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Some Useful References:

Granger, C.W.J. and Newbold, P., Forecasting Economic Time Series,
second edition. New York: Academic Press, 1986.

Elliott, G., A. Timmermann, Economic Forecasting. Princeton
University, 2016.

”Comparing Predictive Accuracy” , Francis X. Diebold and Roberto
S. Mariano, JBES 1995.

”Asymptotic Inference about Predictive Ability” , Kenneth West,
Econometrica 1996.
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Basic Concepts
Information set

Let {Xt} be some discrete time, stationary and stochastic process.

We are at t = n and wish to forecast h periods ahead, so we want to
forecast Xt + h .

In: information available at time n.

Univariate information set:

A sample of previous values of the series: Xn−j for j = 0, 1, . . . , n.
Some properties of the stochastic process {Xt}. e.g. E (xt),
stationarity, etc.

Multivariate information set:

A sample of previous values of the series: Xn−j , Yn−j , Zn−j , . . . for
j = 0, 1, . . . , n.
Some properties of the stochastic process Xn−j , Yn−j , Zn−j , . . .
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Basic Concepts
Conditional Variables

Xn+h is a random variable.

It can be fully characterized by a probability density.

Since In has to be used, we need a conditional density function, i.e.

Prob(x < Xn+h ≤ x + dx |In) = gc,h(x)dx (1)

If gc(x) is known, other properties of Xn+h can be immediately
determined.

If not, we attempt to find:

A point forecast: X̂n+h.
A confidence interval:

Prob(x1 < Xn+h ≤ x2) = α (2)

(Xn+h ∈ [x1, x2] with probability α).
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Basic Concepts
Cost function

Criteria to find the best point forecast? Consider the forecast fn,h

Cost (Risk) function:

C (e) with C (0) = 0 and en,h = Xn+h − fn,h (3)

The best forecast is given by:

f ∗n,h = arg min
{fn,h}

E [C (en,h)|In] (4)

Example

C (e) = ae2. In this case the best forecast is fn,h = E (Xn+h|In) (prove
it!!!)
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Basic Concepts
Linear forecast

We will rarely get to know the conditional density function sufficiently
well to find a complete solution of (4).

We will impose restrictions.

In particular we focus on linear models: fn,h is a linear function of the
data available in In.
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Generalized cost functions

A generalized cost function C (e) satisfy:
1 C (0) = 0
2 Monotonic non decreasing for e > 0:

e1 > e2 > 0 =⇒ C (e1) ≥ C (e2) (5)

3 Monotonic non increasing for e < 0

Notice that doesn’t need to be symmetrical.

The optimal forecast fn,h is the one that minimizes:

J =

∫ +∞

−∞
C (x − fn,h)gc,h(x)dx (6)
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Generalized cost functions
Least squares

Example (C (e) = ae2 with a > 0)

We have to minimize:

J =

∫ +∞

−∞
a(x − fn,h)2gc,h(x)dx (7)

Define Mh = E [Xn+h|In] =
∫ +∞
−∞ xgc,h(x)dx . After some manipulation,

(7) can be written as:

J = a(Mh − fn,h)2 + a

∫ +∞

−∞
(x −Mh)2gc,h(x)dx (8)

Then:
fn,h = Mh = E [Xn+h|In] (9)

is the optimal forecast.
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Generalized cost functions
Conditional expectation as best forecast

Is fn,h = Mh the optimal predictor for a wider class of cost functions?

Theorem (Conditional expectation as best forecast)

fn,h = Mh is the optimal predictor if:

1 C (e) is symmetric around e=0.

2 C ′(e) exists almost everywhere and is strictly increasing for
−∞ < e <∞.

3 gc,h(x) is symmetric around x = Mh.

or if:

1 C (e) is symmetric around e=0.

2 gc,h(x) is symmetric around x = Mh, is continuous and unimodal.

C (e) is not always symmetric... Think on some examples...
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Generalized cost functions
Conditional expectation as best forecast

What if the cost function is not symmetric?

Theorem (Conditional expectation as best forecast)

If the conditional distribution gc,h(x) is assumed to be normal, then the
optimal predictor is given by:

fn,h = Mh + α (10)

where α only depends on the cost function C (e) (not on In).
(Christoffersen and Diebold 1997).
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Example

Let:

C (e) =


ae ife > 0

0 ife = 0

be ife < 0

; a > 0, b < 0 (11)

The expected cost is:

J = E [C (Xn+h − f )|In] = a

∫ ∞
f

(x− f )gc,h(x)dx +b

∫ f

−∞
(x− f )gc,h(x)dx

(12)
First order condition:

Gc,h(f ) =
a

a− b
(13)

where Gc,h is the conditional cumulative distribution. For the symmetric
case (a = −b):

Gc,h(f ) = 1/2 (14)

so that f optimal is the median of gc,h.
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The evaluation of forecast

An objective evaluation of a set of forecast might seek to answer:
1 Is one set of forecast better than its competitors?
2 How ‘good’, in some sense, is a particular set of forecasts?
3 Can the forecast-generation mechanism be modified in some way so as

to yield improved forecast performance?

Example

Let:

Xt , ft t = 0, 1, 2, . . . ,N

et = Xt − ft t = 0, 1, 2, . . . ,N

The expected squared forecast error estimated is:

D2
N =

1

N

N∑
t=1

e2t (15)
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The evaluation of forecast

Suppose that are two forecasting competing procedures that produce

errors: {e(1)t , e
(2)
t }Nt=1

Additionally, suppose {e(1)t , e
(2)
t }Nt=1 is a random sample of a bivariate

distribution with zero mean, variance σ2, correlation coefficient ρ and

Cov(e
(i)
t , e

(i)
t−j) = 0.

Test:

H0 : σ21 = σ22

H1 : σ21 6= σ22

Construct a pair of random variables e(1) + e(2) and e(1) − e(2) and
compute the covariance:

E
[
(e(1) + e(2))(e(1) − e(2))

]
= σ21 − σ22 (16)

Then regress e(1) + e(2) on e(1) − e(2) by OLS, and find the regression
coefficient.
If the coefficient is zero, then they are uncorrelated, i.e. σ21 = σ22.
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The evaluation of forecast
‘Comparing predictive accuracy’ by Diebold and Mariano, 1995

This paper allows for forecast errors that are potentially
non-Gaussian, nonzero mean, serially correlated and
contemporaneously correlated, that is, under general assumptions.

Let:

{yt}Tt=1 observed time series.

{ŷ (1)
t }Tt=1 and {ŷ (2)

t }Tt=1 two different forecasts of {yt}Tt=1.

{ê(1)t }Tt=1 and {ê(2)t }Tt=1 the associated forecast errors.

g(yt , ŷ
(i)
t ) = g(ê

(i)
t ) cost function or loss function.

dt = g(ê
(1)
t )− g(ê

(2)
t )

Hypothesis:

H0 : E[dt ] = 0

H1 : E[dt ] 6= 0
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The evaluation of forecast
‘Comparing predictive accuracy’ by Diebold and Mariano, 1995

Test statistic. If {dt}Tt=1 is assumed to be covariance stationary and
short memory, then:

√
T (d − µ)

d→ N(0, 2πfd(0)) (17)

where 2πfd(0) is the Long-run Variance.

d =
1

T

T∑
t=1

[
g(ê

(1)
t )− g(ê

(2)
t )
]

; fd(0) =
1

2π

∞∑
τ=−∞

γd(τ) (18)

Then:

S =
d√

2πf̂d (0)
T

∼ N(0, 1) (19)

So we reject H0 at 5 % if |S | > 1.96.
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The evaluation of forecast
‘Comparing predictive accuracy’ by Diebold and Mariano, 1995

No parameter uncertainty. Note that ê (forecasting error) is
calculated with the true parameters and no with their estimates.

Think on how to carry on this test via a simple linear regression:

dt = α + ut (20)

Then.......?
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The evaluation of forecast
‘Comparing predictive accuracy’ by Diebold and Mariano, 1995

Long run variance (limn→∞V(
√
Tȳ) if it exists). Let

yt = µ+ Ψ(L)εt , εt ∼ iid(0, σ2). LRV is the variance of the
asymptotic distribution of

√
T (ȳ − µ)

d∼ AD(0, LRV ) (21)

Non-parametric estimator

LRV = σ2Ψ2(1) =
∞∑
−∞

γk

= γ0 + 2
∞∑
k=1

γk

Näıve estimator

ˆLRV = γ̂0 + 2

MT∑
k=1

γ̂k (22)

MT = truncation point. This estimator is inconsistent.
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The evaluation of forecast
‘Comparing predictive accuracy’ by Diebold and Mariano, 1995

Newey-West propose an estimator which downweights γ̂k for large k.

ˆLRVNW = γ̂0 + 2

MT∑
j=1

[
1− j

MT+1

]
︸ ︷︷ ︸
Bartlett’s Window

γ̂j (23)

with MT →∞ and MT
T → 0 as T →∞.

Example

MT = 4
(

T
100

) 1
4 . Then if T = 100, MT = 4 and

ˆLRVNW = γ̂0 + 2
4∑

j=1

[
1− j

5

]
γ̂j

γ̂0 + 2

[
4

5
γ̂1 +

3

5
γ̂2 + . . .

]
Jesus Gonzalo Forecasting November 9, 2020 22 / 36



The evaluation of forecast
‘Comparing predictive accuracy’ by Diebold and Mariano, 1995

Alternative estimator (based on the AR representation). Assume
yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt , εt ∼ iid(0, σ2).

1 Estimate φ̂1, φ̂2, . . . , φ̂p, σ̂
2

2 Ψ̂(1) = 1
1−φ̂1−φ̂2−...φ̂p

3 ˆLRV AR = σ̂2
(

Ψ̂(1)
)2
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More on LRV estimation
‘Dynamic Nonlinear Econometric Analysis’ by Pötscher and Prucha, 1996

√
T (ȳ − µ)

d∼ AD(0, LRV ) (24)

LRV =
∞∑
∞
γk = γ0 + 2

∞∑
k=1

γk (25)

Define vt = yt − µ. Then,

LRV = E
(
v2t
)

+ 2
∞∑
j=1

E (vtvt+j) (26)

How do we estimate it? We will check some candidates.
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More on LRV estimation
‘Dynamic Nonlinear Econometric Analysis’ by Pötscher and Prucha, 1996

First candidate:

1

n

n∑
1

v2t + 2

n−j∑
j=1

vtvt+j (27)

This “näıve” estimator is well known to be inconsistent.

Intuitively speaking, the reason for the inconsistency is that the
estimator is a sum of n − j terms, each with a variance roughly the

order O
(

1
n−j

)
. The variance of the estimator is then roughly “n”

times as large (O (1)).
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More on LRV estimation
‘Dynamic Nonlinear Econometric Analysis’ by Pötscher and Prucha, 1996

Second candidate:

1

n

n∑
1

v2t + 2
n−1∑
j=1

1

n

n−j∑
t=1

vtvt+j (28)

One possibility to obtain consistent estimators of the LRV is to
reduce the variance of the estimator by excluding some of the sample
moments 1

n−j
∑n−j

t=1 vtvt+j from the formula of the näıve estimator. It
seems natural to exclude or down-weigh the sample moments
corresponding to lags j close to n.

This is achieved by introducing weights into the formula for the näıve
estimator.

Down-weighing of the sample covariance has the effect of reducing
the variance of the estimator at the expense of introducing a bias.

This candidate is still inconsistent although some moderate
down-weighing of the sample moments 1

n−j
∑n−j

t=1 vtvt+j takes place.

Jesus Gonzalo Forecasting November 9, 2020 26 / 36



More on LRV estimation
‘Dynamic Nonlinear Econometric Analysis’ by Pötscher and Prucha, 1996

Third candidate:

1

n

n∑
1

v2t + 2
M∑
j=1

1

n

n−j∑
t=1

vtvt+j
p→ E

(
v2t
)

+ 2
M∑
t=1

E (vtvt+j) (29)

The probability limit is equal to LRV only if E (vtvt+j) = 0 for j > M
(for example if vt is m-dependent with m ≤ M).

Because we are always assuming that E (vtvt+j)→ 0 for j →∞, then
it is clear that the bias will be smaller the larger M is.

So a possible solution is to make M sample size dependent (Mn) such
that Mn →∞ to avoid bias, but slowly enough so that the variance
still goes to zero as n→∞.
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More on LRV estimation
‘Dynamic Nonlinear Econometric Analysis’ by Pötscher and Prucha, 1996

Fourth candidate:

1

n

n∑
1

v2t + 2
Mn∑
j=1

1

n

n−j∑
t=1

vtvt+j (30)

or more general, fifth candidate:

LRVn =
1

n

n∑
1

v2t + 2
n−1∑
j=1

w (j , n)

n−j∑
t=1

vtvt+j (31)

for appropriate weights w (j , n) ∈ R
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More on LRV estimation
‘Dynamic Nonlinear Econometric Analysis’ by Pötscher and Prucha, 1996

Clearly, (30) is a special case because it can be obtained with

w (j , n) =

{
1 0 ≤ j ≤ Mn

0 Mn ≤ j ≤ n − 1

Another example is

w (j , n) =

{
1− j

Mn
0 ≤ j ≤ Mn

0 Mn ≤ j ≤ n − 1
(Bartlett Kernel)
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Combination of forecasts (an ecological principle)
Bates & Granger, 1969

Two unbiased one-step-ahead forecasts f
(1)
n and f

(2)
n

Forecast errors

e
(j)
n = xn − f

(j)
n j = 1, 2

E
[
e
(j)
n

]
= 0

E
[(

e
(j)
n

)2]
= σ2j

E
[
e
(1)
n e

(2)
n

]
= ρσ1σ2
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Combination of forecasts
Bates & Granger, 1969

Consider now a combined forecast

Cn = kf
(1)
n + (1− k) f

(2)
n

Hence the error variance

σ2C = k2σ21 + (1− k)2 σ22 + 2k (1− k) ρσ1σ2 (32)

This expression is minimized for the value of k given by

k0 =
σ22 − ρσ1σ2

σ21 + σ22 − 2ρσ1σ2
(33)

Substituting in the error variance expression

σ2C ,0 =
σ21σ

2
2

(
1− ρ2

)
σ21 + σ22 − 2ρσ1σ2
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Combination of forecasts
Bates & Granger, 1969

Notice that σ2C < min
(
σ21, σ

2
2

)
unless ρ = σ1

σ2
or ρ = σ2

σ1
.

If either equality holds, then the variance of the combined forecast
error is equal to the smaller of the two error variances. In most
practical situations, the best available combined forecast will
outperform the better individual forecast.
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Combination of forecasts
Bates & Granger, 1969

From expression (33) one can obtain two “extreme” interesting results

The first one is

k0 ≥ (≤)0 ⇐⇒ σ2
σ1
≥ (≤)ρ

If f
(2)
n is the optimal forecast (k0 = 0) based on a particular

information set, any other forecast f
(1)
n based on the same

information set must be such that ρ = σ2
σ1

exactly.

The case k0 < 0 is also interesting. Think. Why?

The second one is when in (32) ρ→ −1 or ρ→ 1.

When ρ→ −1, then σC ,0 → 0, implying a perfect forecast.

When ρ→ 1, then σC ,0 → 0 except when σ1 = σ2 in which case the
limit is σ21. Try to interpret this result.
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Some extra comments
Bates & Granger, 1969

1 Expression (33) is not very useful because the parameters are
unknown.

2 Two ways of obtaining the weights in Cn.
1 Either plug in sample moments into population moments
2 or use

Xn+1 = kf (1)n + (1− k) f (2)n + en,

to regress Xn+1 on f
(1)
n and f

(2)
n and obtain the coefficients by OLS,

imposing that they should add up to one.

3 Time varying weights.
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Some final (??) comments

1 Do not forget to read Wei,W., Time Series Analysis: Univariate and
Multivariate Methods(1990) for standard Box-Jenkins univariate
ARMA(p, q) prediction.

2 Think on how to carry on MULTI-step forecast: direct versus plug-in.

3 Think on how to forecast with Non-Linear Models.

4 Think on how to forecast ”events” that never occurred before.
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