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Some Asymptotic Results
B-N decomposition

Beveridge Nelson (B-N) decomposition

Xt = C (L)εt =
[
C (1) + (1− L)C̃ (L)

]
εt

What is C̃ (L)?

∞∑
j=0

cjL
j =

 ∞∑
j=0

cj −
∞∑
j=1

cj

+

 ∞∑
j=1

cj −
∞∑
j=2

cj

 L+

 ∞∑
j=2

cj −
∞∑
j=3

cj

 L2 + . . .

=
∞∑
j=0

cj −

 ∞∑
j=1

cj

 (1− L)−

 ∞∑
j=2

cj

 L(1− L)−

 ∞∑
j=3

cj

 L2(1− L) + . . .

=
∞∑
j=0

cj + (1− L)
∞∑
j=0

c̃jL
j

with c̃j = −
∑∞

s=j+1 cs .

Jesús Gonzalo (UC3M) Estimation and Inference October 30, 2017 4 / 36



Some Asymptotic Results
B-N decomposition

Lemma

Let C̃ (L) =
∑∞

j=0 c̃jL
j and c̃j =

∑∞
s=j+1 cs . Then,

(a)
∞∑
j=0

j
1
2 |cj | <∞ =⇒

∞∑
j=0

c̃2j <∞

(
⇐=

∞∑
j=0

j2c2j <∞

)
,

⇑

(b)
∞∑
j=0

j |cj | <∞ =⇒
∞∑
j=0

|c̃j | <∞.

Jesús Gonzalo (UC3M) Estimation and Inference October 30, 2017 5 / 36



Some Asymptotic Results
Law of Large Numbers
Theorem (SLLN for m.d.s.)

Let {εt} be a m.d.s. with

V[εt ] = σ2
t <∞,

∞∑
t=1

σ2
t

t2
<∞.

Then 1
n

∑n
t=1 εt

a.s.−→ 0 as n→∞.

Theorem (SLLN for Linear Processes)

If Xt = C (L)εt with
∑∞

j=1 j
2c2j <∞ and {εt} is a m.d.s. with

sup
t

E[|εt |2] <∞,

then 1
n

∑n
t=1 Xt

a.s.−→ 0 as n→∞.
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Some Asymptotic Results
Law of Large Numbers
Proof (SLLN for Linear Processes)

Xt = C (1)εt + (1− L)C̃ (L)εt

1

n

n∑
t=1

Xt = C (1)

∑n
t=1 εt
n

− 1

n
(ε̃0 − ε̃n) ,

where ε̃j = C̃ (L)εj . By the SLLN for m.d.s.

1

n

n∑
t=1

εt
a.s.−→ 0.

Now we only have to prove that

1

n
(ε̃0 − ε̃n)

a.s.−→ 0.
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Some Asymptotic Results
Law of Large Numbers
Proof (SLLN for Linear Processes) (cont.)

Take for instance ε̃n
n :

∞∑
n=1

P

(
|ε̃n|
n

> δ

)
<

∞∑
n=1

E
[
ε̃2n
]

n2δ2
=

1

δ2

∞∑
n=1

1

n2

 ∞∑
j=0

c̃2j

 k <∞

by Markov’s Inequality, where k = supt E
[
|εt |2

]
<∞ and

∑∞
j=0 c̃

2
j <∞.

By Borel-Cantelli Lemma ε̃n
n

a.s.−→ 0.

Reminder:

Markov’s Inequality P(|X | ≥ ε) ≤ E [|X |p]

εp
if E [|X |p] <∞ and p > 0.

Borel-Cantelli Lemma
∞∑
n=1

P(|Xn(ω)− X (ω)| ≥ ε) <∞ =⇒ Xn
a.s.−→ X .
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Some Asymptotic Results
Central Limit Theorems
Theorem (CLT for m.d.s.)

Let {εt} be a strictly stationary and ergodic m.d.s. with

V[εt ] = σ2 <∞.

Then ∑n
t=1 εt√
n

d−→ N (0, σ2).

Theorem (CLT for Linear processes)

If Xt = C (L)εt with
∑∞

j=1 j |cj | < ∞ and {εt} a strictly stationary and

ergodic m.d.s. with V[εt ] = σ2 <∞, then

√
n

∑n
t=1 Xt

n
d−→ N (0, C (1)2σ2︸ ︷︷ ︸

Long run variance

)
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Some Asymptotic Results
Central Limit Theorems

Proof (CLT for Linear processes)

√
nX̄n =

∑n
t=1 Xt√
n

= C (1)

∑n
t=1 εt√
n
− 1√

n
(ε̃0 − ε̃n) ,

C (1)

∑n
t=1 εt√
n

d−→ N (0,C (1)2σ2) by CLT for m.d.s.

We need to prove that 1√
n

(ε̃0 − ε̃n) = op(1).

Notice that we cannot use now the Borel-Cantelli (WHY?) argument used
to prove the SLLN. This can be done by proving E[|ε̃n|] < ∞ and then
applying Markov’s inequality (HOW?).

E[|ε̃n|] = E

∣∣∣∣∣∣
∞∑
j=0

c̃jεn−j

∣∣∣∣∣∣
 ≤ ∞∑

j=0

|c̃j |E [|εn−j |] <∞.
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Some Asymptotic Results
Central Limit Theorems

Example: AR(1)

Xt = ϕXt−1 + εt

and {εt} is a m.d.s. satisfying the conditions of the previous theorem.

C (1) =
1

1− ϕ
, then

√
nX̄n

d−→ N
(

0,
σ2

(1− ϕ)2

)
or

√
nX̄n

d−→ N
(

0,V[Xt ]
1 + ϕ

1− ϕ

)
because V[Xt ] = σ2

1−ϕ2 .
Notice the problem when ϕ = 1.
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Some Asymptotic Results
Sample Correlations

Let γ̂(h) = 1
n

∑n−h
t=1

(
Xt − X̄n

) (
Xt+h − X̄n

)
and ρ̂(h) = γ̂(h)

γ̂(0) for 0 ≤ h ≤ n − 1.

Theorem

If {Xt} is the stationary process

Xt =
∞∑

j=−∞

ψjεt−j , {εt} ∼ iid(0, σ2),

where
∑∞

j=−∞ |ψj | <∞ and E[ε4t ] <∞, then for each h ∈ {1, 2, . . . } we have

√
n (ρ̂(h)− ρ(h))

d−→ N (0,W ),

where

ρ̂(h) =
[
ρ̂(1) ρ̂(2) · · · ρ̂(h)

]′
and ρ(h) =

[
ρ(1) ρ(2) · · · ρ(h)

]′
and W is the covariance matrix whose (i , j) element is given by Bartlett’s formula.
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Some Asymptotic Results
Sample Correlations

The condition E[ε4t ] <∞ can be relaxed at the expense of
∑
|j |ψ2

j <∞.

Bartlett’s formula:

wij =
∞∑

k=−∞

{
ρ(k + i)ρ(k + j) + ρ(k − i)ρ(k + j)+

2ρ(i)ρ(j)ρ(k)2 − 2ρ(i)ρ(k)ρ(k + j)− 2ρ(j)ρ(k)ρ(k + i)
}

Simple algebra shows that

wij =
∞∑
k=1

{
ρ(k + i)+ρ(k− i)−2ρ(i)ρ(k)

}{
ρ(k + j)+ρ(k− j)−2ρ(j)ρ(k)

}
and wii =

∑∞
k=1(ρi+k + ρi−k − ρiρk)2.

Confidence intervals will be formed by

±Cα
√

wii

n
with Cα = Φ−1

(α
2

)
.
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Some Asymptotic Results
Sample Correlations
Examples:

•wii =1

(
±1.96

1√
n

for 95%

)
(WN)

•wii =1 + 2

q∑
i=1

ρ2(i), for i > q (MA(q))

± 1.96

√
1 + 2ρ(1)2

n
, for i > 1 (MA(1))

•wii =
i∑

k=1

φ2i(φ−k − φk)2 +
∞∑

k=i+1

φ2k(φ−i − φi)2 (AR(1))

=(1− φ2i)(1 + φ2)(1− φ2)−1 − 2iφ2i

≈(1 + φ2)/(1− φ2) for i large.
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Estimation and Inference of an AR(1)

Suppose {Xt} is a stationary autoregressive process of order one
satisfying

Xt = ϕXt−1 + εt ,

where |ϕ| < 1 and {εt} ∼ iid , V[εt ] = σ2 <∞.

Then Xt =
∑∞

j=0 ϕ
jεt−j is strictly stationary and ergodic.

Jesús Gonzalo (UC3M) Estimation and Inference October 30, 2017 15 / 36



Estimation and Inference of an AR(1)

Let

ϕ̂ =

∑n
t=2 XtXt−1∑n
t=2 X

2
t−1

= ϕ +

∑n
t=2 Xt−1εt∑n
t=2 X

2
t−1

.

Then
√
n (ϕ̂− ϕ) =

1√
n

∑n
t=2 Xt−1εt

1
n

∑n
t=2 X

2
t−1

and, by the Ergodic Theorem,

1

n

n∑
t=2

X 2
t−1

a.s.−→ E[X 2
t ] =

σ2

1− ϕ2
.
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Estimation and Inference of an AR(1)
Observe that Zt = εtXt−1 is a m.d.s. w.r.t. F(εt−1, εt−2, . . . ),

E[Zt |εt−1, εt−2, . . . ] = Xt−1 E[εt ] = 0.

{Zt} as a function of {εt}, {Xt−1} is clearly strictly stationary and
ergodic,

V[εtXt−1] = E[ε2tX
2
t−1] = σ2 E[X 2

t−1] =
σ4

1− ϕ2
<∞.

Applying the CLT for m.d.s. gives

1√
n

n∑
t=2

Xt−1εt
d−→ N

(
0,

σ4

1− ϕ2

)
.

Therefore, √
n(ϕ̂n − ϕ)

d−→ N (0, 1− ϕ2).

What if φ = 1? Problem again.
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Estimation and Inference of a MA(1)

Yt = εt + θεt−1, |θ| < 1, {εt} ∼ iid(0, σ2).

The first estimator can be obtained from ρ1 =
θ

1 + θ2
.

Estimating ρ1 by

ρ̂1 =

∑n
t=2(Yt − Ȳn)(Yt−1 − Ȳn)∑n

t=1(Yt − Ȳn)2

we obtain

θ̂ =


1−
√
1−4ρ̂1
2ρ̂1

if 0 < |ρ̂1| < 0.5,

−1 if ρ̂1 < −0.5,

1 if ρ̂1 > 0.5,

0 if ρ̂1 = 0.
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Estimation and Inference of a MA(1)

More efficient estimator can be obtained by LS or by ML.

By LS:

εt = −θεt−1 + Yt ,

Yt = −
t−1∑
j=1

(−θ)jYt−j − (−θ)tε0 + εt = ft(Y ; θ, ε0) + εt ,

where

f1(Y ; θ, ε0) = θε0,

ft(Y ; θ, ε0) = −
t−1∑
j=1

(−θ)jYt−j − (−θ)tε0.
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Estimation and Inference of a MA(1)
LS for Yt = ft(Y ; θ, ε0) + εt is inside the classical NLS set-up that
you have learned in previous econometric courses. In fact because we
can obtain an initial consistent estimator of θ0, we will obtain our
asymptotic results from a one-step minimization procedure (one-step
Gauss-Newton estimator).
Let’s assume we have an initial estimator θ̃ satisfying

θ̃ − θ = op(n−
1
4 ) and ε̃0 = Op(1).

The one-step Gauss-Newton estimator of θ is obtained by regressing

εt(Y ; θ̃) = Yt − ft(Y ; θ̃, ε̃0) =
t−1∑
j=0

(−θ̃)jYt−j + (−θ̃)t ε̃0

on the first derivative of ft(Y ; θ, ε0) evaluated at θ = θ̃.
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Estimation and Inference of a MA(1)
That derivative is

Wt(Y ; θ̃) =

{
ε̃0 for t = 1,∑t−1

j=1 j(−θ̃)j−1Yt−j + t(−θ̃)t−1ε̃0 for t = 2, 3, . . . , n.

Regressing εt(Y ; θ̃) on Wt(Y ; θ̃) we obtain an estimator of θ − θ̃.
The improved estimator of θ is then

θ̂ = θ̃ + ∆θ̂, (*)

where

∆θ̂ =

(
n∑

t=1

Wt(Y ; θ̃)2

)−1 n∑
t=1

εt(Y ; θ̃)Wt(Y ; θ̃).
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Estimation and Inference of a MA(1)

Theorem (Asymptotic normality for MA(1)

Let Yt = εt + θ0εt−1, where |θ0| < 1 and {εt} ∼ iid(0, σ2) with
E[|εt |2+r ] < L <∞ for some r > 0.

Let ε̃0 and θ̃ be initial estimators satisfying ε̃0 = Op(1), θ̃ − θ =

op(n−
1
4 ), and |θ̃| < 1. Then

√
n(θ̂n − θ0)

d−→ N
(
0, 1− (θ0)2

)
,

where θ̂ is defined in (*). Also, σ̂2 p−→ (σ0)2, where σ0 is the true

value of σ and σ̂2 = n−1
∑n

t=1 ε
2
t (Y ; θ̂).

Again a problem with unity (θ0 = 1).
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Estimation and Inference of a MA(1)

Hannan-Rissanen algorithm

ε̂t = Yt − LinearProjection[Yt |Yt−1,Yt−2, . . . ],

Yt = θε̂t−1 + ut

=⇒ θ̂ =

∑n
t=2 Yt ε̂t−1∑n
t=2 ε̂

2
t−1

.

Check the performance of this alternative estimator (in my web page
there is an Eviews applet for this).
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Testing for Autocorrelation
Box-Pierce with the true errors

Basic idea: use the correlations

ρ̂i =

∑n
t=i+1 YtYt−i∑n
t=i+1 Y

2
t−i

to test
H0 : Yt = εt white noise.

By the CLT on correlations we have
√
n( ρ̂k

k×1
− ρk

k×1
)

d−→ N (0, W
k×k

).

Under H0, √
nρ̂k

d−→ N (0, I
k×k

).

Therefore,

n
k∑

j=1

(ρ̂j)
2 d−→ χ2

k ≡ Q - Box-Pierce statistic.
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Testing for Autocorrelation
Box-Pierce with the true errors

If we had fitted an ARMA(p,q), the number of degrees of
freedom would have been k − (p + q).

This test is testing

H0 : Cov(yt , yt−j) = 0 j = 1, . . . , k ,

H1 : Cov(yt , yt−j) 6= 0 for at least one j .

A modification

Q∗ = n(n + 2)
k∑

j=1

ρ̂2j
n − j

is the Ljung-Box statistic.
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Testing for Autocorrelation
Box-Pierce with sample autocorrelation calculated from residuals

A more realistic case is to assume that we have a model

yt = x ′tβ + εt , t = 1, . . . , n

and we want to test if the errors from this model are white noise.

We do not observe the errors but the residuals, ε̂t .{
ρ̂j ≡ γ̂j

γ̂0

γ̂j ≡ 1
n

∑n
t=j+1 εtεt−j

(Before){
ρ̂j ≡ γ̂j

γ̂0

γ̂j ≡ 1
n

∑n
t=j+1 ε̂t ε̂t−j

(Now)
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Testing for Autocorrelation
Box-Pierce with sample autocorrelation calculated from residuals

Is it right to use ρ̂j (calculated from the residuals) and the residual-based Q
statistics derived from {ρ̂j} for testing for serial correlation?

Yes, but only if the regressors are strictly exogenous:

E[εi |X ] = 0, i = 1, . . . , n.

This assumption is too strong for time series data. The strict exogeneity
assumption implies that for any regressor k , E[xjkεi ] = 0,∀i , j , not only
i = j .

For instance, an AR(1) model:

yi = βyt−i + εi , i = 1, 2, . . . , n,

E[yiεi ] = β E[yi−1εi ] + E[ε2i ]

= E[ε2i ] 6= 0.

So, the regressor is not orthogonal to the past error term (yi is the
regressor for observation i + 1).
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Testing for Autocorrelation
Box-Pierce with sample autocorrelation calculated from residuals

γ̂j ≡
1

n

n∑
t=j+1

ε̂t ε̂t−j

=
1

n

n∑
t=j+1

[
εt − x ′t(β̂ − β)

][
εt−j − x ′t−j(β̂ − β)

]

=γj −
1

n

n∑
t=j+1

(xt−jεt + xtεt−j)
′(β̂ − β) + (β̂ − β)

1

n

n∑
t=j+1

xtx
′
t−j

 (β̂ − β)

If E[xtεt−j ],E[xt−jεt ], and E[xtx
′
t−j ] are all finite, then because

β̂ − β p−→ 0, we have

γ̂j − γj
p−→ 0.

However
√
n(γ̂j − γj) 6→ 0
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Testing for Autocorrelation
Box-Pierce with sample autocorrelation calculated from residuals

•
√
nγ̂j =

√
nγj −

?︷ ︸︸ ︷
1

n

n∑
t=j+1

(xt−jεt + xtεt−j)
′

Op(1)︷ ︸︸ ︷√
n(β̂ − β)

+
√
n(β̂ − β)′︸ ︷︷ ︸
Op(1)

(
1

n

n∑
t=j+1

xtx
′
t−j

)
︸ ︷︷ ︸

Op(1)

(β̂ − β)︸ ︷︷ ︸
op(1)︸ ︷︷ ︸

op(1)

•1

n

n∑
t=j+1

(xt−jεt + xtεt−j)
p−→ E[xt−jεt ] + E[xtεt−j ]︸ ︷︷ ︸

=0
if all the regressors

are strictly exogenous
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Testing for Autocorrelation
Box-Pierce with sample autocorrelation calculated from residuals

What if the regressors are predetermined but not strictly
exogenous?
Predetermined regressors:

E[xikεi ] = 0 i = 1, . . . , n, k = 1, . . . ,K .

The AR(1) satisfies this assumption.
When the regressors are not strictly exogenous, we need to
modify the Q statistic to restore its asymptotic distribution. For
this purpose we will impose two restrictions

I Stronger form of predeterminedness

E[εt |εt−1, εt−2, . . . , xt , xt−1, . . . ] = 0.

I Stronger form of homoskedasticity

E[ε2t |εt−1, εt−2, . . . , xt , xt−1, . . . ] = σ2 > 0.
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Testing for Autocorrelation
Box-Pierce with sample autocorrelation calculated from residuals
Proposition (testing for serial correlation with predetermined regressors)

Suppose yt
1×1

= x ′t
1×K

β
K×1

+ εt
1×1

, t = 1, 2, . . . n, with

{yt , x ′t} jointly stationary and ergodic,

E[xtx
′
t ] = Σxx full rank,

E[εt |εt−1, εt−2, . . . , xt , xt−1, . . . ] = 0,

E[ε2t |εt−1, εt−2, . . . , xt , xt−1, . . . ] = σ2 > 0.

Then √
nγ̂

d−→ N (0, σ4(Ip − Φ)),
√
nρ̂

d−→ N (0, Ip − Φ),

where
γ̂ = (γ̂1, γ̂2, . . . , γ̂p)′, ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂p)′

and φjk , (j , k) element of p × p matrix Φ, is given by

φjk = E[xtεt−j ]
′ E[xtx

′
t ]
−1 E[xtεt−k ]/σ2.
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Testing for Autocorrelation
Box-Pierce with sample autocorrelation calculated from residuals
Proof

Hayashi (p. 165)

By the Ergodic theorem, matrix Φ is consistently estimated by
its sample counterpart Φ̂ ≡ (φ̂j ,k) with

φ̂j ,k ≡ µ̂′jS
−1
xx µ̂k/s

2, j , k = 1, 2, . . . , p,

where

s2 ≡ 1

n − K

n∑
t=1

ε̂2t , µ̂j ≡
1

n

n∑
t=j+1

xt ε̂t−j .

From last proposition we have

modified Box-Pierce Q ≡ nρ̂′(Ip − Φ̂)−1ρ̂
d−→ χ2

p.

Jesús Gonzalo (UC3M) Estimation and Inference October 30, 2017 32 / 36



Testing for Autocorrelation
An Auxiliary Regression-Based Test:

Regress ε̂t on xt , ε̂t−1, ε̂t−2, . . . , ε̂t−p

pF ∼ χ2
p,

where F stands for the F statistic for the hypothesis that the p
coefficients of ε̂t−1, ε̂t−2, . . . , ε̂t−p are all zero

Also nR2 ∼ χ2
p.
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Appendix
(Cumby & Huizinga, 1992)

Let
yt = Xtδ + εt(t = 1, ...,T ) and ε̂t = yt − Xtd .

By a mean value theorem

√
T r̂ =

√
Tr +

∂r

∂δ

√
T (d − δ).

Proposition:

√
T r̂ ∼ N(0,Vr̂ ) with Vr̂ = Vr + BVdB

′
+ CD

′
B

′
+ BCD

′
.

In general having to estimate the residuals will affect the asymptotic
distribution of their sample autocorrelations. One special case is when X
only contains lagged dependent variables and the errors are conditionally
homokedasticity. In this case the Box-Pierce statistic Qs = T r̂

′
r̂ will

asymptotically as a chi-squared random variable with s − k degrees of
freedom (s=number of correlations, and r= number of lags in the
regression).
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Appendix
(Cumby & Huizinga, 1992)

Ljung (1986) investigates how large s must be before Q ≈ χ2
s−k . In

samples of 50 or 100 observations, s ≥ 10 is sufficient for all AR(1) models
and s ≥ 2 is sufficient for AR(1) models with |ϕ| < 0.9.
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Appendix
Distributions of empirical sizes
Xt = 0.8Xt−1 + εt , t = 1, 2, . . . , n, {εt} ∼ iiN (0, 1)

Simulating values of Q for p = 2, . . . , 20 and comparing with χ2
p−1

n = 50 n = 300
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