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Some Useful References:

A.N. Shiryayev (2016). Probability (a complete book)

Peter Phillips. Lecture Notes (great notes)

K. Saxe (2001). Beginning Functional Analysis (easy book)

Time Series Econometrics requires a knowledge of Probability Theory. This
Introduction is based on the above references.
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Basic Concepts

Take Ω = [0, 1) and consider the problem of choosing points at random from
this set.

Symmetry: all the points are equiprobable.

The set [0, 1) is uncountable, and if we suppose its probability is 1, then

P(ω) = 0 ∀ω ∈ Ω

This approach doesn’t lead very far. For instance, if P(A) is defined by

P(A) =
∑
ω∈A

P(ω)

The above assignment of probabilities (P(ω) = 0, ω ∈ Ω) doesn’t let us to
define the probability that a point chosen at random from [0, 1) belongs to
the set A = [0, 1

2 ).

These remarks suggest that in constructing probabilistic models for
uncountable spaces Ω we must ASSIGN PROBABILITIES not to individual
elements of Ω but to subsets
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Basic Concepts

Definition (1.1)

Let Ω be a set of points ω. A system A of subsets of Ω is called an algebra if

Ω ∈ A.

A,B ∈ A =⇒ A ∪ B ∈ A, and A ∩ B ∈ A (by Morgan’s law).

A ∈ A =⇒ A ∈ A.

Definition (1.2)

Let A be an algebra of subsets of Ω. A set function µ = µ(A), A ∈ A taking
values in [0,∞) is called a finitely additive measure defined on A if

µ(A + B) = µ(A) + µ(B)

for every disjoint sets A, B ∈ A.

When µ(Ω) <∞, µ is called finite.
When µ(Ω) = 1, µ is called finitely additive probability measure.
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Basic Concepts

Definition (1.3)

An ordered triple (Ω,A,P), where

Ω is a set of point ω

A is an algebra of subsets of Ω

P is a finitely additive probability on A

is a probabilistic model

However, this definition is too broad to lead to a fruitful mathematical theory.

Definition (1.4)

A system F of subsets of Ω is a σ-algebra if it is an algebra and satisfies
If An ∈ F , n = 1, 2, ... then ∪An ∈ F , and ∩An ∈ F (by Morga’s law)

Definition (1.5)

The space Ω together with a σ-algebra F of its subsets is a measurable space,
and is denoted by (Ω,F).

Jesús Gonzalo (UC3M) Introduction October 19, 2021 6 / 51



Basic Concepts

Definition (1.6)

A finitely additive measure µ defined on an algebra A of subsets of Ω is
countably additive, or simply a measure, if for all pairwise disjoint subsets
A1,A2, ... of A,

µ(
∞∑
n=1

An) =
∞∑
n=1

µ(An)

If P(Ω) = 1, it is called a probability measure.

Probability measures have the following properties:

If ∅ is the empty set, then P(∅) = 0

If A,B ∈ A then P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

If A,B ∈ A and B ⊆ A, then P(B) ≤ P(A).

If An ∈ A, n = 1, 2, ... and ∪An ∈ A, then
P(A1 ∪ A2 ∪ ...) ≤ P(A1) + P(A2) + ...
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Basic Concepts

Definition (1.7)

An ordered triple (Ω,F ,P) where

Ω is a set of points ω.

F is a σ-algebra of subsets of Ω.

P is a probability on F .

is called a probability model or probability space.

Example (R,B(R))

Let R = (−∞,∞), and (a, b] = {x ∈ R : a < x ≤ b}. Let A be the system of
subsets of R which are finite sums of disjoint intervals of the form (a, b] :

A ∈ A if A =
n∑

i=1

(ai , bi ] n <∞

This system is an algebra but not a σ-algebra: if An = (0, 1− 1
n ] ∈ A we have

∪nAn = (0, 1) /∈ A
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Basic Concepts

Example (R,B(R))

...Let B(R) be the smallest σ-algebra σ(A) containing A. This σ-algebra is called
the Borel algebra of subsets of the real line, and its sets are Borel sets.

Check that B(R) contains any type of interval you can imagine of the real line:
(a, b), [a, b), {a}, etc.

Example (Rn,B(Rn))

Define Rn = R× ...×R and I = I1 × ...× In where Ik = (ak , bk ]. Let F be the set
of all rectangles I . The smallest σ-algebra σ(F) generated by the system F is the
Borel algebra of subsets of Rn and is denoted by B(Rn).

Example (R∞,B(R∞))

R∞ is the space of ordered sequences of numbers x = (x1, x2, ...), −∞ < xk <∞,
k = 1, 2, .... Consider the cylinder set
F(I1 × ...× In) = {x : x = (x1, x2, ...), x1 ∈ I1, ..., xn ∈ In}. Then B(R∞) is the
smallest σ-algebras containing the above set.
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Basic Concepts

Example (RT ,B(RT ))

Where T is an arbitrary set. The space RT is the collection of real functions
x = (xt) defined for t ∈ T . The cylinder set considered is

Ft1,...,tn(I1 × ...× In) = {x : xt1 ∈ I1, ..., xtn ∈ In

and B(RT ) is the smallest σ-algebra corresponding to this cylinder set.
Note that Ft1,...,tn(I1 × ...× In) is just the set of functions that, at times t1, ..., tn
”get through the windows” I1 × ...× In and at other times have arbitrary values.

Example (C,B(C))

Let T = [0, 1] and let C be the space of continuous functions x = (xt), 0 ≤ t ≤ 1.
This is a metric space with the metric f (x , y) = sup

t∈T
|xt − yt |. We introduce this

metric because with f (x , y) the σ-algebra generated by the standard cylinders and
by open sets coincide (remember what you learnt in the Math courses,
separability, complete space, etc.).
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Basic Concepts

Example (D,B(D))

Where D is the space of functions x = (xt), t ∈ [0, 1], that are continuous on the
right (xt = xt+ for all t < 1) and have limits from the left (at every t > 0).
Just as for C, we can introduce a metric d(x , y) on D such that the σ-algebra
generated by the standard cylinders and by open sets coincide. In order to define
open sets we need a metric d(x , y) in this case is the one defined by sicorohod

d(x , y) = inf {ε > 0 : ∃λ ∈ Λ : sup
t
|xt − yλ(t)|+ sup

t
|t − λ(t)| < ε}

where Λ is the set of strictly increasing functions λ = λ(t) that are continuous on
[0, 1] and have λ(0) = 0, λ(1) = 1.
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Probability Measures on Measurable Spaces

Example (R,B(R))

Let P = P(A) be a probability measure defined on the Borel subsets A of the real
line. F (x) = P(−∞, x ], x ∈ R. This function is called distribution function.
There is a one-to-one correspondence between probability measures on (R,B(R))
and distribution functions on R.

Example (Rn,B(Rn))

Consider the n-dimensional distributional function
Fn(x1, ..., xn) = P((−∞, x1]× ...× (−∞, xn]) = P(∞, x] where x = (x1, ..., xn).
Define
4ai ,biFn(x1, ..., xn) = Fn(x1, ..., xi−1, bi , xi+1, ...)− Fn(x1, ..., xi−1, ai , xi+1, ...)
where ai ≤ bi .
A simple calculation shows that 4a1,b1 × ...×4an,bnFn(x1, ..., xn) = P(a, b] where
(a, b) = (a1, b1]× ...× (an, bn]. In general, P(a, b] 6= Fn(b)− Fn(a). Represent
this graphically for n = 2.
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Probability Measures on Measurable Spaces

Example (R∞,B(R∞))

Take Pn(B) = P(Fn(B)),B ∈ B(Rn) with

Fn(B) = {x ∈ R∞ : (x1, ..., xn) ∈ B},B ∈ B(Rn)

The sequence of probability measures P1,P2, ... defined respectively on
(R,B(R)), (R2,B(R2)), ... and B ∈ B(Rn), for n = 1, 2, ..., have the following
”consistency” property

Pn+1(B × R) = Pn(B)

Kolmogorov’s Theorem: Let P1,P2, ... be a sequence of probability measures on
(R,B(R)), (R2,B(R2)), ... possessing the above consistency property.
Then there is a unique probability measure P on (R∞,B(R∞)) such that
P(Fn(B)) = Pn(B), B ∈ B(Rn) for n = 1, 2, ...
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Random Variables

Definition (3.1)

A real function ξ = ξ(ω) defined on (Ω,F) is a F-measurable function, or a
random variable if

{ω : ξ(ω) ∈ B} ∈ F

for every B ∈ B(R); or, equivalently, if the inverse image

ξ−1(B) = {ω : ξ(ω) ∈ B}

is a measurable set in Ω.

Example

Consider the probability space (Ω,F ,P) where

Ω = {1, 2, 3} and F = (Ω, ∅, {1, 2}, {3})

Then {1} is not a measurable set, and therefore the identity function, with
f (1) = 1, f (2) = 2 and f (3) = 3, which maps from (Ω,F) to (R,B) is not a
measurable function. Therefore f is not a random variable.
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Random Variables

Definition (3.2)

A probability measure Pξ on (R,B(R)) with Pξ(B) = P(ω : ξ(ω) ∈ B), B ∈ B(R)
is called the probability distribution of ξ on (R,B(R)).

Definition (3.3)

The function Fξ(x) = P(ξ(ω) ≤ x), x ∈ R is called the distribution function of ξ.
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Random Elements, Stochastic Processes,... Time Series

Definition (3.4)

Let (Ω,F) and (E , E) be measurable spaces. We say that a function X = x(ω)
defined on Ω and taking values in E , is F/E-measurable, or is a random element
(with values in E ), if {ω : x(ω) ∈ B} ∈ F for every B ∈ E .

Some special cases:

If (E , E) = (R,B(R)) =⇒ random element=random variable

Let (E , E) = (Rn,B(Rn)). Then a random element X (ω) is a ”random point
in Rn. If Rk is the projection of Rn on the k-th coordinate axis, X (ω) can be
represented in the form X (ω) = (ξ1(ω), ..., ξn(ω)) where ξk = RkoX .

Definition (3.5)

An ordered set (η1(ω), ..., ηn(ω)) of random variables is called an n-dimensional
random vector.
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Random Elements, Stochastic Processes,... Time Series

Definition (Continued)

Let (E , E) = (RT ,B(RT )), where T is a subset of the real line. In this case every
random element X = X (ω) can evidently be represented as

X = (ξt)t∈T

with ξt = πt ◦ X , and is called a random function with time domain T .

Definition (3.6)

Let T be a subset of the real line. A set of random variables

X = (ξt)t∈T

is called a random process with time domain T .
If T = {1, 2, ...} we call X = (ξ1, ξ2, ...) a random process with discrete time or a
random sequence.
If T = [0, 1], (−∞,∞), [0,∞),..., we call X = (ξt)t∈T a random process with
continuous time.
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Random Elements, Stochastic Processes,... Time Series

It is easy to check that every random process X = (ξt)t∈T is also a random
function on the space (RT ,B(RT )).

Definition (3.7)

Let X = (ξt)t∈T be a random process. For each given ω ∈ Ω the function
(ξt(ω))t∈T is said to be a realization or a trajectory of the process, corresponding
to the outcome ω, or a TIME SERIES.

Definition (3.8)

Let X = (ξt)t∈T be a random process. The probability measure PX on
(RT ,B(RT )) defined by

PX (B) = P {ω : X (ω) ∈ B} , B ∈ B(RT )

is called the probability distribution of X .
The probabilities

Pt1,...,tn(B) ≡ P {ω : (ξt1 , ..., ξtn) ∈ B}

with t1 < t2 < ... < tn, ti ∈ T , are called finite-dimensional distribution functions.
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Random Elements, Stochastic Processes,... Time Series

A TIME SERIES is a realization of a stochastic process.

X (ω, t) = Xt(ω)
For fixed t, the function X (., t) is a random variable.
For fixed ω, the function X (ω, .) is a sample path of the stochastic process.
We have

(Ω× T )→ R
(Ω,F)→ (RT ,B(RT ))

(R∞,B∞,P)→ (X1(..., x−1, x0, x1, ...),X2(..., x−1, x0, x1, ...), ...) = (..., x1, x2, ...)
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An Example of a Stochastic Process

Example

Let the index set be T = {1, 2, 3} and let the space of outcomes (Ω) be the
possible outcomes associated with tossing one dice:

Ω = {1, 2, 3, 4, 5, 6}.

define
X (t, ω) = t + [value on dice]2 × t.

Therefore, for a particular ω, say ω3 = {3}, the realization or path would be
(10, 20, 30).
In this case Ω and T are finite. There are 6 realizations. Draw them.
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More Examples of Stochastic Processes

Example

Let X = {Xt}t∈T .
(a) Discrete stochastic processes: T = {0, 1, 2, ...}

(i) {Xt}∞t=0 ≡ i.i.d. (0, σ)

(ii) {Xt}∞t=0 ≡ AR(1), i.e., Xt = AXt−1 + ut , {ut} ≡ i .i .d .(0, σ) and
X0 ≡ intitial condition

(iii) {Xt}∞t=0 ≡ Random Walk (σ), i.e., Xt = Xt−1 + ut , {ut} ≡ i .i .d .(0, σ).

In all these cases, (Ω,F ,P) = (RT ,B(RT ),P).
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More Examples of Stochastic Processes

Example

(b) Continuous stochastic processes: T = [0, 1], T = [0,∞), etc.

(i) X (t) ≡W (t) ≡ BM(1) (Standard Brownian Motion), where W (t) is a
Gaussian random element in C [0, 1], that is defined by the following
properties:

(1) W (0) = 0
(2) W (t) = N(0, t)
(3) W (s) independent of W (t)−W (s) for 0 ≤ s ≤ t ≤ 1
(4) W (t) has continuous sample paths

(ii) X (t) = B(t) ≡ BM(σ), i.e., B(t) = σ1/2W (t)

(iii) X (t) ≡ BM(µ, σ), i.e., X (t) = µt + B(t), where B(t) = BM(σ).
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What is New?

We want to make inference about PX , the probability law that governs the
process. The evidence that we have is a single realization x1, x2, ..., xn, ...
We are not in good shape. BUT the situation is even worse, we only have a
finite realization x1, x2, ..., xn.

Compare this situations with the classical case of i.i.d. samples where we
have i.i.d. draws each of which is like an entire history of the time series (like
in standard Econometrics).

We require two important assumptions:

(?) Stationarity (substituting identically distributed)
(?) Weak dependence (substituting independence)
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Stationarity and Ergodicity

In order to define and properly understand these two issues it is helpful to identify
our abstract probability space (Ω,F ,P) and random sequence {Xn}∞−∞ defined on
it by their coordinate representations:

(i) Define h : Ω→ R∞ by

h(ω) = (...,X−1(ω),X 0(ω),X 1(ω), ...)

= (..., x−1, x0, x1, ...)

= x

(ii) B∞ = B(R∞): Borel σ-field on R∞ field generated by cylinder sets(
×r−1
−∞R

)
(×s

r I)
(
×∞s+1R

)
(iii) Xn : R∞ → R (coordinate functions), where Xn(x) = xn. Then
{x |..., xn−1 ≤ ∞, xn ≤ a, xn+1 ≤ ∞}

(iv) P = Ph−1 s.t. PB = Ph−1B for B ∈ B∞

Thus, (Ω,F ,P) ∼ (R∞,B∞,P).
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Stationarity and Ergodicity

Definition (Strict Stationarity)

A random sequence {Xn}∞1 is stationary (in the strict sense) if

P ((X1,X2, ...) ∈ B) = P ((Xk+1,Xk+2, ...) ∈ B) , B ∈ B(R∞), for all k ∈ Z

Example

(i) {Xn}∞−∞ i.i.d.

(ii) {Yn}∞−∞, Yn = Yn(X ), X = {Xn}∞−∞.

All the measurable functions of i.i.d. sequences are strictly stationary, e.g.,

Yn =
∞∑

j=−∞

ajXn−j ,

∞∑
−∞

a2
j <∞, {Xn}∞−∞ i .i .d . (linear processes)
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Stationarity and Ergodicity

Note that strict stationarity is stronger than the identical distribution assumption
(i.i.d.), since the latter ONLY requires all marginals to be identical.

(?) Measurable functions of stationary sequences are stationary sequences. (check
references)
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Stationarity and Ergodicity

Definition (Shift Operator)

Consider the space (R∞,B∞,P). The backshift operator S to the series or
sequence x = (..., x−1, x0, x1, ...) can be represented as

Sx = (..., x0, x1, x2, ...)

S2x = (..., x1, x2, x3, ...)

...

The definition above induces an operator us . Observe that if {Xn} is a sequence
on (R∞,B∞,P) then

X1(x) = (..., x0, x1, x2, ...) = x1

X1(x) = X1(Sx) = x2

...

Xn(x) = X1(Sn−1x) = xn
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Stationarity and Ergodicity

inducing

us : L0 (R∞,B∞,P)→ L0 (R∞,B∞,P) ,

where L0 is the space of all real r.v.’s defined on (R∞,B∞,P), and us is defined by

usX (x) = X (Sx), for any X ∈ L0(P).

Then

usXn = Xn+1, or Xn = un−1
s X1,

giving

E = {x |(xn, xn+1, ...) ∈ B} , S−hE = E = {x |(xn+h, xn+h+1, ...) ∈ B}
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Stationarity and Ergodicity

Definition (4.1)

A transformation T : Ω→ Ω is measurable if for any A ∈ F ,

T−1A = {ω : Tω ∈ A} ∈ F .

Definition (4.2)

A measurable transformation T is a measure-preserving transformation if for every
A ∈ F ,

P(T−1A) = P(A)
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Stationarity and Ergodicity

Examples

(1) Consider the space (R∞,B∞,P), a stationary sequence {Xn}∞−∞ and
S : R∞ → R∞ the backshift operator. Then S is measurable
(S−1B∞ ⊂ B∞) and measure preserving (P(E ) = P(S−1E )) if {Xn}∞−∞ is
strictly stationary.

(2) Consider the space (Ω,F ,P) and the transformation S = I (Sω = ω). Then
S is measurable and measure-preserving.
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Stationarity and Ergodicity

Theorem (Kolmogorov SLLN)

Let {Xj}∞−∞ be an i.i.d. sequence of r.v.’s with E |X1| <∞. Then

1

n

∞∑
j=1

Xj → E (X1) a.s.

Problem:

How to extend this to temporally dependent data?

Is it enough to require strict stationarity?
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Stationarity and Ergodicity

Example

Xt = ut + z , where {ut} ≡ i.i.d.U [0, 1] and Z ≡ N(0, 1) independent of {ut}.
By Kolmogorov’s SLLN,

X̄ = ū + Z
a.s.→ 1

2
+ Z random variable

We want to reduce dependence:

Cov(Xt ,Xt+h) = Cov(ut + Z , ut+h + Z ) = Var(Z ) = 1.

Practical Ergodicity
Idea: when do temporal averages such as

1

n

∞∑
i=1

Xi

converges to ensemble (spatial) averages E (X )?
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Stationarity and Ergodicity

Given (Ω,F ,P), S : Ω→ Ω a m.p. (measure preserving):

1 An event F in F is invariant if F = S−1F

2 S is ergodic if for all invariant events F

P(F ) = {0, 1} ignorable or certain

3 Strict stationary process {xt} (xt = ut−1
S x1) is ergodic if S is ergodic

Remarks

Absence of ergodicity means that ∃ invariant events F for which
0 < P(F ) < 1

Hence it is impossible to fully sample Ω if we start off in F

S doesn’t properly mix the points of Ω
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Non Ergodic Examples

Example

Ω = {z | |z | ≤ 1} Unit disk

F = annulus

S = rotation by Θ ◦ (Sz = az ; a = e iΘ)

F is invariant under S ; S−1F = F but 0 < P(F ) < 1, so S is not ergodic.
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Non Ergodic Examples

Example

Ω = {z | |z | = 1} Unit circle

P = length (normalized so P(Ω)=1)

S = rotation by 180◦ (Sz = az ; a = e iπ)

F is invariant under S ; S−1F = F but 0 < P(F ) < 1

Problem: a = e in is a root of unity (e in)2 = 1. S is m.p. but not ergodic.
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Non Ergodic Examples: A Previous Example

Example

{Xt}∞−∞ Xt = ut + Z where:

ut and Z are independent.

ut ≡ iid uniform [0,1]

Z ≡ N(0, 1)

F = ∩∞t=−∞ {Xt(x) < 0} = {x |...Xt−1(x) < 0,Xt(x) < 0,Xt+1(x) < 0, ...}

clearly S−1F = {x |...Xt−1(SX ) < 0,Xt(SX ) < 0,Xt+1(SX ) < 0, ...}

= {X |...Xt(x) < 0,Xt+1(x) < 0,Xt+2(x) < 0, ...}

and F is invariant. But P(F ) = P(Z < −1) and 0 < P(F ) < 1
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Some Ergodic Theorems

Theorem (Birhoff and Khinchin)

Let S be a m.p. transformation and X = X (w) a random variable with E |X | <∞.
Then (P a.s.)

lim
n→∞

1

n

n−1∑
k=0

X (Skw) = E (X |J)

where J is an invariant σ-field of F (σ-field of all events invariant under S).
If also S is ergodic then (P a.s.)

lim
n

1

n

n−1∑
k=0

X (Skw) = E (X )
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Some Ergodic Theorems

Example (previously discussed):

Xt = ut + Z = S t−1u + Z Z is an invariant r.v. under shift operator S

X →a.s. E [X |J] = E [u|J] + E [Z |J] = E [u] + Z = 1
2 + Z

Prove Kolmogorov SLLN by using the above ergodic theorem and 0 - 1 law that
says that if {Xt} iid then P(tail events) = 0 or 1.

Theorem (Necessary & sufficient condition for ergodicity)

A measure-preserving transformation S is ergodic if and only if, for all A and
B ∈ F ,

lim
n→∞

1

n

n−1∑
k=0

P(A ∩ S−kB) = P(A)P(B)
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Mixing and Weak Dependence

Main Idea: Ergodicity of {Xn = Sn−1X}∞, is related to the capacity of S to
thoroughly mix the points of Ω. MIXING attempts to measure this property
directly.

Definition (5.1)

A measure preserving transformation S: Ω→ Ω on (Ω,F ,P) is mixing if ∀F ,G ∈
F ,

lim
n→∞

P(F ∩ S−nG ) = P(F )P(G )
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Mixing and Weak Dependence: Halmos Martini Example

Ω = 90% vermouth, 10% vodka
S = action of swizzle stick on particles of Ω
P: Volume as % of vol (Ω)
F : Borel sets of R3 in Ω

Observe proportion of vodka in an arbitrary cylinder inside Ω. If it tends to 10%
the S is mixing.
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Mixing and Weak Dependence: Halmos Martini Example

Set of vodka particles in G at t = n = {w |w ∈ F ,Snw ∈ G} = F ∩ S−nG
mixing requires

P(F ∩ S−nG )

P(G )
→ P(F ) as n→∞

i.e.

vol (vodka particles ∩ particles in G after nth swizzle)
vol (G) → vol(F ) = % of vodka particles
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Mixing and Weak Dependence

In a time series context, we say {Xn} is mixing if

P(Xn ∈ G ,X0 ∈ F ) = P(X0 ∈ S−nG ,X0 ∈ F )

= P(X0 ∈ F ∩ S−nG )

→ P(F )P(G )

in other words, X0 & Xn are independent as n→∞ (weak dependence).

Theorem

If S is mixing on (Ω, F , P) then S is ergodic. The converse is not true.

Examples: (K ,F ,P) = unit circle
K = {z ∈ C| |z | = 1}
S : K → K Sz = az ; a = e iΘ

1) S is ergodic iff e iθ is not a root of unity (iff θ 6= 2π
n ∀n ∈ z).

2) S is ergodic (with a = e iθ, θ 6= 2π
n ∀ n ∈ z) but not mixing.
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And Now We GO DOWN

Concepts like strict stationarity and ergodicity are difficult to play with and to
check.

We will go from strict stationarity to weak stationarity.

From ergodicity at a general level to ergodicity for different moments.
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Weak Stationarity

The stochastic process {Xt}t∈T with T = {0,±1,±2, ...} is said to be weak
stationary if:

(i) E|X 2
t | <∞ ∀t ∈ T

(ii) E(Xt) = µ ∀t ∈ T
(iii) γx(r , s) = γx(r + t, s + t) ∀r , s, t ∈ T

where
γx(r , s) = Cov(Xr ,Xs) = E[(Xr − E(Xr ))(Xs − E(Xs))]

Remember that:

Definition

The stochastic process {Xt , t ∈ T} is said to be strictly stationary if the joint
distribution of (Xt1, ...Xtk)′ and (Xt1+h, ...Xtk+h)′ are the same for all positive
integers k and for all t1, t2, ...tk , h ∈ T .

Strict Stationarity −→ Weak Stationarity
(+ Existence of moments)

←− (if Gaussian)
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Weak Stationarity: Examples

Example (1)

Xt =

{
Yt if t is even
Yt + 1 if t is odd

where {Yt} is a stationary time series.
Although Cov(Xt+h,Xt) = γx(h), {Xt} is not stationary because it does not have
a constant mean.

Example (2)

St = X1 + X2 + ...+ Xt X1,X2... ∼ are iid (0, σ2)

For h>0

Cov(St+h,Sr ) = Cov(
t+h∑
i=1

Xi ,

t∑
j=1

Xj)

= Cov(
t∑

i=1

Xi ,

t∑
j=1

Xj) = tσ2
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Ergodicity For The Mean

Let (X̄ ) the sample mean

X̄ =
1

n

n∑
t=1

Xt {Xt}∞t=1 is w. stationary, i.e., E(Xt) = µ and V (Xt) = γ0

E(X̄ ) = 1
n

∑n
t=1 E(Xt) = µ

V (X̄ ) = 1
n2

∑n
t=1

∑n
s=1 Cov(Xt ,Xs) = γ0

n2

∑n
t=1

∑n
s=1 ρ(t − s)

= γ0

n2

∑n−1
K=−(n−1)(n − |K |)ρK

= γ0

n2

∑n−1
K=−(n−1)(1− |K |n )ρK (1)

where we let K = (t-s).
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Ergodicity For The Mean

Thus if

lim
n→∞

[
n−1∑

K=−(n−1)

(1− |K |
n

)ρK ]

is finite, then V (X̄ )→ 0 as n→∞, and X̄ is a consistent (in mean square sense)
estimator for µ.
In this case we say that the process {Xt}∞t=1 is ergodic for the mean.

A sufficient condition for this result to hold is that ρK → 0 as K →∞. This is so
because ρK → 0 as K →∞ implies that for any ε > 0, we can choose an N such
that

|ρK | <
1

4
ε for all K > N
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Ergodicity For The Mean

Hence, for n > (N + 1), we have

|1
n

n−1∑
K=−(n−1)

ρK | ≤
2

n

n−1∑
K=0

|ρK |

≤ 2

n

N∑
K=0

|ρK |+
2

n

n−1∑
K=N+1

|ρK |

≤ 2

n

N∑
K=0

|ρK |+
1

2
ε

≤ ε

where we choose an n large enough so that the first term in the next two last
inequalities above is also less than 1

2ε.
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Ergodicity For The Mean

This shows that when ρK → 0 as K →∞ we have

lim
n→∞

1

n

n−1∑
K=−(n−1)

ρK = 0

which implies that in equation (1)

lim
n→∞

Var(X̄ ) = 0

ERGODICITY FOR THE MEAN : ρK → 0
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Ergodicity For The Autocovariances

γ̂K =
1

n

n−K∑
t=1

(Xt − X̄ )(Xt+K − X̄ )

When
lim

n→∞
γ̂K = γK ??

A sufficient condition for γ̂K to be mean square consistent and the process to be
ergodic for the autocovariances is that

∞∑
−∞
|γi | <∞
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WHERE ARE WE?

Problem: Forecast Yt+1 given some information set It at time t.
Solution:

min
{f (Xt−i ),i≥0}

E [Yt+1 − f (Xt−i )]2
,

where we obtain f (Xt ,Xt−1, ...) = E [Yt+1|Xt ,Xt−1, ...]. We can model this
conditional expectation in two ways:

Where g(Yt ,Yt−1, ...) = Ŷt+1 = 1
n

∑n
t=1 Wn,t(Yt ,Yt−1, ...) and Wn,t is a weight

sequence depending on the past.
We are going to study PARAMETRIC LINEAR model in the time domain.
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