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Abstract 

This paper surveys three topics: vector autoregressive (VAR) models with integrated 
regressors, cointegration, and structural VAR modeling. The paper begins by 
developing methods to study potential “unit root” problems in multivariate models, 
and then presents a simple set of rules designed to help applied researchers conduct 
inference in VARs. A large number of examples are studied, including tests for 
Granger causality, tests for VAR lag length, spurious regressions and OLS estimators 
of cointegrating vectors. The survey of cointegration begins with four alternative 
representations of cointegrated systems: the vector error correction model (VECM), 
and the moving average, common trends and triangular representations. A variety 
of tests for cointegration and efficient estimators for cointegrating vectors are 
developed and compared. Finally, structural VAR modeling is surveyed, with an 
emphasis on interpretation, econometric identification and construction of efficient 
estimators. Each section of this survey is largely self-contained. Inference in VARs 
with integrated regressors is covered in Section 2, cointegration is surveyed in 
Section 3, and structural VAR modeling is the subject of Section 4. 

1. Introduction 

Multivariate time series methods are widely used by empirical economists, and 
econometricians have focused a great deal of attention at refining and extending 
these techniques so that they are well suited for answering economic questions. 
This paper surveys two of the most important recent developments in this area: 
vector autoregressions and cointegration. 

Vector autoregressions (VARs) were introduced into empirical economics by 
Sims (1980), who demonstrated that VARs provide a flexible and tractable frame- 
work for analyzing economic time series. Cointegration was introduced in a series 
of papers by Granger (1983) Granger and Weiss (1983) and Engle and Granger 
(1987). These papers developed a very useful probability structure for analyzing 
both long-run and short-run economic relations. 

Empirical researchers immediately began experimenting with these new models, 

and econometricians began studying the unique problems that they raise for econo- 
metric identification, estimation and statistical inference. Identification problems 
had to be confronted immediately in VARs. Since these models don’t dichotomize 
variables into “endogenous” and “exogenous,” the exclusion restrictions used to 
identify traditional simultaneous equations models make little sense. Alternative 
sets of restrictions, typically involving the covariance matrix of the errors, have 
been used instead. Problems in statistical inference immediately confronted 
researchers using cointegrated models. At the heart of cointegrated models are 
“integrated” variables, and statistics constructed from integrated variables often 
behave in nonstandard ways. “Unit root” problems are present and a large research 
effort has attempted to understand and deal with these problems. 

This paper is a survey of some of the developments in VARs and cointegration 
that have occurred since the early 1980s. Because of space and time constraints, 
certain topics have been omitted. For example, there is no discussion of forecasting 
or data analysis; the paper focuses entirely on structural inference. Empirical 
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proposition is testable without a complete specification of the structural model. 
The basic idea is that when money and output are integrated, the historical data 
contain permanent shocks. Long-run neutrality can be investigated by examining 
the relationship between the permanent changes in money and output. This raises 
two important econometric questions. First, how can the permanent changes in 
the variables be extracted from the historical time series? Second, the neutrality 

proposition involves “exogenous” components of changes in money; can these 
components be econometrically identified? The first question is addressed in Section 
3, where, among other topics, trend extraction in integrated processes is discussed. 
The second question concerns structural identification and is discussed in Section 4. 

One important restriction of economic theory is that certain “Great Ratios” are 

stable. In the eight-variable system, five of these restrictions are noteworthy. The 
first four are suggested by the standard neoclassical growth model. In response 
to exogenous growth in productivity and population, the neoclassical growth 
model predicts that output, consumption and investment will grow in a balanced 
way. That is, even though y,, c,, and i, increase permanently in response to increases 
in productivity and population, there are no permanent shifts in c, - y, and i, - y,. 
The model also predicts that the marginal product of capital will be stable in the 

long run, suggesting that similar long-run stability will be present in ex-post real 
interest rates, r - Ap. Absent long-run frictions in competitive labor markets, 
real wages equal the marginal product of labor. Thus, when the production func- 
tion is Cobb-Douglas (so that marginal and average products are proportional), 
(w - p) - (y - n) is stable in the long run. Finally, many macroeconomic models 
of money [e.g. Lucas (1988)] imply a stable long-run relation between real balances 
(m - p), output (y) and nominal interest rates (r), such as m - p = /3,y + &r; that 
is, these models imply a stable long-run “money demand” equation. 

Kosobud and Klein (1961) contains one of the first systematic investigations of 
these stability propositions. They tested whether the deterministic growth rates in 
the series were consistent with the propositions. However, in models with stochastic 
growth, the stability propositions also restrict the stochastic trends in the variables. 
These restrictions can be described succinctly. Let x, denote the 8 x 1 vector 

(y,, c,, i,, n,, w,, m,, pr, rJ. Assume that the forcing processes of the system (productivity, 
population, outside money, etc.) are such that the elements of x, are potentially 
I(1). The five stability propositions imply that z, = CL’X, is I(O), where 

cI= 

1 1 -1 -0, 0 

-1 0 0 0 0 

o-1 0 00 

0 0 100 

0 0 100 

0 0 0 10 

0 0 -1 -1 0 

0 0 0 -B, 1 
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The first two columns of IX are the balanced growth restrictions, the third column 
is the real wage - average labor productivity restriction, the fourth column is stable 
long-run money demand restriction, and the last column restricts nominal interest 
rates to be I(0). If money and prices are I(l), Ap is I(0) so that stationary real rates 
imply stationary nominal rates.’ 

These restrictions raise two econometric questions. First, how should the stability 
hypotheses be tested? This is answered in Section 3.3 which discusses tests for 
cointegration. Second, how should the coefficients /?, and p, be estimated from the 
data, and how should inference about their values be carried out?* This is the subject 
of Section 3.4 which considers the problem of estimating cointegrating vectors. 

In addition to these narrow questions, there are two broad and arguably more 
important questions about the business cycle behavior of the system. First, how 
do the variables respond dynamically to exogenous shocks? Do prices respond 
sluggishly to exogenous changes in money? Does output respond at all? And if 
so, for how long? Second, what are the important sources of fluctuations in the 
variables. Are business cycles largely the result of supply shocks, like shocks to 
productivity? Or do aggregate demand shocks, associated with monetary and fiscal 
policy, play the dominant role in the business cycle? 

If the exogenous shocks of econometric interest ~ supply shocks, monetary 

shocks, etc. ~ can be related to one-step-ahead forecast errors, then VAR models 
can be used to answer these questions. The VAR, together with a function relating 
the one-step-ahead forecast errors to exogenous structural shocks is called a 
“structural” VAR. The first question ~ what is the dynamic response of the variables 
to exogenous shocks? ~ is answered by the moving average representation of the 
structural VAR model and its associated impulse response functions. The second 
question - what are the important sources of economic fluctuations? ~ is answered 
by the structural VAR’s variance decompositions. Section 4 shows how the impulse 
responses and variance decompositions can be computed from the VAR. Their 
calculation and interpretation are straightforward. The more interesting econometric 
questions involve issues of identification and efficient estimation in structural VAR 
models. The bulk of Section 4 is devoted to these topics. 

Before proceeding to the body of the survey, three organizational comments are 
useful. First, the sections of this survey are largely self contained. This means that 

the reader interested in structural VARs can skip Sections 2 and 3 and proceed 
directly to Section 4. The only exception to this is that certain results on inference 
in cointegrated systems, discussed in Section 3, rely on asymptotic results from 
Section 2. If the reader is willing to take these results on faith, Section 3 can be 
read without the benefit of Section 2. The second comment is that Sections 2 and 

‘Since nominal rates are I(0) from the last column of a, the long run interest semielasticity of money 
demand, fi,, need not appear in the fourth column of a. 

‘The values of BY and b, are important to macroeconomists because they determine (i) the relation- 
ship between the average growth rate of money, output and prices and (ii) the steady-state amount of 
seignorage associated with any given level of money growth. 
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3 are written at a somewhat higher level than Section 4. Sections 2 and 3 are based 
on lecture notes developed for a second year graduate econometrics course and 
assumes that students have completed a traditional first year econometrics 
sequence. Section 4, on structural VARs, is based on lecture notes from a first 

year graduate course in macroeconomics and assumes only that students have a 
basic understanding of econometrics at the level of simultaneous equations. Finally, 
this survey focuses only on the classical statistical analysis of I(1) and I(0) systems. 
Many of the results presented here have been extended to higher order integrated 
systems, and these extensions will be mentioned where appropriate. 

2. Inference in VARs with integrated regressors 

2.1. Introductory comments 

Time series regressions that include integrated variables can behave very differently 
than standard regression models. The simplest example of this is the AR( 1) regression: 
y, = py,- 1 + E,, where p = 1 and E, is independent and identically distributed with 
mean zero and variance g2, i.i.d.(0,a2). As Stock shows in his chapter of the 
Handbook, p, the ordinary least squares (OLS) estimator of p, has a non-normal 
asymptotic distribution, is asymptotically biased, and yet is “super consistent,” 
converging to its true value at rate T. 

Estimated coefficients in VARs with integrated components, can also behave 
differently than estimators in covariance stationary VARs. In particular, some of 

the estimated coefficients behave like p, with non-normal asymptotic distributions, 
while other estimated coefficients behave in the standard way, with asymptotic 
normal large sample distributions. This has profound consequences for carrying 
out statistical inference, since in some instances, the usual test statistics will not 
have asymptotic x2 distributions, while in other circumstances they will. For 
example, Granger causality test statistics will often have nonstandard asymptotic 
distributions, so that conducting inference using critical values from the x2 table 
is incorrect. On the other hand, test statistics for lag length in the VAR will usually 
be distributed x2 in large samples. This section investigates these subtleties, with 
the objective of developing a set of simple guidelines that can be used for conducting 
inference in VARs with integrated components. We do this by studying a .model 
composed of I(0) and I(1) variables. Although results are available for higher order 
integrated systems [see Park and Phillips (1988, 1989), Sims et al. (1990) and Tsay 
and Tiao (1990)], limiting attention to I(1) processes greatly simplifies the notation 
with little loss of insight. 

2.2. An example 

Many of the complications in statistical inference that arise in VARs with unit 
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roots can be analyzed in a simple univariate AR(2) model3 

Y,=4lY,-, + 42Yt-2 + ‘I,. (2.1) 

Assume that #i + $2 = 1 and Ic$~/ < 1, so that process contains one unit root. To 
keep things simple, assume that qr is i.i.d.(O, 1) and normally distributed [n.i.i.d.(O, l)]. 
Let x, = (y,_ 1 yt_ 2)’ and C$ = (4i 42)‘, so that the OLS estimator is 4 = (Cx,xi)- ’ x 

(CX,Y,) and (4~ - 4) = (Cx,x:)-‘(C-V,). (U n ess 1 noted otherwise, C will denote 

x:,‘=, throughout this paper.) 
In the covariance stationary model, the large sample distribution of C$ is deduced 

by writing T1’2($ - 4) = (~~‘~x,x~)~‘(~~“*~x~~~), and then using a law oflarge 

numbers to show that T-‘Cx,x; A E(x,xj) = V, and a central limit theorem to 
show that T-112C~,q, -%N(O, V). These results, together with Slutsky’s theorem, 

imply that T1j2($ - 4) %N(O, V-l). 
When the process contains a unit root, this argument fails. The most obvious 

reason is that, when p = 1, E(x,x:) is not constant, but rather grows with t. Because 
of this, T-‘Cx,x: and Tel”Cxtqt no longer converge: convergence requires that 
Cxrxi be divided by T2 instead of T, and that CXJ, be divided by T instead of 
T’12. Moreover, even with these new scale factors, Tp2Cx,xi converges to a 
random matrix rather than a constant, and T- ’ Cx,q, converges to a non-normal 
random vector. 

However, even this argument is too simple, since the standard approach can be 

applied to a specific linear combination of the regressors. To see this, rearrange 
the regressors in (2.1) so that 

Y, = Y~AY,-~ +Y*Yt-I +rll, (2.2) 

where yi = - d2 and y2 = C#J~ + b2. Regression (2.2) is equivalent to regression (2.1) 

in the sense that the OLS estimates of 4i and 42 are linear transformations of 
the OLS estimators of yi and y2. In terms of the transformed regressors 

(2.3) 

and the asymptotic behavior of pi and f2 (and hence 6) can be analyzed by studying 
the large sample behavior of the cross products CAY:_,,CAY,_,Y,-,,CY:-,, 

CAY~-~V~ and CY,-in,. 
To begin, consider the terms CAY:_ 1 and CAY,_ lvr. Since 41 + 42 = y2 = 1, 

AY, = - 42Ayr_l + nl. (2.4) 

3Many of the insights developed by analyzing this example are discussed in Fuller (1976) and Sims 
(1978). 
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Since 1 c$~ 1 < 1, Ayt (and hence Ay,_ , ) is covariance stationary with mean zero. 
Thus, standard asymptotic arguments imply that T- ‘CAY:_ 1 An& and 
T-“*CAy,_ iqt %N(O,G&). This means that the first regressor in (2.2) behaves 

in the usual way. “Unit root” complications arise only because of the second 
regressor, y, _ 1. To analyze the behavior of this regressor, solve (2.4) backwards 
for the level of y,: 

y,=u +dQ-151+Yo+s,> (2.5) 

where rl=Ci=iyls and s,= -(l +(p2)-1C~~~(-~2)i+1ylt_i, and vi=0 for ib0 
has been assumed for simplicity. Equation (2.5) is the BeveridgeeNelson (1981) 
decomposition of y,. It decomposes y, into the sum of a martingale or “stochastic 
trend” [(l + 4,)) ‘&I, a constant (y,) and an I(0) component (s,). The martingale 
component has a variance that grows with t, and (as is shown below) it is this 
component that leads to the nonstandard behavior of the cross products Cy:_ i, 

CY~-~AY~-~ and D-i% 
Other types of trending regressors also arise naturally in time series models and 

their presence affects the sampling distribution of coefficient estimators. For 
example, suppose that the AR(2) model includes a constant, so that 

Y,=~+~,AY,-,+y,y,~,+~lr. (2.6) 

This constant introduces two additional complications. First, a column of l’s must 
be added to the list of regressors. Second, solving for the level of y, as above: 

y,=(l + $+-iClt+(l + &-14,+yo+st. (2.7) 

The key difference between (2.5) and (2.7) is that now y, contains the linear trend 
(1 + 4*)-l~lt. This means that terms involving yrP 1 now contain cross products 
that involve linear time trends. Estimators of the coefficients in equation (2.6) can 
be studied systematically by investigating the behavior of cross products of(i) zero 
mean stationary components (like qt and Ay,_ i), (ii) constant terms, (iii) martingal,es 
and (iv) time trends. We digress to present a useful lemma that shows the limiting 
behavior of these cross products. This lemma is the key to deriving the asymptotic 
distribution for coefficient estimators and test statistics for linear regressions 
involving I(0) and I(1) variables, for tests for cointegration and for estimators of 
cointegrating vectors. While the AR(2) example involves a scalar process, most of 
the models considered in this survey are multivariate, and so the lemma is stated 

for vector processes. 

2.3. A useful lemma 

Three key results are used in the lemma. The first is the functional central limit 
theorem. Letting qt denote an n x 1 martingale difference sequence, this theorem 
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expresses the limiting behavior of the sequence of partial sums 5, = xi= tqs, 
t= l,..., T, in terms of the behavior of an II x 1 standardized Wiener or Brownian 
motion process B(s) for 0 <s < 1.4 That is, the limiting behavior of the discrete 
time random walk 5, is expressed in terms of the continuous time random walk 
B(s). The result implies, for example, that T 1’2iJ,sTl *B(s) - N(0, s), for 0 < s < 1, 
where [ST] denotes the first integer less than or equal to ST. The second result used 
in the lemma is the continuous mapping theorem. Loosely, this theorem says that 
the limit of a continuous function is equal to the function evaluated at the limit of 
its arguments. The nonstochastic version of this theorem implies that T “C,‘= 1 t = 
T-‘~T=I(t/T)+~$ds = $. The stochastic version implies that T-312CT=1<, = 

T-‘CT=1(T-“25,)jS~B(s)ds. The final result is the convergence of Tp’Cyt_lq: 
to the stochastic integral IkB(s) dB(s)‘, which is one of the moments directly under 
study. These key results are discussed in Wooldridge’s chapter of the Handbook. 
For our purposes they are important because they lead to the following lemma. 

Lemma 2.3 

Let 11, be an n x 1 vector of random variables with E(v~[v~_ r, . . . , or) = 0, 
E(~,~:l~,~ l,. . . , u],) = In, and bounded fourth moments. Let F(L) = C,“=,FiLi and 
G(L) = C,p)=, GiLi denote two matrix polynomials in the lag operator with 
C,&ilFil < CC and C,&ilGil < 00. Let 5, = C:=rvs, and let B(s) denote an n x 1 
dimensional Brownian motion process. Then the following converge jointly: 

(4 T- “2CWh, -N)~B(s)ds, 
(b) T-‘CS,s:+l *j-B(s) dW’, 
(4 T- ‘CS,CWh,l’ a F( 1)’ + jB(s) dB(s)‘F( l)‘, 

(d) T- ’ C C’(L)V,I CG(L)~I,I’ JL CZ 1 FiGi> 
(4 T-3’2C~CWhr+Il’ =+ dB(s)‘F( l)‘, 

(f) T-3’%& * IB(s) ds, 
(g) T-‘C5,5: =+(s)B(s)’ ds, 
(h) T-5’2Ct& =s {sB(s) ds, 

where, to simplify notation 1; is denoted by J. The lemma follows from results in 
Chan and Wei (1988) together with standard versions of the law of large numbers 
and the central limit theorem for martingale difference sequences [see White 
(1984)]. Many versions of this lemma (often under assumptions slightly different 

from those stated here) have appeared in the literature. For example, univariate 
versions can be found in Phillips (1986, 1987a), Phillips and Perron (1988) and 
Solo (1984), while multivariate versions (in most cases covering higher order 
integrated processes) can be found in Park and Phillips (1988, 1989), Phillips and 

“Throughout this paper B(s) will denote a multivariate standard Brownian motion process, i.e., an 
n x 1 process with independent increments B(r) - B(s) that are distributed N(O,(r - s)l,) for r > s. 
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Durlauf (1986) Phillips and Solo (1992) Sims et al. (1990) and Tsay and Tiao 

(1990). 
The specific regressions that are studied below fall into two categories: (i) regres- 

sions that include a constant and a martingale as regressors or, (ii) regressions 
that include a constant, a time trend and a martingale as regressors. In either case, 
the coefficient on the martingale is the parameter of interest. The estimated value 
of this coefficient can be calculated by including a constant or a constant and time 
trend in the regression, or, alternatively, by first demeaning or detrending the data. 
It is convenient to introduce some notation for the demeaned and detrended 
martingales and their limiting Brownian motion representations._Thus let tf = 5, - 
T-‘CT= it, denote the demeaned martingale, and let 5: = t, - pi - b2t denote the 
detrended martingale, where pi and b, are the OLS estimators obtained from the 
regression of 5, onto (1 t). Then, from the lemma, a straightforward calculation yields 

l T- 1’2~~sTldl(S) - s B(r) dr = W(s) 
0 

and 

T-“2~;s,,*B(s) - 
s 

1 a,(r)B(rjdr - s 
s 

1 

a,(r)B(r)dr = p’(s), 
0 0 

where a,(r) = 4 - 6r and a2(r) = - 6 + 12r. 

2.4. Continuing with the example 

We are now in a position to complete the analysis of the AR(2) example. Consider 
a scaled version of (2.3) 

T”2(fl - Yl) = 
I[ 

T-‘day:_, T-3’2~Ayt_1yr-l -’ 

TV2 - ~2) T-3’2bv&-l T-2C~:- 1 1 
X 
T- 1’2CA~t- lylt 1 T-‘&~lvt 

From (2.5) and result (g) of the lemma, TP2Cyf_ 1 *(l + 42))2JB(s)2 ds and from 
(b) T~‘Cyt_iq,=(l +4,)-‘JB(s)dB(s). Finally, noting from (2.4) that Ayt= 
(1 + b2L)-‘qf, (c) implies that T~3’2CAyt~1y,~1 LO. This result is particularly 
important because it implies that the limiting scaled “X’X”matrix for the regression 

is block diagonal. Thus, 
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and 

Two features of these results are important. First, y*i and y** converge at different 
rates. These rates are determined by the variability of their respective regressors: 
yi is the coefficient on a regressor with bounded variance, while y2 is the coefficient 
on a regressor with a variance that increases at rate t. The second important 
feature is that ‘y*i has an asymptotic normal distribution, while the asymptotic 
distribution of f2 is non-normal. Unit root complications will affect statistical 

inference about y2 but not yl. 
Now consider the estimated regression coefficients 0, and 4, in the untransformed 

regression. Sin_ce 6, = - fl, T~‘*(c$~ - 4*) 3 N(0, o&f). Furthermore, since 4, = 

pi + ‘y^*, T1/*(bl, 4,) = P*(p, - yi) + T1i2(y”2 - y2) = T1/2(y”l - y,) + o,(l). That 
is, even though 4i depends on both 7, and y**, the “super consistency” of y** implies 
that its sampling error can be ignored in large samples. Thus, T1’*(Jl - 4,) 3 
N(O,a&,*), so that both ~$i and b2 converge at rate T”* and have asymptotic 
normal distributions. Their joint distribution is more complicated. Since ~$t + c$* = 
y2, T1’2(41 - 4,) + Ty*(4, - c$*) = T1’*(ji2 - y2) LO and the joint asymptotic 
distribuiion of T1/*(dl - 4,) and T1’*(4* - 4,) is singular. The liner combi- 

nation 4l + 42 converges at rate T to a non-normal distribution: T[(+, + 4,) - 

(4, + &)I= 73, - Y,)*U + ~2)[ISB(s)2dSl-111SB(S)dB(S)l. 
There are two important practical consequences of these results. First, inference 

about 41 or about dz can be conducted in the usual way. Second, inference about 
the sum of coefficients 41 + e52 must be carried out using nonstandard asymptotic 
distributions. Under the null hypothesis, the t-statistic for testing the null H,: 4, = c 
converges to a standard normal random variable, while the r-statistic for testing 
the null hypothesis H,: +1 + c#* = 1 converges to [sB(s)* ds]-“*[JB(s)dB(s)], 
which is the distribution of the Dickey-Fuller T statistic (see Stock’s chapter of 
the Handbook). 

As we will see, many of the results developed for the AR(2) carry over to more 
general settings. First, estimates of linear combinations of regression coefficients 
converge at different rates. Estimators that correspond to coefficients on stationary 
regressors, or that can be written as coefficients on stationary regressors in a trans- 

formed regression (yl in this example), converge at rate T”* and have the usual 
asymptotic normal distribution. Estimators that correspond to coefficients on I( 1) 
regressors, and that cannot be written as coefficients on I(0) regressors in a trans- 
formed regression (y2 in this example), converge at rate T and have a nonstandard 
asymptotic distribution. The asymptotic distribution of test statistics is also 

affected by these results. Wald statistics for restrictions on coefficients correspond- 
ing to I(0) regressors have the usual asymptotic normal or x2 distributions. In 
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general, Wald statistics for restrictions on coefficients that cannot be written as 
coefficients on l(0) regressors have nonstandard limiting distributions. We now 
demonstrate these results for the general VAR model with I(1) variables. 

2.5. A general framework 

Consider the VAR model 

Y,=a+ f @iY,_i+E,, (2.8) 
i=l 

where Y, is an n x 1 vector and E, is a martingale difference sequence with constant 
conditional variance Z, (abbreviated mds(Z’,)) with finite fourth moments. Assume 
that the determinant of the autoregressive polynomial (I - @,z - @,z2 - ... - @,zp( 
has all of its roots outside the unit circle or at z = 1, and continue to maintain 
the simplifying assumption that all elements of Y, are individually I(0) or I(1).5 
For simplicity, assume that there are no cross equation restrictions, so that the 
efficient linear estimators correspond to the equation-by-equation OLS estimators. 
We now study the distribution of these estimators and commonly used test 
statistics.’ 

2.5.1. Distribution of estimated regression coejficients 

To begin, write the ith equation of the model as 

Yi,t = xip + ‘i f . ’ (2.9) 

where yi,t is the ith element of Y,, X, = (1 Y:_ r Y:_ 2... Y:_,)’ is the (np + 1) vector 
of regressors, /I is the corresponding vector of regression coefficients, and F~,~ is the 
ith element of E,. (For notational convenience the dependence of p on i has been 
suppressed.) The OLS estimator of fi is fl= (CX,Xi)- ‘(CX,yi,,), so that B - /I = 

(CX,x:)-l(Cx,Ei ,)’ 
As in the univariate AR(2) model, the asymptotic behavior of b is facilitated by 

5Higher order integrated processes can also be studied using the techniques discussed here, see Park 
and Phillips (1988) and Sims et al. (1990). Seasonal unit roots (corresponding to zeroes elsewhere on 
the unit circle) can also be studied using a modification of these procedures. See Tsay and Tiao 
(1990) for a careful analysis of this case. 

6The analysis in this section is based on a large body of work on estimation and inference in multi- 
variate time series models with unit roots. A partial list of relevant references includes Chan and Wei 
(1988) Park and Phillips (1988, 1989) Phillips (1988) Phillips and Durlauf (1986), Sims et al. (1990), 
Stock (1987), Tsay and Tiao (1990), and West (1988). Additional references are provided in the body 
of the text. 
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transforming the regressors in a way that isolates the various stochastic and deter- 
ministic trends. In particular, the regressors are transformed as Z, = DX,, where 
D is nonsingular and Z, = (z~,,z~,~ ...z~,~)‘, where the zi,t will be referred to as 
“canonical” regressors. These regressors are related to the deterministic and 
stochastic trends given in Lemma 2.3 by the transformation 

or 

z, = F(L)V, - 1, 

where v, = (9; 1 r: t)‘. The advantage of this transformation is that it isolates the 
terms of different orders of probability. For example, zi,( is a zero mean I(0) 
regressor, z2 t is a constant, the asymptotic behavior of the regressor z~,~ is 
dominated by the martingale component Fx3tt_ i, and z~,~ is dominated by the 
time trend Fd4t. The canonical regressors z*,~ and z~,~ are scalars, while zi f and 

zs,* are vectors. In the AR(2) example analyzed above, zl,* = Ay,_ i = (1 + 4,L)-iqr- i, 
so that F, i(L) = (1 + c$~L)- ‘; z~,~ is absent, since the model did not contain a 

constant;~,,,=y,_~=(1+~,)-‘5,_,+y,+s,_,,sothatF,,=(l+~,)-’,F,,=y, 
andF,,(L)=&(l +$J1(l +~#~~L)-‘;andz,,, is absent since y, contains no deter- 
ministic drift. 

Sims et al. (1990) provide a general procedure for transforming regressors from 
an integrated VAR into canonical form. They show that Z, can always be formed 
so that the diagonal blocks, Fii, i > 2 have full row rank, although some blocks 
may be absent. They also show that F,, = 0, as shown above, whenever the VAR 
includes a constant. The details of their construction need not concern us since, 
in practice, there is no need to construct the canonical regressors. The transfor- 
mation from the X, to the Z, regressors is merely an analytic device. It is useful for 
two reasons. First, X:D'(D')- '/I = Ziy, with y = (D')- 'p. Thus the OLS estimators 
of the original and transformed models are related by 0'9 = b. Second, the asymp- 
totic properties of $ are easy to analyze because of the special structure of the 
regressors. Together these imply that we can study the asymptotic properties of 
b by first studying the asymptotic properties of y^ and then transforming these 
coefficients into the /?s. 

The transformation from X, to Z, is not unique. All that is required is some 

transformation that yields a lower triangular F(L) matrix. Thus, in the AR(2) 
example we set ~i~=Ay~_~ and ~~~=y~_~, but an alternative transformation 
would have set z1 f = Ay, _ 1 and z3 , = y, _ 2. Since we always transform results for 
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the canonical regressors Z, back into results for the “natural” regressors X,, this 

non-uniqueness is of no consequence. 
We now derive the asymptotic properties of y* constructed from the regression 

Y,,~ = Z;v + ei f. Writing E, = ,Xj” ql, where qt is the standardized n x 1 martingale 
difference sequence from Lemma 2.3, then Q = CO’Q = q:o, where w’ is the ith row 
of ,YE12, and y* - y = (CZ,Z~)-‘(CZ&O). Lemma 2.3 can be used to deduce the 
asymptotic behavior of CZ,Z: and CZ,Y@O. Some care must be taken, however, 
since all of the z~,~ elements of Z, are growing at different rates. Assume that zr,, 
contains k, elements, z~,~ contains k, elements, and partition y conformably with 
Z, as y = (yr yz y3,y4)‘, where yj are the regression coefficients corresponding to Zj,t. 
Let 

Yy,= 

: 

P2z kl 0 0 0 

0 T1’2 0 0 

0 0 TI!i, 0 
0 0 0 ~312 1 

and consider Yu,(P - y) = (Y’U, ‘CZ,Z; Y; ‘)-‘( Y; ‘CZ,I@O). The matrix !PT 
multiplies the various blocks of (9, - y,),CZ,Z;, and CZ,q, by the scaling factors 
appropriate from the lemma. The first block of coefficients, yl, are coefficients on 
zero mean stationary components and are scaled up by the usual factor of T1j2; 
the same scaling factor is appropriate for yz, the constant term; the parameters 
making up y3 are coefficients on regressors that are dominated by martingales, 
and these need to be scaled by T; finally, y4 is a coefficient on a regressor that is 
dominated by a time trend and is scaled by 7’3/2. 

Applying the lemma, we have Y; ’ CZ,Z: !P; ’ * V, where, partitioning I/ con- 
formably with Z,: 

T- l&.tz;,t AC Fll,jF;l j ( 

T-‘&J2 -+F;, 

T-2xz3,,zj t *F33 

= 1/11? 

= 227 V 

V33, 
LJ 

T-3~(z,,,)z A+ 

T-j’2~zl,tz; f -I1-,0 

T-3’2~z2,,z; f =sF,, 
s 

B(s)‘dsF;, 

P F,,F,, 
T-2CZ2.tZ4,, ---- 

2 

T- 5’2cz3,tz4,t =a F,, 
s 

sB(s)dsF,, = v,, = Vk3, 

= 449 V 

= Vlj = Vi1 for j = 2,3,4, 

= v,, = V;,, 

= v24 = v42y 
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where the notation reflects the fact that F,, and F,, are scalars. The limiting value 
of this scaled moment matrix shares two important characteristics with its analogue 
in the univariate AR(2) model. First, V is block diagonal with Vlj = 0 for j # 1. 
(Recall that in the AR(2) model T-312CAyt_1yt_1 LO.) Second, many of the 
blocks of V contain random variables. (In the AR(2) model T-2Cy:_ 1 converged 
to a random variable.) 

Now, applying the lemma to YU, ‘CZ,q:w yields Y, ‘CZ,r]iw=- A, where, 
partitioning A conformably with Z,: 

T-li2& tq;w Gv[O,(o’o)vll] = A,, 
n 

T- ““~z2 ,q;co = F,, dB(s)‘w 
i 

= 4, 

T- ‘cz, J;W *Fa3 
s 

B(s)dB(s)‘w = A,, 

I” 

Putting the results together, Y,(p - y)* V’A, and three important results follow. 
First, the individual coefficients converge to their values at different rates: y^i and 
9, converge to their values at rate T’12, while all of the other coefficients converge 

more quickly. Second, the block diagonality of I/ implies that Tli2(y*, - y,) 3 
N(0, cf V;,‘), where 0: = w’o = var(sf). Moreover, A, is independent of Aj forj > 1 
[Chan and Wei (1988, Theorem 2.2)], so that T”‘(y^, - yl) is asymptotically 
independent of the other estimated coefficients. Third, all of the other coefficients 
will have non-normal limiting distributions, in general. This follows because Vj3 # 0 
for j > 1, and A, is non-normal. A notable exception to this general result is when 
the canonical regressors do not contain any stochastic trends, so that z~,~ is absent 
from the model. In this case I/ is a constant and A is normally distributed, so that 
the estimated coefficients have a joint asymptotic normal distribution.’ The leading 
example of this is polynomial regression, when the set of regressors contains 
covariance stationary regressors and polynomials in time. Another important 

example is given by West (1988), who considers the scalar unit root AR(l) model 
with drift. 

The asymptotic distribution of the coefficients /? that correspond to the “natural” 
regressors X, can now be deduced. It is useful to begin with a special case of the 
general model, 

Yi,, = PI + x;,*B2 + x;,t83 + ‘i,r> (2.10) 

‘A,, A,, and A, are jointly normally distributed since Js’dB(s)‘w is a normally distributed random 
variable with mean 0 and variance (o’w)J?ds. 
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where ~i,~ = 1 for all t,~~,~ is an h x 1 vector of zero mean I(0) variables and x3,( 

contains the other regressors. It is particularly easy to transform this model into 
canonical form. First, since x~,~ = 1, we can set z~,~ = ~i,~; thus, in terms of the 
transformed regression, 0, = y2. Second, since the elements of x~,~ are zero mean 
I(0) variables, we can set the first h elements of z~,~ equal to x~,~; thus /3* is equal 
to the first h elements of yi. The remaining elements of z, are linear combination 
of the regressors that need not concern us here. In this example, since fi2 is a subset 
of the elements of yi, T”‘(B, - b2) is asymptotically normal and independent 
of the coefficients corresponding to trend and unit root regressors. This result is 
very useful because it provides a constructive sufficient condition for estimated 
coefficients to have an asymptotic normal limiting distribution: whenever the block 
of coefficients can be written as coefficients on zero mean I(0) regressors in a model 
that includes a constant term they will have a joint asymptotic normal distribution. 

Now consider the general model. Recall that fi= D’y*. Let dj denote the jth 
column of D, and partition this conformably with y, so that dj =it;j_d;jd\jdkj)), 
where dij and qi are the same dimension. Then thejth elem_ent of /? is pj = Cidijpi. 
Since the components of y^ converge at different rates, flj will converge at the 
slowest rate of the gi included in the sum. Thus, when d,j # 0, pj will converge at 
rate T1/2, the rate of convergence of $,. 

2.5.2. Distribution of Wald test statistics 

Consider Wald test statistics for linear hypotheses of the form R/3 = r, where R is 
a q x k matrix with full row rank, 

(Recall that fi corresponds to the coefficients in the ith equation, so that W tests 
within-equation restrictions.) Letting Q = R(D’), an equivalent way of writing the 
Wald statistic is in terms of the canonical regressors Z, and their estimated 
coefficients y^, 

w = (Q? - 4’CQ(%Z;)-‘Q’l- ‘(Qr* - 4 
6; 

Care must be taken when analyzing the large sample behavior of W because the 
individual coefficients in p converge at different rates. To isolate the different com- 
ponents, it is useful to assume (without loss of generality) that Q is upper triangular.* 

*This assumption is made without loss of generality since the constraint Qy = r (and the resulting 
Wald statistic) is equivalent to CQy = Cr, for nonsingular C. For any matrix Q, C can chosen so that 
CQ is upper triangular. 
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Now, partition Q, conformably with 9 and the canonical regressors making up Z,, 
so that Q = [qij] where qij is a qi x kj matrix representing qi constraints on the kj 

elements in yj. These blocks are chosen SO that qii has full row rank and qij = 0 
for i <j. Since the set of constraints Qy = r may not involve yi, the blocks qij might 
be absent for some i. Thus, for example, when the hypothesis concerns only y3, 
then Q is written as Q = [q31q32q33q34], where q31 = 0, q32 = 0 and q33 has full 
row rank. Partition r = (I; r; r; rk)’ conformably with Q, where again some of the 

li may be absent. 
Now consider the first q1 elements of Q$qll$l + q12y2 + q13p3 + q14f4. Since 

yj, for j > 2, converges more quickly than PI and p2, the sampling error in this 
vector will be dominated asymptotically by the sampling error in qllfl + q12f2. 
Similarly, the sampling error in the next group of q2 elements of Q9 is dominated 
by q22y*2, in the next q3 by q33y*3, etc. Thus, the appropriate scaling matrix for 
Qp--r is 

T"ZI 41 0 0 0 

!i+ I 0 T'121 42 0 0 0 0 TIq3 0 ’ 

0 0 0 T3i21 94 

Now, write the Wald statistic as 

But, under the null, 

T1’2(qd1 + q12f2 + q13Y*3 + q14.94 -rl) 
= T1’2(q1191 + q12f2 - rl) + o,(l), and 

T”- lqqjjTj + . . . + qj4p4 _ rj) = T(j- ‘)I2 (qjj~j - rj) + O,(l), for j > 1. 

Thus. if we let 

p311 q12 0 0 1 
f-j= 0” q;’ ,” 0” ) 1 0 0 G’ q&$ ! 

then 

*,(QY - r) = e” YT(p - y) + o&l) 
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under the nu11.9 Similarly, it is straightforward to show that 

Finally, since Yu,(g - y)= v/-IA and Y’V,‘CZ,Z: Y/s’* V, then W=>(Ql’/-‘A)’ x 
(Qv-‘Q)-‘(Qv?4). 

The limiting distribution of W is particularly simple when qii = 0 for i > 2. In 
this case, all of the hypotheses of interest concern linear combinations of zero 
mean I(0) regressors, together with the other regression coefficients. When q12 = 0, 
so that the constant term is unrestricted, we have 

a:w= cq11v1 -r1UCq11(C zl,,z;,,)-‘q;,l-‘cq1l~~l -?,)I + O,(l)? 

so that W 3x:, . When the constraints involve other linear combinations of the 
regression coefficients, the asymptotic x2 distribution of the regression coefficients 
will not generally obtain. 

This analysis has only considered tests of restrictions on coefficients from the 
same equation. Results for cross equation restrictions are contained in Sims et al. 
(1990). The same general results carry over to cross equation restrictions. Namely, 
restrictions that involve subsets of coefficients, that can be written as coefficients 
on zero mean stationary regressors in regressions that include constant terms, can 
be tested using standard asymptotic distribution theory. Otherwise, in general, the 
statistics will have nonstandard limiting distributions. 

2.6. Applications 

2.6.1. Testing lag length restrictions 

Consider the VAR(p + s) model, 

P+S 

Y,=Cr+ C ~iY*_i+‘r 
i=l 

and the null hypothesis H,: Qp+ 1 = Qpt2 = ... = @p+s = 0, which says that the true 
model is a VAR(p). When p 2 1, the usual Wald (and LR and LM) test statistic 

for H, has an asymptotic x2 distribution under the null. This can be demonstrated 
by rewriting the regression so that the restrictions in H, concern coefficients on 
zero mean stationary regressors. Assume that AY, is I(0) with mean p, and then 

941* is the only off-diagonal element appearing in @. It appears because fl and f, both converge 
at rate T”‘. 
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rewrite the model as 

pis- 1 

Y,=Z+AY,_, + 2 Oi(AY,_i-p)+~t, 
i=l 

where A = ~~~~ Qi, Oi = - x$‘T:+ 1 Qj and a” = c1+ Cfz:- ’ Oip. The restrictions 

@ 
P+l 

= cDp+2 = ... = Qpcs = 0, in the original model are equivalent to 0, = 
@p+l=...= Op+s_ 1 in the transformed model. Since these coefficients are zero 
mean I(0) regressors in regression equations that contain a constant term, the test 
statistics will have the usual large sample x2 distribution. 

2.6.2. Testing for Granger causality 

Consider the bivariate VAR model 

y2,t = ‘2 + IfI 42l,iYl,t-i + IfI +*2,iY2.t-i + ‘2,t’ 
i=l i=l 

The restriction that yZ,t does not Granger-cause yl,, corresponds to the null hypo- 
thesis Ho: 412,1 = 412,2 = ... = c),,,, = 0. When (yl f y2,,) are covariance stationary, 
the resulting Wald, LR or LM test statistic for &is hypothesis will have a large 
sample x,’ distribution. When (y, t y, ,) are integrated, the distribution of the test 
statistic depends on the location ok &it roots in the system. For example, suppose 

that yl,, is I(l), but that y, , is I(0). Then, by writing the model in terms of deviations 
of y,,, from its mean, the’ testrictions involve only coefficients on zero mean I(0) 
regressors. Consequently, the test statistic has a limiting x,: distribution. 

When yZ,t is I(l), then the distribution of the statistic will be asymptotically x2 

when Y, t and y2,1 are cointegrated. When yl,, and y,,, are not cointegrated, the 
Grangerlcausality test statistic will not be asymptotically x2, in general. Again, 
the first result is easily demonstrated by writing the model so the coefficients of 
interest appear as coefficients on zero mean stationary regressors. In particular, 

when Y~,~ and y,,, are cointegrated, there is an I(0) linear combination of the 
variables, say w, = yZ,r - ;l~,,~, and the model can be rewritten as 

Y1.z = al + i &ll,iYl,t-i + i +12,itwr-i -Pw) + &l.t3 

where pw is the mean of wt,E1 = ~+C~Z1~lz,i~~ and 4,l.i = 4ll.i + 412,i& 
i=l , . . . , p. In the transformed regression, the Granger-causality restriction corre- 
sponds to the restriction that the terms w,-i - pL, do not enter the regression. But 
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these are zero mean I(0) regressors in a regression that includes a constant, so 
that the resulting test statistics will have a limiting xf distribution. When ~i,~ and 
y, ~ are not cointegrated, the regression cannot be transformed in this way, and 
the resulting test statistic will not, in general, have a limiting x2 distribution.” 

The Mankiw-Shapiro (1985)/Stack-West (1988) results concerning Hall’s test 
of the life-cycle/permanent income model can now be explained quite simply. 
Mankiw and Shapiro considered tests of Hall’s model based on the regression of 
AC, (the logarithm of consumption) onto y,_i (the lagged value of the logarithm 
of income). Since y,_ 1 is (arguably) integrated, its regression coefficient and t- 
statistic will have a nonstandard limiting distribution. Stock and West, following 
Hall’s (1978) original regressions, considered regressions of c, onto c,_ 1 and y,_ 1. 
Since, according to the life-cycle/permanent income model, c,_ 1 and y,_ 1 are 
cointegrated, the coefficient on y,_ 1 will be asymptotically normal and its t-statistic 

will have a limiting standard normal distribution. However, when y,_ 1 is replaced 
in the regression with m,_, (the lagged value of the logarithm of money), the 
statistic will not be asymptotically normal, since c, _ 1 and m,_ 1 are not cointegrated. 
A more detailed discussion of this example is contained in Stock and West (1988). 

2.6.3. Spurious regressions 

In a very influential paper in the 1970’s, Granger and Newbold (1974) presented 
Monte Carlo evidence reminding economists of Yule’s (1926) spurious correlation 
results. Specifically, Granger and Newbold showed that a large R2 and a large 
t-statistic were not unusual when one random walk was regressed on another, 
statistically independent, random walk. Their results warned researchers that 
standard measures of fit can be very misleading in “spurious” regressions. Phillips 
(1986) showed how these results could be interpreted quite simply using the frame- 
work outlined above, and his analysis is summarized here. 

Let Yi,, and y2,t be two independent random walks 

YlJ = Yl,,-1 + %,t, 

Y2.t = Y2,,- 1 + E2.v 

where E, = (E~,~E~,~)’ is an mds(ZJ with finite fourth moments, and {~i,~}~, i and 
{~~,~}~r, 1 are mutually independent. For simplicity, set y,,, = y,,, = 0. Consider 
the linear regression of y2,* onto ~i,~, 

Y2.r = BYi,, + % (2.11) 

where u, is the regression error. Since y, f 
fi = 0 and u, = Y~,~. 

, and y,,, are statistically independent 

“A detailed discussion of Granger-causality tests in integrated systems in contained in Sims et al. 
(1990) and Toda and Phillips (1993a, b). 





2864 M. W. Watson 

Y2,t = PYI,, + u2,t3 
(2.16) 

where u, = (~i,~ u2,J’ = DEB, wh ere E, is an mds(Z,) with finite fourth moments. Like 

the spurious regression model, both yr,, and y2,t are individually I(1): yr,, is a 

random walk, while Ay2,t follows a univariate ARMA(l, 1) process. Unlike the 
spurious regression model, one linear combination of the variables y2,t - fi~i,~ = u2,t 
is I(O), and so the variables are cointegrated. 

Stock (1987) derives the asymptotic distribution of the OLS estimator of coin- 
tegrating vectors. In this example, the limiting distribution is quite simple. Write 

(2.17) 

and let dij denote the ijth element of D, and Di = (di, di2) denote the ith row of D. 

Then the limiting behavior, or the denominator of b - j?, follows directly from the 
lemma: 

T-~C(~,,,)~ = DlCT-2~t,t:lD;=‘D~ [ jB(s)B(s)ds]D;, (2.18) 

where 5, is the bivariate random walk, with A& = E, and B(s) is a 2 x 1 Brownian 
motion process. The numerator is only slightly more difficult: 

T-CYdzt= T-'CYl,l442,t+ T-'CAY1,u2t 1 3 1 9 

= D,[T-‘~5,_l~;]D; + Dl[T-l&~;]D; 

*Dl[ j$s)dB(s).]D; + D,D;. (2.19) 

Putting these two results together, 

I[ s 1 
-1 

+ D, D; D, B(s)B(s)‘dsD; . (2.20) 

There are three interesting features of the limiting representation (2.20). First, 
j? is “super consistent,” converging to its true value at rate T. Second, while super 
consistent, fi is asymptotically biased, in the sense that the mean of the asymptotic 
distribution is not centered at zero. The constant term DID; = d,,d,, + d,,d,, 
that appears in the numerator of (2.20) is primarily responsible for this bias. To 
see the source of this bias, notice that the regressor yl,t is correlated with the error 
term u~,~. In standard situations, this “simultaneous equation bias” is reflected in 
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large samples as an inconsistency in B. With cointegration, the regressor is I(1) 
and the error term is I(O), so no inconsistency results; the “simultaneous equations 
bias” shows up as bias in the asymptotic distribution of b. In realistic examples 
this bias can be quite large. For example, Stock (1988) calculates the asymptotic 
bias that would obtain in the OLS estimator of the marginal propensity to 
consume, obtained from a regression of consumption onto income using annual 
observations with a process for u, similar to that found in U.S. data. He finds that 
the bias is still -0.10 even when 53 years of data are used.’ ’ Thus, even though 
the OLS estimators are “super” consistent, they can be quite poor. 

The third feature of the asymptotic distribution in (2.20) involves the special 
case in which d,, = d,, = 0 so that u1 , and u2, are statistically independent. In 

this case the OLS estimator corresponds to the Gaussian maximum likelihood 
estimation (MLE). When d 12 = d,, = 0, (2.20) simplifies to 

s &W&(4 

s , 
B,(s)*ds 

(2.21) 

where B(s) is partitioned as B(s) = [B,(s)B,(s)]‘. This result is derived in Phillips 
and Park (1988) where the distribution is given a particularly simple and useful 
interpretation. To develop the interpretation, suppose for the moment that u~,~ = 
dZZcZ,t was n.i.i.d. (In large samples the normality assumption is not important; it 
is made here to derive simple and exact small sample results.) Now, consider the 
distribution of $ conditional on the regressors {y,,,}T= i. Since Q is n.i.i.d., the 
restriztion d,, = d,, = 0 implies that u~,~ is independent of {y, ,}f’ 1. This means 

t_hat8-Dl{y,JT=, - N(0,d~,CC(Y,,,)21-‘), so that the unconditional distribution 
/I - p is normal with mean zero and random covariance matrix, d:2[C(yl,t)2]-1. 
In large samples, T-2C(y,,,)2~dIlSB1(S)2dS, so that T(fi--/I) converges to a 
normal random variable with a mean of zero and random covariance matrix, 

(d,,ld,,)2CSBl(s)2dsl-1. Th - us, T(B - p) has an asymptotic distribution that is a 
random mixture of normals. Since the normal distributions in the mixture have a 
mean of zero, the asymptotic distribution is distributed symmetrically about zero, 
and thus j!? is asymptotically median unbiased. 

The distribution is useful, not so much for what it implies about the distribution 
of b, but for what it implies about the t-statistic for fi. When d,, or d,, are not 
equal to zero, the t-statistic for testing the null fi = /I0 has a nonstandard limiting 
distribution, analogous to the distribution of the Dickey-Fuller t-statistic for 
testing the null of a unit AR coefficient in a univariate regression. However, when 

d,, = d,, = 0, the t-statistic has a limiting standard normal distribution. To see 

“Stock (1988, Table 4). These results are for durable plus nondurable consumption. When nondurable 
consumption is used, Stock estimates the bias to be -0.15. 
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why this is true, again consider the situation in which u~,~ is n.i.i.d. When d, Z = d, I= 0, 
the distribution of the t-statistic for testing b = PO conditional on {yl,t},‘E 1 has an 
exact Student’s t distribution with T - 1 degrees of freedom. Since this distribution 
does not depend on {Y~,~},‘= 1, this is the unconditional distribution as well. This 
means that in large samples, the t-statistic has a standard normal distribution. AS 
we will see in this next section, the Phillips and Park (1988) result carries over to 
a much more general setting. 

In the example developed here, u, = DE, is serially uncorrelated. This simplifies 
the analysis, but all of the results hold more generally. For example, Stock (1987) 
assumes that u,= D(L)&,, where D(L)=~t?L,DiL.f,lD(l)/ #O and C,?Y, i/D,/ < co. 
In this case, 

(2.22) 

where Dj(l) is thejth row of D(1) and Dj,i is thejth row of Di. Under the additional 

assumption that d12(1) = dZl(l) = 0 and Cz?LoD,,iD;,i = 0, T(b- /I) is distributed 
as a mixed normal (asymptotically) and the r-statistic for testing /J’ = /3, has an 
asymptotic normal distribution when d12(1) = dT1(l) = 0 [see Phillips and Park 
(1988) and Phillips (1991a)l. 

2.7. Implications for econometric practice 

The asymptotic results presented above are important because they determine the 
appropriate critical values for tests of coefficient restrictions in VAR models. 
The results lead to three lessons that are useful for applied practice. 

(1) Coefficients that can be written as coefficients on zero mean I(0) regressors id 
regressions that include a constant term are asymptotically normal. Test statistics 
for restrictions on these coefficients have the usual asymptotic x2 distributions. 
For example, in the model 

Y, = YlZl,, + Y2 + Y3Z3.t + Y‘$t+ Et, (2.23) 

where z1 f is a mean zero I(0) scalar regressor and z3 t is a scalar martingale 
regressor: this result implies that Wald statistics for tesiing H,: y1 = c is asymp- 
totically x2. 

(2) Linear combinations of coefficients that include coefficients on zero mean I(0) 
regressors together with coefficients on stochastic or deterministic trends will have 
asymptotic normal distributions. Wald statistics for testing restrictions on these 
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linear combinations will have large sample x2 distributions. Thus in (2.23) Wald 

statistics for testing H,: R,y, + R,y, + R,y, = r, will have an asymptotic x2 
distribution if R, # 0. 

(3) Coefficients that cannot be written as coefficients on zero mean I(0) regressors 
(e.g. constants, time trends, and martingales) will, in general, have nonstandard 
asymptotic distributions. Test statistics that involve restrictions on these coefficients 
that are not a function of coefficients on zero mean I(0) regressors will, in general, 
have nonstandard asymptotic distributions. Thus in (2.23), the Wald statistic for 
testing: H,: R(y, y3 y4)’ = I has a non-x’ asymptotic distribution, as do test statistics 

for composite hypotheses of the form H,: R(y, y3 y4)’ = r and y1 = c. 

When test statistics have a nonstandard distribution, critical values can be deter- 
mined by Monte Carlo methods by simulating approximations to the various 
functionals of B(s) appearing in Lemma 2.3. As an example, consider using Monte 
Carlo methods to calculate the asymptotic distribution of sum of coefficients 4i + 
42 = y2 in the univariate AR(2) regression model (2.1). Section 2.4 showed that 

T(?, - ~2)=4 + ~2)CjB(S)2ds1-1CSB(s)dB(s)l, where B(s) is a scalar Brownian 

motion process. If x, is generated as a univariate Gaussian random walk, then 
one draw of the random variable [JB(s)‘ds] - ‘[jB(s)dB(s)] is well approximated 

by (T-2~x~)-‘(T-‘~x,Ax,+, ) with T large. (A value of T = 500 provides an 
adequate approximation for most purposes.) The distribution of T(y*, -7,) can 
then be approximated by taking repeated draws of (T-2Cxf)-‘(Tp ‘CX~AX~+~) 
multiplied by (1 + 4,). An example of this approach in a more complicated multi- 
variate model is provided in Stock and Watson (1988). 

Application of these rules in practice requires that the researcher know about 
the presence and location of unit roots in the VAR. For example, in determining 
the asymptotic distribution of Granger-causality test statistics, the researcher has 
to know whether the candidate causal variable is integrated and, if it is integrated, 
whether it is cointegrated with any other variable in the regression. If it is cointe- 
grated with the other regressors, then the test statistic has a x2 asymptotic distri- 
bution. Otherwise the test statistic is asymptotically non-X2, in general. In practice 
such prior information is often unavailable, and an important question is what is 
to be done in this case?12 

The general problem can be described as follows. Let W denote the Wald test 
statistic for a hypothesis of interest. Then the asymptotic distribution of the Wald 
statistic when a unit root is present, say F(WI U), is not equal to the distribution 
of the statistic when no unit root is present, say F( WI N). Let cU and cN denote 

“Toda and Phillips (1993a, b) discuss testing for Granger causality in a situation in which the 
researcher knows the number of unit roots in the model but doesn’t know the cointegrating vectors. 
They develop a sequence of asymptotic x2 tests for the problem. When the number of unit roots in 
the system in unknown, they suggest pretesting for the number of unit roots. While this will lead to 
sensible results in many empirical problems, examples such as the one presented at the end of this 
section show that large pretest biases are possible. 
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the “unit root” and “no unit root” critical values for a test with size c(. That is, cu 

and cN satisfy: P( W > cu( U) = P( W > cN( N) = a under the null. The problem is 

that cu # cN, and the researcher does not know whether U or N is the correct 

specification. 
In one sense, this is not an ususual situation. Usually, the distribution of statistics 

depends on characteristics of the probability distribution of the data that are un- 
known to the researcher, even under the null hypothesis. Typically, there is 
uncertainty over certain “nuisance parameters,” that affect the distribution of the 

statistic of interest. Yet, typically the distribution depends on the nuisance para- 
meters in a continuous fashion, in the sense that critical values are continuous 
functions of the nuisance parameters. This means that asymptotically valid inference 
can be carried out by replacing the unknown parameters with consistent estimates. 

This is not possible in the present situation. While it is possible to represent 
the uncertainty in the distribution of test statistics as a function of nuisance para- 
meters that can be consistently estimated, the critical values are not continuous 
functions of these prameters. Small changes in the nuisance parameters ~ associated 
with sampling error in estimates - may lead to large changes in critical values. 
Thus, inference cannot be carried out by replacing unknown nuisance parameters 
with consistent estimates. Alternative procedures are required.13 

Development of these alternative procedures is currently an active area of 
research, and it is too early to speculate on which procedures will prove to be the 
most useful. It is possible to mention a few possibilities and highlight the key issues. 

The simplest procedure is to carry out conservative inference. That is, to use the 
largest of the “unit root” and “no unit root” critical values, rejecting the null when 
W > max(c,, cN). By construction, the size of the test is less than or equal to a. 
Whenever W > max(c,,c,), so that the null is rejected using either distribution, 
or W < min(c,, cN), so that the null is not rejected using either distribution, one 
need not proceed further. However a problem remains when min(c,, cN) < W < 
max(c,, cN). In this case, an intuitively appealing procedure is to look at the data 
to see which hypothesis - unit root or no unit root - seems more plausible. 

This approach is widely used in applications. Formally, it can be described as 
follows. Let y denote a statistic helpful in classifying the stochastic process as a 
unit root or no unit root process. (For example, y might denote a Dickey-Fuller 
“t-statistic” or one of the test statistics for cointegration discussed in the next 
section.) The procedure is then to define a region for y, say R,, and when yeR,, 
the critical value cu is used; otherwise the critical value cN is used. (For example, 
the unit root critical value might be used if the Dickey-Fuller “t-statistic” was 
greater than -2, and the no unit root critical value used when the DF statistic 

13Alternatively, using “local-to-unity” asymptotics, the critical values can be represented as 
continuous functions of the local-to-unity parameter, but this parameter cannot be consistently 
estimated from the data. See Bobkoski (1983), Cavanagh (1985), Chan and Wei (1987), Chan (1988), 
Phillips (1987b) and Stock (1991). 
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was less than -2.) In this case, the probability of type 1 error is 

P(Type 1 error) = P(W > co(y~R,)P(yeR,) + P(W > c,ly$R,)P(y$R,). 

The procedure will work well, in the sense of having the correct size and a power 
close to the power that would obtain when the correct unit root or no unit root 
specification were known, if two conditions are met. First, P(~ER,) should be 
near 1 when the unit root specification is true, and P(y$R,) should be near 1 
when the unit root specification is false, respectively. Second, P( W > cLi) yeR,) and 
P( W > cN ) y $Ru) should be near P( W > cu 1 U) and P( W > cNl N), respectively. 
Unfortunately, in practice neither of these conditions may be true. The first requires 
statistics that perfectly discriminate between the unit root and non-unit root 
hypotheses. While significant progress has been made in developing powerful 
inference procedures [e.g. Dickey and Fuller (1979), Elliot et al. (1992), Phillips 
and Ploberger (1991), Stock (1992)], a high probability of classification errors is 

unavoidable in moderate sample sizes. 
In addition, the second condition may not be satisfied. An example presented 

in Elliot and Stock (1992) makes this point quite forcefully. [Also see Cavanagh 
and Stock (1985).] They consider the problem of testing whether the price-divided 
ratio helps to predict future changes in stock prices.14 A stylized version of the 
model is 

Pt - 4 = m- 1 - d,- 1) + %.t, (2.24) 

AP, = HP,- I- 4 - 1) + ~z,t, (2.25) 

where pt and d, are the logs of prices and dividends, respectively, and (E~,~E~,~)) is 
an mds(Z’,). The hypothesis of interest is H,: p = 0. Under the null, and when 14 I < 1, 
the t-statistic for this null will have an asymptotic standard normal distribution; 
when the hypothesis 4 = 1, the t-statistic will have a unit root distribution. (The 
particular form of the distribution could be deduced using Lemma 2.3, and critical 
values could be constructed using numerical methods.) The pretest procedure 
involves carrying out a test of 4 = 1 in (2.24), and using the unit root critical value 
for the t-statistic for fi = 0 in (2.25) when 4 = 1 is not rejected. If 4 = 1 is rejected, 
the critical value from the standard normal distribution is used. 

Elliot and Stock show that the properties of this procedure depends critically 

on the correlation between &I f and Ed f. To see why, consider an extreme example. 

In the data, dividends are much smoother than prices, so that most of the variance 
in the price-dividend ratio comes from movements in prices and not from dividends. 
Thus, E~,~ and E~,~ are likely to be highly correlated. In the extreme case, when 

14Hodrick (1992) contains an overview of the empirical literature on the predictability of stock 
prices using variables like the price-dividend ratio. Also see, Fama and French (1988) and Campbell 
(1990). 
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they are perfectly correlated, (p - b) is proportional to (6 - 4), and the “t-statistic” 
for testing /3 = 0 is exactly equal to the “t-statistic” for testing 4 = 1. In this case 
F(WIy) is degenerate and does not depend on the null hypothesis. All of the 
information in the data about the hypothesis /I = 0 is contained in the pretest. 
While this example is extreme, it does point out the potential danger of relying 
on unit root pretests to choose critical values for subsequent tests. 

3. Cointegrated systems 

3.1. Introductory comments 

An important special case of the model analyzed in Section 4 is the cointegrated 
VAR. This model provides a framework for studying the long-run economic 
relations discussed in the introduction. There are three important econometric 
questions that arise in the analysis of cointegrated systems. First, how can the 
common stochastic trends present in cointegrated systems be extracted from the 
data? Second, how can the hypothesis of cointegration be tested? And finally, how 
should unknown parameters in cointegrating vectors be estimated, and how should 
inference about their values be conducted? These questions are answered in this 
section. 

We begin, in Section 3.2, by studying different representations for cointegrated 
systems. In addition to highlighting important characteristics of cointegrated 
systems, this section provides an answer to the first question by presenting a 
general trend extraction procedure for cointegrated systems. Section 3.3 discusses 
the problem of testing for the order of cointegration, and Section 3.4 discusses the 
problem of estimation and inference for unknown parameters in cointegrating 
vectors. To keep the notation simple, the analysis in Sections 3.2-3.4 abstracts 
from deterministic components (constants and trends) in the data. The complications 
in estimation and testing that arise when the model contains constants and trends 
is the subject of Section 3.5. Only I(1) systems are considered here. Using Engle 
and Granger’s (1987) terminology, the section discusses only CI(1,l) systems; that 
is, systems in which linear combinations of I(1) and I(0) variables are I(0). Extensions 
for CI(d, b) systems with d and b different from 1 are presented in Johansen (1988b, 
1992c), Granger and Lee (1990) and Stock and Watson (1993). 

3.2. Representations for the I (1) cointegrated model 

Consider the VAR 

xr= t z7iX,_i+E,, 
i=l 

(3.1) 
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where x, is an n x 1 vector composed of I(0) and I(1) variables, and E, is an mds(Z,). 
Since each of the variables in the system are I(0) or I(l), the determinantal poly- 
nomial 1 n(z)1 contains at most n unit roots, with n(z) = I - Cf= 1 IIizi. When 
there are fewer than n unit roots, then the variables are cointegrated, in the sense 
that certain linear combinations of the x,‘s are I(0). In this subsection we derive 
four useful representations for cointegrated VARs: (1) the vector error correction 
VAR model, (2) the moving average representation of the first differences of the 
data, (3) the common trends representation of the levels of the data, and (4) the 
triangular representation of the cointegrated model. 

All of these representations are readily derived using a particular SmithhMcMillan 

factorization of the autoregressive polynomial 17(L). The specific factorization used 
here was originally developed by Yoo (1987) and was subsequently used to derive 
alternative representations of cointegrated systems by Engle and Yoo (1991). Some 
of the discussion presented here parallels the discussion in this latter reference. 
Yoo’s factorization of n(z) isolates the unit roots in the system in a particularly 
convenient fashion. Suppose that the polynomial n(z) has all of its roots on or 
outside the unit circle, then the polynomial can be factored as U(z) = U(z)M(z)V(z), 
where U(z) and V(z) are n x n matrix polynomials with all of their roots outside 
the unit circle, and M(z) is an n x IZ diagonal matrix polynomial with roots on or 
outside the unit circle. In the case of the I(1) cointegrated VAR, M(L) can be 
written as 

4 0 
MM = o 

[ 1 z 9 

I 

where Ak = (1 - L)Z, and k + r = n. This factorization is useful because it isolates 
all of the VAR’s nonstationarities in-the upper block of M(L). 

We now derive alternative representations for the cointegrated system. 

3.2.1. The vector error correction VAR model (VECM) 

To derive the VECM, subtract x,_ 1 from both sides of (3.1) and rearrange the 
equation as 

p-1 

Ax, = 17x,_ 1 + C ~i’Xt-i+Ef, 

i=l 
(3.2) 

whereZ7= -1,,+C;=‘=,U,= -r;l(l),andQi= -CjP=i+lnj,i=l,...,p-l.Since 
n(l) = U(l)M(l)V( l), and M(1) has rank r, 17 = - I7( 1) also has rank r. Let GI 
denote an n x r matrix whose columns form a basis for the row space of n, so 
that every row of 17 can be written as a linear combination of the rows of cc!. 
Thus, we can write 17 = &z’, where 6 is an n x r matrix with full column rank. 
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Equation (3.2) then becomes 

p’l 

Ax, = &‘x,_i + c @iAxt_i + E, 
i=l 

M. W. Watson 

(3.3) 

or 

p-1 

Ax,=Sw,_i + 1 Q+x,_~+c,, (3.4) 
i=l 

where w, = IX’X,. Solving (3.4) for w,_i shows that w,_ 1 = (6’S)- *S’[Ax, - 

C;:t @iAx,_i - EJ, so that wt is I(0). Thus, the linear combinations of the poten- 
tially I(1) elements of x, formed by the columns of a are I(O), and the columns of 
c1 are cointegrating vectors. 

The VECM imposes k < n unit roots in the VAR by including first differences 
of all of the variables and r = n - k linear combinations of levels of the variables. 
The levels of x, are introduced in a special way - as w, = rz’x, - so that all of the 
variables in the regression are I(0). Equations of this form appeared in Sargan 
(1964) and the term “error correction model” was introduced in Davidson et al. 
(1978).15 As explained there and in Hendry and von Ungern-Sternberg (1981), 
CI’X, = 0 can be interpreted as the “equilibrium” of the dynamical system, w, as the 

vector of “equilibrium errors” and equation (3.4) describes the self correcting 
mechanism of the system. 

3.2.2. The moving average representation 

To derive the moving average representation for Ax,, let 

1, 0 WJ = o 
[ 1 A , 

I 

so that M(L)M(L) = (1 - L)Z,. Then, 

M(L)M(L)V(L)x, = ti(L)u(L)-‘&,, 

so that 

I’(L)Ax, = ti(L)Cr(L)- *st, 

‘*As Phillips and Loretan (1991) point out in their survey, continuous time formulations of error 
correction models were used extensively by A.W. Phillips in the 1950’s. I thank Peter Phillips for 
drawing this work to any attention. 
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and 

Ax, = C(L)&,, (3.5) 

where C(L) = V(L)-iM(L)U 
There are two special characteristics of the moving average representation. First, 

C( 1) = V(l)- ‘a( l)U(l)- ’ has rank k and is singular when k < n. This implies that 
the spectral density matrix of Ax, evaluated at frequency zero, (27c_iC(l)Z,C( l)‘, is 
singular in a cointegrated system. Second, there is a close relationship between 
C(1) and the matrix of cointegrating vectors ~1. In particular, a’C(1) = 0.i6 Since 
w, = CI’X, is I(O), Aw, = CL’AX, is I(- 1) so that its spectrum at frequency zero, 
(27~)~~cr’C(l)C,C(l)‘cc, vanishes. 

The equivalence of vector error correction models and cointegrated variables 
with moving average representations of the form (3.5) is provided in Granger (1983) 
and forms the basis of the Granger Representation Theorem [see Engle and 
Granger (1987)]. 

3.2.3. The common trends representation 

The common trends representation follows directly from (3.5). Adding and sub- 
tracting C(l)&, from the right hand side of (3.5) yields 

Ax, = C( l)s, + [C(L) - C( l)]e,. (34 

Solving backwards for the level of x,, 

x, = C( 1)5, + C*(L)&, + x0, (3.7) 

where 5, = C:= l~, and C*(L) = (1 - L)-‘[C(L) - C(l)] = C,YLOC~Li, where Cr = 
-x,?=i+lCj and si=O f or. i < 0 is assumed. Equation (3.7) is the multivariate 
BeveridgeeNelson (1981) decomposition of xt; it decomposes x, into its “permanent 
component,” C(l)& + x0, and its “transitory component,” C*(L)s,.17 Since C( 1) 
has rank k, we can find a nonsingular matrix G, such that C(l)G = [A 0, .,I, 
where A is an n x k matrix with full column rank.” Thus C(l)& = C(l)GG-‘<,, 

r6To derive this result, note from (3.2) and (3.3) that 17 = -n(l) = - U(l)M(l)V(l) = 6~‘. Since 
M(1) has zeroes everywhere, except the lower diagonal block which is I,,x’ must be a nonsingular 
transformation of the last r rows of V(1). This implies that the first k columns of u’V(l)-r contain only 
zeroes, so that a’V(l)-‘M(l)U(l) = a’C(1) = 0. 

“The last component can be viewed as transitory because it has a finite spectrum at frequency zero. 
Since U(z) and V(z) are finite order with roots outside the unit circle, the Ci coefficients decline 
exponentially for large i, and thus CiilC,I is finite. Thus the CT matrices are absolutely summable, 
and C*(l)Z,C*(l)’ is finite. 

“The matrix G is not unique. One way to construct G is from the eigenvectors of A. The first k 
columns of G are the eigenvectors corresponding to the nonzero eigenvalues of A and the remaining 
eigenvectors are the last n-k columns of G. 
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so that 

x, = AT, + C*(L)&, + X0’ (3.8) 

where r, denotes the first k components of G-l<,. 
Equation (3.8) is the common trends representation of the cointegrated system. It 

decomposes the n x 1 vector x, into k “permanent components” r, and n “transitory 
components” C*(L)&,. These permanent components often have natural interpre- 
tations. For example, in the eight variable (y, c, i, n, w, m, p, r) system introduced in 
Section 1, five cointegrating vectors were suggested. In an eight variable system 
with five cointegrating vectors there are three common trends. In the (y, c, i, II, m, p, r) 
systems these trends can be interpreted as population growth, technological 
progress and trend growth in money. 

The common trends representation (3.8) is used in King et al. (1991) as a device 
to “extract” the single common trend in a three variable system consisting of y,c 
and i. The derivation of (3.8) shows exactly how to do this: (i) estimate the VECM 
(3.3) imposing the cointegration restrictions; (ii) invert the VECM to find the 
moving average representation (3.5); (iii) find the matrix G introduced below 
equation (3.7); and, finally, (iv) construct t, recursively from r, = r,_ 1 + e,, where 
e, is the first element of G- ‘E,, and where E, denotes the vector of residuals from 
the VECM. Other interesting applications of trend extraction in cointegrated 
systems are contained in Cochrane and Sbordone (1988) and Cochrane (1994). 

3.2.4. The triangular representation 

The triangular representation also represents x, in terms of a set of k non-cointegrated 
I(1) variables. Rather than construct these stochastic trends as the latent variables 
r, in the common trends representation, a subset of the x, variables are used. In 
particular, the triangular representation takes the form: 

Ax1.t = Ul,,, (3.9) 

X2.r - kt = u2,*9 (3.10) 

where x, = (xi,, xi 1)‘, ~i,~ is k x 1 and x2 f . is r x 1. The transitory components are 

u, = cu; f u; f )’ = D(L)E,, where (as we show below) D(1) has full rank. In this re- 
presentation, the first k elements of x, are the common trends and x~,~ - px, f are 
the I(0) linear combinations of the data. 

To derive this representation from the VAR (3.2), use H(L) = U(L)M(L)V(L) to 
write 

W)~W)wJx, = E,, (3.11) 
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so that 

M(L)V(L)x, = u(L)-‘&,. 

2815 

(3.12) 

Now, partition P’(L) as 

V(L) = 
[ 

VII(L) uu(L) 

%1(L) 1 u&L) ’ 

where ull(L) is k x k, u12(L) is k x r, tizl(L) is r x k and uz2(L) is r x r. Assume 
that the data have been ordered so that uz2(L) has all of its roots outside the unit 
circle. (Since V(L) has.all of its roots outside the unit circle, this assumption is 
made with no loss of generality.) Now, let 

1, 0 
(AL) = B(L) I, [ 1 ’ 

where B(L) = - u~~(L)-~u~~(L). Then 

M(L)v(L)C(L)C(L)-lx, = u(L)-‘&, 

or, rearranging and simplifying, 

(3.13) 

(3.14) 

where p*(L) = (1 - L)- ‘[/i’(L) - p(l)] and /I = /I( 1). Letting G(L) denote the matrix 
polynomial on the left hand side of (3.14), the triangular representation is obtained 
by multiplying equation (3.14) by G(L)-‘. Thus, in equations (3.9) and (3.10), u, = 
D(L)&,, with D(L) = G(L)-‘U(L)- ‘. 

When derived from the VAR (3.2), D(L) is seen to have a special structure that 
was inherited from the assumption that the data were generated by a finite order 

VAR. But of course, there is nothing inherently special or natural about the finite 
order VAR; it is just one flexible parameterization for the x, process. When the 
triangular representation is used, an alternative approach is to parameterize the 
matrix polynomial D(L) directly. 

An early empirical study using this formulation is contained in Campbell and 
Shiller (1987). They estimate a bivariate model of the term structure that includes 
long term and short term interest rates. Both interest rates are assumed to be I(l), 
but the “spread” or difference between the variables is assumed to be I(0). Thus, 
in terms of (3.9))(3.10) ~i,~ is the short term interest rate, x2 t is the long rate and 
/I = 1. In their empirical work, Campbell and Shiller modeled the process U, in 
(3.10) as a finite order VAR. 





Ch. 47: Vector Autoregressions and Cointegration 2877 

to the constant (z,,,) and the deterministic time trends (z,,,). Hypothesis testing 
when deterministic components are present is discussed in Section 3.5. 

There are a many tests for cointegration: some are based on likelihood methods, 
using a Gaussian likelihood and the VECM representation for the model, while 
others are based on more ad hoc methods. Section 3.3.1 presents likelihood based 
(Wald and Likelihood Ratio) tests for cointegration constructed from the VECM. 
The non-likelihood-based methods of Engle and Granger (1987) and Stock and 
Watson (1988) are the subject of Section 3.3.2, and the various tests are compared 
in Section 3.3.3. 

3.3.1. Likelihood based tests for cointegration” 

In Section 3.2.1 the general VECM was written as 

p-1 

Ax, = SCI’X, _ i + C @iA~,-i+~,. (3.3) 
i=l 

To develop the restrictions on the parameters in (3.3) implicit in the null hypothesis, 
first partition the matrix of cointegrating vectors as CI = [a, up] where ~1, is an n x r. 

matrix whose columns are the cointegrating vectors present under the null and ~1, 
is the n x I, matrix of additional cointegrating vectors present under the alternative. 
Partition 6 conformably as 6 = [S,S,], let r =(@, Q2... Qp_i) and let z, = 

(Ax;_~ Ax;_~~x:_~+~ )‘. The VECM can then be written as 

Ax, = S&xt_ 1 + Sac+_ 1 + I-z, + et, (3.15) 

where, under the null hypothesis, the term d,~lhx~_ 1 is absent. This suggests writing 
the null and alternative hypotheses as Ho: 6, = 0 vs. H,: 6, # 0.21 Written in this 
way, the null is seen as a linear restriction on the regression coefficients in (3.15). 
An important complication is that the regressor cQ_ 1 depends on parameters in 
~1, that are potentially unknown. Moreover, when 6, = 0, c+_ I does not enter 
the regression, and so the data provide no information about any unknown param- 
eters in cls. This means that these parameters are econometrically identified only 
under the alternative hypothesis, and this complicates the testing problem in ways 

discussed by Davies (1977, 1987), and (in the cointegration context) by Engle and 
Granger (1987). 

In many applications, this may not be a problem of practical consequence, since 
the coefficients in a are determined by the economic theory under consideration. 
For example, in the (y,c, i, w, n,r,m,p) system, candidate error correction terms 

“Much of the discussion in this section is based on material in Horvath and Watson (1993). 
ZIFormally, the restriction rank@,&) = rO should be added as a qualifier to H,. Since this constraint 

is satisfied almost surely by unconstraiied estimators of (3.15) it can safely be ignored when constructing 
likelihood ratio test statistics. 
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with no unknown parameters are y - c, y - i, (w - p) - (y - n) and r. Only one 
error correction term, m - p - fi,y - /?,T, contains potentially unknown param- 
eters. Yet, when testing for cointegration, a researcher may not want to impose 
specific values of potential cointegrating vectors, particularly during the preliminary 
data analytic stages of the empirical investigation. For example, in their investigation 
of long-run purchasing power parity, Johansen and Juselius (1992) suggest a two- 
step testing procedure. In the first step cointegration is tested without imposing 
any information about the cointegrating vector. If the null hypothesis of no cointe- 
gration is rejected, a second stage test is conducted to see if the cointegrating 
vector takes on the value predicted by economic theory. The advantage of this 
two-step approach is that it can uncover cointegrating relations not predicted by 
the specific economic theory under study. The disadvantage is that the first stage 
test for cointegration will have low power relative to a test that imposes the correct 
cointegrating vector. 

It is useful to have testing procedures that can be used when cointegrating 

vectors are known and when they are unknown. With these two possibilities in 
mind, we write r = rk + ru, where rk denotes the number of cointegrating vectors 
with known coefficients, and r,, denotes the number of cointegrating vectors with 
unknown coefficients. Similarly, write r, = rok + rou and ra = rak + reu, where the 

subscripts “k” and “u” denote known and unknown respectively. Of course, the 
rak subset of “known cointegrating vectors” are present only under the alternative, 
and ahxt is I(1) under the null. 

Likelihood ratio tests for cointegration with unknown cointegrating vectors (i.e. 

H,: r = r9” vs. H,: r = ro, + rou) are developed in Johansen (1988a), and these tests 
are modified to incorporate known cointegrating vectors (nonzero values of r 
and rak) in Horvath and Watson (1993). The test statistics and their asymptot:: 
null distributions are developed below. 

For expositional purposes it is convenient to consider three special cases. In the 
first, r, = rek, so that all of the additional cointegrating vectors present under the 
alternative are assumed to be known. In the second, r, = r,,, so that they are all 
unknown. The third case allows nonzero values of both rak and ra,. To keep the 
notation simple, the tests are derived for the r. = 0 null. In one sense, this is without 
loss of generality, since the LR statistic for H,: r = r. vs. H,: r = r, + r, can always be 
calculated as the difference between the LR statistics for [H,: r = 0 vs. H,: r = r, + r,] 
and [H,: r = 0 vs. H,: r = r,]. However, the asymptotic null distribution of the test 
statistic does depend on ror and ro,, and this will be discussed at the end of this 
section. 

Testing H,: r = 0 vs. H,: r = rek When r. = 0, equation (3.15) simplifies to 

Ax, = S,(abx,_ *) + l-2, + E,. (3.16) 

Since abx, _ 1 is known, (3.16) is a multivariate linear regression, so that the LR, Wald 
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and LM statistics have their standard regression form. Letting X = [x, x2 . ..x~]‘. 

x-1 =[xoxi...xT-l ]‘,AX=X-X_,,Z=[z,z,...z,]‘,s=[.slsZ~..sT]’andM,= 
[I - Z(Z’Z)- ‘Z’], the OLS estimator of 6, is s:, = (AX’MzX _ ia,)(rx~X’_ ,M,XP 1~,)-1, 
which is the Gaussian MLE. The corresponding Wald test statistic for H, vs. H, is 

W= [vec(8J]‘[(u~Xf_lMZX_lu,)-1 C32’,]-‘[vec(G^,)] 

= [vec(AX’M,X_,cr,)]‘[(crbX’,M,X_,cc,)-’~~~-’I 

x Cvec(AX’M,X _ 1 cc,)], (3.17) 

where .??, is the usual estimator value of z, (2, = T-‘6’6, where E* is the matrix of 
OLS residuals from (3.16)), “vet” is the operator that stacks the column of a 

matrix, and the second line uses the result that vec(ABC) = (C’ x A) vet(B) for 
conformable matrices A,B and C. The corresponding LR and LM statistics are 
asymptotically equivalent to W under the null and local alternatives. 

The asymptotic null distribution of W is derived in Horvath and Watson (1993), 
where it is shown that 

W=-Trace{ [ b,(s)dB(s)‘]‘[ b,(s)Bi(s)‘ds]-‘[ ~,(s)dB(s)‘]~, (3.18) 

where B(s) is an n x 1 Wiener process partitioned into r, and n - I, components 
B,(s) and B2(s), respectively. A proof of this result will not be offered here, but the 
form of the limiting distribution can be understood by considering a special case 
with I- = 0 (so that there are no lags of Ax, in the regression), zc = I, and al = [l,aO]. 

In this case, x, is a random walk with n.i.i.d.(O,Z,) innovations, and (3.16) is the 
regression of Ax, onto the first r. elements of x,_ i, say x1 f_ i. Using the true value 

of CE, the Wald statistic in (3.17) simplifies to 

W= Cvec(CAx,x;,,-l)I’C(~x~,~-~x~,~-~)-l o~,lCvec(CAx,x;,,-,)l. 

=TraceC(CAx,x;,,-,)(Cx,,,-,x;,,-,)-1(Cx,,,-,Ax:)l 

= TraceC(T-‘~Ax,x;,,_ 1)(T-2~x1,,_,x~,,_ l)-l(T-‘~x,,,_ ,&)I 

*Trace[ (SB,(WW’)( ~IWIH’~l( SB,(WW’)], 

where the second line uses the result that for square matrices, Trace(AB) = 
Trace(BA), and for conformable matrices, Trace(ABCD) = [vec(D)]‘(A x C’) vec(B’) 
[Magnus and Neudecker (1988, page 30)], and the last line follows from Lemma 
2.3. This verifies (3.18) for the example. 
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Testing H,:r = 0 vs. H,:r = rau When ‘1, is unknown, the Wald test in (3.17) 

cannot be calculated because the regressor abX,_ 1 depends on unknown param- 
eters. However, the LR statistic can be calculated, and useful formulae for the 
LR statistic are developed in Anderson (1951) (for the reduced rank regression 
model) and Johansen (1988a) (for the VECM). In the context of the VECM (3.3), 
Johansen (1988a) shows that the LR statistics’can be written as 

LR = - T c ln(1 - y,), 
i=l 

(3.19) 

where yi are the ordered squared canonical correlations between Ax, and x,_ 1, 
after controlling for Ax, _ 1,. . , Ax, _ D + 1. These canonical correlations can be calcu- 

lated as the eigenvalues of T-IS, There S = ,!?; “2(AX’MzX_ ,)(X’_ ,M,X_ i))r x 
(X’_ rM,AX)(Z;“‘)‘, and where Z, = T-‘(AX’h4,AX) is the estimated covariance 
matrix of s,, computed under the null [see Anderson (1984, Chapter 12) or Brillinger 
(1980, Chapter lo)]. Letting %i(S) denote the eigenvalues of S ordered as 
A,(S) 2 12(S) > ... 3 &(S), then yi from (3.19) is yi = T-‘A,(S). Since the elements 
of S are O,(l) from Lemma 2.3, a Taylor series expansion of ln(1 - ri) shows that 
the LR statistic can be written as 

LR = 1 &(S) + o,(l). (3.20) 
i=l 

Equation (3.20) shows why the LR statistic is sometimes called the “Maximal eigen- 
value statistic” when rou = 1 and the “Trace-statistic” when rou = n [Johansen and 
Juselius (1990)].” 

One way to motivate the formula for the LR statistic given in (3.20), is by mani- 
pulating the Wald statistic in (3.17).23 To see the relationship between LR and W 
in this case, let L(6,, a,) denote the log likelihood written as a function of 6, and 
c1,, and let &(c(,) denote the MLE of 6, for fixed a,. When Z, is known, then the 
well known relation between the Wald and LR statistics in the linear regression 
model [Engle (1984)] implies that the Wald statistic can be written as 

(3.21) 

where the last line follows since cz, does not enter the likelihood when 6a = 0, and 
where W(crJ is written to show the dependence of W on ~1,. From (3.21), with ZE 

“In standard jargon, when r #O, the trace statistic corresponds to the test for the alternative 0” 
ro, = n - rO,. 

Z3See Hansen (1990b) for a general discussion of the relationship between Wald, LR and LM tests 
in the presence of unidentified parameters. 



Ch. 47: Vector Autoregressions and Cointeyration 2881 

known, 

sup W(cc,) = sup 2CL(&(aJ, a,) - UO, 011 
aa =u 

= 2[L(&, 02,) - L(0, O)] 

=LR (3.22) 

where the Sup is taken over all n x ra matrices (Ye. When Z, is unknown, this 

equivalence is asymptotic, i.e. Sup,= kV(a,) = LR + o,(l). 
To calculate Sup,” W(cc,), rewrite (3.17) as 

kV(a,)= [vec(AX’M,X_,cc,)]‘[(ahX’~lM,X_,cr,)-l @~‘,‘I 

x [vec(AX’M,X _ 1 cr,)] 

=TR[~~-“2(AX’M,X_,~,)(cr~X’_,M,X_,~x,)-’ 

x @AX’_ 1M,AX)(f’, “‘)‘] 

= TR [,!?‘, ‘12(AX’M,X ~, )DD’(X’_ 1 M,AX)(T’, “‘)‘], where 

D = !xX,(rAbX’_ 1 M,X _ 1 CIJ 1’2 

= TR [D’(X’_ 1M,AX)&- ‘(AX’M,X _ l)D] 

= TR [F’CC’F], (3.23) 

where F=(X~lM,X_l)‘i2~,Ja~X’_lM,X_lcr,)~”2,and C=(X~,M,X_,))1i2 x 

(X’- 1 M,AX)Z, ‘j2’. Since F’F = Ira u’ 

r‘w rot. 
Sup W(ccJ = Sup TR[F’(CC’)F] = c i,(CC’) = 1 ;l,(C’C) 

CI, F’F=I i=l i=l 

= LR + oP( l), (3.24) 

where Ai denote the ordered eigenvalues of (CC’), and the final two equalities 
follow from the standard principal components argument [for example, see Theil 
(1971, page 46)] and A,(CC’) = &(C’C). Equation (3.24) shows that the likelihood 
ratio statistic can then be calculated (up to an o,(l) term) as the largest r. eigen- 

values of 

c’c = t’, "2(AX'MZX_ ,)(X'_ ,M,X_ ,)- ‘(x’_ ,M,AX)(~‘, l/2)‘, 

To see the relationship between the formulae for the LR statistics in (3.24) and 
(3.20), notice that CC in (3.24) and S in (3.20) differ only in the estimator of ZE; C’C 
uses an estimator constructed from residuals calculated under the alternative, while 
S uses an estimator constructed from residuals calculated under the null. 
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In general settings, it is not possible to derive a simple representation for the 
asymptotic distribution of the Likelihood Ratio statistic when some parameters 
are present only under the alternative. However, the special structure of the VECM 
makes such a simple representation possible. Johansen (1988a) shows that the LR 
statistic has the limiting asymptotic null distribution given by 

rau 

LR=> 2 A,(H) 
i=l 

(3.25) 

where H = [jB(s)dB(s)‘]‘[{B(s)B(s)‘ds]-‘[fB(s)dB(s)’], and B(s) is an n x 1 Wiener 
process. To understand Johansen’s result, again consider the special case with 
r = 0 and z, = I,,. In this case, C’C becomes 

C’C=(AX’X_,)(X’_,X_,)~‘(X’_IAX) 

= [~Ax,x:_ 1 IC~~,-,~:-~l-‘C~~,-~~~:l 

= CT-‘~AX,.~~_,]‘[T-~~X~_~~~_~]-~[T-’C~,_X~] 

-[ /B($dR(s)‘]‘[ jB(s)B(s)‘ds] - ’ [ /B(s)dB(s)‘] (3.26) 

from Lemma 2.3. This verifies (3.25) for the example. 

Testing H,: r = 0 vs. H,: r, = ra, + rau The model is now 

AX, = %J~&kx,- 1) + 4&,x,- 1) + Pz, + &t, (3.27) 

where a, has been partitioned so that uor contains the rllk known cointegrating 

vectors, c1,, contains the ru, unknown cointegrating vectors and 6, has been 
partitioned conformably as 6 = (dak 6,“). As above, the LR statistic can be approxi- 
mated up to an o,(l) term by maximizing the Wald statistic over the unknown 
parameters in claU. Let M,, = M, - M,X_ laak(a~,X’_ 1 M,X_ 1~,,)- ‘c&X’_ 1 M, 
denote the matrix that partials both Z and X_lcl,k out of the regresslon (3.27), 
The Wald statistic (as a function of apI( and CC,~) can then be written as24 

W(c(,*,Q = Cvec(AX’MZX_ ,a,,)l’C(~~,x~,M,X_ ItyJ1 @~‘,‘I 

x [vec(AX’M,X_ 1a,,)] 

x [vec(AX’M,,X_,cr,U)]‘[(~~,Xl,M,,X-,Clyl)-lO~E1l 

x [vec(AX’M,,X_ 1 a,y)]. (3.28) 

14The first term in (3.28) is the Wald statistic for testing Sak = 0 imposing the constraint that 6,u = 0. 
The second term is the Wald statistic for testing &as = 0 with ub,XI_ t and ZC partialled out of the 

regression. This form of the Wald statistic can be deduced from the partitioned inverse formula. 
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As pointed out above, when the null hypothesis is H,: r = rOk + rO,, the LR test 
statistic can be calculated as the difference between the LR statistics for [H,: r = 0 
vs. H,: r = r. + r,] and [H,: r = 0 vs. H,: r = r,]. So, for example, when testing 
Ho: r = ro, vs. Ha: r = ro, + ra,, the LR statistic is 

‘al4 In” 
LR = - T c ln(1 - yi) = 1 &(S) + o,(l), (3.3 1) 

i=r,,+ 1 i=r,,+ 1 

where yi are the canonical correlations defined below equation (3.19) [see Anderson 
(1951) and Johansen (1988a)]. Critical values for the case rok = rak = 0 and n - rou < 5 
are given in Johansen (1988a) for the trace-statistic (so that the alternative is rou = 

n - r.,,); these are extended for n - ro, , < 11 in Osterwald-Lenum (1992), who also 
tabulates asymptotic critical values for the maximal eigenvalue statistic (so that 
r =r 

o?r r”” 

= 0 and ram = 1). Finally, asymptotic critical values for all combinations 
r Ok’ 0”’ lllr and ra, with n - rO, < 9 are tabulated in Horvath and Watson (1992). 

3.3.2. Non-likelihood-based approaches 

In addition to the likelihood based tests discussed in the last section, standard 
univariate unit root tests and their multivariate generalizations have also been 
used as tests for cointegration. To see why these tests are useful, consider the 
hypotheses H,: r = 0 vs. H,: r = 1, and suppose that CI is known under the alter- 
native. Since the data are not cointegrated under the null, w, = a’x, is I(l), while 
under the alternative it is I(0). Thus, cointegration can be tested by applying a 
standard unit root test to the univariate series w,. To be useful in more general 
cointegrated models, standard unit root tests have been modified in two ways. 
First, modifications have been proposed so that the tests can be applied when c1 
is unknown. Second, multivariate unit root tests have been developed for the general 
testing problem H,: r = r, vs. H,: r = r. + r,. We discuss these two modifications 
in turn. 

Engle and Granger (1987) develop a test for the hypotheses H,: r = 0 vs. H,: r = 1 
when c1 is unknown. They suggest using OLS to estimate the single cointegrating 
vector and applying a standard unit root test (they suggest an augmented Dickey- 
Fuller t-test) to the OLS residuals, +‘r = &x,. Under the alternative, 6i is a consistent 
estimator of LX, so that $, will behave like w,. However, under the null, 6i is obtained 
from a “spurious” regression (see Section 2.6.3) and the residuals from a spurious 
regression (kZ) behave differently than non-stochastic linear combinations of I(1) 
variables (w,). This affects the null distribution of unit root statistics calculated 
using tit. For example, the Dickey-Fuller t-statistic constructed using fi’t has a 

different null distribution than the statistic calculated using w,, so that the usual 
critical values given in Fuller (1976) cannot be used for the Engle-Granger test. The 
correct asymptotic null distribution of the statistic is derived in Phillips and Ouliaris 
(1990), and is tabulated in Engle and Yoo (1987) and MacKinnon (1991). Hansen 
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(1990a) proposes a modification of the EngleeGranger test that is based on an 
iterated Cochrane-Orcutt estimator which eliminates the “spurious regression” 
problem and results in test statistics with standard Dickey-Fuller asymptotic 
distributions under the null. 

Stock and Watson (1988), building on work by Fountis and Dickey (1986), 
propose a multivariate unit root test. Their procedure is most easily described by 
considering the VAR(l) model, x, = @x,_ 1 + c,, together with the hypotheses H,: 
r = 0 vs. H,: r = ra. Under the null the data are not cointegrated, so that @ = I,. 
Under the alternative there are r. covariance stationary linear combinations of 
the data, so that @ has r. eigenvalues that are less than one in modulus. The Stock- 
Watson test is based on the ordered eigenvalues of 6, the OLS estimator of @. 
Writing these eigenvalues as Il,I 2 1x,( > . . . . the test is based on ;l’n_r,+ 1, the r,th 
smallest eigenvalue. Under the null, An_*,+r = 1, while under the alternative, 

IAn- r. + 1 1 < 1. The asymptotic null distribution of T(G - I) and T( Iii\ - 1) are 
derived in Stock and Watson (1988), and critical values for T( I%n_-r,+ 1 ) - 1) are 
tabulated. This paper also develops the required modifications for testing in a 
general VAR(p) model with r0 # 0. 

3.3.3. Comparison of the tests 

The tests discussed above differ from one another in two important respects. First, 
some of the tests are constructed using the true value of the cointegrating vectors 
under the alternative, while others estimate the cointegrating vectors. Second, the 

likelihood based tests focus their attention on 6 in (3.3), while the non-likelihood- 
based tests focus on the serial correlation properties of certain linear combinations 
of the data. Of course, knowledge of the cointegrating vectors, if available, will 
increase the power of the tests. The relative power of tests that focus on S and 
tests that focus on the serial correlation properties of w, = CL’X, is less clear. 

Some insight can be obtained by considering a special case of the VECM (3.3) 

Ax, = SJa;xt_ ,) + E,. (3.32) 

Suppose that ~1, is known and that the competing hypotheses are H,: r = 0 vs. H,: 
r = 1. Multiplying both sides of (3.31) by a: yields 

Aw~=Bw,-~+~,, (3.33) 

where w, = abxl, 0 = czbs, and e, = c~:E,. Unit root tests constructed from w, test 
the hypotheses H,: 8 = (cQ,) = 0 vs. H,: 0 = ($8,) < 0, while the VECM-based LR 
and Wald statistics test H,: 6, = 0 vs. H,: 6, # 0. Thus, unit root tests constructed 
from w, focus on departures from the 6, = 0 null in the direction of the cointegrating 
vector CI,. In contrast, the VECM likelihood based tests are invariant to transfor- 
mations of the form Pcrbx, _ 1 when CI, is known and Px,_, when u, is unknown, 
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where P is an arbitrary nonsingular matrix. Thus, the likelihood based tests aren’t 
focused in a single direction like the univariate unit root test. This suggests that 
tests based on w, should perform relatively well for departures in the direction of 
LY., but relatively poorly in other directions. As an extreme case, when LY~S. = 0, the 
elements of x, are I(2) and w, is I(1). [The system is CZ(2,l) in Engle and Granger’s 
(1987) notation.] The elements are still cointegrated, at least in the sense that a 
particular linear combination of the variables is less persistent than the individual 
elements of x,, and this form of cointegration can be detected by a nonzero value 
of 6, in equation (3.32) even though 8 = 0 in (3.33).26 

A systematic comparison of the power properties of the various tests will not 
be carried out here, but one simple Monte Carlo experiment, taken from a set of 
experiments in Horvath and Watson (1993), highlights the power tradeoffs. 
Consider a bivariate model of the form given in (3.32) with E, - n.i.i.d.(O, I,), CI, = 
(1 - 1)’ and 6, = (S,, da*)‘. This design implies that 0 = de, - S,* in (3.33), so that 
the unit root tests should perform reasonably well when Id,, - fi(12( is large and 
reasonably poorly when 16,, - 8J is small. Changes in 6, have two effects on the 
power of the VECM likelihood based tests. In the classical multivariate regression 
model, the power of the likelihood based tests increase with { = hi, + a:,. However, 
in the VECM, changes in 6,, and Lju2 also affect the serial correlation properties 
of the regressor, w, _ 1 = dx, _ 1, as well as [. Indeed, for this design, w, - AR(l) with 

Table 1 
Comparing power of tests for cointegration.” 

Size for 5 percent asymptotic critical values and power for tests carried out 
at 5 percent IeveP 

Test (0,O) (0.05,0.055) (-0.05,0.055) (-0.0105,0) 

DF (a known) 5.0 6.5 81.5 81.9 
EGDF (a unknown) 4.1 2.9 31.9 32.5 
Wald (a known) 4.1 95.0 54.2 91.5 
LR (c( unknown) 4.4 86.1 20.8 60.7 

“Design is 

where E, = (E:c,?) ’ - n.l.l. d.(O,I,) and t = I ,_.., 100. 
bThese results are based on 10,000 replications. The first column shows 

rejection frequencies using asymptotic critical values. The other columns show 
rejection frequencies using 5 percent critical values calculated from the 
experiment in column 1. 

26This example was pointed out to me by T. Rothenberg. 
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AR coefficient 8 = da1 - Sal [see equation (3.33)]. Increases in 6’ lead to increases 
in the variability of the regressor and increases in the power of the test. 

Table I shows size and power for four different values of 6, when T = 100 in 
this bivariate system. Four tests are considered: (1) the Dickey-Fuller (DF) t-test 
using the true value of IX; (2) the Engle-Granger test (EG-DF, the Dickey-Fuller 
t-test using a value of c( estimated by OLS); (3) the Wald statistic for Ho: 6, = 0 
using the true value of a; and (4) the LR statistic for H,: 6, = 0 for unknown ~1. 

The table contains several noteworthy results. First, for this simple design, the 
size of the tests is close to the size predicted by asymptotic theory. Second, as 
expected, the DF and EG-DF tests perform quite poorly when 16,, - da21 is small. 
Third, increasing the serial correlation in w, = abxt, while holding Szl + 8:, constant, 
increases the power of the likelihood based tests. [This can be seen by comparing 
the 6, = (0.05,0.055) and 6, = (- 0.05,0.055) columns.] Fourth, increasing 6f1 + 6,2,, 
while holding the serial correlation in w, constant, increases the power of the 
likelihood based tests. [This can be seen by comparing the 6, = (- 0.05, 0.055) 
and 6, = (- 0.105, 0.00) columns.] Fifth, when the DF and EG--DF are focused 
on the correct direction, their power exceeds the likelihood based tests. [This can 
be seen from the 6, = (- 0.05, 0.055) column.] Finally, there is a gain in power 
from incorporating the true value of the cointegrating vector. (This can be seen 
by comparing the DF test to the EG-DF test and the Wald test to the LR test.) 
A more thorough comparison of the tests is contained in Horvath and Watson 
(1993). 

3.4. Estimating cointegrating vectors 

3.4.1. Gaussian maximum likelihood estimation (MLE) based 
on the triangular representation 

In Section 3.2.4 the triangular representation of the cointegrated system was written 
as 

Ax1.t = Ul,,, (3.9) 

X2,* - Px1,r = U2.f’ (3.10) 

where U, = D(L)&,. In this section we discuss the MLE estimator of fi under the 
assumption that E, - n.i.i.d.(O, I). The n.i.i.d. assumption is used only to motivate the 
Gaussian MLE. The asymptotic distribution of estimators that are derived below 
follow under the weaker distributional assumptions listed in Lemma 2.3. In Section 
2.6.4 we considered the OLS estimator of/l in a bivariate model, and paid particular 
attention to the distribution of the estimator when D(L) = D with d,, = d,, = 0. 
In this case, ~i,~ is weakly exogenous for /I and the MLE estimator corresponds 
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to the OLS estimator. Recall (see Section 2.6.4) that when d,, = It,, = 0, the OLS 
estimator of p has an asymptotic distribution that can be represented as a variance 
mixture of normals and that the t-statistic for p has an asymptotic null distribution 
that is standard normal. This means that tests concerning the value of /I and 
confidence intervals for B can be constructed in the usual way; complications from 
the unit roots in the system can be ignored. These results carry over immediately 
to the vector case where ~i,~ is k x 1 and x*,~ is r x 1 when u, is serially uncorrelated 

and ul,t is independent of u~,~. Somewhat surprisingly, they also carry over to the 
MLE of fi in the general model with u, = D(L)&,, so that the errors are both serially 
and cross correlated. 

Intuition for this result can be developed by considering the static model with 
u, = D.zt and D is not necessarily block diagonal. Since ~i,~ and u2,* are correlated, 
the MLE of /3 corresponds to the seemingly unrelated regression (SUR) estimator 
from (3.9)-(3.10). But, since there are no unknown regression coefficients in (3.9), 
the SUR estimator can be calculated by OLS in the regression 

x2.t = BXl,, + a1,1+ ez,r, (3.34) 

where y is the coefficient from the regression of u*,~ onto u~,~, and e2,, = u~,~ - 
E[u,,,lu,,,] is the residual from this regression. By construction, e2,1 is independent 

of {xi,,}:= 1 for all t. Moreover, since y is a coefficient on a zero mean stationary 
regressor and b is a coefficient on a martingale, the limiting scaled “X’X” matrix 
from the regression is block diagonal (Section 2.5.1). Thus from Lemma 2.3, 

T(&p)=(T-‘C e2,tx;,,)(T~2Cx1,,x;,,)-1 + o,(l) 

)( s -1 

Z,l/’ B,(s)B,(s)‘ds(Zu’j’)’ , (3.35) 

where Z,,, = var(u,,,), ZeZ = var(e2,J and B(s) is an n x 1 Brownian motion process, 
partitioned as B(s) = [B,(s)‘B,(s)‘]‘, where B,(s) is k x 1 and B*(S) is r x 1. Except 
for the change in scale factors and dimensions, equation (3.35) has the same form 
as (2.21), the asymptotic distribution of fi in the case d,, = d,, = 0. Thus, the 

asymptotic distribution of j? can be represented as a variance mixture of normals. 
Moreover, the same conditioning argument used when d,, = d,, = 0 implies that 
the asymptotic distribution of Wald test statistics concerning p have their usual 

large sample x2 distribution. Thus, inference about j can be carried out using 
standard procedures and standard distributions. 

Now suppose that a, = D(L)&,. The dynamic analogue of (3.34) is 

X 2,, = Bx,,, + Y(-WX,,, + e2,t, (3.36) 

where Y(G%,, =~C~2,rl~~~l,rI~~ll = ~C~2,tl{~I,r~T=11~ and e2,t=uz,t- 
E[u,,,l {u~,~}T= 1]. Letting D,(L) denote the first k rows of D(L) and D,(L) denote 
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the remaining r rows, then from classical projection formulae [e.g. Whittle (1983, 
Chapter 5)], y(L) = D,(L)D,(L)‘[D,(L)D,(L-‘)‘]-‘.27 Equation (3.36) differs from 
(3.34) in two ways. First, there is potential serial correlation in the error term of 
(3.36), and second, y(L) in (3.36) is a two-sided polynomial. These differences 
complicate the estimation process. 

To focus on the first complication, assume that y(L) = 0. In this case, (3.36) 
is a regression model with a serially correlated error, so that (asymptotically) the 
MLE of p is just the feasible GLS estimator in (3.36). But, as shown in Phillips 
and Park (1988), the GLS correction has no effect on the asymptotic distribution 
of the estimator: the OLS estimator and GLS estimators of p in (3.17) are asymp- 
totically equivalent.28 Since the regression error e2,( and the regre:sors (x~,~}~~ 1 
are independent, by analogy with the serially uncorrelated case, T(/I - fi) will have 
an asymptotic distribution that can be represented as a variance mixture of normals. 
Indeed, the distribution will be exactly of the form (3.35), where now Z’,, and Ze2 
represent “long-run” covariance matrices.29 

Using conditioning arguments like those used in Section 2.6.4, it is straightforward 
to show that the Wald test statistics constructed from the GLS estimators of /I 
have large sample x2 distributions. However, since the errors in (3.36) are serially 
correlated, the usual estimator of the covariance matrix for the OLS estimators of 
p is inappropriate, and a serial correlation robust covariance matrix is required.30 
Wald test statistics constructed from OLS estimators of fi together with serial 
correlation robust estimators of covariance matrices will be asymptotically x2 and 

27This is the formula for the projection onto the infinite sample, i.e. y(L)Ax,! = ECU:) {Ax,’ ),a= ,I. 

In general, y(L) is two-sided and of infinite order, so that this is an approximation to E[u:J {Ax,‘}f, r]. 
The effect of this approximation error on estimators of B is discussed below. 

‘sThis can be demonstrated as follows. When y(L) = 0, e,,, = D&)c,,, and x1,, = D,~(L)E~,~ where 
E,.~ and cl,, are the first k and last r elements of E,, and D, t(L) and Dzz(L) are the appropriate dtagonal 
blocks of D(L). Let C(L) = [D22(L)]-1 and assume that the matrix coefficients in C(L), D,,(L) and 
D,,(L) are I-summable. Letting 6 = vet(@), the GLS estimator and OLS estimators satisfy 

where q, = [xl,,@I,], and defining the operator L so that z,L = Lz, = s,_r,ri, = [x1,,@ C(L)‘]. Using 
the Lemma 2.3 

T&s - 4 = IT-2&,,~;,, OI,I-‘CT-‘C(x;,,OI,)D,,(L)&,.,l 

= IT-z&.$,,, O~,I-‘CT-‘~(X;,~~~~I~)~~.,)I + o,(t), 

T(6^,,, -6)=[T-Z~{C(~)~,,,}{x;,,C(L)‘}O~,I-’CT~’~(~~,,OC(~)I)~~.,1 

= IT~‘~x,.,x;,, OC(t~C(t)l-‘CT-‘~(x~.~~C(~~~~~,)l+o,(t)~ 

Since C(l)-’ = Dz2(l), T(go,, - 6) = T(6^,,, - 6) + o,(l), so that T($o,,, - Jo,,) LO. 
“The long-run covariance matrix for an n x 1 covariance stationary vector y, with absolutely 

summable autocovariances is x,E m Cov(y,, y,_& which is 2n times the spectral density matrix for y, 
at frequency zero. 

“See Wooldridge’s chapter of the Handbook for a thorough discussion of robust covariance matrix 
estimators. 
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Will be asymptotically equivalent to the statistics calculated using the GLS 
estimators of b [Phillips and Park (1988)]. In summary, the serial correlation in 
(3.36) poses no major obstacles. 

The two-sided polynomial y(L) poses more of a problem, and three different 
solutions have developed. In the first approach, y(L) is approximated by a finite 
order (two-sided) polynomial. 31 In this case, equation (3.36) can be estimated by 

GLS, yielding what Stock and Watson (1993) call the “Dynamic GLS” estimator 
of fi. Alternatively, utilizing the Phillips and Park (1988) result, an asymptotically 
equivalent “Dynamic OLS’estimator can be constructed by applying OLS to (3.36). 

To motivate the second approach, assume for a moment that y(L) were known. 
The OLS estimator of p would then be formed by regressing x~,~ - y(L)Ax,,, onto 

x1,,. But T-‘C[y(L)Axi,,]xi,, = r-‘~[y(l)Ax,,,]x,,, + B + o,,(l), where B = 
lim f+m E(y,x,,,), where Y, = [Y(L) - YU)IAX~,,. (This can be verified using (c) and 

(d) of Lemma 2.3.) Thus, an asymptotically equivalent estimator can be constructed 
by regressing x~,~ - y(l)Axi,, onto x1,( and correcting for the “bias” term B. Park’s 
(1992) “Canonical Cointegrating Regression” estimator and Phillips and Hansen’s 
(1990) “Fully Modified” estimator use this approach, where in both cases y(l) and 
B are replaced by consistent estimators. 

The final approach is motivated by the observation that the low frequency 
movements in the data asymptotically dominate the estimator of p. Phillips (1991 b) 
demonstrates that an efficient band spectrum regression, concentrating on frequency 
zero, can be used to calculate an estimator asymptotically equivalent to the MLE 
estimator in (3.36).32 

All of these suggestions lead to asymptotically equivalent estimators. The 
estimators have asymptotic representations of the form (3.35) (where _ZU, and Z_ 
represent long-run covariance matrices), and thus their distributions can be re- 
presented as variance mixtures of normals. Wald test statistics computed using 
the estimators (and serial correlation robust matrices) have the usual large sample 
x2 distributions under the null. 

3.4.2. Gaussian maximum likelihood estimation based on the VECM 

Most of the empirical work with cointegrated systems has utilized parameterizations 
based on the finite order VECM representation shown in equation (3.3). Exact 

MLEs calculated from the finite order VECM representation of the model are 
different from the exact MLE’s calculated from the triangular representations that 
were developed in the last section. The reason is that the VECM imposes constraints 
on the coefficients in y(L) and the serial correlation properties of e2,r in (3.36). 

3’This suggestion can be found in papers by Hansen (1988) Phillips (1991a), Phillips and Loretan 
(1991), Saikkonen (1991) and Stock and Watson (1993). Saikkonen (1991) contains a careful discussion 
of the approximation error that arises when y(L) is approximated by a finite order polynomial. Using 
results of Berk (1974) and Said and Dickey (1984) he shows that a consistent estimator of y(l) (which, 
as we show below is required for an asymptotically efficient estimator of /?) obtains if the order of the 
estimated polynomial y(L) increases at rate Td for 0 < 6 cf. 

-“See Hannan (1970) and Engle (1976) for a general discussion of band spectrum regression. 
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These restrictions were not exploited in the estimators discussed in Section 3.41. 
While these restrictions are asymptotically uninformative about j?, they impact the 
estimator in small samples. 

Gaussian MLEs of/J constructed from the finite order VECM (3.2) are analyzed 
in Johansen (1988a, 1991) and Ahn and Reinsel (1990) using the reduced rank 
regression framework originally studied by Anderson (195 1). Both papers discuss 
computational approaches for computing the MLEs, and more importantly, derive 
the asymptotic distribution of the Gaussian MLE. There are two minor differences 
between the Johansen (1988a, 1991) and Ahn and Reinsel(l990) approaches. First, 
different normalizations are employed. Since 17 = 6~’ = 6FF- ‘CY for any nonsingular 
r x r matrix F, the parameters in 6 and CY are not econometrically identified without 
further restrictions. Ahn and Reinsel (1990) use the same identifying restriction 
imposed in the triangular model, i.e., a’ = [ - /IZ,]; Johansen (1991) uses the 
normalization Oi’Roi = I,, where R is the sample moment matrix of residuals from 
the regression of x,-r onto Ax~_~, i = 1,. . . , p - 1. Both sets of restrictions are 
normalizations in the sense that they “just” identify the model, and lead to identical 
values of the maximized likelihood. Partitioning Johansen’s MLE as oi = (02; a;)‘, 
where bi, is k x I and oi, is r x r, implies that the MLE of fi using Ahn and Reinsel’s 
normalization is p^= - (&,&;‘y. 

The approaches also differ in the computational algorithm used to maximize 

the likelihood function. Johansen (1988a), following Anderson (1951), suggests an 
algorithm based on partial canonical correlation analysis between Ax, and x,_ 1 
given Ax,- i, i = 1,. , p - 1. This framework is useful because likelihood ratio tests 
for cointegration are computed as a byproduct (see Equation 3.19). Ahn and Reinsel 
(1990) suggests an algorithm based on iterative least squares calculations. Modern 

computers quickly find the MLEs for typical economic systems using either 
algorithm. 

Some key results derived in both Johansen (1988a) and Ahn and Reinsel (1990) 

are transparent from the latter’s regression formulae. As in Section 3.3, write the 
VECM as 

Ax, = ~CX’X, _ 1 + I-z, + E, 

=fiCX2,t-l-BXl,t~11+~Z1+&,, (3.37) 

where z, includes the relevant lags of Ax, and the second line imposes the Ahn 
Reinsel normalization of ~1. Let w, _ I = x2 f _ 1 - /?x, f _ 1 denote the error correction 
term, and let 0 = [vet(G)’ vet(r)’ vec(j?)‘]’ denote the vector of unknown parameters. 
Using the well known relations between the vet operator and Kronecker products, 
vec(rz,) = (z:Ol,)vec(T), vec(bw,_ 1) = (w:_ I @l,)vec(r) and vec(&?x,,,_ r) = 
(x; f_ I 0 6) vet(p). Using th ese expressions, and defining Q, = [(z, 0 I,) (& _ 1 @ I,,) 
(x~:~~ 1 OS)]‘, then the Gauss-Newton iterations for estimating 0 are 

@+l= e’+ [cQI~','Q,]-'[CQ:~','~:,] (3.38) 
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where 8’ denotes the estimator of 0 at the ith iteration, k’, = T- ‘CE,& and Q, 
and E, are evaluated at i?.33 Thus, the Gauss-Newton regression corresponds to 

the GLS regression of E, onto (z: 0 I,), (wi _ 1 0 I,,) and (x’, ,! _ 1 0 6). Since the z, 
and w, are I(0) with zero mean and x~,~ is I(l), the analysis m Section 2 suggests 

that the limiting regression “X’X” matrix will be block diagonal, and the MLEs 
of 6 and I- will be asymptotically independent of the MLE of /?. Johansen (1988a) 
and Ahn and Reinsel (1990) show that this is indeed the case. In addition they 
demonstrate that the MLE of /3 has a limiting distribution of the same form as 
shown in equation (3.35) above, so that T(fi - fl) can be represented as a variance 

mixture of normals. Finally, paralleling the result for MLEs from triangular 
representation, Johansen (1988a) and Ahn and Reinsel (1990) demonstrate that 

[~Q;~','Q,]-"2(& 6) %'(O,Z), 

so that hypothesis tests and confidence intervals for all of the parameters in the 
VECM can be constructed using the normal and x2 distributions. 

3.4.3. Comparison and efJiciency of the estimators 

The estimated cointegrating vectors constructed from the VECM (3.3) or the 
triangular representation (3.9)-(3.10) differ only in the way that the I(0) dynamics 
of the system are parameterized. The VECM models these dynamics using a VAR 

involving the first differences Ax, ,f, AxZ,( and the error correction terms, x~,~ - /?x~,~; 
the triangular representation uses only Ax, f and the error correction terms. Section 
3.4.1 showed that the exact parameterization of the I(0) dynamics ~ y(L) and the 
serial correlation of the error term in (3.36) - mattered little for the asymptotic 
behavior of the estimator from the triangular representation. In particular, 
estimators of b that ignore residual serial correlation and replace y(L) with y(l) 
and adjust for bias are asymptotically equivalent to the exact MLE in (3.36). 
Saikkonen (1991) shows that this asymptotic equivalence extends to Gaussian 
MLEs constructed from the VECM. Estimators of /? constructed from (3.36) with 
appropriate nonparametric estimators of y( 1) are asymptotically equivalent to 
Gaussian MLEs constructed from the VECM (3.3). Similarly, test statistics for 
H,: R[vec(/l)] = r constructed from estimators based on the triangular representa- 
tion and the VECM are also asymptotically equivalent. 

3SConsistent initial conditions for the iterations are easily constructed from the OLS_estimator_s of 
the parameters in the VAR (3.2). Let fi denote the OLS estimator of IT, partitioned as 17 = [IT,II,], 

where “r is n x (n -r) and e2 is n x r; further partition I?, = [I?; L fi;r]’ and fi, = [I?‘;, Ii’;,]‘, 

where 17, 1 is (n - r) x (n - r), I7,, is r x (n - r), or2 is (n - r) x r and 17,, is r x r. Then I?, serves as an 
initial consistent estimator of 6 and -(J722))‘nz1 serves as an estimator of 8. Ahn and Reinsel(l990) 
and Saikkonen (1992) develop efficient two-step estimators of B constructed from IT, and Engle and 
Yoo (1991) develop an efficient three-step estimator of all the parameters in the model using iterations 
similar to those in (3.38). 
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Since estimators of cointegrating vectors do not have asymptotic normal distri- 
butions, the standard analysis of asymptotic efficiency - based on comparing 
estimator’s asymptotic covariance matrices ~ cannot be used. Phillips (199 1 a) and 
Saikkonen (199 1) discuss efficiency of cointegrating vectors using generalizations 
of the standard efficiency definitions.34 Loosely speaking, these generalizations 
compare two estimators in terms of the relative probability that the estimators 
are contained in certain convex regions that are symmetric about the true value 
of the parameter vector. Phillips (1991a) shows that when U, in the triangular 
representation (3.9)-(3.10) is generated by a Gaussian ARMA process, then the 
MLE is asymptotically efficient. Saikkonen (1991) considers estimators whose 
asymptotic distributions can be represented by a certain class of functionals of 
Brownian motion. This class contains the OLS and nonlinear least squares 
estimators analyzed in Stock (1987), the instrumental variable estimators analyzed 
in Phillips and Hansen (1990), all of the estimators discussed in Sections 3.4.1 and 
3.4.2, and virtually every other estimator that has been suggested. Saikkonen shows 
that the Gaussian MLE or (any of the estimators that are asymptotically equivalent 
to the Gaussian MLE) are asymptotically efficient members of this class. 

Several studies have used Monte Carlo methods to examine the small sample 
behavior of the various estimators of cointegrating vectors. A partial list of the 
Monte Carlo studies is Ahn and Reinsel (1990), Banerjee et al. (1986), Gonzalo 
(1989), Park and Ogaki (1991), Phillips and Hansen (1990), Phillips and Loretan 
(1991) and Stock and Watson (1993). A survey of these studies suggests three 
general conclusions. First, the static OLS estimator can be very badly biased even 
when the sample size is reasonably large. This finding is consistent with the bias 
in the asymptotic distribution of the OLS estimator (see equation (2.22)) that was 
noted by Stock (1987). 

The second general conclusion concerns the small sample behavior of the Gaussian 

MLE based on the finite order VECM. The Monte Carlo studies discovered that, 
when the sample size is small, the estimator has a very large mean squared error, 
caused by a few extreme outliers. Gaussian MLEs based on the triangular represen- 
tation do not share this characteristic. Some insight into this phenomenon is 
provided in Phillips (1991~) which derives the exact (small sample) distribution of 
the estimators in a model in which the variables follow independent Gaussian 
random walks. The MLE constructed from the VECM is shown to have a Cauchy 
distribution and so has no integer moments, while the estimator based on the tri- 
angular representation has integer moments up to order T - n + r. While Phillips’ 
results concern a model in which the variables are not cointegrated, it is useful 
because it suggests that when the data are “weakly” cointegrated - as might be 
the case in small samples - the estimated cointegrating vector will (approximately) 
have these characteristics. 

The third general conclusion concerns the approximate Gaussian MLEs based 

“‘See Basawa and Scott (1983) and Sweeting (1983). 
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on the triangular representation. The small sample properties of these estimators 
and test statistics depend in an important way on the estimator used for the long- 
run covariance matrix of the data (spectrum at frequency zero), which is used to 
construct an estimator of y( 1) and the long-run residual variance in (3.36). Experi- 
ments in Park and Ogaki (1991), Stock and Watson (1993) and (in a different 
context) Andrews and Moynihan (1990), suggest that autoregressive estimators 
or estimators that rely on autoregressive pre-whitening outperform estimators 
based on simple weighted averages of sample covariances. 

3.5. The role of constants and trends 

3.5.1. The model of deterministic components 

Thus far, deterministic components in the time series (constants and trends) have 
been ignored. These components are important for three reasons. First, they 
represent the average growth or nonzero level present in virtually all economic 
time series; second, they affect the efficiency of estimated cointegrating vectors and 
the power of tests for cointegration; finally, they affect the distribution of estimated 
cointegrating vectors and cointegration test statistics. Accordingly, suppose that 
the observed n x 1 time series y, can be represented as 

Y,=P,+Plt+x,, (3.39) 

where x, is generated by the VAR (3.1). In (3.39), pLo + pLlt represents the deter- 
ministic component of yt, and x, represents the stochastic component. In this 
section we discuss how the deterministic components affect the estimation and 
testing procedures that we have already surveyed.35 

There is a simple way to modify the procedures so that they can be applied 
to y,. The deterministic components can be eliminated by regressing y, onto a 
constant and time trend. Letting y: denote the detrended series, the estimation 
and testing procedures developed above can then be used by replacing x, with y;. 
This changes the asymptotic distribution of the statistics in a simple way: since 
the detrended values of y, and x, are identical, all statistics have the same limiting 
representation with the Brownian motion process B(s) replaced by B’(s), the 
detrended Brownian motion introduced in Section 2.3. 

While this approach is simple, it is often statistically inefficient because it discards 
all of the deterministic trend information in the data, and the relationship between 
these trends is often the most useful information about cointegration. To see this, 

35We limit discussion lo linear trends in y, for reasons of brevity and because this is the most 
important model for empirical applications. The results are readily extended to higher order trend 
polynomials and other smooth trend functions. 
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let CI denote a cointegrating vector and consider the “stable” linear combination 

dy, = A, + 2, t + wt, (3.40) 

where JUO = CX’,U~, R, = a’~~, and w, = a’x,. In most (if not all) applications, the 
cointegrating vector will annihilate both the stochastic trend and deterministic 
trend in a’y,. That is, w, will be I(0) and J., =0.36 As shown below, this means 
that one linear combination of the coefficients in the cointegrating vector can be 
consistently estimated at rate T 3’2 In contrast, when detrended data are used, the . 
cointegrating vectors are consistently estimated at rate T. Thus, the data’s deter- 
ministic trends are the dominant source of information about the cointegrating 
vector and detrending the data throws this information away. 

The remainder of this section discusses estimation and testing procedures that 
utilize the data’s deterministic trends. Most of these procedures are simple modifi- 
cations of the procedures that were developed above. 

3.5.2. Estimating cointegrating vectors 

We begin with a discussion of the MLE of cointegrating vectors based on the 
triangular representation. Partitioning yt into (n - r) x 1 and r x 1 components, 
yi,, and y2,t, the triangular representation for y, is 

AY1.t = Y + Ul,,, (3.41) 

Y2.t - BYI,, = Al + 4t + U2.r. (3.42) 

This is identical to the triangular representation for x, given in (3.9))(3.10) except 
for the constant and trend terms. The constant term in (3.41) represents the average 
growth in yr,,. In most situations 1, = 0 in (3.42) since the cointegrating vector 
annihilates the deterministic trend in the variables. In this case, 2, denotes the 
mean of the error correction terms, which is unrestricted in most economic 
applications. 

Assuming that i1 = 0 and 1, and y are unrestricted, efficient estimation of b in 
(3.42) proceeds as in Section 3.3.1. The only difference is that the equations now 
include a constant term. As in Section 3.3.1, Wald, LR or LM test statistics for 
testing H,: R[vec(p)] = r will have limiting x2 distributions, and confidence inter- 
vals for the elements of /I can be constructed in the usual way. The only result 
from Section 3.3.1 that needs to be modified is the asymptotic distribution of b. 
This estimator is calculated from the regression of y, f onto Y,,~, leads and lags of 

AY,,, and a constant term. When the y, f , data contain a trend [y # 0 in (3.41)], 

360 aki and Park (1990) define these two restrictions as “stochastic” and “deterministic” cointegration. 
Stochattic cointegration means that w, is I(O), while deterministic cointegration means that 1, = 0. 
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one of the canonical regressors is a time trend (z~,~ from Section 2.5.1), and the 
estimated coefficient on the time trend converges at rate T3’*. This means that 
one linear combination of the estimated coefficients in the cointegrating vector 
converges to its true value very quickly; when the model did not contain a linear 
trend the estimator converged at rate T. 

The results for MLEs based on the finite order VECM representation are 
analogous to those from the triangular representation. The VECM representation 
for y, is derived directly from (3.2) and (3.39), 

p-1 

Ay, = pl +‘@‘x,_ 1) + 1 @+Ax,_~ + E, 
i=l 

p-1 

=~1+6("'y,_,--1,--i,t)+ c @iAyt_i+~,, (3.43) 
i=l 

where b1 = (I - C;:t Q&r, 2, = cl’pO and /2, = “‘pt. Again, in most applications 

II, = 0, and the VECM is 

'y, = ' + '("y,_ 1)+ C ~i'y,_ i +&r, 

i=l 

(3.44) 

where 0 = PI - 62,. When the only restriction on pl is a’pl = 0, the constant term 
19 is unconstrained, and (3.44) has the same form as (3.2) except that a constant 
term has been added. Thus, the Gaussian MLE from (3.44) is constructed exactly 
as in Section 3.4.2 with the addition of a constant term in all equations. The distri- 
bution of test statistics is unaffected, but for the reasons discussed above, the 
asqrmptotic distribution of the cointegrating vector changes because of the presence 
of the deterministic trend. 

In some situations the data are not trending in a deterministic fashion, so that 
pl = 0. (For example, this is arguably the case when y, is a vector of U.S. interest 
rates.) When pL1 = 0, then ,iil = 0 in (3.43), and this imposes a constraint on 0 in 
(3.44). To impose this constraint, the model can be written as 

(3.45) 

and estimated using a modification of the Gauss-Newton iterations in (3.38) or 
a modification of Johansen’s canonical correlation approach [see Johansen and 
Juselius (1990)]. 
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3.5.3. Testing for cointegration 

Deterministic trends have important effects on tests for cointegration. AS discussed 
in Johansen and Juselius (1990) and Johansen (1991, 1992a), it is useful to consider 

two separate effects. First, as in (3.43))(3.44) nonzero values of p0 and pi affect 
the form of the VECM, and this, in turn, affects the form of the cointegration test 
statistic. Second, the deterministic components affect the properties of the regressors, 
and this, in turn, affects the distribution of cointegration test statistics. In the most 
general form of the test considered in Section 3.3.1, c1 was partitioned into known 
and unknown cointegrating vectors under both the null and alternative; that is, CI 
was written as c1= (cI,~ GL,” CI,~ clou). When nonzero values of pu, and .~i are allowed, 
the precise form of the statistic and resulting asymptotic null distribution depends 
on which of these cointegrating vectors annihilate the trend or constant [see 
Horvath and Watson (1993)]. Rather than catalogue all of the possible cases, the 
major statistical issues will be discussed in the context of two examples. The reader 
is referred to Johansen and Juselius (1990), Johansen (1992a) and Horvath and 
Watson (1993) for a more systematic treatment. 

In the first example, suppose that r = 0 under the null, that CI is known under 

the alternative, that j+, and pi are nonzero, but that “‘pi = 0 is known. To be 
concrete, suppose that the data are aggregate time series on the logarithms of 
income, consumption and investment for the United States. The balanced growth 
hypothesis suggests two possible cointegrating relations with cointegrating vectors 
(1, - 1,O) and (l,O, - 1). The series exhibit deterministic growth, so that pL1 # 0, 
and the sample growth rates are approximately equal, so that “‘pi = 0 is reasonable. 
In this example, (3.44) is the correct specification of the VECM with 0 unrestricted 
under both the null and alternative and 6 = 0 under the null. Comparing (3.44) 
and the specification with no deterministic components given in (3.3), the only 
difference is that x, in (3.3) becomes y, in (3.44) and the constant term 8 is added. 
Thus, the Wald test for HO: 6 = 0 is constructed as in (3.17) with y, replacing x, 
and Z augmented by a column of 1’s. Since c1’pi = 0, the regressor is a’y, _ 1 = 
CY’X, _ 1 + a’po, but since a constant is included in the regression, all of the variables 
are deviated from their sample means. Since the demeaned values of GI’~~_ 1 and 
a’x,_i are the same, the asymptotic null distribution of the Wald statistic for 
testing H,: 6 = 0 in (3.44) is given by (3.18) with /I”(s), the demeaned Wiener process 
defined below Lemma 2.3, replacing B(s). 

The second example is the same as the first, except that now x is unknown. 

Equation (3.44) is still the correct VECM with 0 unrestricted under the null and 
alternative. The LR test statistic is calculated as in (3.19), again with y, replacing 
x, and Z augmented by a vector of 1’s. Now, however, the distribution of the test 
statistic changes in an important way. Since the regressor y,_ 1 contains a nonzero 
trend, it behaves like a combination of time trend and martingale components. 
When the n x 1 vector y,_ 1 is transformed into the canonical regressors of Section 2, 
this yields one regressor dominated by a time trend and n - 1 regressors dominated 
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by martingales. As shown in Johansen and Juselius (1990) the distribution of the 
resulting LR statistic has a null distribution given by (3.25) where now 

H = [ j&)dB(s)‘][ k(s)F($dr] -’ [ k(s)dB(s)‘], 

where F(s) is an n x 1 vector, with first n - 1 elements given by the first n - 1 
elements of /P’(s) and the last element given by the demeaned time trend, s-i. 
(The components are demeaned because of the constant term in the regression.) 

Johansen and Juselius (1990) also derive the asymptotic null distribution of the 
LR test for cointegration with unknown cointegrating vectors when p1 = 0, so that 
(3.45) is the appropriate specification of the VECM. Tables of critical values are 
presented in Johansen and Juselius (1990) for n - r,,” , < 5 for the various deterministic 

trend models, and these are extended in Osterwald-Lenum for n - rOu < 11. 
Horvath and Watson (1992) extend the tables to include nonzero values of rOk 
and r+. 

The appropriate treatment of deterministic components in cointegration and 
unit root tests is still unsettled, and remains an active area of research. For example, 
Elliot et al. (1992) report that large gains in power for univariate unit root tests 
can be achieved by modifying standard DickeyyFuller tests by an alternative 
method of detrending the data. They propose detrending the data using GLS 
estimators or p0 and pI from (3.39) together with specific assumptions about initial 
conditions for the x, process. Analogous procedures for likelihood based tests for 
cointegration can also be constructed. Johansen (1992b) develops a sequential 
testing procedure for cointegration in which the trend properties of the data and 
potential error corrections terms are unknown. 

4. Structural vector autoregressions 

4.1. Introductory comments 

Following the work of Sims (1980), vector autoregressions have been extensively 
used by economists for data description, forecasting and structural inference. 
Canova (1991) surveys VARs as a tool for data description and forecasting; this 
survey focuses on structural inference. We begin the discussion in Section 4.2 by 
introducing the structural moving average model, and show that this model 
provides answers to the “impulse” and “propagation” questions often asked by 
macroeconomists. The relationship between the structural moving average model 
and structural VAR is the subject of Section 4.3. That section discusses the condi- 
tions under which the structural moving average polynomial can be inverted, so 
that the structural shocks can be recovered from a VAR. When this is possible, a 
structural VAR obtains. Section 4.4 shows that the structural VAR can be interpreted 
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as a dynamic simultaneous equations model, and discusses econometric identifi- 
cation of the model’s parameters. Finally, Section 4.5 discusses issues of estimation 
and statistical inference. 

4.2. The structural moving average model, impulse response 
functions and variance decompositions 

In this section we study the model 

Y, = wk-,3 (4.1) 

where y, is an ny x 1 vector of economic variables and E, is an n, x 1 vector of 
shocks. For now we allow ny # nE. Equation (4.1) is called the structural moving 
average model, since the elements of E, are given a structural economic interpre- 
tation. For example, one element of F, might be interpreted as an exogenous shock 
to labor productivity, another as an exogenous shock to labor supply, another as 
an exogenous change in the quantity of money, and so forth. In the jargon developed 
for the analysis of dynamic simultaneous equations models, (4.4) is the final form 
of an economic model, in which the endogenous variables y, are expressed as a 
distributed lag of the exogenous variables, given here by the elements of E,. It will 
be assumed that the endogenous variables y, are observed, but that the exogenous 
variables E, are not directly observed. Rather, the elements of E, are indirectly 
observed through their effect on the elements of y,. This assumption is made without 
loss of generality, since any observed exogenous variables can always be added 
to the y, vector. 

In Section 1, a typical macroeconomic system was introduced and two broad 

questions were posed. The first question asked how the system’s endogenous 
variables responded dynamically to exogenous shocks. The second question asked 
which shocks were the primary causes of variability in the endogenous variables. 
Both of these questions are readily answered using the structural moving average 
model. 

First, the dynamic effects of the elements of e, on the elements of y, are determined 
by the elements of the matrix lag polynomial C(L). Letting C(L) = C, + C, L + 
C,L2 + .‘.) where C, is an ny x n, matrix with typical element [cij,J, then 

cij /( = 

aYi,t = a!* 
aEj,*-k aEj,t ’ 

(4.2) 

where y,,, is the ith element of y,, E~,~ is the jth element of E,, and the last equality 
follows from the time invariance of (4.1). Viewed as a function of k, cij,k is called 
the impulse response function of ej,r for Y,,~. It shows how y, f+k changes in response 
to a one unit “impulse” in Ed,*. In the classic econometric literature on distributed 
lag models, the impulse responses are called dynamic multipliers. 



To answer the second question concerning the relative importance of the shocks, 

the probability structure of the model must be specified and the question must be 
refined. In most applications the probability structure is specified by assuming 
that the shocks are i.i.d.(O,ZJ, so that any serial correlation in the exogenous 
variables is captured in the lag polynomial C(L). The assumption of zero mean is 
inconsequential, since deterministic components such as constants and trends can 
always be added to (4.1). Viewed in this way, E, represents innovations or unanti- 
cipated shifts in the exogenous variables. The question concerning the relative 
importance of the shocks can be made more precise by casting it in terms of the 
h-step-ahead forecast errors of y,. Let ytjt_,, = E(y,((s,}f;h,) denote the h-step- 
ahead forecast of y, made at time t - h, and let atit_, = y, - yt,, _,, = C:Zk Cket _li 
denote the resulting forecast error. For small values of h, atjt _,, can be interpreted as 
“short-run” movements in yt, while for large values of h, a,,,_, can be interpreted 
as “long-run” movements. In the limit as h + co, atit_,, = y,. The importance of a 
specific shock can then be represented as the fraction of the variance in atit_,, that 
is explained by that shock; it can be calculated for short-run and long-run 
movements in y, by varying h. When the shocks are mutually correlated there is 
no unique way to do this, since their covariance must somehow be distributed. 
However, when the shocks are uncorrelated the calculation is straightforward. 
Assume ZE is diagonal with diagonal elements a;, then the variance of the ith 
element of a,,( _ h is 

so that 

(4.3) 

shows the fraction of the h-step-ahead forecast error variance in yi,t attributed to 
E;.~. The set of n, values of Rz,h are called the variance decomposition of y,,, at 
horizon h. 

4.3. The structural VAR representation 

The structural VAR representation of (4.1) is obtained by inverting C(L) to yield 

A(JYy, = s,, (4.4) 
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where A(L) = A, - Cc= 1 A,Lk is a one-sided matrix lag polynomial. In (4.4), the 
exogenous shocks E, are written as a distributed lag of current and lagged values 
of y,. The structural VAR representation is useful for two reasons. First, when the 
model parameters are known, it can be used to construct the unobserved exogenous 
shocks as a function of current and lagged values of the observed variables y,. 
Second, it provides a convenient framework for estimating the model parameters: 
with A(,!,) approximated by a finite order polynomial, Equation (4.4) is a dynamic 
simultaneous equations model, and standard simultaneous methods can be used 
to estimate the parameters. 

It is not always possible to invert C(L) and move from the structural moving 
average representation (4.1) to the VAR representation (4.4). One useful way to 
discuss the invertibility problem [see Granger and Anderson (1978)] is in terms 
of estimates of E, constructed from (4.4) using truncated versions of A(L). Since a 
semi-infinite realization of the y, process, {y,},‘, _ ,, is never available, estimates 
of E, must be constructed from (4.4) using {y,},‘, 1. Consider the estimator 
& = C:;~&J,_~ constructed from the truncated realization. If & converges to E, in 
mean square as t -P co, then the structural moving average process (4.1) is said to be 
invertible. Thus, when the process is invertible, the structural errors can be recovered 
as a one-sided moving average of the observed data, at least in large samples. 

This definition makes it clear that the structural movit?g average process cannot 
be inverted if n? < ne. Even in the static model y, = is,, a necessary condition for 
obtaining a unique solution for E, in terms of y, is that n,, 2 n,. This requirement 
has a very important implication for structural analysis using VAR models: in 
general, small scale VARs can only be used for structural analysis when the 
endogenous variables can be explained by a small number of structural shocks. 
Thus, a bivariate VAR of macroeconomic variables is not useful for structural 
analysis if there are more than two important macroeconomic shocks affecting the 
variables.37 In what follows we assume that n,, = nE. This rules out the simple cause 
of noninvertibility just discussed; it also assumes that any dynamic identities 
relating the elements of y, when nY > nE have been solved out of the model. 

With nY = n, = n, C(L) is square and the general requirement for invertibility is 
that the determinantal polynomial 1 C(z)1 has all of its roots outside the unit circle. 
Roots on the unit circle pose no special problems; they are evidence of over- 

differencing and can be handled by appropriately transforming the variables (e.g. 
accumulating the necessary linear combinations of the elements of y,). In any event, 
unit roots can be detected, at least in large samples, by appropriate statistical tests. 
Roots of [C(z)1 that are inside the unit circle pose a much more difficult problem, 
since models with roots inside the unit circle have the same second moment pro- 
perties as models with roots outside the unit circle. The simplest example of this 

37Blanchard and Quah (1989) and Faust and Leeper (1993) discuss special circumstances when some 
structural analysis is possible when nY < n,. For example, suppose that y, is a scalar and the nC elements 
of&, affect y, only through the scalar “index” e, = D’E,, where D is an nL x 1 vector. In this case the impulse 
response functions can be recovered up to scale. 
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is the univariate MA(l) model y, = (1 - cL)E~, where E, is i.i.d.(O, at). The same first 
and second moments of y, obtain for the model y, = (1 - FL)&, where 5 = c- ’ and 
Et is IID(O,o,“) with of = c crE . 2 2 Thus the first two moments of y, cannot be used 
to discriminate between these two different models. This is important because it 
can lead to large specification errors in structural VAR models that cannot be 
detected from the data. For example, suppose that the true structural model is 
y, = (1 - cL)s, with ICI > 1 so that the model is not invertible. A researcher using 
the invertible model would not recover the true structural shocks, but rather .Ct = 
(1 - ZL)- ‘y, = (1 - c”L)- ‘( 1 - CL)&, = cl - (c” - c)C,p”_ 1 I?&,_ 1 _i. A general discussion 
of this subject is contained in Hannan (1970) and Rozanov (1967). Implications 
of these results for the interpretation of structural VARs are discussed in Hansen and 
Sargent (199 1) and Lippi and Reichlin (1993). For related discussion see Quah (1986). 

Hansen and Sargent (1991) provides a specific economic model in which non- 
invertible structural moving average processes arise. In the model, one set of 
economic variables, say xt, are generated by an invertible moving average process. 
Another set of economic variables, say yt, are expectational variables, formed as 
discounted sums of expected future x,‘s. Hansen and Sargent then consider what 
would happen if only the y, data were available to the econometrician. They show 
that the implied moving average process of y,, written in terms of the structural 
shocks driving xt, is not invertible. 38 The Hansen-Sargent example provides an 

important and constructive lesson for researchers using structural VARs: it is 
important to include variables that are directly related to the exogenous shocks 
under consideration (x, in the example above). If the only variables used in the 
model are indirect indicators with important expectational elements (y, in the 
example above), severe misspecification may result. 

4.4. Ident$cation qf the structural VAR 

Assuming that the lag polynomial of A(L) in (4.4) is of order p, then structural 
VAR can be written as 

A,y,=A,Y,-,+A,~,_,+...+A,y,_,+~,. (4.5) 

j*A simple version of their example is as follows: suppose that y, and xI are two scalar time series, 
with x, generated by the MA(l) process x, = E, - fk_ ,. Suppose that y, is related to x, by the expec- 
tational equation 

Y, = E, g B’x,+, 
i=0 

= x, + Y&X, + 1 
= (1 - PO)&, - OS, _ , = C(L)&,, 

where the second and third lines follow from the MA(l) process for x,. It is readily verified that the 
root of C(z) is (1 - BO)/O, which may be less than 1 even when the root of (1 - Oz) is greater than 1. 
(For example, if 0 = /I = 0.8, the root of (1 - Oz) is 1.25 and the root of C(z) is 0.45.) 
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Since A, is not restricted to be diagonal, equation (4.5) is a dynamic simultaneous 
equations model. It differs from standard representations of the simultaneous 
equations model [see Hausman (1983)] because observable exogenous variables 
are not included in the equations. However, since exogenous and predetermined 
variables - lagged values of y,_ 1 ~ are treated identically for purposes of identifi- 

cation and estimation, equation (4.5) can be analyzed using techniques developed 
for simultaneous equations. 

The reduced form of (4.5) is 

Y, = @d-l + @ZYlP2 + ... + @py,_p + e,, (4.6) 

where@i=A;‘Ai,fori=l,...,p,ande,=A,’ E,. A natural first question concerns 

the identifiability of the structural parameters in (4.5) and this is the subject taken 

up in this section. 
The well known “order” condition for identification is readily deduced. Since 

y, is n x 1, there are pn2 elements in (CD,, Q2,. . . , Qp) and n(n + 1)/2 elements in 
Z, = A; r Z&A 0 I)‘, the covariance matrix of the reduced form disturbances. When 

the structural shocks are n.i.i.d.(O, Z,), these [n’p + n(n + 1)/2] parameters com- 
pletely characterize the probability distribution of the data. In the structural model 
(4.5) there are (p + l)n2 elements in (A,, A,, . . . , AJ and n(n + 1)/2 elements in Z,. 
Thus, there are n2 more parameters in the structural model than are needed to 
characterize the likelihood function, so that n2 restrictions are required for identifi- 
cation. As usual, setting the diagonal elements of A, equal to 1, gives the first n 
restrictions. This leaves n(n - 1) restrictions that must be deduced from economic 
considerations. 

The identifying restrictions must be dictated by the economic model under 
consideration. It makes little sense to discuss the restrictions without reference to 
a specific economic system. Here, some general remarks on identification are made 
in the context of a simple bivariate model explaining output and money; a more 
detailed discussion of identification in structural VAR models is presented in 

Giannini (1991). Let the first element of y,, say yr,,, denote the rate of growth of real 
output, and the second element of y,, say y,,, denote the rate of growth of money.39 
Writing the typical element of A, as uij,k, equation (4.5) becomes 

Yl,, = - ‘lZ,OY2,t+ f ‘ll,iYl,*-i+ f a12,iY2,t-i + ‘l,ty 
i=l i=l 

Y2.t = - ~21,OYlJ + If ‘2l,iYl,t-i + fI ‘22,iY2,t-i + ‘2,t’ 
i=l i=l 

(4.7b) 

Equation (4.7a) is interpreted as an output or “aggregate supply” equation, with 

“Much of this discussion concerning this example draws from King and Watson (1993). 
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cl,* interpreted as an aggregate supply or productivity shock. Equation (4.7b) is 
interpreted as a money supply “reaction function ” showing how the money supply 

responds to contemporaneous output, lagged variables, and a money supply shock 
s2 1. Identification requires n(n - 1) = 2 restrictions on the parameters of (4.7). 

‘In the standard analysis of simultaneous equation models, identification is 

achieved by imposing zero restrictions on the coefficients for the predetermined 
variables. For example, the order condition is satisfied if yi,,_ 1 enters (4.7a) but 
not (4.7b), and y, f_2 enters (4.7b) but not (4.7a); this imposes the two constraints 

21 1 = a, 1 2 = 0. in this case, y, t_ 1 shifts the output equation but not the money 
iquation, while y, 1_ 2 shifts the ‘money equation but not the output equation. Of 
course, this is a very odd restriction in the context of the output-money model, 
since the lags in the equations capture expectational effects, technological and 
institutional inertia arising production lags and sticky prices, information lags, etc.. 
There is little basis for identifying the model with the restriction u2i,i = u11,2 = 0. 
Indeed there is little basis for identifying the model with any zero restrictions on 
lag coefficients. Sims (1980) persuasively makes this argument in a more general 
context, and this has led structural VAR modelers to avoid imposing zero restrictions 
on lag coefficients. Instead, structural VARs have been identified using restrictions 
on the covariance matrix of structural shocks ZE,, the matrix of contemporaneous 
coefficients A, and the matrix of long-run multipliers A(l)-‘. 

Restrictions on EC have generally taken the form that Z, is diagonal, so that 
the structural shocks are assumed to be uncorrelated. In the example above, this 

means that the underlying productivity shocks and money supply shocks are 
uncorrelated, so that any contemporaneous cross equation impacts arise through 
nonzero values of u12,0 and u~~,~. Some researchers have found this a natural 
assumption to make, since it follows from a modeling strategy in which unobserved 
structural shocks are viewed as distinct phenomena which give rise to comovement 
in observed variables only through the specific economic interactions studied in 
the model. The restriction that EC is diagonal imposes n(n - 1) restrictions on the 

model, leaving only n(n - 1)/2 additional necessary restrictions.40 
These additional restrictions can come from a priori knowledge about the A, 

matrix in (4.5). In the bivariate output-money model in (4.7), if Z, is diagonal, then 
only ~(n - 1)/2 = 1 restriction on A, is required for identification. Thus, a priori 
knowledge of u12,0 or uZ1,o will serve to identify the model. For example, if it was 

assumed that the money shocks affect output only with a lag, so that ay, &Z~E~,~ = 0, 
then ui2 o = 0, and this restriction identifies the model. The generalization of this 
restriction in the n-variable model produces the Wold causal chain [see Wold 
(1954) and Malinvaud (1980, pp. 6055608)], in which ayi,r/&j,! = 0 for i <j. This 
restriction leads to a recursive model with A, lower triangular, yielding the required 
n(n - 1)/2 identifying restrictions. This restriction was used in Sims (1980), and has 

400ther restrictions on the covariance matrix are possible, but will not be discussed here. A more 
general discussion of identification with covariance restrictions can be found in Hausman and Taylor 
(1983). Fisher (1966). Rothenberg (1971) and the references cited there. 
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become the “default” identifying restriction implemented automatically in com- 
mercial econometric software. Like any identifying restriction, it should never be 

used automatically. In the context of the output-money example, it is appropriate 
under the maintained assumption that exogenous money supply shocks, and the 
resulting change in interest rates, have no contemporaneous effect on output. This 
may be a reasonable assumption for data sampled at high frequencies, but loses 
its appeal as the sampling interval increases.41342 

Other restrictions on A, can also be used to identify the model. Blanchard and 
Watson (1986) Bernanke (1986) and Sims (1986) present empirical models that 
are identified by zero restrictions on A, that don’t yield a lower triangular matrix. 
Keating (1990) uses a related set of restrictions. Of course, nonzero equality 
restrictions can also be used; see Blanchard and Watson (1986) and King and 
Watson (1993) for examples. 

An alternative set of identifying restrictions relies on long-run relationships. In 
the context of structural VARs these restrictions were used in papers by Blanchard 
and Quah (1989) and King et al. (1991). 43 These papers relied on restrictions on 

A( 1) = A, - Cr= 1 Ai for identification. Since C( 1) = A( 1)) ‘, these can alternatively 
be viewed as restrictions on the sum of impulse responses. To motivate these 
restrictions, consider the output-money example.44 Let x~,~ denote the logarithm 
of the level of output and x~,~ denote the logarithm of the level of money, so that 

Y -Act 1,t - and y2,t = Ax~,~. Then from (4.1), 

axi ffk 
A= ,;oa*= *I,+@ 

aEj,t 

c 

J.1 

for i, j = 1,2, so that 

(4.8) 

(4.9) 

which is the ijth element of C(1). Now, suppose that money is neutral in the long 
run, in the sense that shocks to money have no permanent effect on the level of 
output. This means that lim,,a,ax,,,+,/&, t = 0, so that C(1) is a lower triangular 

41The appropriateness of the Wold causal chain was vigorously debated in the formative years of 
simultaneous equations. See Malinvaud (1980, pp. 55-58) and the references cited there. 

“*Applied researchers sometimes estimate a variety of recursive models in the belief (or hope) that 
the set of recursive models somehow “brackets” the truth. There is no basis for this. Statements like 
“the ordering of the Wold causal chain didn’t matter for the results” say little about the robustness 
of the results to different identifying restrictions. 

43For other early applications of this approach, see Shapiro and Watson (1988) and Gali (1992). 
44The empirical model analyzed in Blanchard and Quah (1989) has the same structure as the output- 

money example with the unemployment rate used in place of money growth. 
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matrix. Since A( 1) = C( 1)-l, this means that A(1) is also lower triangular, and this 
yields the single extra identifying restriction that is required to identify the bivariate 
model. The analogous restriction in the general n-variable VAR, is the long-run 
Wold causal chain in which E~,~ has no long-run effect on yj,, forj < i. This restriction 
implies that A(1) is lower triangular yielding the necessary n(n - I)/2 identifying 
restrictions.45 

4.5. Estimating structural VAR models 

This section discusses methods for estimating the parameters of the structural VAR 
(4.5). The discussion is centered around generalized method of moment (GMM) 
estimators. The relationship between these estimators and FIML estimators 
constructed from a Gaussian likelihood is discussed below. The simplest version 
of the GMM estimator is indirect least squares, which follows from the relationship 
between the reduced form parameters in (4.6) and the structural parameters in (4.5): 

A,‘A,= cDi, i= l,...,p, (4.10) 

A,ZEA; = Ze. (4.11) 

Indirect least squares estimators are formed by replacing the reduced form param- 
eters in (4.10) and (4.11) with their OLS estimators and solving the resulting 
equations for the structural parameters. Assuming that th_e mod< is exactly 
identified, a solution will necessarily exist. Given estimators ai and A,,, equation 
(4.10) yields Ai = &@i. The quadratic equation (4.11) is more difficult to solve. In 
general, iterative techniques are required, but simpler methods are presented below 

for specific models. 
To derive the large sample distribution of the estimators and to “solve” the in- 

direct least squares equations when there are overidentifying restrictions, it is 
convenient to cast the problem in the standard GMM framework [see Hansen 
(1982)]. Hausman et al. (1987) show how this framework can be used to construct 
efficient estimators for the simultaneous equations model with covariance restric- 
tions on the error terms, thus providing a general procedure for forming efficient 
estimators in the structural VAR model. 

Some additional notation is useful. Let z, = (y: _ 1, y: _ 2,. . . , y:_ J denote the 
vector of predetermined variables in the model, and let 8 denote the vector of un- 
known parameters in A,, A,, . . . , A, and Ze. The population moment conditions 
that implicitly define the structural parameters are 

E&z;) = 0, (4.12) 

450f course, restrictions on A, and A(1) can be used in concert to identify the model. See Cali 
(1992) for an empirical example. 
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E(E,&;) = z,, (4.13) 

where E, and Z, are functions of the unknown 0. GMM estimators are formed by 
choosing 8 so that (4.12) and (4.13) are satisfied, or satisfied as closely as possible, 
with sample moments used in place of the population moments. 

The key ideas underlying the GMM estimator in the structural VAR model can 
be developed using the bivariate output-money example in (4.7). This avoids the 
cumbersome notation associated with the n-equation model and arbitrary covari- 
ante restrictions. [See Hausman et al. (1987) for discussion of the general case.] 
Assume that the model is identified by linear restrictions on the coefficients of 

&A,,..., AP and the restriction that E(E~,~E~,~) = 0. Let wl,, denote the variables 
appearing on the right hand side of (4.7a) after the restrictions on the structural 
coefficients have been solved out, and let 6, denote the corresponding coefficients. 
Thus, if aI2 0 = 0 is the only coefficient restriction in (4.7a), then only lags of y, 
appear in the equation and w~,~ = (y:_,,y:_, , . . . , y;_,)‘. If the long-run neutrality 

assumption C;= 0 a 1 2.i =Ois imposed in(4.7a), then w~,~ =(~~i,~_~,yi,,_~ ,..., ~i,~,-~, 

Ay,,,,Ay,,,_ i,. . . ,AY~,~_~+ 1)‘.46 Defining w2,t and 6, analogously for equatton 

(4.7b), the model can be written as 

Y 1.1 = 4,A + El,,? (4.14a) 

y , 2,r = w; $2 + Ez,t, (4.14b) 

and the GMM moment equations are: 

%,El.J = 0, (4.15a) 

UZ,EZ,J = 0, (4.15b) 

~(~l.,E2.t) = 0, (4.15c) 

E(& - a:,) = 0, i = 1,2. (4.15d) 

The sample analogues of (4.15a))(4.15~) determine the estimators 8, and g2, while 
(4.15d) determines A:, and BE: as sample averages of sums of squared residuals. 

Since the estimators of Sfl and Sh are standard, we focus on (4.15a)-(4.15~) and 
the resulting estimators of 6, and 6,. Let u, = (z’s ’ f 5t’ZtE2,t~ 1,t 2,t E E )‘andzi=T-‘Cu, 
denote the sample values of the second moments m (4.15a)-(4.15~). Then the GMM 
estimators, 8, and 6,, are values of 6, and 6, that minimize 

‘=lf a,,(L) =X”= , ,,Q,,,~L’ and u,,(l) = 0, then u,~(L)Y~,, = cl:,(L)(l - L)Y,,, = a~,(f$~,,,, where 
a:#) = CG, a:J!, where a;, i = - x,“=i+, LI,~,,. The discussion that follows assumes the linear 
restrictions on the structural coefkcients are homogeneous (or zero). As usual, the only change required 
for nonhomogeneous (or nonzero) linear restrictions is a redefinition of the dependent variable. 
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(4.16) 

where 2” is a consistent estimator of E(u,ui). 47 These estimators have a simple 

GLS or instrumental variable interpretation. To see this, let 2 = (z, z2 . ..zr)’ denote 

the T x 2pmatrixofinstruments;let W, =(w~,~ w,:,...w,,,)‘and W, =(w~,~ w*,~..’ 
w~,~)’ denote the TX k, and T x k, matrices of right hand side variables; finally, 
let Yr, Y2, sr and s2 denote the T x 1 vectors composed of ~~r,~,y~,~,er:~ and E*,~, 
respectively. Multiplying equations (4.14a) and (4.14b) by z, and summmg yields 

Z’Y, = (Z’W,)6, + Z’E1’ (4.17a) 

Z’Y, = (zl W#, + ZE2. 

Now, letting Ei = Yi - WiTi, for some 4 

(4.17b) 

E’I E2 + E; W,S, + E; WI Jr = (C’, W,)6, + (F; W,)d, + E; e2 + quadratic terms. 
(4.17c) 

Stacking equations (4.17a)-(4.17~) and ignoring the quadratic terms in (4.17~) yields 

Q = P,6, + P,6, + V, (4.18) 

where Q = [(Z’Y1)J(Z’Y,)J(Cr;E, +E;WZg2 +E~Wl~l)],P, = [(~W,))O,,.,,l(~~Ww,)l, 

P, = CO,, x Jr2 j(Z’W,)I(F; W,)], and V = [(zle,)l(~~,)I(~;&~)], and where “I” denotes 
vertical concatenation (“stacking”). By inspection V = Tii from (4.16). Thus when 
Q, P, and P, are evaluated at $r = s^, and Tz = gz, the GMM estimators coincide 
with the GLS estimators from (4.18). This means that the GMM estimators can 
be formed by iterative GLS estimation of equations (4.18), updating 5, and c?~ at 
each iteration and using T- ‘Cti,t2~ as the GLS covariance matrix. 

Hausman et al. (1987) show that the resulting GMM estimators of ~?,,&,a% 
and crz* are jointly asymptotically normally distributed when the vectors (z: 6:)’ are 
independently distributed and standard regularity conditions hold. These results 
are readily extended to the structural VAR when the roots of CD(Z) are outside the 
unit circle, so that the data are covariance stationary. Expressions for the asymptotic 
variance of the GMM estimators are given in their paper. When some of the vari- 
ables in the model are integrated, the asymptotic distribution of the estimators 
changes in a way like that discussed in Section 2. This issue does not seem to have 
been studied explicitly in the structural VAR model, although such an analysis 
would seem to be reasonably straightforward.4s 

*‘When elements of u and u are correlated for t # r, 2” is replaced by a consistent estimator of the 
limiting value of the vahance df T”‘ti. 

481nstrumental variable estimators constructed from possibly integrated regressors and instruments 
are discussed in Phillips and Hansen (1990). 
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The paper by Hausman et al. (1987) also discuss the relationship between efficient 
GMM estimators and the FIML estimator constructed under the assumption that 
the errors are normally distributed. It shows that the FIML estimator can be 
written as the solution to (4.16), using a specific estimator of X, appropriate under 
the normality assumption. In particular, FIML uses a block diagonal estimator of 
_X,, since E[(E,,,E~,,)(E,,,z,)] = E([E~,,E~,,)(E~,,z,)] = 0 when the errors are normally 
distributed. When the errors are not normally distributed, this estimator of z, 
may be inconsistent, leading to a loss of efficiency in the FIML estimator relative 
to the efficient GMM estimator. 

Estimation is simplified when there are no overidentifying restrictions. In this 
case, iteration is not required, and the GMM estimators can be constructed as 
instrumental variable (IV) estimators. When the model is just identified, only one 
restriction is imposed on the coefficient in equation (4.7). This implies that one of 
the vectors 6, or 6, is 2p x 1, while the other is (2~ + 1) x 1, and (4.17) is a set of 
4p + 1 linear equation in 4p + 1 unknowns. Suppose, without loss of generality, 
that 6, is 2p x 1. Then s^, is determined from (4.17a) as s^, = (Z’W,))‘(Z’Y,), which 
is the usual IV estimator of equation (4.14a) using z, as instruments. Using this 
value for gi in (4.17~) and noting that Y, = W,c?f2 + E;, equation (4.17~) becomes 

E*; Y, = (6; w,)d, + E;E2, (4.19) 

where E*i = Y, - W, 8, is the residual from the first equation. The GMM estimator 
of 6, is formed by solving (4.17b) and (4.19) for 8,. This can be recognized as the 
IV estimator of equation (4.14b) using z, and the residual from (4.14a) as an instru- 
ment. The residual is a valid instrument because of the covariance restriction 
(4.1%).49 

In many structural VAR exercises, the impulse response functions and variance 
decompositions defined in Section 4.2 are of more interest than the parameters of 
the structural VAR. Since C(L) = A(L)-‘, the moving average parameters/impulse 
responses and the variance decompositions are differentiable functions of the 
structural VAR parameters. The continuous mapping theorem directly yields the 
asymptotic distribution of these parameters from the distribution of the structural 

VAR parameters. Formulae for the resulting covariance matrix can be determined 
by delta method calculations. Convenient formulae for these covariance matrices 
can be found in Lutkepohl (1990), Mittnik and Zadrozny (1993) and Hamilton 
(1994). 

49 While this instrumental variables scheme provides a simple way to compute the GMM estimator 
using standard computer software, the covariance matrix of the estimators constructed using the usual 
formula will not be correct. Using 6, , as an instrument introduces “generated regressor” complications 
familiar from Pagan (1984). Corrections for the standard formula are provided in Kine. and Watson 
(1993). An alternative approach is to carry out one GMM iteration using the IV estimaks as starting 
values. The point estimates will remain unchanged, but standard GMM software will compute a 
consistent estimator of the correct covariance matrix. The usefulness of residuals as instruments is 
discussed in more detail in Hausman (1983) Hausman and Taylor (1983) and Hausman et al. (1987). 
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Many applied researchers have instead relied on Monte Carlo methods for 
estimating standard errors of estimated impulse responses and variance decom- 
positions. Runkle (1987) reports on experiments comparing the small sample 
accuracy of the estimators. He concludes that the delta method provides reasonably 
accurate estimates of the standard errors for the impulse responses, and the resulting 
confidence intervals have approximately the correct coverage. On the other hand, 
delta method confidence intervals for the variance decompositions are often 
unsatisfactory. This undoubtedly reflects the [0, l] bounded support of the variance 
decompositions and the unbounded support of the delta method normal approxi- 
mation. 
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