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Some Asymptotic Results

B-N decomposition

Beveridge Nelson (B-N) decomposition
X, = C(L)e, = [C(l) +(1- L)f(L)} e, J

What is C(L)?

j=2

1-1)— (iq)L(l—L (ch) Q=L +...

. ~ o]
with § = —> . | ¢
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Some Asymptotic Results

B-N decomposition

Lemma

Let C(L) = Yoo Gland & =32 c. Then,

(a) Zj%|cj|<oo = ZEJ-Z<OO (:Zj2c1-2<oo),
j=0 j=0 j=0
T
(6) Yilgl<co = Dlgl < oo
j=0 j=0
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Some Asymptotic Results

Law of Large Numbers
Theorem (SLLN for m.d.s.)

Let {e;} be a m.d.s. with

Vet = 02 < o0, Zﬁ<oo.

Then 1577 1 e¢ 2% 0 as n — <.

Theorem (SLLN for Linear Processes)

If Xy = C(L)er with 3°7°; j2c? < oo and {e;} is a m.d.s. with

sup Efje:|?] < oo,
t

then 2377 X, 2% 0 as n — oo.
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Some Asymptotic Results

Law of Large Numbers

Proof (SLLN for Linear Processes)

X; = C(1)er + (1 — L)C(L)ey

n

1 ’ 1.
- ZXt = C(l)—Zt:1 fr_ (€0 — &n),
n n
t=1
where €; = 6(L)Ej. By the SLLN for m.d.s.

1 n
a.s.
- g et — 0.
n
t=1

Now we only have to prove that

1 ~ ~ a.s.
(5o —&n) = 0.
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Some Asymptotic Results

Law of Large Numbers

Proof (SLLN for Linear Processes) (cont.)

Take for instance %”

" —E[E] 11
; (5d>9) < ;n£52]=5—2;ﬁ

by Markov's Inequality, where k = sup, E [|&;|?] < co and >0 Ejz < 0.

By Borel-Cantelli Lemma & 2% 0.

> ke

Jj=0

Reminder:

@ Markov's Inequali E[IX[P] . p
quality P(|X| > ¢) < 2= if E[IX]] < 0o and p > 0.

@ Borel-Cantelli Lemma Z P([Xo(w) = X(w)| > ) <00 = X, 2% X.
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Some Asymptotic Results

Central Limit Theorems

Theorem (CLT for m.d.s.)

Let {e;} be a strictly stationary and ergodic m.d.s. with
V[es] = 0% < 0.

Then

Z:j%& LN N(0,02).

Theorem (CLT for Linear processes)
If Xe = C(L)ee with 3772, jl¢j| < oo and {e:} a strictly stationary and
ergodic m.d.s. with V[g;] = 0% < oo, then

et Xt 4 g (1202 )
n N——

Long run variance

4
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Some Asymptotic Results

Central Limit Theorems

Proof (CLT for Linear processes)

V% = EE e (e -

C(l)% <, N(0,C(1)%0?) by CLT for m.d.s.

5.,

We need to prove that \/iﬁ (€0 — €n) = 0p(1).
Notice that we cannot use now the Borel-Cantelli (WHY?) argument used
to prove the SLLN. This can be done by proving E[|€,]] < oo and then

applying Markov's inequality (HOW?).

o0 o0
E[En] =E ||>_Genj|| <D IGIE[lenl] < oo
i=0 j=0
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Some Asymptotic Results

Central Limit Theorems

Example: AR(1)

Xe = @Xeo1 + &

and {e;} is a m.d.s. satisfying the conditions of the previous theorem.

- o2
C(].) = —90, then \/EXn i) N <O, m)

or

N —>N(0 V[Xt]1+z>

because V[X;| = 1_—22
Notice the problem when ¢ = 1.

v
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Some Asymptotic Results

Sample Correlations

Let ¥(h) = o 1h (Xt - )_(n) (XHh - )_<,,) and p(h) = AJ(H% for0< h<n-1.

Theorem
If {X;} is the stationary process

Xi = Z i, {e:} ~iid(0,0?),
Jj=—0o0

where 3" |1hj| < oo and E[e}] < oo, then for each h € {1,2,...} we have

v (p(h) — p(h)) -4 N(0, W),
where
p(h)=[p(1) p(2) - p(h)]" and p(h)=[p(1) p(2) --- p(h)]

and W is the covariance matrix whose (i, j) element is given by Bartlett’s formula.
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Some Asymptotic Results

Sample Correlations
@ The condition E[¢%] < 0o can be relaxed at the expense of > |j|1/1j2 < 00.

@ Bartlett’s formula:

o0

wi =3 {plk+ plk+4) + plk = Dok +)+

k=—o0
20(1)p()p(k)? = 2p(1)p(k)p(k +j) = 20()p(K)p(k + i)}

@ Simple algebra shows that

oo

wi = {plk+ )+ plk = 1) = 20(1)o(k) }{ p(k+ ) + p(k ) = 20()p(Kk) |

k=1

and wi = 3207 (pivk + pi-k — pipk)?.
@ Confidence intervals will be formed by

+C, \/; with C, = &~ (%)
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Some Asymptotic Results

Sample Correlations

Examples:
q
owi =1+2) (i), fori>g (MA(q))
i=1
1106 L:(W, for i > 1 (MA(1))
owi =Y Y0 F =g+ Y Ko -9 (AR(1))
k=1 k=i+1
=(1=¢*)(1+¢*)(1 - ¢?)* = 2i¢™
~(1+ &) /(1 — ¢? for i large.
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Estimation and Inference of an AR(1)

Suppose {X;} is a stationary autoregressive process of order one
satisfying

Xe = pXi1+ &,
where |¢| < 1 and {&;} ~ iid, V[e,] = 0% < 0.

Then X; = Zfio @/e._j is strictly stationary and ergodic.
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Estimation and Inference of an AR(1)

Let ., .
thg XeXe1 =0+ thz Xi_1€¢

9/5 = n - 90 n .
thz Xt2—1 thz Xt2—1

1 n

vn thz Xi-16¢
1" 2
n Et:2 Xt—l

Then
V(@ —v) =

and, by the Ergodic Theorem,

0.2

1— 2

1 . a.s.
Ly e, 25 Epx -
t=2
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Estimation and Inference of an AR(1)
Observe that Z; = &, X;_1 is a m.d.s. w.r.t. F(er_1,6¢-2,-..),

E[Zf|8t—17 Et—2,.- ] == Xi’—]. E[gt] - O
{Z:} as a function of {e,},{X;_1} is clearly strictly stationary and
ergodic,

0.4

VIeeXea] = BIEXE] = 0 BIXE,] = 1=

< 00.

Applying the CLT for m.d.s. gives
4
\/_ZXt 1€¢ —)N( _—902) .
Therefore,
Vn(@n — 9) 5 N(0,1— ).

What if ¢ = 17 Problem again.
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Estimation and Inference of a MA(1)

Y, = et + 01, 0] <1, {e:} ~iid(0,0?).

6

@ The first estimator can be obtained from p; = 1762

e Estimating p; by

5 = >to(Ye = Vo) (Yoo — Vi)
Z::1(Yt - Y,)?

we obtain
IVlAh i 0 < [py] < 0.5,
5: -1 if ﬁl < —0.5,
if p1 > 0.5,
0 if pp = 0.
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Estimation and Inference of a MA(1)

@ More efficient estimator can be obtained by LS or by ML.
e By LS:

gr = —lOgi1 + Y4,
t—1 .
Yo=—) (0YYe;— (—0)'eo+e=fi(Y;0.5)+e,

j=1
where

fi(y, 67 80) = 0507

t—1

f(Yi0,20) = =) (-0YYeej = (—6)'c0.

j=1
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Estimation and Inference of a MA(1)

LS for Y; = f(Y;0,e0) + €; is inside the classical NLS set-up that
you have learned in previous econometric courses. In fact because we
can obtain an initial consistent estimator of 6%, we will obtain our

asymptotic results from a one-step minimization procedure (one-step
Gauss-Newton estimator).

Let's assume we have an initial estimator @ satisfying

0—0= op(n_%) and & = O,(1).

The one-step Gauss-Newton estimator of 6 is obtained by regressing

[y

e(Y;:0) =Y, — f(Y;0,8) = 5 (—0Y Y.+ (=0)tz,

Jj

Il
o

on the first derivative of f,(Y;0,e0) evaluated at 6 = 0.
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Estimation and Inference of a MA(1)

That derivative is

7 €0 for t =1,
Wi(Y:0) = . .
o ) {Z;;ij(—e)rl Yioj+ t(—0)t1z, fort=23,...,n

Regressing £(Y; ) on W,(Y;#) we obtain an estimator of § — 4.
The improved estimator of 6 is then

0 =0+ A0, *)
where
n -1 n
A = (Z W, (Y; §)2> > e Yi)We(Y:6).
t=1 t=1
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Estimation and Inference of a MA(1)

Theorem (Asymptotic normality for MA(1)

Let Y; = &; + 6%, where |°| < 1 and {e;} ~ iid(0,0?) with
E[le[*"] < L < oo for some r > 0.

Let & and @ be initial estimators satisfying & = O,(1), § — 0 =
0,(n"%), and || < 1. Then

(0, — %) 45 N (0,1 - (6°)?),

where § is defined in (¥). Also, 52 2 (0°)2, where 0° is the true
value of 0 and 52 = n"1Y°7_ £2(Y;0).

v

Again a problem with unity (6° = 1).
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Estimation and Inference of a MA(1)

Hannan-Rissanen algorithm

€+ = Y: — LinearProjection[Y:|Y:_1, Yi_2,...],
Yt = H/E\t,1 + U

é\_ Z:ZQ Ytgt—l
IR VNI
t=2“t—1

Check the performance of this alternative estimator (in my web page
there is an Eviews applet for this).

v
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Testing for Autocorrelation

Box-Pierce with the true errors
Basic idea: use the correlations

o S Yo
-
St Y2

to test
Ho : Yy = &+ white noise.
By the CLT on correlations we have

V(b — pi) ~5 N, W)

kx1  kx1
Under Hy,
Vb~ N(0, 1 ).
kxk
Therefore,
nz i) 2. d, X2 = Q - Box-Pierce statistic.
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Testing for Autocorrelation

Box-Pierce with the true errors

o If we had fitted an ARMA(p,q), the number of degrees of
freedom would have been k — (p + q).

@ This test is testing

Ho : Cov(ys,y:—j) =0 j=1,... k,
Hy : Cov(yt,y:—j) #0 for at least one j.

@ A modification

2 J

(n+2)) =
j=1

is the Ljung-Box statistic.
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Testing for Autocorrelation

Box-Pierce with sample autocorrelation calculated from residuals
@ A more realistic case is to assume that we have a model
/
Ye = X0 + €4, t=1,...,n

and we want to test if the errors from this model are white noise.

@ We do not observe the errors but the residuals, &;.

b= U

/A)j - L. (Before)
Y= 4 Zt:j+1 Et€t—j

ho= A

fj : ?_/0 n A A (NOW)
M= a Zt:j—i—l Etle—j
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Testing for Autocorrelation
Box-Pierce with sample autocorrelation calculated from residuals

@ Is it right to use p; (calculated from the residuals) and the residual-based Q
statistics derived from {p;} for testing for serial correlation?

Yes, but only if the regressors are strictly exogenous:
Elei| X] =0, i=1,...,n

@ This assumption is too strong for time series data. The strict exogeneity
assumption implies that for any regressor k, E[xje;] = 0, Vi, j, not only
i=j.

@ For instance, an AR(1) model:

Vi = Bye—i +ei, i=1,2,...,n,
Elyiei] = BElyi-1e/] + E[e?]
= E[e?] # 0.

So, the regressor is not orthogonal to the past error term (y; is the
regressor for observation i+ 1).
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Testing for Autocorrelation

Box-Pierce with sample autocorrelation calculated from residuals

Q>

E E Et{'-:t—J

t=j+1

LS [ i3 ) e x5 9)

t=j+1

n

SVEED Y CUERTS [ YGRS T

t=j+1 t=j+1

@ If E[xe—j], E[x:—jer], and E[xex{_;] are all finite, then because
B—BLO,Wehave
’,}\/j - L> 0.
@ However \/n(y; — ;) /0
T Ty



Testing for Autocorrelation

Box-Pierce with sample autocorrelation calculated from residuals

?

P A - Op(1)
~ 1 - ! i
Vi =vmj; -~ 2 (e xeeey) V(B = 5)
t=j+1
+\/_(6 ﬁ ( Z XtXt—_/> B_B)
N—— —it1 v
Op(l) N t=j+ / p(l)
\ 05(1) )
op(1)

o— Z Xe_j€¢ + XeErj) — E[xt_Jat] + E[xtat_J]
t=j+1

if all the r regressors
are strictly exogenous
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Testing for Autocorrelation

Box-Pierce with sample autocorrelation calculated from residuals
@ What if the regressors are predetermined but not strictly
exogenous?
@ Predetermined regressors:

E[X,‘kff,']:O i:1,...,n,k:1,...,K.

@ The AR(1) satisfies this assumption.

@ When the regressors are not strictly exogenous, we need to
modify the Q statistic to restore its asymptotic distribution. For
this purpose we will impose two restrictions

» Stronger form of predeterminedness

]E[Et’gt_]_, Et—2y ey Xty Xt—1,y- - ] =0.
» Stronger form of homoskedasticity
Ee?|et-1,6t-2, .., Xes Xe—1,-..] = 02 > 0.
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Testing for Autocorrelation

Box-Pierce with sample autocorrelation calculated from residuals
Proposition (testing for serial correlation with predetermined regressors)

Suppose y; = x; B + &:,t=1,2,...n, with
1x1 IxKKx1 1x1

@ {y:, x{} jointly stationary and ergodic,

@ E[x;x{] = X full rank,

o E[Et|€t—17€t—23 e 7Xt7Xt—1a . ] = Ov
® Ele?|er_1,6t-2,- -+ Xes Xe—1,-..] =02 > 0.
Then

V5 -5 N(0,0% (I, — ), Vnp - N(O, I, — b),

where

;5/:(6/17’?2""73/;7),7 ﬁ:(ﬁlalb\L"';pp)/
and ¢jk, (j, k) element of p x p matrix ®, is given by

djk = Elxeer—j]’ ]E[x,_sxé]_1 E[Xtat_k]/o'2.
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Testing for Autocorrelation
Box-Pierce with sample autocorrelation calculated from residuals

Proof
Hayashi (p. 165) J

@ By the Ergodic theorem, matrix ® is consistently estimated by
its sample counterpart ® = (¢; x) with

¢j,k—uj ,Uk/S jak:172a"'7p7

where

E &2 E Xebi_
n—K v I

t=j+1

@ From last proposition we have
modified Box-Pierce @ = np'(l, — ®)1p SN X,z,.
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Testing for Autocorrelation
An Auxiliary Regression-Based Test:

© Regress £, on x;,&r-1,€¢-2,...,Et—p
°
pF ~ X2,
where F stands for the F statistic for the hypothesis that the p
coefficients of &;_1,&¢_5,...,&:_p are all zero

e Also nR* ~ x3.
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Appendix

(Cumby & Huizinga, 1992)

@ Let
yt:Xt§+6t(t:17"‘7T) and é\t:_yt_Xtd'

@ By a mean value theorem
VTi=VTr+ %ﬁ(d —6).
@ Proposition:
VTF~N(O,V;)  with V;=V,+BV4B +CD B + BCD'.

@ In general having to estimate the residuals will affect the asymptotic
distribution of their sample autocorrelations. One special case is when X
only contains lagged dependent variables and the errors are conditionally
homokedasticity. In this case the Box-Pierce statistic Qs = TF 7 will
asymptotically as a chi-squared random variable with s — k degrees of
freedom (s=number of correlations, and r= number of lags in the
regression).
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Appendix

(Cumby & Huizinga, 1992)

@ Ljung (1986) investigates how large s must be before Q ~ x2_,. In
samples of 50 or 100 observations, s > 10 is sufficient for all AR(1) models
and s > 2 is sufficient for AR(1) models with |¢| < 0.9.
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Appendix

Distributions of empirical sizes
Xt:0.8Xt7]_+Et, t= 172,...7n, {Et} ~ II./\/(O7 1)

@ Simulating values of Q for p =2,...,20 and comparing with X,2;_1

1.00 4

0.75- /

= 050+ Z
w

0.25+

0.00 4

T T T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25
o
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