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(n — m)|[P, (Y — X6)||”
mllY — P Y|?

has the F distribution with m and (n — m) degree of freedom.
2.20. Suppose(X,Z,,...,Z,) hasa multivariate normal distribution. Show that

Pﬁu.z, ..... z,.}(X)=E»1r(zl ..... z,.)(X)w

where the conditional expectation operator E 4z, .z, 18 defined as in Section
27

221. Suppose {X,,t = 0, +1,...} is a stationary process with mean zero and auto-
covariance function y(-) which is absolutely summmable (ie. Yo ly(H) < o)
Define f to be the function,

f(l)=21—n i y(Re ™,  —mxlgm,
h=— @

and show that y(h) = [, e™*f(1}d4.

222, (a) If feL*([—mnn]), prove the Riemann-Lebesgue lemma: {f,e,> =0 as
h — oo, where e, was defined by (2.8.2).
(b) If f € L2([ — =, =]) has a continuous derivative f'(x) and f(n) = f(—=),show
that <f,e,> = (i) "'{J", e,» and hence that h{f,e,> =0 as h = co. Show
also that Y2 _,1<f,e,>! < co and conclude that S,/ (see Section 2.8)
converges uniformly to f.

2.23. Show that the space I* (Example 2.9.1) is a separable Hilbert space.

224. If o is any Hilbert space with orthonormal basis {e,,n = 1,2,. ..}, show that
the mapping defined by Th = {¢h,e, >}, he a#, is an isomorphism of #” onto .

225% Prove that .#(Z) (see Definition 2.7.3) is closed.
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CHAPTER 3
Stationary ARMA Processes

In this chapter we introduce an extremely important class of time series
{X,t=0+1,+2,...} defined in terms of linear difference equations with
constant coefficients. The imposition of this additional structure defines a
parametric family of stationary processes, the autoregressive moving aver-
age or ARMA processes. For any autocovariance function y(-) such that
lim,..,, y(h) = 0, and for any integer k > 0, it is possible to find an ARMA
process with autocovariance function y,(-) such that y,(h) = y(h), h =
0,1,...., k For this (and other) reasons the family of ARMA processes plays
a key role in the modelling of time-series data. The linear structure of ARMA
processes leads also to a very simple theory of linear prediction which is
discussed in detail in Chapter 5.

§3.1 Causal and Invertible ARMA Processes

In many respects the simplest kind of time series {X,} is one in which the
random variables X,, t =0, +1, +2, ... are independently and identically
distributed with zero mean and variance o2. From a second order point of
view i.e. ignoring all properties of the joint distributions of {X,} except those
which can be deduced from the moments E(X,) and E(X,X,), such processes
are identified with the class of all stationary processes having mean zero and
autocovariance function

a? ifh=0,
y(h)_{o h 0. (3.1.1)
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Definition 3.1.1. The process {Z,} is said to be white noise with mean 0 and
variance o2, written

{Z,} ~ WN(0, 02), (3.1.2)

if and only if {Z,} has zero mean and covariance function (3.1.1).

If the random variables Z, are independently and identically distributed
with mean 0 and variance a? then we shall write

{Z} ~ 1ID(0, 02). (3.1.3)

A very wide class of stationary processes can be generated by using white
noise as the forcing terms in a set of linear difference equations. This leads to
the notion of an autoregressive-moving average (ARMA) process.

Definition 3.1.2 (The ARMA (p, q) Process). The process {X,,t =0, +1, +2,...}
is said to be an ARMA(p, g) process if {X,} is stationary and if for every ¢,

X=Xy — =Xy =Z, +0,Z_ + +6,Z_,, (314)
where {Z,} ~ WN(0,¢%). We say that {X,} is an ARMA(p, q) process with
mean p if {X, — u} is an ARMA(p, g) process.

The equations (3.1.4) can be written symbolically in the more compact form

#(B)X, = 0(B)Z,, t=0,+1, +2,..., (3.1.5)
where ¢ and @ are the p'" and ¢** degree polynomials
#2)=1—¢z— - — ,2° (3.1.6)
and
Oz)=1+08,z4---+86,2° (3.1.7)
and B is the backward shift operator defined by
BX, =X_, j=0114+2,... (3.1.8)

The polynomials ¢ and & will be referred to as the autoregressive and moving
average polynomials respectively of the difference equations (3.1.5).

ExaMPLE 3.1.1 {The MA(q) Process). If ¢(z) = 1 then
X, = B(B)Z, (3.1.9)

and the process is said to be a moving-average process of order g {or MA(qg)).
It is quite clear in this case that the difference equations have the unique
solution (3.1.9). Moreover the solution {X,} is a stationary process since
(defining 6, = 1 and 6, = 0 for j > g), we see that

4
EX,= Y 6EZ,_;=0
=0

i
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and
5 q—thl 9 9
o - if |h] < g,

CoviXo X = | /e M=
0 if|h| > q.
Arealizationof {X,,..., X o0} withg = 1,6, = —8and Z, ~ N(0, 1) is shown
in Figure 3.1{a). The autocorrelation function of the process is shown in Figure
3.1(b)-

ExaMPLE 3.1.2 {The AR(p) Process). If #(z) = 1 then
¢(B)X, = Z, (3.1.10)

and the process is said to be an autoregressive process of order p (or AR(p)).
In this case (as in the general case to be considered in Theorems 3.1.1-3,1.3)
the existence and uniqueness of a stationary solution of (3.1.10) needs closer
investigation. We illustrate by examining the case ¢(z) = { — ¢,z,i.e.

X =2Z+¢ X_,. (3.1.11
Iterating (3.1.11) we obtain

Xr = Zt + ¢Lzr—1 + ¢'12X:72

=Z+ G Z B+ X ey

If|¢,| < 1 and {X,} is stationary then || X,||2 = E(X?)is constant so that

2
= ¢P** X, 41? >0 ask— co.

k
ItX: - Z ¢{Zr—1
=0

Since ¥ 2o ${Z,_; is mean-square convergent (by the Cauchy criterion), we
conclude that

X, =3 4z, (3.1.12)
£

Equation (3.1.12) is valid not only in the mean square sense but also (by
Proposition 3.1.1 below) with probability one, i.e.

Xiw) =3 ${Z, jw) forallw¢E,
i=0

where E is a subset of the underlying probability space with probability zero.
All the convergent series of random variables encountered in this chapter will
{by Proposition 3.1.1) be both mean square convergent and absolutely con-
vergent with probability one. Now {X,} defined by (3.1.12) is stationary since

4]
EX,= Y $iEZ,_;=0
/=0
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Figure 3.1. (a) 100 observations of the series X, = Z, — .8Z,_,, Example 3.1.1. (b) The
autocorrelation function of {X,}.
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and

™=

COV(XHM X:) = lim [( ¢{Zt+h—j)(i ¢:‘Zr—k)]
j=0 k=0

o0 i

W 12;

= UZ¢|1 ‘vpz ¢
j=0

= a* ¢ /(1 — ¢}).
Moreover {X,} as defined by (3.1.12) satisfies the difference equations (3.1.11)
and is therefore the unique stationary solution. A realization of the process
with ¢; = .9 and Z, ~ N(0,1) is shown in Figure 3.2(a). The autocorrelation
function of the same process is shown in Figure 3.2(b).
In the case when |¢,] > 1 the series (3.1.12) does not converge in L2,
However we can rewtite (3.1.11) in the form

X! = _iﬁ;lzxﬂ + ¢;1X;+1- (3113)

Iterating (3.1.13) gives
X = *QSIIZHL - ¢1—zzr+z + ¢1_2X:+2

= *”Cb;jzzﬂ - = ¢l—k_lzr+k+l + ﬁbl_k_lxnkﬂ,

which shows, by the same arguments as in the preceding paragraph, that

X, = = Y 4%, (3.1.14)
=
is the unique stationary solution of {3.1.11). This sotution should not be
confused with the non-stationary solution {X,,t=0, +1,...} of (3.111)
obtained when X, is any specified random variable which is uncorrelated
with {Z,}.

The stationary solution {3.1.14) is frequently regarded as unnatural since
X, as defined by (3.1.14) is correlated with {Z_, s > t}, a property not shared
by the solution (3.1.12) obtained when |¢| < 1. It is customary therefore when
modelling stationary time series to restrict attention to AR{1} processes with
|¢,| < 1 for which X, has the representation (3.1.12) in terms of {Z,,s < t}.
Such processes are called causal or future-independent autoregressive pro-
cesses. It should be noted that every AR(1) process with |g¢,| > 1 can be
reexpressed as an AR(1) process with |¢,| < | and a new white noise sequence
(Problem 3.3). From a second-order point of view therefore, nothing is lost
by eliminating AR(1) processes with [¢,| > 1 from consideration.

If |¢,| = 1 there is no stationary solution of (3.1.11) (Problem 3.4). Con-
sequently there is no such thing as an AR(1) with |¢,| = 1 according to our
Definition 3.1.2.

The concept of causality will now be defined for a general ARMA(p, q)
Process.
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Figure 3.2. (a) 100 observations of the series X, — 9X,_, = Z,, Example 3.1.2. (b) The
autocorrelation function of {X,}.

}
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Pefinition 3.1.3. An ARMA(p, q) process defined by the equations ¢(B)X, =
#(B)Z, is said to be causal (or more specifically to be a causal function of
{Z,})if there exists a sequence of constants {y;} such that ¥ 2., |y;| < oo and

Xo=Y Wiz, 1=0,41,.... (3.1.15)
J=0

it shouid be noted that causality is a property not of the process { X,} alone
but rather of the relationship between the two processes {X,} and {Z,}
appearing in the defining ARMA equaticns. In the terminology of Section
4,10 we can say that {X,} is causal if it is obtained from {Z,} by application
of a causal linear filter. The following proposition clarifies the meaning of the
sum appearing in (3.1.15).

Proposition 3.1.1. If {X,} is any sequence of random variables such that
sup, E|X,| < oo, and if Y5 _, 1W,| < o, then the series

Y(B)X, = __f ¥, B'X, = __f ¥ X, (3.1.16)

converges absolutely with probability one. If in addition sup, E{ X,|* < co then
the series converges in mean squdre to the same limit.

Proor. The monotone convergence theorem and finiteness of sup, E{X,| give

E( 5 w,-nxt_ﬂ):limﬁ(i |w,.|+x[_jt)

Jj=—x n—a J=-n
< lim (Z |¢jl)5upE|X,|
n—o \j=-n 1
< oo,

from which it follows that Y 72 __ [¥;1|X,_;| and y(B)X, = Zj‘;,w ¥, X,_; are
both finite with probability one. :
If sup, E|X,|? < co and n > m > O, then

= E ’x"’j\akE(X:-jfr—k}

ma|jlsn m<|k

=r
2
< sup E|X,!? ( ) ll}f,-i)
e m<jsn

-0 asm,n— w,

and so by the Cauchy criterion the series (3.1.16) converges in mean square.
If S denotes the mean square limit, then by Fatou’s lemma,

2

S5— 2 vXiy

j==n

E|S — ¢(B)X,1* = Eliminf

n—x0
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2
< liminfE

[ hmd ]

=0,

S — i X

j=-n

showing that the limits § and /(B) X, are equal with probability one. ]

Proposition 3.1.2. If {X,} is a stationary process with autocovariance function
v() and if Y2 || < oo, then for each teZ the series (3.1.16) converges
absolutely with probability one and in mean square to the same limit. If

Y, = ¢y(B)X,
then the process {Y,} is stationary with autocovariance function

Wl = S Uylh —j + K.

fik=—oo

Proor. The convergence assertions fotlow at once from Proposition 3.1.1 and
the observation that if {X,} is stationary then

E|X| s (EIX[})* =,

where c is finite and independent of ¢.
To check the stationarity of {¥;} we observe, using the mean square
convergence of (3.1.16) and continuity of the inner product, that

EY,=lim Y q’/jEX,VJ-=( y wj) EX,,
r—o j=-n Jj=-w

and

E(Y,,Y)=1lim E[( i ')t’jXHh—j)( i lr”er—k)]
oo J==n k=-n

= i Yily(h — j + k) + (EX)?).

hk=—w

Thus EY, and E(Y,,Y)} are both finitc and independent of . The auto-
covariance function yy(+) of {¥;} is given by

wlh) = E(Y,,,Y)) — EY, - EY, = _kz Yny(h — j + k). O
k=

It is an immediate corollary of Proposition 3.1.2 that operators such
as Y(BY =32 _,¢B with Y2 _ iy| < oo, when applied to stationary
processes, are not only meaningful but also inherit the algebraic properties
of power series. In particular il 3 % _, la} < oo, Y2 __ |8 < o0, a(z) =
ez, Blz) =Y %, Bz and

w(2)f(2) = ¥(2), {2l <1,
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then a(BYB(B}X, is well-defined and
a(B}B(B)X, = B(Bya(B)X, = (B)X,.

The following theorem gives necessary and sufficient conditions for an
ARMA process to be causal. It al%o gives an explicit representation of X, in
terms of {Z,,5 < t}.

Theorem 3.1.1: Let {X,} be an ARMA(p, q) process for which the polynomials
#(-) and 8() have no common zeroes. Then {X,} is causal if and only if ¢(z) £ 0
for all zeC such that \z| < 1. The coefficients {{f;} in (3.1.15) are determined
by the relation

Y(z)= ) ¥z’ =0(2)/d(z) 2l <L (3.1.17)
f=0
(The numerical calculation of the coefficients y; is discussed in Section 3.3.)

Prookr. First assume that ¢{z) # 0if |z| < 1. This implies that there exists ¢ > 0
such that 1/¢(z) has a power scrics expansion,

1g(z) = 20 Eai=E@), fzl<l+e

Consequently £;(1 + &/2)f — 0as j — oo so that there exists K €(0, «0) for which
(€| < K(1 +¢/2)7 forallj=0,1,2,....

In particular we have ) 2, 1¢,| < oo and £(z)4(z) = 1 for |z| < 1. By Pro-
position 3.1.2 we can therefore apply the operator £(B) to both sides of the
equation ¢{B)X, = 8(B)Z, to obtain

X, = {(B)I(B)Z,.

Thus we have the desired representation,
@x
Xo=Y W7
=0

where the sequence {y;} is determined by (3.1.17).
Now assume that {X,} is causal, i.c. X, = Y .o ¥;Z,_; for some sequence
{¥;} such that Y 2, |¥;| < co. Then

0(B)Z, = ¢(B)X, = ¢(B)(B)Z..

If we let n(z) = $(2)¥(z) = Y 2o m;2% 12| < 1, we can rewrite this equation as

q o
2 0Z= ) niZiy
=0 i=0

and taking inner products of each side with Z,_, (recalling that {Z} ~
WN(0, 52)) we obtain s, = 6,k =0,...,gand 5, = 0, k > g. Hence

6(z) = n(z) = ¢lz)y(z), |zl <L
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Since 0(z) and $(z) have no common zeroes and since |i(z)] < oo for |z] < 1,
we conclude that ¢(z) cannot be zero for [z| < 1. I

Remark 1. If {X,} is an ARMA process for which the polynomials ¢(:) and
8(-) have common zeroes, then there are two possibilities:

(2) none of the common zeroes lie on the unit circle, in which case (Problem
3.6) {X,} is the unique stationary solution of the ARMA equations with
no common zeroes, obtained by cancelling the common factors of ¢(- ) and
("),

(b) at least one of the common zeroes lies on the unit circle, in which case
the ARMA equations may have more than one stationary solution (see
Problem 3.24).

Consequently ARMA processes for which ¢(-) and 6(:) have common zeroes
are rarely considered.

Remark 2. The first part of the proof of Theorem 3.i.1 shows that if {x.}
is a stationary solution of the ARMA equations with ¢(z) # 0 for |z| < 1,
then we must have X, =3 %,4,Z,_, where {y;} is defined by (3.1.17).
Conversely if X, =3 20¢,Z,_; then ¢(B)X, = $(BW(B)Z, = 6(B)Z,. Thus
the process {/(B)Z, } is the unique stationary solution of the ARMA equations
if ¢(z) # 0 for |zl < 1.

Remark 3. 'We shall see later {Problem 4.28) that if ¢(-) and &(*) have no
common zeroes and if ¢(z) = 0 for some ze C with |z] = 1, then there is no
stationary solution of ¢(B)X, = §(B)Z,.

We now introduce another concept which is closely related to that of
causality.

Definition 3.1.4. An ARMA(p, g) process defined by the equations ¢(B) X, =
B(B)Z, is said to be invertible’if there exists a sequence of constants {m;} such
that 3 %, ;| < oo and

t=0,+1,.... (3.1.18)

J =)y

Like causality, the property of invertibility is not a property of the process
{X.} alone, but of the relationship between the two processes {X,} and {Z,}
appearing in the defining ARMA equations. The following theorem gives
necessary and sufficient conditions for invertibility and specifies the coeffi-
cients 7; in the representation (3.1.18),

Theorem 3.1.2. Let {X,} be an ARMA(p, q) process for which the polynomials
#(°) and &(-) have no common zeroes. Then {X,} is invertible if and only if

g3.1. Causal and Invertible AKMA Processes 5/

f(z) # 0 for all zeC such that |z| < 1. The coefficients {m;} in (3.1.18) are
determined by the relation

(z) = znzf #2)/0(z), lzi<1. (3.1.19)

(The coefficients {n;} can be calculated from recursion relations analogous
to those for {y;} (see Problem 3.7).)

Proo¥. First assume that 8(z) # 0 if {z] < 1. By the same argument as in the
proof of Theorem 3.1.1, t/8(z) has a power series expansion

1/0(z)= Y mzl=n(z), |zl<1+eg
j=0

for some ¢ > 0. Since ) %, 1| < oo, Proposition 3.1.2 allows us to apply #(B)
to both sides of the equation ¢(B)X, = 6(B)Z, to obtain
n(B)¢(B}X, = n(B)6(B)Z, = Z,.

Thus we have the desired representation

18

Z' = ﬂ:jXI—j!

j=0
where the sequence {r;} is determined by (3.1.19).
Conversely if {X,} is invertible then Z, = } %, n,X,_; for some sequence
{n;} such that ) 7o |m;| < 0. Then

#(B)Z, = =(B)$(B) X, = n(B)O(B)Z,.

Setting &(z) = n(2)0(z) = Z}‘LOé-zi, |z] £ 1, we can rewrite this equation as

Z¢J t—j = Zéz—ﬂ

and taking inner products of each side with Z,_, we obtain ¢, =4,
k=0,...,pand & =0,k > p. Hence

#(2) = ¢(z2) = m(2)8(z), |z|< L.
Since ¢(z) and 6(z) have no commap zeroes and since |n(z)] < oo for [z] < 1,
we conclude that 6(z) cannot be zero for [z} < 1. a

Remark 4. If { X, } is a stationary solution of the equations

$(B)X, =0(B)Z, {Z,} ~ WN(0,0?), (3.1.20)
and if ¢{z}6(z) # O for {z| < 1, then
X, = Y ¥z,
§=0

and



Z=Y nX_,
f=0

where Y Loz’ = 8(2)/¢(2) and 3 2o mizd = ¢(2)/0(2), |2) < 1.

Remark 5. If { X, } is any ARMA process, ¢(B) X, = 8(B)Z,, with ¢(z) non-zero
for all z such that |z| = 1, then it is possible to find polynomials ¢(-), (-)and
a white noise process {Z}} such that §(B)X, = §(B)Z} and such that {X,}
is a causal function of {Z}}. If in addition 6(z ) is non-zero when |z| = 1 then
f(-) can be chosen in such a way that {X,} is also an invertible function of
{Z¥}, ie. such that f(z) is non-zero for |z| < 1 (see Proposition 3.5.1). If
{Z,} ~ TID(0, 6%) it is not true in general that {Z}} is independent (Brc1dt
and Davis (1990). It is true, however, if {Z,} is Gaussian (see Problem 3. 18)

Remark 6. Theorem 3.1.2 can be extended to include the case when the
moving average polynomial has zeroes on the unit circle if we extend the
definition of invertibility to require only that Z,esp{X,, —w0 <5<t}
Under this definition, an ARMA process is invertible if and only if 8(z) # 0
for all |z} < 1 (see Problem 3.8 and Propositions 4.4.1 and 4.4.3).

In view of Remarks 4 and 5 we shall focus attention on causal invertible
ARMA processes except when the contrary is explicitly indicated. We con-
clude this section however with a discussion of the more general case when
causality and invertibility are not assumed. Recall from Remark 3 that if ¢(-)
and 6(-) have no common zeroes and if ¢(z) = 0 for some ze C with }z| = 1,
then there is no stationary solution of ¢(B}X, = 6(B)Z,. If on the other hand
¢(z) # 0 for all ze C such that jz| = I, then a well-known result from complex
analysis guarantees the existence of r > 1 such that

64" = Y el =y, r<lel<n (3.1.21)

j=-—w

the Laurent series being absolutely convergent in the specified annulus (see
e.g. Ahlfors (1953)). The existence of this Laurent expansion plays a key role
in the proof of the following theorem.

Theorem 3.1.3. If #(z) # 0 for all zeC such that |z| = 1, then the ARMA
equations ¢(B)X, = 8(B)Z, have the unique stationary solution,

i W2, (3.1.22)

i=-m

where the coefficients i, are determined by (3.1.21).

Proor. By Proposition 3.1.2, { X, } as defined by (3.1.22) is a stationary process.
Applying the operator ¢(B) to each side of {3.1.22) and noting, again by

a-

proposition 3.1.2, that ¢(B)y(B)Z, = f{B)Z,, we obtain
¢(B)X, = 0{B)Z,. (3.1.23)

Hence {X,} is a stationary solution of the ARMA equations.
To prove the converse let { X, } be any stationary solution of (3.1.23). Since
¢(z) # 0 for all ze C such that Ile 1, there exists 4 > 1 such that the series
m _ &z = ¢{z)7! = &(z) is absolutely convergent for 6™ < |z] < 6. Wecan
thérefore apply the operator £(B} to each side of (3.1.23) to get

{(B)¢(B)X, = L(B)O(B)Z,,

or equivalently _
X, = V"(B)Zt- O

§3.2 Moving Average Processes of Infinite Order

In this section we extend the notion of MA(g) process introduced in Section
3.1 by allowing g to be infinite.

Definition 3.2.1.1{ { Z,} ~ WN{(0, 0%) then we say that { X, } is a moving average
(MA(c0)) of {Z,} if there exists a sequence {¥;} with } %o [l < co such that

X, =S Yz, t=0+1,+2 ... (3.2.1)
j=0

ExaMpLE 3.2.1. The MA(q) process defined by (3.1.9) is a moving average of
{Zr} with lpj = 9],j= 0, 1, ceny qand !Ilj = 0,]> q.

ExAMPLE 3.2.2. The AR(1) process with |¢| < 1 is a moving average of {Z,}
withy; = ¢%,j=0,1,2,....

ExaMmpPLE 3.2.3. By Theorem 3.1.1 the causal ARMA(p, q) process ¢(B) X, =
8(B)Z, is a moving average of {Z,} with 3 7, ;27 = 0(2)/$(2), [z] < 1.

It should be emphasized that in the definition of MA(c0) of {Z,} it is
required that X, should be expressible in terms of Z,, s < t, only. It is for this
reason that we need the assumption of causality in Example 3.2.3. However,
even for non-causal ARMA processes, it is possible to find a white noise
sequence {Z*} such that X, is a moving average of {Z}} (Proposition 3.5.1).
Moreover, as we shall see in Section 5.7, a large class of stationary processes
have MA(c0) representations. We consider a special case in the following
proposition.

Proposition 3.2.1. If { X,} is a zero-mean stationary process with autocovariance
function y(-) such that y(h) = O for |k} > q and y(g) # O, then {X,} is an MA(q)
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process, Le. there exists a white noise process {Z,} such that
X=2+0,Z. ++6,Z, (3.2.2)

ProoF. For each 1, define the subspace #, = 5p{X,, —0 < s < t} of L? and
set

Z=X,— Py X, (3.2.3)

Clearly Z,e.#,, and by definition of Py ., Zed-,. Thus if s<1, Ze
M, = HA,_ and hence EZ.Z, = (. Moreover by Problem 2.18

Pﬁ{X..Fr—n....,:—l}X: =5 PJ(HX, asn— oo,
so that by stationarity and the continuity of the L2 norm,

" +1“ = "X:+1 PJ‘X,+1§|
= le "Xr+1 - Pﬁ[x,.s=r+1—n.....|}X:+1H

= hm “X p{X s=t-n, t—l]X!”

=X, — B Xl = | Z,i1.

Defining 6? = || Z,|%, we conclude that {Z,} ~ WN(0, 62).
Now by (3.2.3), it follows that

My ={Xys<t—1L,Z_,)
=5p{Xos<t—q,Z_....Z,_,}

and consequently .#,_, can be decomposed into the two orthogonal sub-
spaces, #,.,_, andsp{Z,_,,....Z,_,}. Since y(h) = Ofor [h! > g, it follows that
X, L .#, _,_, and 50 by Proposition 2.3.2 and Theorem 2.4.1,

P"‘t-lX‘ = P-qule‘ + Pﬁ{zrq""'zz—l}X'
=0+ aﬁzE(szr—i}Zt—l + -+ GizE(X:Zt—-q)Z:—q
=6,Z + +0,Z_,
where §,:= 672E(X,Z,_;), which by stationarity is independent of ¢ for

J=1,..., 4. Substituting for P,_ X,in (3.2.3) gives (3.2.2). O

Remark. If {X.} has the same autocovariance function as that of an
ARMA(p q) process, then {X } is also an ARMA(p, q) process. In other

words there exists a white noise sequence {Z,} and coefficients ¢,, ..., $ps
.» 8, such that
Xr - ¢1X:—l -t = qpr!—p = Z: + 91 + 4+ ngf"q

(see Problem 3.19),

§3.3. Computing the Autocovariance Function of an ARMA(p, g) Process 9t

The following theorem is an immediate consequence of Proposition 3.1.2.

Theorem 3.2.1. The MA(oo) process defined by (3.2.1) is stationary with mean
zero and autocovariance function

y(k) g i) Wi - (3.2.4)
£

Notice that Theorem 3.2.1 together with Example 3.2.3 completely deter-
mines the autocovariance function y of any causal ABMA(p, g) process. We
shall discuss the calculation of y in more detail in Section 33

The notion of AR(p) process introduced in Section 3.1 can also be extended
to allow p to be infinite. In particular we note from Theorem 3.1.2 that any
invertible ARMA(p, q) process satisfies the equations

=4}
X+ YnX_ =2, t=0,+1, +2,...
=

which have the same form as the AR(p} equations (3.1.10) with p = oo

§3.3 Computing the Autocovariance Function of an
ARMA(p, q) Process

We now give three methods for computing the autocovariance function of an
ARMA process. In practice, the third method is the most convenient for
obtaining numerical values and the second is the most convenient for obtain-
ing a solution in closed form.

First Method. The autocovariance function y of the .causal ARMAI(p,q)
process ¢(B}X, = 6(B)Z, was shown in Section 3.2 to satisfy

Z Y (33.1)

where
Z Y;2' = 0)/dz)  forlzi <1, (33.2)
0z =1+6z+ - +8z% and ¢(z}=1—¢z— - —$z" In order to

determine the coefficients ¢; we can rewrite (3.3.2) in the form (2)¢(z) =
0(z) and equate coefficients of z! to obtain (defining 6, = 1,8, =0forj> g

and ¢; = 0 forj > p),
¥— Y el =0 0 <j< max{p,qg +1) (3.3.3)
0<k<jf
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and
¥ — Z Bty = 0, J = max{p,g + 1}. (3.3.4)
o<k=p
These equations can easily be solved successively for i, y,, ¥a,.... Thus
Yo =10, =1,

Y =0, + g, =0, + ¢y,

3.3.
Yy =0 + Yod, + 8 =0, + 6, + 0,8, + ¢, 039

Alternatively the general solution (3.3.4) can be written down, with the aid of
Section 3.6 as

k ri—1 .
'j’n = Zl ZO al’j""fi—"s n 2 maX(P,q + 1) - Ps (336)
i=1 j=
where ¢;,i = 1,..., k are the distinct zeroes of ¢(z) and r, is the multiplicity of

¢i(so that in particular we must have Y ¥, r, = p). The p constants a;; and the
coefficients i, 0 < j < max(p,q + 1) — p, are then determined uniquely by the
max{p,q + 1) boundary conditions {3.3.3). This completes the determination
of the sequence {i;} and hence, by (3.3.1), of the autocovariance function 7.

ExamPLe 3.3.1. (1 — B + §B%)X, = (1 + B)Z,. The equations (3.3.3) take the
form
lf’o = 90 =1,

Y =6 + Yo, =0, +¢, =2,
and (3.3.4) becomes
Y — W + 3, =0, iz 2
The general solution of (3.3.4) is (see Section 3.6)
W, = (@10 + noeyy)270, n= Q.

The constants a;, and a,, are found from the boundary conditions Yo=1
and , = 2to be

=1 and g, =3
Hence
Yo={1+3m27", n=012...
Finally, substituting in (3.3.1}, we obtain for k > 0

X

a2 Y (1 4+ 3)(1 + 3j + 3k)2-2+*

i=0

vk}

a227% Y [(3k + 1)47 + 3(3k + 24 + 9,247

J’:
=022 403k + 1) + 3k + 2) + 180]
= o227 %[ 3 + 8k].

o

—

%]

§3.3. Compulting the Autocovariance Function of an AKMA(D, §) rrocess ¥3

second Method. An alternative method for computing the autocovariance
function y(*} of the causal ARMA(p, g)

#(B) X, = 8(B)Z,, (3.3.7

is based on the difference equations for y(k}, k = 0,1,2,..., which are obtained
by multiplying each side of (3.3.7) by X,_, and taking expectations, namely

k) — vtk - 1) — = ¢pyk — p) = g’ z OWi—x»
kefsa (3.3.8)
0 <k <max(p,g+ 1),
and
yk) — dytk — 1) — - — g pk —p) =0,  k=max(pg+1). (339)

(In evaluating the right-hand sides of these equations we have used the

representation X, = Y o ¥, Z,;.) .
The general solution of (3.3.9) has the same form as (3.3.6), viz.

r—1

k
vy =Y Y BHE, hzmax(pg+1)-p, (3.3.10)
i=1

i=0

where the p constants f§; and the covariances y(j),0 <j < max{p,q + 1) — p,
are uniquely determined from the boundary conditions (3.3.8) after first com-

puting Yo, ¥y, -, Y, from (3.3.5).
ExaMPLE 3.3.2. (1 — B+ 1B%) X, = (1 + B)Z,. The equations (3.3.9) become
yk) —yk = +3yk —2)=0, k=2
with general solution
yn) = (Byo + B1m)27", nz0. (3.3.11)
The boundary conditions (3.3.8) are
(0) — 7(1) + $9(2) = o* (o + Y1)
(1) — p(0) + 3¥(1) = 6* Yo,

where from (3.3.5), ¥, = 1 and ¥, = 8, + ¢, = 2. Replacing y(0), y(1) and y(2)
in accordance with the general solution {3.3.11) we obtain

3f10 — 21, = 160°,
—3Bio+ 5B = 8a’,
whence f,, = 8¢7 and fi,, = 320%/3. Finally therefore we obtain the solution
y(k) = a2 2744 + 8K],

as found in Example 3.3.1 using the first method.



ExaMPLE 3.3.3 (The Autocovariance Function of an MA(g) Process). By
Theorem 3.2.1 the autocovariance function of the process

q
X = ‘ZO 6,Z_, {Z}~ WN(0,0?),

has the extremely simple form

4
o ,Zogjgjﬂkla k| < g,
£

ylk) = (3.3.12)

where 6, is defined to be 1 and 6, j > q, is defined to be zero.

ExaMpiE 3.3.4 (The Autocovariance Function of an AR{p) Process). From
(3.3.10) we know that the causal AR(p) process

¢$(B)X, = Z,,

has an autocovariance function of the form

£

y(h) = i ﬁjjhjifh, h=0, (3.3.13)
i=i

-1
i=0
where £,,i =1, ..., k, are the zeroes (possibly complex) of ¢(z), and r, is the
multiplicity of £,. The constants f3; are found from (3.3.8).

By changing the autoregressive pelynomial ¢(-) and allowing p to be
arbitrarily large it is possible to generate a remarkably large variety of
covariance functions y(-). This is extremely important when we attempt to
find a process whose autocovariance function “matches™ the sample auto-
covariances of a given data set. The general problem of finding a suitable
ARMA process to represent a given set of data is discussed in detail in
Chapters 8 and 9. In particular we shall prove in Section 8.1 that if y(-}is any
covariance function such that y(h) — 0 as h — o, then for any k there is a
cansal AR(k} process whose autocovariance function at lags 0, I, ..., &,
coincides with y(f),j =0,1, ..., k.

We note from (3.3.13) that the rate of convergence of y(n) to zeroas n — oo
depends on the zeroes £; which are closest to the unit circle. (The causality
condition guarantees that |£;] > 1,i=1,...,k) If #(-) has a zero close to the
unit circle then the corresponding term or terms of (3.3.13) will decay in
absolute value very slowly. Notice also that simple real zeroes of ¢(-) contri-
bute terms to (3.3.13) which decrease geometrically with A A pair of complex
conjugate zeroes together contribute a geometrically damped sinusoidal term.
We shall illustrate these possibilities numerically in Example 3.3.5 with refer-
ence to an AR(2) process.

xAMPLE 3.3.5(An Autoregressive Process with p = 2). For the causal AR(2),
léll’ Ile > 1! él :»’é éZy

E
(t - ¢ B = &' B X, = Z,

we casily find from (3.3.13) and (3.3.8), using the relations
¢ = '5? + 6515
o

¢2 - —éIlé;l3

Uzé%f% 2 -1x1-h 2 l—léléh] (3.3.14)
= =2 [¢-D78 — (& -1 ) 3.
= -G
i i i { y(+) for different values
Fipure 3.3 illustrates some of th;possxble l'orms: .-O
of §1gand ¢,. Notice that ifé, = re"’.and Ey=re # () < § < 7, then we can
rewrite (3.3.14) in the more illuminating form,

Pl L (33.15)
=07 T* - 2ricos20 + 1) sind

where
2

+1
tany = :2 ) tan @ (3.3.16)

and cosy has the same sign as cos .

Third Method. The numerical determination of-the autocoyariance functl_on
y(-) from equations (3.3.8) and (3.3.9) can be carried out readily by first ﬁndir}xli
#(0), ..., y(p) from the equations with k = o,1,..., p, and th.f:n1 using
subsequent equations to determine y(p + 1), y(p + 2), ... recursively.

ExaMPLE 3.3.6. For the process considered in Examples 3.3.1 and 3.3.2 the
equations (3.3.8) and (3.39) with k=0, 1, 2 are

3(0) — ¥(1) + $¥(2) = 367,

(1) - p(0) + $¥(1) = 0%,

7(2) — y(1) + 37(0) = 0,
with solution 7(0) = 320%/3, (1) = 280%/3, v{2') = 200%/3. The hi_gher lag
autocovariances can now easily be found recursively from the equations

W =yk - —hk=-2, k=34
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§3.4 The Partial Autocorrelation Function

The partial autocorrelation function, like the autocorrelation function, conveys
vital information regarding the dependence structure of a stationary process,
Like the autocorrelation function it also depends only on the second order
properties of the process. The partial autocorrelation a(k) at lagk may be
regarded as the correlation between X 1and X, .., adjusted for the intervening
observations X,, ..., X,. The idea is made precise in the following definition.

‘Definition 3.4.1. The partial autocorrelation function (pacl)a(-) of a stationary
time series is defined by

a(l) = Corr(X,, X,) = p(1),
and

a(k) = Corr(X,,, — Pﬁ{l,xz.....xk}xk-i—l,Xl - Pﬁ{sz,...,xk}Xl)s k=2,

where the projections Pgixo.... xgXi+: and Pairx,.....xyX 1 can be found
from (2.7.13)and (2.7.14). The value a(k) is known as the partial autocorrelation
at lag k.

The partial autocorrelation afk), k = 2, is thus the correlation of the two
residuals obtained after regressing X, ., and X, on the intermediate observa-
tions X,, ..., X,. Recall that if the stationary process has zero mean then
Ps‘§{1,x2 ..... xk}(') = Pﬁ{xz,....x,(}(') (see Problem 2.8).

EXaMPLE 3.4.1. Let {X,} be the zero mean AR(1) process
X, =9X,_,+Z,.
For this example
(1) = Corr(X,, X,)
= COI‘[‘(.9X1 + ZZ! X!)
=9

since Corr(Z,,X,) = 0. Moreover Pgix,....x 0 Xk = 9X, by Problem 2.12
and Py, x} X1 = 9X; since (X,,X,,...,X,) has the same covariance
matrix as (X, ,, X,,..., X,). Hence for k =2,

(k) = Corr(X,,y — X, X, — 9X,)
= COU’(ZH:,XL —.9X;)
=0

A realization of 100 observations (Xpt=1,..., 100} was displayed in Figure
3.2. Scatter diagrams of (X,_,, X,} and (X1, X,) are shown in Figures 3.4 and
3.5 respectively. The sample correlation P =322 (X, — X)(X,,, — XV
[ (X, — X)*] for Figure 3.4 is 814 (as compared with the corresponding

§3.4. The Partial Autocorrelation Function s
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theoretical correlation p(l) = .9). Likewise the sample correlation 4(2) =

28 (X, — X)(Xpn — XWID28P (X, — X)*]for Figure 3.5 is .605 as compared
with the theoretical correlation p(2) = .81. In Figure 3.6 we have plotted the
points (X,_, — .9X,_,, X, — 9X,_,). It is apparent from the graph that the
sample correlation between these variables is very small as expected from the
fact that the theoretical partial autocorrelation at lag 2, i.e. a(2), is zero. One
could say that the correlation between X,_, and X, is entirely eliminated when
we remove the information in both variables explained by X,_,.

ExampLE 3.4.2 (An MA(1) Process). For the moving average process,
X, =Z +0Z,_,, 18] < 1,{Z,} ~ WN(0,¢?),

we have
a(l) = p(1) = 8/(1 + 0°).

A simple calculation yields Pyx,, X3 = [0/(1 + 6?)1X, = Pg(x,; X, whence
a{2) = Corr(X; — 0(1 + 6%)7' X,, X, — (1 + 6)7' X;,)
= —B%/1 + 9% + 6*).
More lengthy calculations (Problem 3.21) give

(81 —6%)
K=~ g

One hundred observations {X,,t = 1,...,100} of the process with # = —.8
and p(1) = —.488 were displayed in Figure 3.1. The scatter diagram of the
points (X,_, + 488X, ,, X, + 488X, ;) is plotted in Figure 3.7 and the
sample correlation of the two variables is found to be —.297, as compared
with the theoretical correlation a(2) = — (8?41 + .82 + 8% = — 312

ExamPLE 3.4.3 (An AR(p) Process). For the causal AR process

Xt - ¢1Xt—1 - = ¢pX|'—p = Zn {Z,} ~ WN(0,0’z),
we have for k > p,
P
Psixs et Xer = _21¢ij+11: (3.4.1)
=

since if Y €§p{X,,..., X} then by causality YeSp{Z,j < k} and
<x,t+1 _ ; 6. X1 Y> = (Z YD =0,
For k > p we conclude from (3.4.1) that
a(k) = Corr (X,H,1 - jil i Xye1-p Xy — Pﬁ{x;.m.xk}Xl)

= Corr(Zy,,, Xy — Paa{x,....,xk}Xﬂ
=0.
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For k < p the values of a(k) can easily be computed from the equivalent
Definition 3.4.2 below, after first determining p( j) = y{ j)/7(0) as described in
Section 3.3.

In contrast with the partial autocorrelation function of an AR(p) process,
that of an MA(g) process does not vanish for large lags. {t is however bounded
in absolute value by a geometricatly decreasing function.

An Equivalent Definition of the Partial Autocorrelation
Function

Let {X,} be a zero-mean stationary process with autocovariance function (-}
such that y(h) — 0 as h — oo, and suppose that ¢, ;, j = 1,... . k;k=1,2,.. |
are the coefficients in the representation

k
PEE[XI.....Xk}Xthl = Z ¢ijk+1—j-
=

J

Then from the equations

(Xpvr = Pop o oxnXu+ 0 X =0, j=k. .. L

we obtain
p® ) @ o pl= DT éa] [el)
o) PO p) k=2 oo |_[e@| o,
pk—1) pk—2) pk—3) - o0 [dul| |ok
(34.2)

Definition 3.4.2. The partial autocorrelation a(k) of {X,} at lag k is
a(k) = qbkki k z 13
where ¢y, is uniquely determined by (3.4.2).

The equivalence of Definitions 3.4.1 and 3.4.2 will be established in Chapter
5, Corollary 5.2.1. The sample partial autocorrelation function is defined
similarly.

Definition 3.4.3. The sample partial autocorrelation &(k) at lag k of
{x1,...,x,} is defined, provided x; # x; for some i and j, by

k)= by, 1<k<n,

where qﬁk,‘ is uniquely determined by (3.4.2) with each p{j) replaced by the
corresponding sample autocorrelation J(J).

§3.5 The AUIOCOVATNENLE \JITHTIdLLE L s

§3.5 The Autocovariance Generating Function

If {X.} is a stationary process with autocovariance function y(-), then its
autocovariance generating function is defined by

G E Y vt (35.1)

provided the series converges for all z in some annulus r* <.$z| < .rwith r>1,
Frequently the generating function is easy to (_:alcul‘atf:, in which case the
autocovariance at lag k may be determined by 1dent1fy.mg the coefﬁc:e_nt of
either z* or z~ X Clearly {X,} is white noise if and only if the autocovariance
generating function G(z) is constant for all z, If

X,= ¥ 4Z., {Z)~WNQe), (3.5.2)
j=—w
and there exists r > 1 such that
T Wir<w, rl<lz<r, (3.5.3)
j=-w
the generating function G(*) takes a very simple form. It is easy to see that

k) = CoviX,4y, X)) = 0? _ i Vilis s

j=-wo

and hence that

G{z)=a"-k_i i Vit

8

=0

n
|

V”jz + i i \!'fjll"jﬂ{zk + Z_k)]

{
=az(_=i '!’jzj) ki %Z_k)-

Defining
ol .
V@)= Y Wz, ri<lzd<r,

we can write this result more neatly in the form
Gl2)=c*Y(2(z™!), ri<lzl<r - (3.5.4)
ExampLE 3.5.1 (The Autocovariance Generating Function of an ARMA(p, q)

Process). By Theorem 3.1.3 and (3.1.21), any ARMA process (B X (= f(B)Z,
for which ¢(z) # 0 when |z| = 1 can be written in the form (3.5.2) with

W(z) = 0(2)/8(z),  ri<lzl<r
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for some r > 1. Hence from (3.5.4)
G(z) = 022—3—:%%, <zl < (3.5.5)
In particular for the MA(2) process
X =Z+60,Z_ +0,2_,,
we have
G(z) = o*(1 + Bz + 6,221 +6,271 + #,272)
= [(1+ 67 + 03 + (0, + 6,0,z + 2 1) + 0,22 + z )]
from which we immediately find that
WO) = a*(1 + 67 + 63),
W) =a?0,(1 + 6,),
W12 =06,

L

and

y(k} = 0 for |k| > 2.

ExaMPLE3.5.2. Let {X,} be the non-invertible MA(1) process
X=2Z-2Z,_,, {Z,} ~ WN(@, ¢?).
The process defined by
ZF:=(1~.5B) (1 -2B)Z,
=(1—-.5B)" lX: = Z (.S)jX,,J-,
=0
has autocovariance generating function,
(=251 —227Y)
(1= 521 — 5z 97
41 =221 - 227
(1—2z1 -2 7
= dg?,

It follows that {Z}} ~ WN(0,407) and hence that {X,} has the invertible
representation,

2

G(z)

2

X, =2*— 52*% .

A corresponding result for ARMA processes is contained in the following
proposition.

'
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Proposition 3.5.1. Let {X,} be the ARMA(p, q) process satisfying the equations
#B)X, = AB)Z,, {Z,} ~ WN(0, 5%),

where $(2) # 0 and 0(z) # 0 for all ze C such that |z| = 1. Then there exist
potynomials, @(z) and 6(z), nonzero for |z| < 1, of degree p and g respectively,
and a white noise sequence {Z}} guch that {X,} satisfies the causal invertible

equations

H(B)X, = {B)ZY.

proor. Define

- {1—a;z}
z) = ¢l2) —— L
v =e r<11=,(1 —a; '2)
x (1 —b,2)
fi(z) = 0(z) —,
' J:ISq(l — b 'z)
where @,, 4, ..., a, and b, ,, ..., b, are the zeroes of ¢(z) and 6(z) which lie

inside the unit circle. Since ¢(z) # 0 and 6(z) 0 for all |z| < 1, it suffices to
show that the process defined by

zr - W0y
(B)
(1 1—aB (l_[ 1—b,:‘BZ
T \ezpl—ai BN\ ok, 1 -b,B )

is white noise. Using the same calculation as in Example 3.5.2, we find that
the autocovariance generating function for {Z}} is given by

G(z)=02( 1 |aj|2)( I lbu*).

Since G{z) is constant, we conclude that {Z}} is white noise as asserted. []

§3.6* Homogencous Linear Pifference Equations
with Constant Coefficients

In this section we consider the solution {h,} of the k** order linear difference
equation ‘

ho+oh o+ ok, =0, teT, {3.6.1)
where ,, ..., o are real constants with &, # 0 and T is a subinterval of the

integers which without loss of generality we can assume to be [k, o0), (-0, oG}
or [k,k + r], r > 0. Introducing the backward shift operator B defined by
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equation (3.1.8), we can write (3.6.1) in the more compact form
alB)h, = 0, teT, (3.6.2)
where (B} =1+ a; B+ - + ¢, B

Definition 3.6.1. A set of m < k solutions, (A", ..., K™}, of (3.6.2) will be called
linearly independent if from

B 4k e, =0 foralle=0,1,... k1,

it follows that ¢, = ¢, = =¢,, = 0.

We note that if {h'} and {h?} are any two solutions of (3.6.2) then
{e h! + c,h?} is also a solution. Moreover for any specified values of
ho. hy, ..., hy_,, henceforth referred to as initial conditions, all the remaining
values h, t ¢ [0,k — 1], are uniquely determined by one or other of the recur-
sion relations

b= —ayh_y — o — b, t=kk+1,..., (3.6.3)

and
Olkh, = _th - aihukq — = dkvlh,+1, t = — I, —2, P (364)

Thus if we can find k linearly independent solutions {A{"),..., A%} of (3.6.2)
then by linear independence there will be exactly one set of coefficients ¢, .. .,
¢, such that the solution

hy=c hV + -+ + ¢ B, (3.6.5)

has prescribed initial values hy, h,, ..., h_,. Since these values uniquely
determine the entire sequence {h,} we conclude that (3.6.5} is the unique
solution of {3.6.2) satisfying the initial conditions. The remainder of this section
is therefore devoted to finding a set of k linearly independent solutions of (3.6.2).

Theorem 3.6.1. If h = (ap + a;t + -+ ajt/)ym' where ay, ..., a;, m are
(possibly complex-valued) constants, then there are constants by, ..., b_,
such that

{1 —mBYr, =(by + byt +--- + bj—ltj_l)m!
Proor.
(1 —mB)h = (ao + ayt + - + atIm' — m(ag + ay{t — 1) +
+at — 1Y)m'!

=m‘[2a(t —(t~ l)’)J

r=0

and Y J_qa(t" — (¢ — 1Y) is clearly a polynomial of degreej — 1. |
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Corollary 3.6.). The functions BP =ie™, j=0,1, ..., k—1 are k linearly
independent solutions of the difference equation

(1 — &' BYh, = 0. (3.6.6)
ProoF. Repeated application of #he operator (1 — £7' B) to hY in conjunction
with Theorem 3.6.1 establishes that h{? satisfies (3.6.6). If
(Co + it + o 1NE =0 fort=0,1,...,k—1,

then the polynomial Y523 ¢;17, which is of degree less than k, has k zeroes. This
is only possible if ¢y = ¢; =+ = -y = 0. -

Solution of the General Equation of Order k

For the general equation (3.6.2), the difference operator a(B)} can be written as
i
«(B) =[] (1 — &' By
i=1

where &, i = 1, ..., j are the distinct zeroes of a(z) and r; is the multiplicity of
¢, 1t follows from Corollary 3.6.1 that ¢ "t n=0,1, —-1L;i=1,...,],
are k solutions of the difference equation (3.6.2) since
a(Byerért =[] (1 — &7 By=(1 = &' Bye"& = 0.
S#EI
It is shown below in Theorem 3.6.2 and Corollary 3.6.2 that these solutions are
indeed linearly independent and hence that the general solution of (3.6.2) is

i cPE (36.7)

W M‘.

In order for this general solution to be real, the coefficients corresponding to
a pair of complex conjugate roots must themselves be complex conjugates.
More specifically if (;,Ej) is a pair of complex conjugate zeroes of a(z) and
¢; = dexplif}), then the corresponding terms in (3.6.7y are

ri—1 ri—1 _
Y cnt"E + z Cnt"E
n=0 =0
which can be rewritten as
ri—1

¥ 2[Re{c;)cos(8;) + Imc;,)sin(6:0)]e"d ™",
=0

or equivalently as
ri—1

Y ant"d 'cos(Bit + by,),
n=0

with appropriately chosen constants a,, and b;,.
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EXAMPLE 3.6.1. Suppose h, satisfies the first order linear difference equation
(1 - ¢"1B)h, = 0. Then the general solution is given by h, = C&E™ = hy&™,
Observe that if |£] > 1, then h, decays at an exponential rate as t — o,

ExampLE 3.6.2. Consider the second order difference equation (1 + o, B +
w,B2)h, = 0.8ince | + o, B + a3 B = (1 — &7 B)(1 — £3' B), the character of
the general solution will depend on &, and £,.

Case | &, and £, are real and distinct. In this case, h, = ¢, &7" + ¢, &7 where
¢, and ¢, are determined by the two initial conditions ¢, + ¢; = h,
and ¢, é7" + ¢,€3" = h,. These have a unique solution since &, # &,

Case2 &, =£,.Using(3.6.7)withj = landr, = 2wehaveh, = (¢g + ¢, 1)ET

Case 3 &, =&, =de" 0 < & < 2n. The solution can be written either as
cE7 + &1 or as the sinusoid A, = ad " cos(6t + b).

Observe that if |£,| >  and |£,| > 1, then in each of the three cases, h,
approaches zero at a geometric rate as ¢ — oo. In the third case, h, is a damped
sinusoid. More generally, if the roots of 2(z) lie outside the unit circle, then
the general solution is a sum of exponentially decaying functions and ex-
ponentially damped sinusoids.

We now return to the problem of establishing linear independence of the
solutions t"¢7,n=0,1,...,r,— Li=1,...,j of (3.6.2).

Theorem 3.6.2. If

9 F )
Y Y eytmi=0 fort=0,1,2,... (3.6.8)
=1 j=0
where my, m,, ..., m, are distinct numbers, then c; =0 forl=1,2,...,q

J=01,....p.
ProoF, Without loss of generality we can assume that {m,| = |myl 2 - =
[m,| > O. It will be sufficient to show that (3.6.8) implies that

¢ ; =0, i=0,...p {3.6.9)

since if this is the case then equations (3.6.8) reduce to

Mlﬂ
M

C,jljm{=0, t=0, 1,2,...,
i

)

2

[}

which in turn imply that ¢,; =0, j =0, ..., p. Repetition of this argument
shows then that¢; =0,j=0,...,p;l=1,...,4
To prove that {3.6.8} implies (3.6.9) we need to consider two separate cases.

Case 1 |my| > |m,|. Dividing each side of (3.6.8) by t?m] and letting ¢t — o0,
we find that ¢,, = 0. Setting c,, = 0 in (3.6.8), dividing each side by
t?"'m} and letting ¢ — co, we then obtain c,, = 0. Repeating the
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procedure with divisors P Im!, t"":*m'l, ...,m! (in that order) we find
thate,;=0,j=0,1,...,pas required. " e can
Case 2 [my|=|my| = =|m]> [myyy} > 0, wheres < ¢. Inthis case
write m; = re'% where —n <@ <7 and 0,, ..., 0, are all different.
Dividing each side of (3.6.8) by ¢?rt and letting t — oo we find that
W
5
Y oce 0 asi— oo (3.6.10)
=1
We shall now show that this is impossible unless ¢, , = Crp=""" T Cp = 0. Set
g = 2i-1 ¢ e and let A, n =0, 1, 2, ..., be the matrix
2l olfan prx
i¢ 1 ifa{n+1) idg(n+1)
P I A 3.6.11)
" : : :
eiﬁ.(n.‘h-—l) eiﬂz(n.+s—l) eiﬂ,(n+s—1]

Observe that det A, = ™" **)%(det 4,). The matrix A, is a Vandern?ondc
matrix (Birkhoff and Mac Lane (1965)) and hence has a non-zero determinant.
Applying Cramer’s rule to the equation

Clp gn
A" . = : )

Csp Gn+s—1
we have

o =AM (3.6.12)

P detA,
where
g, eiﬂzn s Ei?:’"
M = N ) -
Gpesey €7D L el

Since g, - 0 as n — <o, the numerator in (3.6.12) approaches zero while the
denominator remains bounded away from zero bcca}xsc |det 4,} = |det Ag| > 0.
Hence ¢,, must be zero. The same argument gpphcs to thc‘other coefficients
Caps -+ » Csp SHOWINg that they are all necessarily zero as Flalmed. ‘

We now divide (3.6.8) by t77'r' and repeat the preceding argument, letting

t — oo to deduce that

gift 0 ast— o0,

Mtn

Ci.p-1

1
and hence that ¢ ,-; =0,1=1,...,s. We then divide by t772r',..., r* (in that
order), repeating the argument at each stage to deduce that

ij:()q j:0:15"'1p and l=1’2’”"s'
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This shows that (3.6.8) implies (3.6.9) in this case, thereby completing the proof
of the theorem. 0O

Corollary 3.6.2. The k solutions t"&7, n=0,1, ..., rn—1,i=1,..., ], of the
difference equation (3.6.2) are linearly independent.

Proor. We must show that each c,, is zero il 3 Y rre, "¢ =0 for
t=0,1,..., k— 1. Setting k, equal to the double sum we have «(B}, =0

and hy = h, = - = h_, = 0. But by the recursions (3.6.3) and (3.6.4), this
necessarily implies that h, = 0 for all ¢. Direct application of Theorem 3.6.2
with p = max{r,,...,r;} completes the proof. M
Problems

3.1. Determine which of the following processes are causal and/or invertible:
(@ X, +.2X, ,— 48X, ,=2,
(by X, + 19X, ., + 88X, ,=2Z,+ 2Z,_,+ 7Z _,,
© X, +.6X_,=2Z+12Z_,,
d) X, + 18X, , + 81X, , =12,
(&) X, + 16X, , =2 — 4Z,_, + 04Z _,.

3.2. Show that in order for an AR(2) process with autoregressive polynomial ¢(z) =
1 — @,z — ¢;2% 1o be causal, the parameters {¢,,d,) must lic in the triangular
region determined by the intersection of the three regions,

b+, <1,
¢ — ¢ <1,
lg2] < 1.

@ Let {X,,t =0, +1,...} be the stationary solution of the non-causal AR(1)
~ equations,
X =¢X, .+ 2Z, {Z)}~WN@O9s), |¢>1
Show that {X,} also satisfies the causal AR (1) equations,
X, =¢7'X,_, +2Z, {Z}~WN(0,5%,
for a suitably chosen white noise process {Z,}. Determine 2.
@ Show that there is no stationary solution of the difference equations
X,=¢X,;,+ Z, {Z.} ~ WN(0,q2),
ifg=+1.

3.5 Let {¥,t=0,%1,...} be a stationary time series. Show that there exists a
stationary solution {X,} of the difference equations,

X—$X - =X ,=Y+8 ¥+ -+ @,Y .

ifg(z) =1 — ¢z — - — §,27 # Ofor|z| = |. Furthermore, if $(z) # Oforiz| < 1
show that {X,} is a causal function of {¥}.

3.6. Suppose that {X,} is the ARMA process defined by
SBX, = H(B)Z, {Z,} ~ WN(0,q?),

where ¢(-) and 6(') have no common zeroes and $(z) # 0 for fz| = 1 IF &(-} is
any polynomial such that é(z) # Ofor |z| = {, show that the difference equations,

f(&fﬁ(fﬂ)ﬁ = {(B)B(B)Z,
have the unique staticnary solution, {Y;} = {X,}.

3.7. Suppose { X, } is an invertible ARMA(p, g) process satisfying (3.1.4) with
Z, =% nX_,
=0

Show that the sequence {n;} is determined by the equations

minlg, f)

T+ k; Bem=—¢. Jj=01,...

where we define ¢, = —landek=0fork>qand¢,-=0forj>p.

@ The erjcess X =Z-Z_,, {Z,} ~ WN(0,52), is not invertible according to
Definition 3.1.4. Show however that Z, €3p{ X;, —o0 < j <t} by considering the
mean square limit of the sequence }7_o(1 — j/n)X,_; as n - oo,

\_3'9'} Suppose {X,} is the two-sided moving average

Xo= Y Wz,  {Z}~WNQ )
j=-m
where X|,| < 50, Show that Zf: —w |7(H)] < oo where y(-) is the autocovariance

- function of { X, }.
P

3' 3.10. /Lct {Y;} be a stationary zero-mean time series, Define

-

X =(1-4B)Y, =Y, - 47,
and
W, = {1 - 25B)Y, = Y, — 2.5Y,_,.
(a) Express the autocovariance functions of {X,} and {W)} in terms of the
autocovariance function of { ¥;}.
{b) Show that {X,} and {W,} have the same autocorrelation functions.
(c) Show that the process U, = -y, (-4 X,,, satisfies the difference equations
U, — 25U, =X,

{\3.1?1 ]7et {X,} be an ARMA process with ¢(z) 5 0, |z} = 1, and autocovariance func-
- tion (). Show that there exist constants € > { and se(0, 1) such that |y(h)| <
Cs™ h =0, +1,... and hence that Y2 __ |y({h)| < co.

3.12. For those processes in Problem 3.1 which are causal, compute and graph their
autocorrelation and partial autocorrelation functions using PEST,

3.13./ Find the coefficients ¥, 7 =0,1,2,..., in the representation

X = Z %2,
=0



3.14,

of the ARMA(2, 1) process,
{1 — 5B+ 04B%)X, =1{1 + 25B)Z,, {Z,} ~ WN(0,o?).
Find the autocovariances y(), j = 0, 1, 2, ..., of the AR(3) process,
{1 —.5B)(1 — 4B)(1 — .1B)X, = Z,, {Z,} ~ WN(O0, 1).

Check your answers for j = 0, ..., 4 with the aid of the program PEST.

: 3/8\ Find the mean and autocovariance function of the ARMA(2, 1) process,

3

3.16.

@
3.18.

319

3.20.

X,=2+413X,, — 48X, , + Z,+ Z_,,  {Z} ~ WN(0,0?).

Is the process causal and invertible?
Let {X,} be the ARMAC(1, 1} process,

X —o0X_ =Z+6Z_,, {Z}~WN({O0e?),

where |¢] < 1 and || < |. Determine the coefficients {i;} in Theorem 3.1.1
and show that the autocorrelation function of {X,} is given by p(l)=
(L + 60 (g + OY(1 + 6% + 2¢8), p(k) = ¢" ' p(l)for h = 1.

For an MA(2) process find the largest possible values of | p(1)] and | p(2)].
Let {X,} be the moving average process

X, =2Z,-22Z,_, {Z}~1D(@, 1.

(a) If Z*:= (1 — .5B)"'X,, show that
Zl* = Xl - P.lf;_|Xl!

where .#, , =sp{X,, —w <5<t}
(b) Conclude from (a} that

X, =ZF + 025,  {ZF) ~ WN(O,0?).

Specify the values of # and o2,

{c) Find the linear filter which relates {Z,} to {Z*}, i.e. determine the coeffi-
cients {a;} in the representation Z} =3 % __ a7, .

(d) If EZ? = ¢, compute E(Z¥1Z%). If ¢ # 0, are Z¢ and Z% independent? If
Z, ~ N{0, 1), are Zt and Z% independent?

Suppose that {X,} and {Y} are two zero-mean stationary processes with the
same autovariance function and that { ¥} is an ARMA(p, g) process. Show that
{X,} must also be an ARMA(p, q) process. (Hint: If ¢,,..., ¢, are the AR
coefficients for {¥}, show that {W:=X, — ¢, X, |, — - —¢,X,_,} has an
autocovariance function which is zero for lags (k| > g. Then apply Proposition
32.1to {W})
{a} Calculate the autocovariance function y(-) of the stationary time series
Y=p+Z,+0,Z_,+8,Z_,, {Z,} ~ WN(0, 7).

(b) Use program PEST to compute the sample mean and sample autocovari-
ances P(h),0 < h < 20, of {VV,, X,} where {X,,r = 1,...,72} is the accidental
deaths series of Example 1.1.6.

Fluvicita

321

3.22.

323

324,

{c) By equating $(1), $(11) and ${12) from part(b) to (1), y(11) and y(12) respec-
tively from part{a), find a model of the form defined in (a) to represent
{VV . X}

By matching the autocovariances and sample autocovariances at lags 0 and 1,
fit a model of the form
X, —n=9X, "+ 2,

to the strikes data of Example 1.1.3. Use the fitted model to compute the best
linear predictor of the number of strikes in 1981. Estimate the mean squared
error of your predictor.

£Z,) ~ WN(0,62),

X =2-8Z_,{Z)~WN(0es%) and |f] < 1, show from the prediction
equations that the best linear predictor of X,,,, in §p{X,,..., X, } is

Xn+1 = Z ¢J‘Xn+1*j=
J=1

where ¢,, ..., ¢, satisfy the difference equations,

04y +(1+ 004, — 04, =0, 2<jsn-1,

with boundary conditions,

(1 + 6°)¢, — B¢, =0
and

{1 + 0%)¢, — 64, = —86.

Use Definition 3.4.2 and the results of Problem 3.22 to determine the partial
autocorrelation function of a moving average of order L.

Let { X,} be the stationary solution of #(B)X, = 8(B)Z,, where {Z,} ~ WN(0, &),
#(z2) # Oforall ze C such that |z| = 1, and ¢(-) and #(-) have no common zeroes.
If A is any zero-mean random variable in L? which is uncorrelated with {X,}
and if |z5] = 1, show that the process {X, + Az§} is a complex-valued sta-
tionary process (see Definition 4.1.1) and that {X, + 425} and {X,} both satisfy
the equations (1 — z,B)¢(B) X, = (1 — zo B)8(B)Z,.
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Computation of this predictor using the time-domain methods of Section 5.1
is a considerably more difficult task.

EXaMPLE 5.6.2 (Prediction of an ARMA Process). Consider the causal inver-
tible ARMA process,

¢(B)X, = 0(B)Z, {Z)~ WN(0,0?)

with spectral density

f() = a(Dald), (5.6.9)
where
a(h) = 20) 20 3 Yo (56.10)
k=0

and Y2, Wi z* = 8(2)/¢(z), |z] < 1. Convergence of the scries in (5.6.10) is
uniform on [ — n, #] since, by the causality assumption, Y || < co.
The function g(-} = Pepfexpiir-). o <r<ay@ ™ must satisfy

J" (@ g())e™a(Da(A)dA =0, m<n (5611

This equation implies that (e“**" — g(-))a(-)a(-) is an element of the
subspace #, = sp{exp(im-), m > n} of L*([—=n,x], #,dA). Noting from
(5.6.10) that 1/a(-)esp{exp(im-), m > 0}, we deduce that the function
(e*"*® — g(-))a(*) is also an element of .#, . Let us now write

e MAg(l) = g(Mald) + (4 — g(W)a(A), (5.6.12)
observing that g(-)a(-) is orthogonal to .4, (in L?(d2)). But from (5.6.10),

e ™Nig()) = (2m) Poe™ Y e, (5.6.13)

k=—h

and since the element """ a(-) of L?(d4) has a unique representation as a
sum of two components, onc in .#, and one orthogonal to .#,, we can
immediately make the identification,

g(Na(d) = 2n) Pgei™ i Viope
K=o
Using (5.6.10) again we obtain
g(2) = e [ple™*)/b(e™)] ki Yerne 54,
ie.

J

g = 3 e (5.6.14)
=0

where Y % o027 = [¢(2)/8(2)] X% 0 Vernz®, 12| < 1. Applying the mapping I to
each side of {5.6.14) and using (5.6.2) and (5.6.3), we conclude that

§5.7.* Lhe wola Lxecomposition 1oy

Rl,‘XrH'h = z O:J'X,,fj. (5615}
=0

It is not difficult to check (Problem 5.17) that this result is equivalent to (5.5.4).

§5.7* The Wold Decomposition

In Example 5.6.1, the values X, ., j > 1, of the process { X, t€ Z} were perfectly
prcdictable in terms of elements of 4, = sp{X,, —c0 < t < n}. Such processes
are called deterministic. Any zero-mean stationary process {X,} which is not
deterministic can be expressed as a sum X, = U, + ¥V, of an MA(co) process
{U,} and a deterministic process {¥;} which is uncorrelated with {U,}. In the
statement and proof of this decomposition {Theorem 5.7.1) we shall use the
notation ¢? for the one-step mean squared error,

0.2 = E|Xn+l - P.A‘,,Xn+lizs
and .#_,, for the closed linear subspace,
o
M_ = N M,

of the Hilbert space .# = 3p{X,,te Z}. All subspaces and orthogonal com-
plements should be interpreted as relative to .#. For orthogona] subspaces
F, and &, we define & @ %, = {x + y:xe ¥ and ye &%, }.

Remark 1. The process {X,} is said to be deterministic if and only if o2 = 0,
or equivalently if and only if X, e #__, for each ¢ (Problem 5.18).

Theorem 5.7.1 (The Wold Decpmposition). If 62 > 0 then X, can be expressed

as
! ©
X, = _ZodljZ._; V. (5.7.1)
=V L .
where o
() yo=1 and 3 ¢} < 0,
=0
(ii) {Z,} ~ WN(0,0?),
(iily Z, e .#, foreachte?,
(iv) E(ZV)=0 Joralls teZ,
(vi Ve d#l_ ., foreachieZ,
and

(vi) {V} is deterministic.
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((v) and (vi) are not the same since M __ is defined in terms of {X,}, noy

{V.}) The sequences {y;}, {Z,} and {V} are uniquely determined by (5.7.1} ang
the conditions (i)—(vi).

PRrOOF. We first show that the sequences defined by

Zl = Xr - P..#,,,Xza (572)
'//j = <XreZ:—j>/°'2 (5.7.3}

and
V=X, — ,-;o Wz, (5.7.4)

§atisfy (5.7’.1} and conditions (i)—(vi). The proof is then completed by establish-
ing the uniqueness of the three sequences,

Clearly Z, as defined by (5.7.2) is an element of #, and is orthogonal tg
#,_, by the definition of Py, X, Hence

ZieMl o ML, -,
whicl‘lnshows that for s < t, E(Z,Z,) = 0. By Problem 5.19 this establishes (i)
and (iii). Now by Theorem 2.4.2(ii) we can write
Posty, < X, = ,-i ¥z, (5.7.5)
where i, is defined by (5.7.3) and } %2047 < co. The coefficients Y, are inde-
pendent of ¢ by stationarity and
o= 072X X, ~ Py XD =0|X,— Py X% =1L
Equations (5.7.4) and (5.7.5) and the definition of Fis(z, <0y X. imply that
V.Z>=0 fors<it.
Onthe otherhandifs > ¢, Z,e .4}, < 421, and since V, € #, we conclude that
VZ>=0 fors>t

e}sltablishing (iv.} To establish (v) and (vi) it will suffice (by Remark 1} to show
that

sp{Vj<t}=M_, foreveryt (5.7.6)
Since Ve.#, = 4, , @3sp{Z} and since {V,Z)> =0, we conclude that
Vied,, = #,_, ®5p{Z,_,}. But since V.2, > =0 it then follows that

Vie .#,_,. Continuing with this argument we see that Vie.#,_;foreachj = 0,
whence Ve (V2 .#,_; = #_,. Thus

Sp{Vj<t}<.#_, foreveryr. (5.7.7)

Now by (5.74), #,=5p{Z,j<1) @SpiV,.j<t}. Il Ye#_, then Ye. 4,
for every s, so that (¥, Z.> = Ofor every s, and consequently Yesp{V,,j < 1}.

e com—————
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But this means that
M_, <=5p{V, i<t} foreveryt, (5.7.8)

1

which completes the proof of (5.7.6} and hence of {v) and (vi).

To establish uniqueness we observe from (5.7.1) that if {Z,} and {V}
are any sequences satisfying (5.7.1) and having the properties (i)-(vi), then
M, S5P1Z,j <t~ 1} @5p{V,,j < t — 1} from which it follows, using (i)
and (iv), that Z, is orthogonal to .#,_,. Projecting each side of (5.7.1) onto
#,, and subtracting the resulting equation from (5.7.1), we then find that the
process {Z, } must satisfy (5.7.2). By taking inner products of each side of (5.7.1}
with Z,_, we see that ¢, must also satisfy (5.7.3). Finally, if (5.7.1) is to hold, it
is obviously necessary that ¥, must be defined as in (5.7.4). O

In the course of the preceding proof we have established a number of results
which are worth collecting together as a corollary,

Corollary 5.7.1

(@) sp{V.j <t} = M_,, foreveryt.

by #,=SP{Z,j <1} DA ..

(©) AL, =3p{Z,jeZ}.

(d) sp{U;J <t} = 5p{Z;,j < t}, where U, = 3 202, ;.

PROOF.

(a) This is a restatement of (5.7.6}.

(b} Use part (a) together with the relation, #, = $p{Z;,j < 1} @ sp{V,.j < t}.
(c) Observe that # =3Sp{X,,1cZ} =Sp{Z,tc7)® H_,.

(d) This follows from the fact that .#, = 3p{U,,j < t} @ A__. Ol

In view of part (b) of the corollary it is now possible to interpret the
representation (5.7.1) as the decomposition of the subspace .#, into two
orthogonal subspaces 5p{Z;,j < t} and .#_,.

A stationary process is said to be purely non-deterministic if and only
if #_,=1{0}. In this case the Wold decomposition has no determin-
istic component, and the process can be represented as an MA(w), X, =
Y 2o¥;Z.-;. Many of the time series dealt with in this book (e.g. ARMA
processes) are purely non-deterministic.

Observe that the h-step predictor for the process (5.7.1) is

Py Xin= .Z;I'I"jzuhwj + Viw
=

since Z; 1 .#, for all j < t, and V,,,€.#,. The corresponding mean squared
eIror is
h-1

0

h-1
'rf/jzuh-j) =0’ Z '3[’12’

§=0

IXeen — Pa X, ial®> = Var(

J
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which should be compared with the result (5.5.5). For a purely non-deterministic
process it is clear that the A-step prediction mean squared error converges as

h — o0 to the variance of the process. In general we have from part (d) of
Corollary 5.7.1,

Piﬁ{uj.js:}Uru = Ps—p{z,,jg}Um. = 'Z;. w_jzwh—j’
i=

which shows that the h-step prediction error for the {U,} sequence coincides
with that of the {X,} process. This is not unexpected since the purely deter-
ministic component does not contribute to the prediction error.

ExampLE 5.7.1. Consider the stationary process X, = Z, + ¥, where {Z,} ~

WN(0,0%), {Z,} is uncorrelated with the random variable ¥ and ¥ has mean
zero and variance o2, Since

| it}

11 .
—ZX,_J:LZZ,_JA- YES Y,
nj=o ni=0

it follows that Ye #, forevery t. Also Z, | .# fors <tso Z, L # . Hence
Y = P, X, is the deterministic component of the Wold decomposition and
Z, = X, — Y is the purely non-deterministic component.

For a stationary process {X,]} satisfying the hypotheses of Theorem 5.7.1,
the spectral distribution function Fy Is the sum of two spectral distribution
functions Fy, and F, corresponding to the two components U, = Zj‘;o ¥, Z,;
and ¥V, appearing in {5.7.1) (see Problem 4.7). From Chapter 4, F, is absolutely
continuous with respect to Lebesgue measure and has the spectral density

Jold) = (™) 0?/2n),  where y(e ) = iﬁ%e—‘“- (5.7.9)
F=

On the other hand, the spectral distribution F,, has no absolutely continuous
compoenent (see Doob (1953)). Consequently the Wold decomposition of a
stationary process is analogous to the Lebesgue decomposition of the spectral

measure into its absolutely continuous and singular parts. We state this as a
theorem.

Theorem 5.7.2. If o2 > 0, then
Frk=F,+F,

where Iy, and F, are respectively the absolutely continuous and singular com-

ponents in the Lebesgue decomposition of Fy. The density function associated
with Fy, is defined by (5.7.9).

The requirement a2 > 0 is critical in the above theorem. In other words it
is possible for a deterministic process to have an absolutely continuous
spectral distribution function. This is illustrated by Example 5.6.1. In the next
section, a formula for ¢? will be given in terms of the derivative of F; which
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alid even in the case o = 0. This immediately yields a necessary and
i V - - . -
lssumcicm criterion for a stationary process to be deterministic.

§5.8* Kolmogorov’s Formula

l-valued zero-mean stationary process with spectral distri-
ut'{ﬁlgu:zt?o;eix and let / denote the derivative of Fy (defined everywhere
out? n] except possibly on a set of Lebesgue measure zero). Wf" shall
o [femto simplify the proof of the following theorem, that f is continuous
assum;r n] and is bounded away from zero. Since {X,} is real, we must have
j’?jl):: j" (—A),0<i<nFora general proof, see Hannan (1970} or Ash and

Gardner (1975).

Theorem 5.8.1 (K olmogorov's Formula). The one-step mean square prediction
error of the stationary process {X.}is

g2 = 2mexp {217: jtr lnf(l)di}. (5:8.1)

proor. Using a Taylor series expansion of In(l —2) for |z| < 1 and the
identity j"_,te"“ di = 0, k # 0, we have for |a| < L,

j\n in|l — ae”*dA = J In(1 — ae” )1 — de*) dA

-

13 o ale —iid 0 5"9"“')
- + di
j._ ,,(jgl J .kgl k

= 0. {5.8.2)
i isfyi = here {Z,} ~ WN(0, ¢%)
X an AR(p) process satisfying HBX,=Z,, W ]
ifnil g{;§= 1— gz —-— ¢zt #0 for jz] <1, then {X,} has spectral
density,
2
a? i —ipy-2 =% | — ge U472,
g(l)=ﬂll—¢1€ l_"'_(ﬁpe P 21t£[1| ¢] !
where |¢;] < 1,j=1....p Hence 2
x n 2 P x . P
In g(d)dA = nodl— Y j Injt —aye u‘|2dz1=2ﬂ:ln5—£,
- ~-n 2?[ =1 d-=n

ishi ’ 1 AR processes.
establishing Kolmogorev's formula for causa :
Under the assumptions made on f, it 1s clear that min . cacxf .().} >AO.
Moreover, it is easily shown from Corollary 4.4.2 that for any £ € (0, min f(4)),

[ 2
there exist causal AR processes with spectral densities gt!*and g{*' such that

fA)—e< gV < A < gPA < fA) + & (5.8.3)
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Now define
oalf) = E[(X, — Poix . x_y X)%
= min E(Xr - I::‘I‘erl - Cn‘)(r‘rr)2
= min f [1—ce ... _ cre ") da
Claares Cn -T

By (5.8.3) and the definition of (),

(98"} < 62(f) < o2g?),

SiHCC, bY PrOblem 2-185 Uf(f) i O.Z(f) = E[(Xr - Pﬁ(x_,, —w <s<r}Xr)2]a

aX(g") < a¥(f) < a¥g?), (58.4)
However we have already established that
. 1 (= .
cHg™ = 2n exp{; f In g'3 1) di}, i=1,2
Tr -n

If follows therefore from (5.8.4) that o2
€= 0, of o%(g!") and oy, je.

63 f)=2n exp{—lfﬂ lnf(»l)di}. 0
2n J__

Remark 1. Notice that — o < Inf(A)di < oo since In FA) < f(A). 17
[Flnfyda = —o0, the theorem is still true with g2 — 0. Thus

(/) must equal the common limit, a5

62> 0 ifand only if f Inf(1)dA > —ep,

-

and in this case (4} > 0 almost everywhere.

Remark 2. Equation (5.8.1) was first derived by Szegé in the absolutely
continous case and was later extended by Kolmogorov to the general case,
In the literature however it is usually referred to ag Kolmogerov's formula,

EXAMPLE 5.8.1. For the process defined in Example 5.7.1, F (d4) = ¢2 di/2n
and F,(d}) = 0280(d4) where 9, is the unit mass at the origin. Not surprisingly,
the one-step mean square prediction error is therefore

mexpla [ 1n( %Y gl = 2
ann_,,n2E = g2

Problems

51 Let{X,} beca stationary process with mean i Show that
ﬁi{l,x,....,x"}Xn+n =k gy, ¥ol Yotns
where (Y} < (X, — u).

193
problems

i subspaces of a Hilbert space »#
* SL_’Ppose thgt iﬁ‘rh; }z,e jﬁ.lj: Zeiuf,llze.(.).r. LbelpJf; be the smallest closed
e thec%rfjpf containing'I O)ﬁ,, and let X be an element of #. If P, X and P_ X
Subst[}]licprojzec:lion:s of X onto 4, and 3, respectively, show that
?ar; PLX, (P, — PX, (PJ2 — P;)X, ..., are orthogonal,
(b) Z;’L 1B — E)XH < O
and
() P,X » P X. |
that the converse of Proposition S.I.I~ is not true by constructing a
> Stl;‘?i‘;nary process {X,} such that T, is non-singular for all n and y(h) 40 as
$
- i i ith mean zero and spectral density
5.4. Suppose that {X,} Is a stationary process wit

Sxd) = (m — [Ay/=?, -l

Find the coefficients {8,,j=1,.._,i;i =1,...,5} and the mean squared errors

{v,i= 0,....,5}
5.5. Let { X,} be the MA(1} process of Example 5.2.1. I |8] < 1, show that as n—+ <o,
5. '

(3) “Xn W Xn - Znn _’0'

(b) v, %,

d B - - .

?ct; 8,, — 6. (Note that 0 = E(X,,, Z,)a” 2 and 8,; = v; " E(X,, (X, — X))

5.6. Let {X,} be the invertible MA(q) process
6. 2
X =Z+8Z + - +8Z_, {Z,} ~ WN(0,6%).
Show that as n — oo,
@ X, - X, — Zl -0,
b} v, = %,
d that )
?cr)1 there exist constants K > Oand ¢ €{0, 1)such that |6,; — 0,| < Kc"forall .
i i .3.21).
5.7. Verify equations (5.3.20) and (5
- — 954, 576
— —1.573, 852, —.907, .686, —.753, —.954, .576,
.8. The values .644, — 442, — 519, , :
> arces;‘mulaled values of X,..., X;, where {X,} is the ARMA(2, 1) process,
X —-1X,_,—-12X,_,=2-.12Z,_,, {Z,}) ~ WN(O, 1)

di
{a} Compute the forecasts P, X, P,oX,; and P,, X, and the corresponding

ean squared errors. o
(b) stsumi?lg that Z, ~ N{0, 1), construct 95%, prediction bounds for X, X,,

d X, L _
(c} iajnsing 1tl3'1e method of Problem 5.15, compute X[, X[, and X5 and compare

these values with those obtained in (a). . B
[The simulated values of X, X, and X, , werein fact .074,1.097 and —.187

respectively.]

1 lues —1.222, 1.707, 049,
ts (a)—(c) of Problem 5.8 for the simulated va
* ?;ggat—p;g:l(a).’n.((m)l, —1.012, —.779, 1.837, —3.693 of X|, ..., X4, where {X,}

is the MA(2) process
X=Z - 11Z_, + 282 _,, {Z,} ~ WN(0,1).



