Econometrics III (Time Series)

Jesús Gonzalo

PROBLEM SET 1: Basics of Stochastic Processes Due day announced in my web page.

1. Let X_n , n = ..., -1, 0, 1, ... be a stationary real sequence with mean 0 and autocovariance function γ .

- (i) Show that the infinite series $\sum_{n=0}^{\infty} a_n X_n$ converges almost surely, and in mean square, whenever $\sum_{n=0}^{\infty} |a_n| < \infty$.
- (ii) Let

$$Y_n = \sum_{k=0}^{\infty} a_k X_{n-k}, \quad n = \dots, -1, 0, 1, \dots$$
(1)

where $\sum_{n=0}^{\infty} |a_n| < \infty$. Find an expression for the autocovariance function γ_Y of Y_n . Provided $\sum_{m=-\infty}^{\infty} |\gamma(m)| < \infty$, show that

$$\sum_{m=-\infty}^{\infty} |\gamma_Y(m)| < \infty \tag{2}$$

- 2. Let Y be uniformly distributed on [-1, 1] and let $X = Y^2$.
 - (a) Find the predictor of X given Y, and of Y given X.
 - (b) Find the best linear predictor of X given Y, and of Y given X.

3. Let X be a (weakly) stationary sequence with zero mean and autocovariance function γ .

- (i) Find the best linear predictor \widehat{X}_{n+1} of X_{n+1} , given X_n .
- (ii) Find the best linear predictor \widetilde{X}_{n+1} of X_{n+1} , given X_n and X_{n-1} .

• (iii) Find an expression for

$$D = E[(X_{n+1} - \widehat{X}_{n+1})^2] - E[(X_{n+1} - \widetilde{X}_{n+1})^2]$$
(3)

and evaluate this expression when

- (a) $X_n = cos(nU)$ where $U \sim U[-\pi, \pi]$ - (b) X is an autoregressive scheme with $\gamma(k) = \alpha^{|k|}$ where $|\alpha| < 1$.

4. Show that a Gaussian process is strongly stationary if and only if it is weakly stationary.

5. Let X_t be a stationary Gaussian process with zero mean, unit variance, and autocovariance function γ . Find the autocovariance functions of the processes X_t^2 and X_t^3 , where t = ..., -1, 0, 1, ...

6. A filter A(L) is said to be stable if, for any x_t bounded, then $y_t = a(L)x_t$ is bounded. (x_t is bounded if there exists a real number $M < \infty$ such that $|x_t| \leq M$ with probability one for all t.) Show that an absolutely summable filter is stable.

7. A sequence of random variables $\{x_t\}$ is bounded in probability if, for every $\varepsilon > 0$, there exists a real number $M_{\varepsilon} < \infty$ such that $P[|x_t| \le M_{\varepsilon}] > 1 - \varepsilon$ for all t. This is also referred to as $\{x_t\}$ being $O_p(1)$, or $x_t = O_p(1)$. Show that

- (a) If $\sup_{t} E|x_t| < \infty$, then $x_t = O_p(1)$.
- (b) If $\{x_t\}$ is covariance stationary, then $x_t = O_p(1)$.

8. Assume that X_1, X_2, \dots is a stationary sequence with autocovariance function γ . Show that

$$\operatorname{var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{2}{n^{2}}\sum_{j=1}^{n}\sum_{i=0}^{j-1}\gamma_{i} - \frac{\gamma_{0}}{n}$$
(4)

Assuming that $j^{-1} \sum_{i=0}^{j-1} \gamma_i \to \sigma^2$ as $j \to \infty$, show that

$$\operatorname{var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] \to \sigma^{2} \text{ as } n \to \infty$$

$$\tag{5}$$

9. Deduce the Strong Law of Large Numbers from an appropriate ergodic theorem.

10. Let Q be a stationary measure on (R^T, B^T) where T = 1, 2, ... Show that Q is ergodic if and only if

$$\frac{1}{n}\sum_{i=1}^{n}Y_{i} \to E[Y] \text{ a.s. and in mean}$$
(6)

for all $Y : \mathbb{R}^T \to \mathbb{R}$ for which E[Y] exists, where $Y_i : \mathbb{R}^T \to \mathbb{R}$ is given by $Y_i(x) = Y(\tau^{i-1}(x))$. As usual, τ is the natural shift operator on \mathbb{R}^T .

11. The stationary measure Q on (R^T, B^T) is called *strongly mixing* if $Q(A \cap \tau^n B) \to Q(A)Q(B)$ as $n \to \infty$, for all $A, B \in B^T$; as usual T = 1, 2, ... and τ is the shift operator on R^T . Show that every strongly mixing measure is ergodic.

12. Let $U \sim U[0,1]$ with binary expansion

$$U = \sum_{i=1}^{\infty} X_i 2^{-i} \tag{7}$$

Show that the sequence

$$V_n = \sum_{i=1}^{\infty} X_{i+n} 2^{-i}, \quad n \ge 0$$
(8)

is strongly stationary, and calculate its autocovariance function.

- 13. Let $y_t = \eta_t + b\eta_{t-1}^2$ where η_t is iid $N(0, \sigma^2)$ and b is a constant.
 - (a) Compute the autocovariance of y_t .
 - (b) Give the Wold representation for y_t . What is the variance of the 1-step ahead linear forecast error?
 - (c) Let \hat{y}_t be the optimal forecast of y_t based on knowledge of b, σ^2 and $\eta_{t-1}, \eta_{t-2}, \dots$ in the sence that \hat{y}_t minimizes the 1-step ahead mean square forecast error. What is $\operatorname{var}[y_t - \hat{y}_t]$?
 - (d) Suggest consistent estimators of σ^2 and b. Are any conditional restrictions needed on (b, σ^2) for identifiability, other than $\sigma > 0$?