

for every T' > 0, any choice of t; > 0,i=1,...,n,and n > 1.
Hence its sample paths are nowhere differentiable.
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Figure 1.3.2 Self-similarity: the same Brownian sample path on different scales.
The shapes of the curves on different intervals look similar, but they are not simply
scaled copies of each other.
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Figure 1.3.3 Left: a differentiable function. At every point its graph can be approz-
tmated by o linear function which is the unique tangent at this point. Right: this
function is not differentiable at = = 1. There are infinitely many tangents to the
curve of the function at this point.

One can easily check the distributional identity (1.13). Indeed, the left- and
right-hand sides of (1.13) are Gaussian random vectors, and therefore it suffices
. to verify that they have the same expectation and covariance matrix. Check
these properties by using (1.11).

Differentiability of a function f means that its graph is smooth. Indeed, if

the limit
R fa) = lim L0+ 2) = Jao)
’ T Az—0 Az

exists and is finite for some z¢ € (0,t), say, then we may write for small Az
f(zo + Az) = f(zo) + f'(z0)Az + h(zo, Az)Az,

where h(zo,Az) — 0 as Az = 0. Hence, in a small neighborhood of zg, the
function f is roughly linear (as a function of Ax). This explains its smoothness.
- Alternatively, differentiability of f at zo implies that we have a unique tangent
to the curve of the function f at this point; see Figure 1.3.3 for an illustration.
In this figure you can also see a function which is not differentiable at one
point.
Now try to imagine a nowhere differentiable function: the graph of this
function changes its shape in the neighborhood of any point in a completely
non-predictable way. You will admit that you cannot really imagine such a
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function: it is physically impossible. Nevertheless, Brownian motion is ¢onsid-
ered as a very good approximation to many real-life phenomena. We will see in
Section 1.3.3 that Brownian motion is a limit process of certain sum processes.

The self-similarity property of Brownian motion has a nice consequence
for the simulation of its sample paths. In order to simulate a path on [0,T] it
suffices to simulate one path on [0, 1], then scale the time interval by the factor
T and the sample path by the factor T'/2. Then we are done.

In some books one can find the claim that the limit

. . Bfn+&f 3 Btn
‘;\!;I_l;lo\ﬁl‘ (—T-—) (1.14)

does not exist and therefore the sample paths of Brownian motion are non-dif-
ferentiable. It is casy to check (do it!) that the limit (1.14) does not exist, but
without further theory it would be wrong to conclude from this distributional
result that the paths of the process are non-differentiable.

The existence of a nowhere differentiable continuous function was discov-
ered in the 19th century. Such a function was constructed by Weierstrass. It
was considered as a curiosity, far away from any practical application. Brown-
ian motion is a process with nowhere differentiable sample paths. Currently it
is considered as one of those processes which have a multitude of applications
in very different fields. One of them is stochastic calculus; see Chapters 2
and 3.

A further indication of the irregularity of Brownian sample paths is given
by the following fact:

Brownian sample paths do not have bounded variation on any finite
interval [0.T]. This means that

n
sup ) |Bi,(w) = By,_,(w)| = o0,
T =1
where the suprennun (see p. 211 for its definition) is taken over all pos-
sible partitions 7: 0 =1y < --- < t, =T of [0,T].

A proof of this fact is provided by Proposition A3.2 on p. 189. We mention at
this point that the unbounded variation and non-differentiability of Brownian
sample paths are major reasons for the failure of classical integration methods,
when applied to these paths, and for the introduction of stochastic calculus.
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"II‘h_r(;%purpose of this section is to get some feeling for the distributional and

* pathwise properties of Brownian motion. If you want to start with Ch‘apter 2
" on stochastic calculus as soon as possible, you can easily skip this section and

CHAPTER 1.

.22 Processes Derived from Brownian Motion

return to it whenever you need a reference to a property or definition.

" Various Gaussian and non-Gaussian stochastic processes of practical rel-
evance can be derived from Brownian motion. Below we introduce some of
those processes which will find further applications in the course of this book.
As before, B = (Bq,t € [0,00)) denotes Brownian motion.

10

08

Brownian bridge

00

Figure 1.3.4 A sample path of the Brownian bridge.

Example 1.3.5 (Brownian bridge)

_Consider the process

X¢=B,—-tB;, 0<t<l.

“Obviously,

Xg:Bu—UBl=U and X1=Bl—lBl =

For this simple reason, the process X bears the name (standard) Bmwnia‘n
bridge or tied down Brownian motion. A glance at the sample paths of th}s
“bridge” (see Figure 1.3.4) may or may not convince you that this name is

justified.
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Using the formula for linear transformations of Gaussian random vectors (see
p. 18), one can show that the fidis of X are Gaussian. Verify this! Hence X is
a Gaussian process. You can easily calculate the expectation and covariance
functions of the Brownian bridge:

px(t) =0 and cx(t,s) =min(t,s) —ts, s,te]o, 1].

Since X is Gaussian, the Brownian bridge is characterized by these two func-
tions.

The Brownian bridge appears as the limit process of the normalized empirical
distribution function of a sample of iid uniform U(0, 1) random variables. This
is a fundamental result from non-parametric statistics; it is the basis for nu-

merous goodness-of-fit tests in statistics. See for example Shorack and Wellner
(1986). a

800 1000

Brownian motion with drif
M4

e o e e = = =

Figure 1.3.6 A sample path of Brownian motion with drift X; = 20B; + 10t on
[0,100]. The dashed line stands for the drift function px(t) = 10¢.

Example 1.3.7 (Brownian motion with drift)
Consider the process

Ni=pt+oB,, t>0,

for constants o > 0 and ;1 € R. Clearly, it is a Gaussian process (why?) with
expectation and covariance functions

px(t) =pt and cx(t,s)=o® min(t,s), s,¢t>0.
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" The expectation function px(t) = pt (the deterministic “drift” of the pro-
cess) essentially determines the characteristic shape of the sample paths; see
. Figure 1.3.6 for an illustration. Therefore X is called Brownian motion with

" (linear) drift. m]
With the fundamental discovery of Bachelier in 1900 that prices of risky assets
(stock indices, exchange rates, share prices, etc.) can be well described by
Brownian motion, a new area of applications of stochastic processes was born.
However, Brownian motion, as a Gaussian process, may assume negative val-
ues, which is not a very desirable property of a price. In their celebrated papers
from 1973, Black, Scholes and Merton suggested another stochastic process as
a model for speculative prices. In Section 4.1 we consider their approach to
the pricing of European call options in more detail. It is one of the promising
and motivating examples for the use of stochastic calculus.

Example 1.3.8 (Geometric Brownian motion)
The process suggested by Black, Scholes and Merton is given by

Xt_:e;xt-i-crﬂg‘ t>0,

i.e. it is the exponential of Brownian motion with drift; see Example 1.3.7.
Clearly, X is not a Gaussian process (why?).

For the purpose of later use, we calculate the expectation and covariance func-
tions of geometric Brownian motion. For readers, familiar with probability
theory, you may recall that for an N(0,1) random variable Z,

Ee* =2 \eR. (1.15)
It is easily derived as shown below:
1 o2 2
Ee,\Z — e f e/\ze—z /2 dz
(2m)1/2 J_o

2 1 =

= M/,

Here we used the fact that (27)~/2exp{—(z — A)?/2} is the density of an
N(A,1) random variable.

From (1.15) and the self-similarity of Brownian motion it follows immediately

that

PX(t) — eMtEeBt — ej;tEeo‘tI‘mB1 = e{_u+0.5cru)t' . (1.16)
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1.10 1.15

geometric Brownian motion
1.05

1.00

Figure 1.3.9 Sample paths of geometric Brownian motion X, = exp{0.01¢+0.01B,}
on [0, 10], the expectation function yux (t) (dashed line) and the graphs of the functions
px(t) £20x(t) (solid lines). The latter curves have to be interpreted with care since
the distributions of the Xys are not normal.

For s < t, B; — B, and B, are independent, and B, — B, 4 B;_s. Hence
ex(t,s) = EX\X,-EX,EX, (1.17)

= oM+ par(BitBa) _ o(ut0.5 o) (t+s)

= oM145) peal(Be—B.)+2B,] _ e(n+0.5 o?)(t+s)

= oM+ Ear (Bi=B,) po20B, _ (4405 o?)(t+s)
— ol t05a2) (1 4s) ((‘azs _ I) ‘
In particular. geometric Brownian motion has variance function
oi(t) = pl2nta® )t ((!”2’ - l) . (1.18)

See Figure 1.3.9 for an illustration of varions sample paths of geometric Brow-
nian motion. O
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Example 1.3.10 (Gaussian white and colored noise) .

_ In statistics and time series analysis one often uses the name “white noise” fgr a
sequence of iid or uncorrelated random variables. This is in contrast to physics,
where white noise is understood as a certain derivative of Brownian samPle
_paths. This does not contradict our previous remarks since this deri\iatlve
is not obtained by ordinary differentiation. Since white noise is “Physmglly
impossible”, one considers an approximation to it, called colored noise. It is a
~ Gaussian process defined as

Biyn — By
— —"—'"—-""'—h 3
where h > 0 is some fixed constant. Its expectation and covariance functions
are given by

X t>0, (1.19)

px(t) =0 and cx(t,s) = h~2[(s+h) —min(s + h,t)], s<t.

Notice that cx(t,s) = 0if t — s > h, hence X; and X, are independent, but
ift—s < h, cx(t,8) = h"2[h — (t — 8)]. Since X is Gaussian and cx(t, s) is a
function only of ¢ — s, it is stationary (see Example 1.2.8).

Clearly, if B was differentiable, we could let h in (1.19) go to zero, and in the
limit we would obtain the ordinary derivative of B at t. But, as we know,
this argument is not applicable. The variance function 0% (t) = h™! gives an
indication that the fluctuations of colored noise become larger as h decreases.
Simulated paths of colored noise look very much like the sample paths in
Figure 1.2.6. m]

. 1.3.3 Simulation of Brownian Sample Paths

- This section is not necessary for the understanding of stochastic calculus. How-
ever, it will characterize Brownian motion as a distributional limit of part.ial
sum processes (so-called functional central limit theorem). This obse.rva%t.lon
will help you to understand the Brownian path properties (non—diﬂ'eren‘nab.lhty,
unbounded variation) much better. A second objective of this section is to
show that Brownian sample paths can easily be simulated by using standard
software. . . .

Using the almost unlimited power of modern computers, you can vxsualllze
the paths of almost every stochastic process. This is desirable because we like
to see sample paths in order to understand the stochastic process better.l On
the other hand, simulations of the paths of stochastic processes are sometimes
unavoidable if you want to say something about the distributional ‘pro.perliles
of such a process. In most cases, we cannot determine the exact distribution
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of a stochastic process and its functionals (such as its maximum or minimum

on a given interval). Then simulations and numerical techniques offer some
alternative to calculate these distributions.

Simulation via the Functional Central Limit Theorem

From an elementary course in probability theory we know about the central
limit theorem (CLT). It is a fundamental result: it explains why the normal
distribution plays such an important réle in probability theory and statistics.
The CLT says that the properly normalized and centered partial sums of an
iid finite variance sequence converge in distribution to a normal distribution.
To be precise: let ¥1,13,... be iid non-degenerate (i.e. non-constant) random
variables with mean yy = EY] and variance 03 = var(V;). Define the partial
sums

RO:O~ er:}'l+"'+}:n, n_>'1.

Recall that @ denotes the distribution function of a standard normal random
variable.

If Y1 has finite variance, then the sequence (Y;) obeys the CLT, i.e.

P ( Rﬂ R ERTI

| (Fartos <) =

I

-+ 0 as n— oo

Thus, for large n, the distribution of (R, — py n)/(0%n)!/? is approximately
standard normal. This is an amazing fact, since the CLT holds independently
of the distribution of the }s; all one needs is a finite variance ag.‘

The CLT has an analogue for stochastic processes. Consider the process
with continuous sample paths on [0, 1]:

oin) VIR, — iy i), if t=i n,i=0,...,n,
S,l(t):{(} Rl fiy ) /

(1.20)
linearly interpolated,  elsewhere.

In Figures 1.3.11 and 1.3.12 you will find realizations of S,, for various n.
Assume for the moment that the Yis are iid N(0,1) and consider the

restriction of the process S, to the points i/n. We immediately see that the
following properties hold:

e S, starts at zero: S, (0) = 0.
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- 0.0 0.2 0.4 0.6 0.8 1.0
t

Figure 1.3.11 Sample paths of the process S, for one sequence of realizations
Yi(w),.--,Yo(w) and n=2,...,9.

]
ol ol
n= 10
2: n= 100
3: n= _1000
4: n=_10000
5: n=100000
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Figure 1.3.12 Sample paths of the process Sn for different n and the same sequence
of realizations Yi(w), ..., Y100,000(w)-
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e S, has independent increments, i.e. for all integers 0 <1y < -+ <y
n, the random variables

IA

Salia/n) = Su(iy/n), ..., Su(im/n) — Sp(im-1/n)
are independent.
e For every 0 <1 < n, S,(i/n) has a normal N(0,i/n) distribution.

Thus, S,, and Brownian motion B on [0, 1], when restricted to the points i/n,
have very much the same properties; cf. the definition of Brownian motion on
p. 33. Naturally, the third property above is not valid if we drop the assumption
that the Y;s are iid Gaussian. However, in an asymptotic sense the stochastic
process S, is close to Brownian motion:

If Y7 has finite variance, then the sequence (Y;) obeys the functional
CLT, also called Donsker’s invariance principle, i.e. the processes S,
converge in distribution to Brownian motion B on [0,1].

Convergence in distribution of S,, has a two-fold meaning. The first one is
quite intuitive:

e The fidis of S, converge to the corresponding fidis of B, i.e.

P(Sn(tl} e T v-Sn(im} S ) P(Bh = xll"'!B!m < xm)
(1.21)
for all possible choices of 1; € [0,1], z; € R, i = 1,...,m, and all integers
m > 1.

But convergence of the fidis is not sufficient for the convergence in distribu-
tion of stochastic processes. Fidi convergence determines the Gaussian limit
distribution for every choice of finitely many fixed instants of time ¢;, but
stochastic processes are infinite-dimensional objects, and therefore unexpected

events may happen. For example, the sample paths of the converging processes

may fluctuate very wildly with increasing n, in contrast to the limiting process

of Brownian motion_whijch has _continnous.sample pat avold

such irregular behavior,
1

e a so-called tightness or stochastic compactness condition must be satis-
fied.

Fortunately, the partial sum processes S, are tight, but it is beyond the scope
of this book to show it.
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Figure 1.3.13 One sample path of the processes So (dotted line) and Sy (solid line)

for the same sequence of realizations Yi(w),...,Yo(w). See (1.20) and (1.22) for the
definitions of Sn and Sn.

What was said about the convergence of the processes S, remains valid

_ for the processes

'-Swﬂ(t) = (offﬂ’)_”z(R[nt} — My [nt]) , 0<t<1, (1-22)

where [nt] denotes the integer part of the real nlimber nt; see Figure 1.3.13 for
an illustration. In contrast to Sy, the process S, is constant on the intervals
[(i—1)/n,i/n) and has jumps at the points i/n. But S, and Sp coincide at the
points i/n, and the differences between these two processes are asymptotically
negligible: the normalization n'/? makes the jumps of Sf‘ arbitrarily small for
large n. As for Sy, we can formulate the following functional CLT:

If Y; has finite variance, then the sequence (Yj) obeys the functional
CLT, i.e. the processes S, converge in distribution to Brownian motion
B on [0,1].

Since S, is a jump process, the notion of convergence in distribution becomes
even more complicated than for S,. We refrain from discussing details.
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Thus we have a first simple tool for simulating Brownian sample paths in
our hands:

Plot the paths of the processes S, or §,. for sufficiently large n, and you get a
reasonable approximation to Brownian sample paths.

Also notice:

Since Brownian motion appears as a distributional limit you will see completely
different graphs for different values of n, for the same sequence of realizations
Yi(w).

From the self-similarity property we also know how to obtain an approximation
to the sample paths of Brownian motion on any interval [0, T:

Simulate one path of S, or 5',, on [0,1], then scale the time interval by the
factor T and the sample path by the factor T'/2.

Standard software (such as Splus, Mathematica, Matlab, etc.) provides you
with quick and reliable algorithms for generating random numbers of standard
distributions. Random number generators are frequently based on natural
processes, for example radiation, or on algebraic methods. The generated
“random”™ numbers can be considered as “pseudo” realizations Y;(w) of iid
random variables 15,

For practical purposes, you may want to choose the realizations Y;(w) (or,
as vou like, the random numbers Y;(w)) from an appropriate distribution. If
you are intercsted in “good”™ approximations to the Gaussian distribution of
Brownian motion. vou would generate the Y;i(w)s from a Gaussian distribution.
If you are forced to simulate many sample paths of S,, or S, in a short period
of time, you would perhaps choose the Yj(w)s as realizations of iid Bernoulli
random variables, i.e. P(}, = £1) = 0.5, or of iid uniform random variables.

Simulation via Series Representations

—

Recall from a course on calculus that every continuous 2w-periodic function f
on R (i.e. f(or+ 27) = f(x) for all x € R) has a Fourier series representation,
i.e. it can be written as an infinite series of trigonometric functions.

Since Brownian sample paths are continuous functions, we can try to ex-
pand them in a Fourier series. However, the paths are random functions: for
different « we obtain different functions. This means that the coefficients of
this Fourier scries are random variables, and since the process is Gaussian,
they must be Gaussian as well.

The following representation of Brownian motion on the interval [0, 2]
is called Paley- Wiener representation: let (Z,,n > 0) be a sequence of iid
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Figure 1.3.14 Simulation of one Brownian sample path from the discretization
(1.24) of the Paley—Wiener representation with N = 1,000. Top left: all paths
for M = 2,...,40. Top right: the path only for M = 40. Bottom left: M = 100.
Bottom right: M = 800.
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N(0, 1) random vanables, then

’ Bi(w) = Zo(w)(g:)m m Zz (w S"‘(”t/2), te[0,2n ] (1.23)

- J

ThlS series converges for every fixed 7, but also umformly fort e [U er] ie. the
rate of convergence is comparable for all ¢. For an application of this formula,
one has to decide about the number M of sine functions and the number N
of discretization points at which the sine functions will be evaluated. This
amounts to calculating the values

sm (nt; /2)
ZU(“")[Q izt 1/2 ZZ —=— (1.24)
2mj ;
ti:"j\?” _}20,1,‘..,N.

The problem of choosing the “right” values for M and N is similar to the
choice of the sample size n in the functional CLT; it is difficult to give a simple
rule of thumb for the choices of M and N.

In Figure 1.3.14 you can see that the shape of the sample paths does not
change very much if one switches from M = 100 to M = 800 sine functions.
A visual inspection in the case M = 100 gives the impression that the sample
path is still too smooth. This is not completely surprising since a sum of M
sine functions is differentiable; only in the limit (as M — o0) do we gain a
non-differentiable sample path.

The Paley-Wiener representation is just one of infinitely many possible
series representations of Brownian motion. Another well-known such repre-
sentation is due to Lévy. In the Lévy representation, the sine functions are
replaced by certain polygonal functions (the Schauder functions).

To be precise, first define the Haar functions H, on [0,1] as follows:

Hi(t) = 1,
: 2 1
/2 & - S e
2 ’ if te [1 2m+l’1 2m+1) :

Hymir(t) = Sl ¥ 1
—2]}, if t e I—W,l )

0, elsewhere,
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k-1 k-1 1 -
m/2 : . .
2 1 if ¢ € [ om 1 om 2m+1 ) 1 i
(65,1} Hamyp(t) = i % -1 k ; ;
_2’“{ s lf t e —im, 2_1'?1 3 ) k

0, elsewhere,

s 00

40 45 00

a0

H:.l_'-_; i« ' k=1’.“’2m_1; m=0’1‘““

15
L1

4. . From these functions define the system of the Schauder functions on [0, 1] by o G T e
integrating the Haar functions:

) S ~
H,,(a):/ H,(s)ds, n=12,.... . {
0 . y
Figures 1.3.15 and 1.3.16 show the graphs of H, and H,, for the first n. A %e SN N
series representation for a Brownian sample path on [0, 1] is then given by - B
. ) o :
Biw) =) Zn(w)Ha(t), telo,1], (1.25) » i

n=1 oo oz ] o oB ) oo

where the convergence of this series is uniform for ¢ € [0,1] and the Z,(w)s e
are realizations of an iid N(0, 1) sequence (Z,). As for simulations of Brow- al .
nian motion via sine functions, one has to choose a truncation point M of
the infinite series (1.25). In Figure 1.3.17 we show how a Brownian sample

HE
HE

path is approximated by the superposition of the first M terms in the series
representation (1.25). In contrast to Figure 1.3.14, the polygonal shape of the
- Schauder functions already anticipates the irregular behavior of a Brownian
path (its non-differentiability) for relatively small M. ks — ~

The Paley-Wiener and Lévy representations are just two of infinitely many T TR~ - T P

possible series representations of Brownian motion. They are special cases of

the so-called Lévy-Ciesielski representation. Ciesielski showed that Brownian
motion on [0,1] can be represented in the form

|
|

HT

o0 t
B;(w):ZZn(w)/o $n(z)dz, t€(0,1],
n=1

where Z,, are iid N(0, 1) random variables and (¢, ) is a complete orthonormal
function system on [0, 1].

oo oz o4 ce T am To oo

Notes and Comments

y % 3 ; i Fi .3.15 The H i Hy,...,Hs.
Brownian motion is the best studied stochastic process. Various books are M rertluer indions i :

devoted to it, for example Borodin and Salminen (1996), Hida (1980), Karatzas
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Figure 1.3.17 The first steps in the construetion of one Brownian sample path from
. = = Suy representali 1.25) via M Schaud : = N
Figure 1.3.16 The Schauder functions iy, ..., Hs. the Lévy representation (1.25) via M Schauder functions, M =1,...,8
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" and Shreve (1988) and Revuz and Yor (1991). The reader of these books must

be familiar with the theory of stochastic processes, functional analysis, special

functions and measure theory. Every textbook on stochastic processes also
contains at least one chapter about Brownian motion; see the references on
p. 33. :

"' In addition to the non-differentiability and unbounded variation, Brownian
motion has many more exciting path and distributional properties. Hida (1980)
is a good reference to read about them.

The functional CLT is to be found in advanced textbooks on stochastic pro-
cesses and the convergence of probability measures; see for example Billingsley
(1968) or Pollard (1984). The series representations of Brownian motion can
be found in Hida (1980); see also Ciesielski (1965).

1.4 Conditional Expectation

You cannot avoid this section; it contains material which is essential for the
understanding of martingales, and more generally, [t6 stochastic integrals.

If you are not interested in details you may try to read from one box to
another. At the end of Section 1.4 you should know:

e the o-field generated by a random variable, a random vector or a stochas-
tic process; see Section 1.4.2,

e the conditional expectation of a random variable given a o-field; see
Section 1.4.3,

e the most common rules for calculating conditional expectations; see Sec-
tion 1.4.4.

You should start with Section 1.4.1, where an example of a conditional expec-
tation is given. It will give you some motivation for the abstract notion of
conditional expectation given a o-field, and every time when you get lost in
this section, you should return to Section 1.4.1 and try to figure out what the
general theory says in this concrete case.

1.4.1 Conditional Expectation under Discrete Condition

From an elementary course on probability theory we know the conditional
probability of A given B, i.e.

P(ANB)

P(A|B) = ~55
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ANB

Figure 1.4.1 The classical conditional probability: if we know that B occurred, we
assign the new probability 1 to it. Events outside B cannot occur, hence they have
the new probability 0.

Clearly,
P(A|B) = P(A) if and only if A and B are independent.

For the definition of (4| B) it is crucial that P(B) is positive. It is the
objective of Section 1.4.3 to relax this condition.

The probability (/| B) can be interpreted as follows. Assume the event
B occurred. This is additional information which substantially changes the
underlying probability measure. In particular, we assign the new probabilities
0 to B (we know that B¢ will not happen) and 1 to B. The event B becomes
our new probability space (', say. All events of interest are now subsets of
Q: AN B c . In order to get a new probability measure on ' we have to
normalize the old probabilities P(.A N B) by P(B). In sum, the occurrence of
B makes our original space € shrink to (', and the original probabilities P(A)
have to be replaced with P(A| B).

Given that P(B) > 0. we can define the conditional distribution function
of a random variable X given BB

-
Bl s B

P(B)

z€R,




