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Abstract 

This chapter reviews inference about large autoregressive or moving average roots 
in univariate time series, and structural change in multivariate time series 
regression. The “problem” of unit roots is cast more broadly as determining the 
order of integration of a series; estimation, inference, and confidence intervals are 
discussed. The discussion of structural change focuses on tests for parameter 
stability. Much emphasis is on asymptotic distributions in these nonstandard 
settings, and one theme is the general applicability of functional central limit theory. 
The quality of the asymptotic approximations to finite-sample distributions and 
implications for empirical work are critically reviewed. 

1. Introduction 

The past decade has seen a surge of interest in the theoretical and empirical analysis 
of long-run economic activity and its relation to short-run fluctuations. Early 
versions of new classical theories of the business cycle (real business cycle models) 
predicted that many real economic variables would exhibit considerable persistence, 

more precisely, would contain a unit root in their autoregressive (AR) representations. 
Hall’s (1978) fundamental work on the consumption function showed that, under 
a simple version of the permanent income hypothesis, future changes in consumption 

are unpredictable, so consumption follows a random walk or, more generally, a 
martingale. The efficient markets theory of asset pricing recapitulated by Fama 
(1970) had the same prediction: if future excess returns were predictable, they would 
be bid away so that the price (or log price) would follow a martingale. The 
predictions of these theories often extended to multivariate relations. For example, 
if labor income has a unit root, then a simple version of the intertemporal permanent 
income hypothesis implies that consumption will also have a unit root and 
moreover that income minus consumption (savings) will not have a unit root, so 
that consumption and income are, in Engle and Granger’s (1987) terminology, 
cointegrated [Campbell (1987)]. Similarly, versions of real business cycle models 
predict that aggregate consumption, income and investment will be cointegrated. 

The empirical evidence on persistence in economic time series was also being 
refined during the 1980’s. The observation that economic time series have high 
persistence is hardly new. Orcutt (1948) found a high degree of serial correlation in 
the annual time series data which Tinbergen (1939) used to estimate his econometric 
model of the U.S. economy. By plotting autocorrelograms and adjusting for their 
downward bias when the true autocorrelation is large, Orcutt concluded that many of 
these series ~ including changes in aggregate output, investment andconsumption - 



were well characterized as being generated by the first-order autoregression, 

Ay, = 0.3Ay,_, + I:, [Orcutt (1948, eq. 50)], where Ay, = y, - y,- , , that is, they 
contained an autoregressive unit root. During the 1960’s and 1970’s, conventional 
time series practice was to model most economic aggregates in first differences, a 
practice based on simple diagnostic devices rather than formal statistical tests. In 
their seminal article, Nelson and Plosser (1982) replaced this informal approach 
with Dickey and Fuller’s (1979) formal tests for a unit root, and found that they 
could not reject the hypothesis of a unit autoregressive root in 13 of 14 U.S. variables 
using long annual economic time series, in some cases spanning a century. Similarly, 
Meese and Singleton (1982) applied Dickey- Fuller tests and found that they could 
not reject the null of a single unit root in various exchange rates. Davidson et al. 
(1978) found that an error-correction model, later recognized as a cointegrating 
model, provided stable forecasts of consumption in the U.K. As Campbell and 
Mankiw (1987a, 1987b) and Cochrane (1988) pointed out, the presence of a unit 
root in output implies that shocks to output have great persistence through base 
drift, which can even exceed the magnitude of the original shock if there is positive 
feedback in the form of positive autocorrelation. 

This body of theoretical and empirical evidence drew on and spurred develop- 
ments in the econometric theory of inference concerning long-run properties of 
economic time series. This chapter surveys the theoretical econometrics literature 
on long-run inference in univariate time series. With the exception of Section 5.1 
on stability tests, the focus here is strictly univariate; for multivariate extensions see 
the chapter by Watson in this Handbook. Throughout, we write the observed series 
y, as the sum of a deterministic trend d, and a stochastic term u, 

y, = d, + u f’ t= 1,2 ,..., T. (1.1) 

The trend in general depends on unknown parameters, for example, in the leading 
case of a linear time trend, d, = b, + fl, t, where /I, and pi are unknown. Unless 
explicitly stated otherwise, it is assumed that the form of the trend is correctly 
specified. If u, has a unit autoregressive root. then u, is integrated of order one (is 
I( 1)) in the sense of Box and Jenkins (1976). If Au, has a unit moving average (MA) 
root, then u, is integrated of order zero (is I(0)). In the treatment here, the focus is 
on these largest roots and the parameters describing the deterministic term are 
treated as nuisance parameters. The two types of unit roots (AR and MA) introduce 

obvious ambiguity in the phrase “unit root”, so this chapter emphasizes instead the 
I(0) and I( 1) terminology. Precise definitions are given in Section 2. 

The specific aim of this chapter is to outline the econometric theory of four areas 
of inference in time series analysis: unit autoregressive roots and inference for I(l) 
and nearly I( 1) series; unit moving average roots and testing for a series being I(0); 
inference on d,, and, in particular, testing for a unit autoregressive root when d, 
might have breaks, for example, be piecewise linear; and tests for parameter 
instability and structural breaks in regression models. Although the analysis of 
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structural breaks stems from a different literature than unit roots, the mathematics 
and indeed some test statistics in these two areas are closely related, and this survey 

emphasizes such links. 
There have been four main areas of application of the techniques for inference 

about long-run dependence discussed in this chapter. The first and perhaps the most 
straightforward is data description. Does real GNP contain an autoregressive unit 
root? What is a 95”/, confidence interval for the largest root? If output has a unit 
root, then it has a permanent component, in the sense that it can be decomposed 
into a stochastic trend (a martingale component) plus an I(O) series. What does this 
permanent component, trend output, look like, and how can it be estimated‘? This 
question has led to estimating and testing an unobserved components model. For 
empirical applications of the unobserved components model see Harvey (1985), 
Watson (1986), Clark (1987, 1989) Quah (1992) and Harvey and Jaeger (1993); for 
a technical discussion, see Harvey (1989); for reviews see Stock and Watson (1988a) 
and Harvey and Shephard (1992). A natural question is whether there is in fact a 
permanent component. As will be seen in Section 4, this leads to testing for a unit 
moving average root or, more generally, testing the null hypothesis that the series 

is l(0) against the I(1) alternative. 
A second important application is medium- and long-term forecasting. Suppose 

one is interested in making projections of a series over a horizon that represents a 
substantial fraction of the sample at hand. Such long-term forecasts will be 
dominated by modeling decisions about the deterministic and stochastic trends. 
Several of the techniques for inference studied in this chapter ~ for example, tests 
for unit AR or MA roots and the construction of median-unbiased estimates of 
autoregressive coefficients - have applications to long-run forecasting and the 
estimation of forecast error bands. 

A third application, perhaps the most common in practice, is to guide subsequent 
multivariate modeling or inference involving the variable in question. For example, 
suppose that primary interest is in the coefficients on yt in a regression in which y, 

appears as a regressor. Inference in this regression in general depends on the order 
of integration of y, and on its deterministic component [see West (1988a), Park 
and Phillips (1988), Sims et al. (1990), and the chapter by Watson in this Handbook]. 
As another example, if multiple series are I(1) then the next step might be to test for 
and model cointegration. Alternatively, suppose that the objective is to decompose 
multiple time series into permanent and transitory components, say to study 
short-run dynamic effects of permanent shocks [Blanchard and Quah (1989), King 
et al. (1991)]. In each of these cases, how best to proceed hinges on knowing whether 
the individual series are I(O) or I(1). Although these multivariate applications are 
beyond the scope of this chapter, inference about univariate AR and MA roots plays 
a key initial step in these multivariate applications. 

Fourth, information on the degree of persistence in a time series and, in particular, 
on its order of integration can help to guide the construction or testing of economic 
theories. Indeed, a leading interpretation of Nelson and Plosser’s (1982) findings 
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was that the prevalence of I( 1) series in their long annual data set provided support 
for real theories of the business cycle. Alternatively, knowledge of the order of 
integration of certain variables can be used to suggest more precise statements (and 
to guide inference) about certain economic theories, for example, the possibility of 
a vertical long-run Phillips curve or the neutrality of money [Fisher and Seater 
(1993), King and Watson (1992)]. 

In addition to these empirical applications, technical aspects of the econometric 

theory of unit roots, trend breaks and structural breaks are related to several other 
problems in econometric theory, such as inference in cointegrated systems. The 
theory developed here provides an introduction to the more involved multivariate 

problems. 
Several good reviews of this literature are already available and an effort has been 

made here to complement them. Phillips (1988) surveys the theoretical literature on 
univariate and multivariate autoregressive unit root distributions, and a less 
technical introduction to these topics is given in Phillips (1992a). Diebold and 
Nerlove (1990) provide a broad review of the econometric literature on measures 
and models of persistence. Campbell and Perron (199 1) provide an overview of the 
literature on unit autoregressive roots, as well as on cointegration, with an eye 
towards advising applied researchers. Banerjee et al. (1992a) provide a thorough 
introduction to testing and estimation in the presence of unit autoregressive roots 
and multivariate modeling of integrated time series, with special attention to 
empirical applications. 

The main approach to inference about long-term properties of time series which 
is excluded from this survey is fractional integration. In this alternative to the 
I(O)/I( 1) framework, it is supposed that a series is integrated of order d, where d need 
not be an integer. The econometric theory of inference in fractionally integrated 
models has seen ongoing important work over the past two decades. This literature 
is large and the theory is involved, and doing it justice would require a lengthier 
treatment than possible here. The R/S statistic of Mandelbrot and Van Ness (1968), 
originally developed to detect fractional integration, is discussed briefly in Section 3.2 
in the context of tests for an AR unit root. Otherwise, the reader is referred to recent 
contributions in this area. Two excellent surveys are Beran (1992) and, at a more 
rigorous level, Robinson (1993). Important contributions to the theory of inference 

with fractional integration include Geweke and Porter-Hudak (1983), Fox and 
Taqqu (1986), Dahlhaus (1989) and Sowell (1990, 1992). Recent empirical work in 
econometrics includes Lo (1991) (R/S analysis of stock prices), Diebold and 

Rudebusch (1989, 199la) and Diebold et al. (1991) (estimation of the fractional 
differencing parameter for economic data). 

The chapter is organized as follows. Section 2 describes the I(0) and I( 1) models 
and reviews some tools for asymptotic analysis. Section 3 examines inference about 
the largest autoregressive root when this root equals or is close to one. Section 4 
studies inference about unit or near-unit moving average roots. Two related topics 

are covered in Section 5: tests for parameter stability and structural breaks when 
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the break date is unknown, and tests for AR unit roots when there are broken 
trends. Section 6 concludes by drawing links between the I(O) and I(1) testing 
problems and by suggesting some conclusions concerning these techniques that, it is 
hoped, will be useful in empirical practice. Most of the formal analysis in this chapter 
is based on asymptotic distribution theory. The treatment of the theory here is 
self-contained. Readers primarily interested in empirical applications can omit 
Sections 2.4,3.2.3 and 4.2.3 with little loss of continuity. Readers primarily interested 
in tests for parameter stability and structural breaks in time series regression can 
restrict their attention to Sections 2 and 5.1. 

2. Models and preliminary asymptotic theory 

This section provides an introduction to the basic models and limit theory which 
will be used to develop and to characterize the statistical procedures studied in 
the remainder of this chapter. Section 2.1 introduces basic notation used throughout 
the chapter, and provides formulations of the I(O) and I( 1) hypotheses. This section 
also introduces a useful tool, Beveridge and Nelson’s (1981) decomposition of an 
I(1) process into I(0) and I( 1) components. This leads naturally to a second 
expression for the I(0) and I( 1) hypothesis in a “components” representation. 

Section 2.2 summarizes the limit theory which will be used to derive the asymp- 
totic properties of the various test procedures. A variety of techniques have been 
and continue to be used in the literature to characterize limiting distributions in the 
unit MA and AR roots problems. However, the most general and the simplest to 
apply is the approach based on the functional central limit theorem (FCLT, also 
called the invariance principle or Donsker’s theorem) and the continuous mapping 
theorem (CMT), and that is the approach used in this chapter. [There are a number 
of excellent texts on the FCLT. The classic text is Billingsley (1968). A more modern 
treatment, on which this chapter draws, is Hall and Heyde (1980). Ethier and Kurtz 
(1986) provide more advanced material and applications. Also, see the chapter by 
Wooldridge in this Handbook.] The version of the FCLT used in this chapter, which 
applies to the sequence of partial sums of martingale difference sequences, is due to 
Brown (1971). The main advantage of this approach is that, armed with the FCLT 
and the CMT, otherwise daunting asymptotic problems are reduced to a series of 
relatively simple calculations. White (I 958) was the first to suggest using the FCLT 
to analyze “unit root” distributions. Other early applications of the FCLT, with 
i.i.d. or martingale difference sequence errors, to statistics involving I( 1) processes 
include Bobkoski (1983) and Solo (1984). Phillips’ (1987a) influential paper 
demonstrated the power of this approach by deriving the distribution of the AR( 1) 
estimator and t-statistic in the misspecified case that the process has additional 

[non-AR(l)] dependence. These were paralleled by important developments in the 
asymptotics of multivariate unit root models; see the chapter by Watson in this 
Handbook for a review. 
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The aim of this chapter is to provide a treatment at a level suitable for graduate 
students and applied econometricians. To enhance accessibility, we make two main 
compromises in generality and rigor. The first is to restrict attention to time series 
which can be written as linear processes with martingale difference errors, subject 
to some moment restrictions. This class is rich enough to capture the key 
complications in the theory and practice of inference concerning unit roots and 
trend breaks, namely the presence of possibly infinitely many nuisance parameters 
describing the short-run dependence of an I(0) disturbance. However, most of the 
results hold under some forms of nonstationarity. References to treatments which 
handle such nonstationarity are given in Section 2.4. The second technical 
compromise concerns details of proofs of continuity of functionals needed to apply 
the continuous mapping theorem; these details are typically conceptually straight- 
forward but tedious and notationally cumbersome, and references are given to 
complete treatments when subtleties are involved. 

2.1. Basic concepts and notation 

Throughout this chapter, u, denotes a purely stochastic I(0) process and E, denotes 
a serially uncorrelated stochastic process, specifically a martingale difference 
sequence. The term “I(O)“is vague, so defining a process to be I(0) requires additional 
technical assumptions. The formulation which shall be used throughout this chapter 
is that u, is a linear process with martingale difference sequence errors. That is, the 
I(0) process u, has the (possibly infinite) moving average representation, 

0, = c(L)q, t=O +1 +2 . ,- ,- ,.. 3 (2.1) 

where c(L) = C,?=,cjL’ is a one-sided moving average polynomial in the lag operator 
L which in general has infinite order. The errors are assumed to obey 

E(E,lE,_1,E,_2,...)=0, 

T-1 f E(&:I&,_1,E,_2,...)~a.s. E~:=c-+o as T+Q 
r=1 

E(~;ll.2,_~,~,_~ ,... )<K, a.s.forallt. (2.2) 

That is, E, can exhibit conditional heteroskedasticity but this conditional hetero- 
skedasticity must be stationary in the sense that fourth moments exist and that E, 
is unconditionally homoskedastic. Because E, is unconditionally homoskedastic, 
under (2.1) and (2.2) U, is covariance stationary.’ This simplifies the discussion of 

‘A time series y, is strictly stationary if the distribution of (y ,+,,...,y,+,)doesnotdependonk.The 
series is covariance stationary (or second-order stationary) if Ey, and Ey,y,_ j, j = 0, k 1,. . . exist and are 
independent oft. 



functions of second moments of L’, such as its spectrum, s,.(c)), or autocovariances, 
r,,(,j),j = 0, k 1, & 2,. The representation (2.1) is similar to the Wold representation 
for a covariance stationary series, although the Wold representation only implies 
that the errors are serially uncorrelated, not martingale difference sequences. 

Central to the idea that a process is I(O), is that the dependence between distant 
observations is limited. In the context of (2.1), this amounts to making specific 
assumptions on c(L). The assumption which will be maintained throughout is that 
c(L) has no unit roots and that it is one-summable [e.g. Brillinger (1981, ch. 2.7)] 

c(l)#O and fj/cjl < co, 
j=O 

(2.3) 

where c(l) = CJYocj. The conditions (2.3) can alternatively be written as restrictions 

on the spectrum of u,,s,(w). Because s,(w) = (aE2/27C)ICjm_oCjeiwj12 (where i = fi I), 
~~(0) = ofc( 1)‘/27c, so c(1) # d implies that the spectral density of u, at frequency zero 
is nonzero. Similarly, the one-summability condition implies that ds,(w)/do is finite 
at o = 0. Thus, these conditions on c(L) restrict the long-term behavior of u,. Unless 
explicitly stated otherwise, throughout this chapter it is assumed that u, satisfies 
(2.1))(2.3). 

The definition of general orders of integration rests on this definition of I(0): a 
process is said to be I(d), d 3 1, if its dth difference, Ad+ is T(O). Thus u, is I(1) if 
Au, = u,, where u, satisfies (2.1))(2.3). In levels, u, = cf= rus + uo, so that the 
specification of the levels process of u, must also include an assumption about the 
initial condition. Unless explicitly stated otherwise, it is assumed that, if u, is I(l), 
then the initial condition satisfies Eui < co. 

A leading example of processes which satisfy (2.3) are finite-order ARMA models 
as popularized by Box and Jenkins (1976). If u, has an ARMA(p, q) representation, 
then it can be written 

P(W, = 4(0% (2.4) 

where p(L) and 4(L), respectively, have finite orders p and q. If the roots of p(L) and 
4(L) lie outside the unit circle, then the ARMA process is stationary and invertible 
and u, is integrated of order zero. If u, satisfies (2.4) and is stationary and invertible, 
then u, = c(L)a, where c(L) = p(L)_ ‘4(L) and it is readily verified that (2.3) is satisfied, 
since #( 1) # 0 and eventually c(L) decays exponentially. 

ARMA models provide a simple framework for nesting the I(0) and I(1) 
hypotheses, and are the origin of the “unit root” terminology. Suppose u, in (1.1) 
satisfies 

(1 - olL)u, = (1 - BL)u,, (2.5) 

where u, is I(0). If (~1 < 1, u, is stationary. If 181 -c 1, then (1 - OL) is said to be 



invertible. If c( = 1 and 101 < 1, then u, is integrated of order one; that is, U, - u0 can 
be expressed as the partial sum -- loosely, the “integration” - of a stationary process. 
If c( = 1 and 6, = 1, then u, = L’, + (u, - L’J and u, is stationary, or integrated of order 
zero. [If (3 = 1 and (a 1 < 1, then u, is integrated of order - 1, but we will not consider 
this case since then u, in (2.2) can be replaced by its accumulation I:= rus, which in 
turn is I(O).] 

This framework provides an instructive interpretation of the I( 1) and I(O) models 
in terms of the properties of long-run forecasts of the series. As Harvey (1985, 1989) 
has emphasized, an intuitively appealing definition of the trend component of a 
series is that its long-run forecast is its trend. If u, is I(l), then its long-run forecast 
follows a martingale, while if u, is I(O), its long-run forecast tends to its unconditional 
mean (here zero). In this sense, if u, is T(1) then it and y, can be said to have a 
stochastic trend. 

This correspondence between the order of integration of a series and whether it 
has a stochastic trend is formally provided by Beveridge and Nelson’s (1981) 
decomposition of u, into I(1) and I(O) components. Suppose that Au, = u,. The 
BeveridgeeNelson (1981) decomposition rests on writing c(L) as c(L) = c(l) + 
[c(L) - c(l)] = c( 1) + c*(L)A, where A = 1 - L and cj* = - C,: j+ 1 ci (this identity is 
readily verified by writing out c(L) - c( 1) = AC*(L) and collecting terms). Thus u, 

can be written u, = ~(1)s~ + c*(L)AE~. Then, because u, = cf= iv, + tq,, we get the 
Beveridye-Nelson decomposition 

u, = c( 1) i E, + c*(L)&, + C,, (2.6) 
s=l 

where ul,, = u0 - c*(L)&,. It is readily verified that, under (2.1)-(2.3), c*(L)q is 
covariance stationary. This follows from the one-summability of c(L), which implies 
that c*(L) is summable. [Specifically, 

which is finite by (2.3).] Thus, 

E(c*(L)E,)* = f (cj*)‘o, < 
j=O ( > 

j~olq *g:, 

which is finite by (2.2) and (2.3). 
The BeveridgeeNelson decomposition (2.6) therefore represents U, as the sum of 

a constant times a martingale, a covariance stationary disturbance and an initial 
condition do. If u. is fixed or drawn from a distribution on the real line, then zio can 
be neglected and often is set to zero in statements of the Beveridge-Nelson 
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decomposition. The martingale term can be interpreted as the long-run forecast of 
u,: because c*(L) is summable, the long-term forecast, u,+~,~ for k very large, is 
c(l)Cf, rs,. Thus an I(1) series can be thought of as containing a stochastic trend. 

Equally, if u, is I(O), then plim,, m u, + kit = 0, so that U, does not have a stochastic 
trend. 

2.2. The functional central limit theorem and related tools 

If u, is stationary, or more generally has sufficiently many moments and limited 
dependence on past observations, then averages such as T- ‘CT= ,u: will be 
consistent for their expectation, and scaled sums like T-1’2Ct’= 1u, will obey a 
central limit theorem; see the chapter by Wooldridge in this Handbook for 
a general treatment. By the nature of the problems being studied, however, 
conventional limit theory does not apply to many of the statistics covered in this 
chapter. For example, the null distribution of a test for a unit autoregressive root 
is derived for U, being I(1). However, this violates the assumptions upon which 
conventional asymptotic tools, such as the weak law of large numbers (WLLN), are 
based. For example, if u, is I(l), then the sample mean U is Op( T”‘) and T- ‘j2ti has 
a limiting normal distribution, in sharp contrast to the I(0) case in which U is 
consistent2 

The approach to this and related problems used in this chapter is based on the 
functional central limit theorem. The FCLT is a generalization of the conventional 
CLT to function-valued random variables, in the case at hand, the function 
constructed from the sequence of partial sums of a stationary process. Before 
discussing the FCLT, we introduce extensions to function spaces of the standard 
notions of consistency, convergence in distribution, and the continuous mapping 
theorem. Let C[O, l] be the space of bounded continuous functions on the unit 
interval with the sup-norm metric, d(f, g) = ~up,,t,,r~lf(s) - g(s)l, wheref, gEC[O, 11. 

Consistency. A random element r+C[O, l] converges in probability to f (that is, 
~,~f)ifPr[d(~,,f)>6]+Oforall6>0. 

Convergence in distribution. Let {r,, T> l} be a sequence of random elements of 
C[O, l] with induced probability measures {r-c,}. Then rcr converges weakly to 7c, 
or equivalently <,=s 5 where 4 has the probability measure rc, if and only if 
jfdrcr+Jfdrrforallb ounded continuous f: C[O, l] -+ W. The notations CT * 5 and 
(,(.)a[(.), where “.” denotes the argument of the functions 5, and [, are used 
interchangeably in this chapter. 

‘Suppose Au, = E, and I+, = 0. Clearly conventional assumptions in the WLLN, such as u, having 
a bounded second moment, do not hold. Rather, T-% = T-3’2~~z 1u, = T3’*xT= ,xT= ,E, = 

T- 1’2xT= 1(l -(s - 1)/T)&,, 
‘YO, af/3). 

so a central limit theorem for weighted sums implies that T-‘$% 
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The continuous mupping theorem (CMT). If h is a continuous functional mapping 

C[O, l] to some metric space and (,a 5, then h(t,) * h(t). 

The FCLT generalizes the usual CLT to random functions 5r~C[0, I]. Let I.1 
denote the greatest lesser integer function. Let lT(/l) be the function constructed by 
linearly interpolating between the partial sums of c, at the points ,I = (0, l/T, 
2/T,. . , l), that is, 

so that t, is a piecewise-linear random element of C[O, 11. The CLT for vector- 
valued processes ensures that, if i,, . . . ,3., are fixed constants between zero and one 
and condition (2.2) holds, then [tr(I_,), rT(,12), . . , i;T(&,)] converges in distribution 
jointly to a k-dimensional normal random variable. The FCLT extends this result 
to hold not just for finitely many fixed values of J*, but rather for 5r treated as a 
function of 2. The following FCLT is a special case of Brown’s (1971) FCLT [see 
Hall and Heyde (1980), Theorem 4.1 and discussion]. 

Theorem 1 (Functional cent& limit theorem for a martingale) 

Suppose that E, is a martingale difference sequence which satisfies (2.2). Then tT = W, 

where W is a standard Brownian motion on the unit interval. 

An FCLT for processes which satisfy (2.1)-(2.3) can be obtained by verifying that 
condition (5.24) in Hall and Heyde’s (1980) Theorem 5.5 is satisfied if c(L) is 
one-summable. [One-summability is used because of its prior use in unit root 
asymptotics [Stock (1987)], although it can be replaced by the weaker condition 
that c(L) is &summable; see Solo (1989) and Phillips and Solo (1992).] However, 
Hall and Heyde’s theorem is more general than needed here and for completeness 
an FCLT is explicitly derived from Theorem 1 for processes satisfying (2.1))(2.3). 
The argument here relies on inequalities in Hall and Heyde (1980) and follows 
Phillips and Solo (1992), except that the somewhat stronger conditions used here 
simplify the argument. See Phillips and Solo (1992) for an extensive discussion, 
based on the Beveridge-Nelson decomposition, of conditions under which the 
FCLT holds for linear processes. 

To show that Theorem 1 and the Beveridge-Nelson decomposition can be used 
to yield directly an FCLT for partial sums of I(0) processes which satisfy conditions 
(2.1))(2.3), let 

(,,(A) = (cf T) - 1’2 czI 0, + (Tj. - CT4 brrl, + 1 . 

According to the BeveridgeeNelson decomposition (2.6), this scaled partial sum for 
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fixed 1. is c( l)T- “‘~~~j~, plus a term which is T- Ii2 times an I(0) variable. 

Because tT+ W, this suggests that [,.,.*c(l)W. 
To show this formally, the argument that [,,T - Cam LO must be made 

uniformly in I., that is, that Pr[sup,l t,,,(A) ~ c( I)tr(jb)l > (s] - 0 for all 6 > 0. Now. 

ITi [Ti.] 
l<,.,(2) - c(1)5,(i.)I = (a:T)) ‘I2 1 0, + (Ti. - [Tj.])C,TAl+, ~ c(1) 1 cI 

,=I 1=1 

- (Ti. - [ Ti.] )c( l)+il + , 

17-11 
= (a,27-- I/2 c( 1) 1 F, + c*(L)c[,,] ~ c*(L)i:, 

f=l 

+ (Tr’ ~ [T’])(c(l)EIT~]+ 1 + c*(L)dE,,.;,,+ 1) 

[Til 
-c(l) 1 E, -(Ti - [Tr”])c(l)c,r,,+, 

1=1 

=(aZT)-“21~*(L)~,TAIl-(.*(L)~0 +(Ti.- [TI.])(c*(L)h,,.,,+ 1)1 

6 bfT)- “‘{ Ic*(L)c[,,jl + ic*(L)c,T~]+lI + k*b%,I} 

~2a,‘max,=,,,,,,TIT-1!2~*(L)~,I +oF;’ Tm”21c*(L)c,I (2.7) 

where the second equality uses the BeveridgeeNelson decomposition. The term 
T-“2 Ic*(L)c,l in the final line of (2.7) does not depend on 1, and is asymptotically 
negligible, so we drop it and have 

Pr[sup,llvT(A) - c(l)tT(A)I > S] < Pr[2cr~~‘max,IT~ 1’2c*(L)~,I > 61 

-3 

E max, I T - 1’2c*(L)c, 1 3 

(2.8) 

where the final inequality follows from Minkowski’s inequality. Because max,EleJ” < m 
[by (2.2)] and &?= 1 / cf I < M, [by the argument following (2.6)], Pr[sup, I r’,.,(i) - 
c(l)<,.(A)1 > S] +O for all 6 > 0 so trT - c(l)<, 3 0. Combining this asymptotic 
equivalence with Theorem 1, we have the general result that, if u, satisfies (2.1))(2.3) 
then t,.,*c(l)W. 
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The continuity correction involved in constructing 5, and cVr is cumbersome and 
is asymptotically negligible in the sup-norm sense [this can be shown formally using 
the method of (2.7) and (2.8)]. We shall therefore drop this correction henceforth 
and write the result t,,=+c(l)W as the FCLTfor general I(0) processes, 

IT.1 
T-1/2 1 u,*o$(l)w(~) = oW(.), (2.9) 

s=l 

where w = ~,c( 1).3 
Suppose u, is an I(1) process with Au, = u, and, as is assumed throughout, 

Eui < co. Then the levels process of u, obeys the FCLT (2.9): TP 1’2ulPI = 

T-“2C~\u,+ T-1i2u,=oW(.), where T l/22(0 A 0 by Chebyshev’s inequality. 

A special case of this is when u0 is fixed and finite. 
The result (2.9) provides a concrete link between the assumptions (2.2) and (2.3) 

used to characterize an I(1) process, the BeveridgeeNelson decomposition (2.6) 
and the limit theory which will be used to analyze statistics based on I( 1) processes. 
Under (2.2) and (2.3), the partial sum process is dominated by a stochastic trend, as 
in (2.6). In the limit, after scaling by T ‘I2 this behaves like w times a Brownian , 

motion, where w2 = 27cs,(O) is the zero-frequency power, or long-run variance, of G’,. 
Thus the limiting behavior of u,, where Au, = u,, is the same (up to a scale factor) 
for a wide range oft(L) which satisfy (2.2). It is in this sense that we think of processes 
which satisfy (2.1)-(2.3) as being I(0). 

2.3. Examples and preliminary results 

The FCLT and the CMT provide a powerful set of tools for the analysis of statistics 
involving I(1) processes. The examples in this section will be of use later but are 
also of independent interest. 

Example 1. Sample moments of I( 1) processes 

A problem mentioned in Section 2.2 was the surprising behavior of the sample mean 
of an I(1) process. The limiting properties of this and higher moments are readily 
characterized using the tools of Section 2.2. Let u, be I(l), so that Au, = u,, and let 
u0 = 0. Then, 

T-“2U= T-3$u,= T-’ .f (T-1’2+ 1(T-1’2u,,,,)dA:+ T-3I2~,, 
t=1 s 0 

(2.10) 

3Formally, the process on the left-hand side of (2.9) is an element of D[O, 11, the space of functions on 
[0, I] that are right-continuous and have left-hand limits. However, the discontinuous partial sum 
process is asymptotically equivalent to 5,,T~C[0, I], for which Theorem I applies. See Billingsley’(1968, 
ch. 3) or Ethier and Kurtz (1986) for a treatment of convergence on D[O, 11. 
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where the final equality follows by definition of the integral. The final expression in 

(2.10) can be written T-‘%i = hI(T-lh,T.I) + T-‘h,(T-“2u,,.,), where h, and h, 
are functions from [0, l] + 3, namely h,(f) = Jkf(1.) dl, and h2(,f) = f(1). Both 
functions are readily seen to be continuous with respect to the sup-norm, so by (2.9) 
and the continuous mapping theorem, 

s 1 

h,(T~l’2u,,.,)=>h,(oW) = 0 W(A) d1. 
0 

so T-1h,(T-‘i2u,,.,) A0 and T- ‘%Ii~o~~ W(A)di., which has a normal distribu- 
tion (cf. footnote 2). 

This approach can be just as easily applied to higher moments, say the kth 
moment. 

(2.11) 

where the convergence follows from the FCLT and the CMT. 
The final expression in (2.11) uses a notational convention which will be used 

commonly in this chapter: the limits on integrals over the unit interval will be 
omitted, so for example JWk denotes jA( W(Iw))k dA. S imilarly, the stochastic (It6) 
integral size W(A) dG(i) is written SW dG for two continuous-time stochastic 
processes W and G. 

Example 2. Detrended I( 1) processes 

Because of the presence of the deterministic term d, in (1. l), many statistics of interest 
involve detrending. It is therefore useful to have limiting representations of the 
detrended series. The most common form of detrending is by an ordinary least 
squares (OLS) regression of y, on polynomials in time, the leading cases being 

demeaning and linear detrending. Let 

Y;=Y,- T-’ f Y,, 
s=1 

Y:=Yt-&-BIL (2.12b) 

where (ii,, /;i,) are the OLS estimators of the parameters in the regression of y, onto 
(1, t). If d, = /I,, then (2.12a) applies, while if d, = /I’, + /I, t, then (2.12b) applies. 
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As in the previous example, suppose that U, is I(l), so that (2.9) applies. NOW 
yf = u,- T-lC~zl~S, so T-l/Zyp = T-“% 

=Sw{ F[.) - SW>, IF1 
- T-“‘U. The CMT and (2.10) 

thus imply that T- 1’2y~T.l so that the demeaned I(1) process 
converges to a “demeaned” Brownian motion. Similar arguments, with a bit more 
algebra, apply to the detrended case. Summarizing these two results, if U, is a general 
I(1) process so that Au, = u, where u, satisfies (2.1)-(2.3) and Eut < co, then we have4 

T-liZy&.I*oW”(~), where W“(n) = W(1) - 
s 

W, (2.13a) 

T - 1’2y;Tl -wWr(.), where W’(A)= W(A)-(4-62) 
s 

W-(121-6) 
s 

sW(s)ds. 

(2.13b) 

Perron (1991~) provides expressions extending (2.13) to the residuals of an I(1) 
process which has been detrended by an OLS regression onto a pth order 
polynomial in time. 

These results can be used to study the behavior of an I( 1) process which has been 
spuriously detrended, that is, regressed against (1, c) when in fact y, is purely 
stochastic. Because the sample R2 is 1 - {I,‘= 1 (y)I:)*/CT= 1 (y:)‘}, the results (2.13) and 
the CMT show that RZ has the limit R2 =S 1 - {s( Wr)‘/s( WP)2), which is positive 
with probability one; that is, the regression R2 is, asymptotically, a positive random 
variable. It follows that the standard t-test for significance of p1 rejects with 
probability one asymptotically even though the true coefficient on time is zero 
[Durlauf and Phillips ( 1988)15. Next, consider the autocorrelogram of the detrended 
process, P&) = 9,,(CT~l)/&(O) = h&T- 1/2y;r.1), say, where &(j) = (T - lj I)-’ x 
XT=, j, + ly:y:_, j,. Because h, is a continuous mapping from D[O, l] to O[O, 11, the 
FCLT and CMT imply that or * p*, where p*(1) = (1 - A)- ‘If= 1 W’(s) W’(s - A) ds/ 
[Wr2, 0 < 2 < 1. Thus, in particular, the first k sample autocorrelations converge in 
probability to one for k fixed, although it eventually declines towards zero. Nelson 
and Kang (198 1) show, using other techniques, that the autocorrelogram dips below 
zero, suggesting periodicity which spuriously arises from the detrending of the I( 1) 
process. The results here indicate that this is an asymptotic phenomenon, when the 
autocorrelation is interpreted as a fraction of the sample size. 

Example 3. Cumulated detrended I(0) processes 

Section 4 considers testing for a unit moving average root when it is maintained 
that there is a deterministic trend. A statistic which arises in this context is the 

4Derivations of W’ arc given in the proof of Theorem 5.1 of Stock and Watson (1988b) and in Park 
and Phillips (1988); the result can also be derived from Theorem 2.1 of Durlauf and Phillips (1988). As 
Park and Phillips (1988) demonstrate, W’ can be thought of as detrended Brownian motion, the residual 
of the projection of W onto (1,s). 

‘Phillips (1986) gives similar results for regressions with two independent random walks. 
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cumulation of an I(0) process, which has been detrended by OLS. The asymptotics 
of this process are also readily analyzed using the FCLT and the CMT. 

For this example, suppose that u, is a general I(0) process and U, = u,, where V, 
satisfies (2.1))(2.3). Consider the demeaned case, and define the statistic 

LTJ.1 

Y;,.(%) = T- “’ c yi, 
s=l 

so 

ITAl CT21 

Y;,(l.)= T-1'2 1 (us-~)= T-‘/z 1 u,_ Tm1’2 f u,. 
s= 1 SE1 f=l 

Then (2.9) and the CMT yield the limit Yz, =~o@‘, where B”(A) = w(A) - AW(1). 
The process BP is a standard Brownian bridge on the unit interval, so called because 
it is a Brownian motion that is “tied down” to be zero at 0 and 1. Similarly, define 

Y:,(A) = T- 1’2C&ajyz; then YbT 3 wE, where B’ is a second-level Brownian 
bridge on the umt interval, given by B’(1) = W(A) - APV(l) + 6A( 1 - 1”) {+ W( 1) - SW) 
[MacNeill (1978)]. Collecting these results, we have 

T-1’2 c yr*wB’(.), B’(1”) = W(A) - iW( l), (2.14a) 
s=1 

LT.1 

T- 1’2 c y:=>oB’(.), B”(A)= H’(+APV(l)+61.(1 -A){+‘(l)-SW}, 
s=1 

(2.14b) 

MacNeill (1978) extended these results to kth order polynomial detrending. Let 
Yt&(A) = T-“2C~~jy~k) be the process of cumulated kth order detrended data, 
where y, (k’ is the residual from the OLS regression of y, onto (1, t, , tk). Then 
Ytk =+ WIP - l), where Bck’ is a kth level generalized Brownian bridge, expressions 
for which are given by MacNeill (1978, eq. 8). 

Example 4. Processes with an autoregressive root local to unity 

One of the issues considered in Section 3 is the asymptotic properties of statistics 
when the process is nearly I(l), in the sense that the largest root of the process is 
local to unity. The starting point in these calculations is characterizing the large- 
sample behavior of the series itself when the root is close to one. Let U, obey 

u,=cIu,_, +u,, where do= 1 +c/T and Eu~-c CO. (2.15) 

This is the local-to-unity model considered (under various assumptions on the 
disturbances ut) by Bobkoski (1983), Cavanagh (1985), Chan and Wei (1987) and 
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Phillips (1987b). The treatment here follows Bobkoski (1983). In particular, we use 
the method of proof of Bobkoski’s (1983) Lemma 3.4 to generalize his local-to-unity 
representations from his case of i.i.d. disturbances to general I(0) disturbances which 
satisfy (2.1))(2.3). As we shall see, this extension is a straightforward application of 
the FCLT (2.9) and the CMT. 

Use recursive substitution in (2.15) to write u, as 

y-- l/2u _ T- 112 
1- 

1-l 

= T-lj2 c (u’-~- l)u,+ T-1/2 i v,+ T-li2cc’u, 

s= 1 s=l 

= (ct - 1) 1 :I~cx-~-~( T-i/2$1~r)+ ~~~~~~~~~~ ~-+h, 

= k,(o,S,,)(tlT) + o,(1). (2.16) 

The third equality in (2.16) obtains as an identity by noting that ,r - 1 = (IX - l)CiZ+~j 

and rearranging summations. The final equality obtains by noting that (1 + c/T)‘~” = 

exp(ci) + o(l) uniformly in J., 0 < 1. < 1, and by defining k4(f)(I.) = CIA ec(‘-“‘f(s)ds+ 

f(i), where toT is defined in Section 2.2. The op( 1) term in the final expression arises 
from the assumption Eut < a, so T- 
(1 + c/T)[~“] E exp(c2). 

li2u0 = oP( I), and from the approximation 

As in the previous examples, k, is a continuous functional, in this case from 

C[O, l] to C[O, 11. Using the FCLT (2.9) and the CMT we have 

T-“2~t,.l~k,(wW)() = ml+‘,(.), (2.17) 

where W’,(n) = cJG e c(‘-s)W(s) ds + W(A). The stochastic process WC is the solution 
to the stochastic differential equation, dw, = c WC(%) d1. + d W(2) with W,(O) = 0. 
Thus, for M local-to-unity, T - 1i2uCTI converges to w times a diffusion, or Ornstein- 
Uhlenbeck, process. 

A remark on the interpretation of limiting jiinctionals of‘ Brownian motion. The 
calculations of this section ended when the random variable of interest was shown 
to have a limiting representation as a functional of Brownian motion or, in the local- 
to-unity case of Example 4, a diffusion process. These representations show that the 
limiting distribution exists; they indicate when a limiting distribution is nonstandard; 
and, importantly, they show when and how nuisance parameters describing the 
short-run dependence of u, enter the limiting distribution. Because W is a Gaussian 
process, the results occasionally yield simply-evaluated distributions. For example, 
W(l),lW, and JsW h ave normal distributions. However, in most cases the limiting 
distributions are nonstandard. 
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This leads to the practical question of how to compute limiting distribution 
functions, once one has in hand the limiting representation of the process as a 
functional of Brownian motion. The simplest approach, both conceptually and in 
terms of computer programming, is to evaluate the functional by Monte Carlo 
simulation using discretized realizations of the underlying Brownian motions. This 
is equivalent to generating pseudo-data j, from a Gaussian random walk with PO = 0 
and with unit innovation variance and replacing W by its discretized realization. 
For example, W(1)’ would be replaced by (T-“‘j,)’ and W”(.) would be replaced 
by T- 1’2{j$T.l - T-lx,‘= ,$,}. For T sufficiently large, the FCLT ensures that the 
limiting distribution of these pseudo-random variates converges to those of the 
functionals of Brownian motion. The main disadvantage of this approach is that 
high numerical accuracy requires many Monte Carlo repetitions. For this reason, 
considerable effort has been devoted to alternative methods for evaluating some of 
these limiting distributions. Because these techniques are specialized, they will not 
be discussed in detail, although selected references are given in Section 2.4. 

2.4. Generalizations and additional mferences 

The model (2.1)-(2.3) provides a concise characterization of I(0) processes with 
possibly infinitely many nuisance parameters describing the short-run dependence, 
but this simplicity comes at the cost of assuming away various types of nonstation- 
arity and heteroskedasticity which might be present in empirical applications. The 
key result used in Section 2.3 and in the sections to follow is the FCLT, which 
obtains under weaker conditions than stated here. The condition (2.2) is weakened 
in Brown’s (1971) FCLT, which uses the Lindeberg condition and admits un- 
conditional heteroskedasticity which is asymptotically negligible, in the sense that 

T-‘z;&: -+a:. The result (2.9) for linear processes can be obtained under 
Brown’s (1971) weaker conditions by modifying the argument in Section 2.2; see 

Hall and Heyde (1980, Chapter 4) and Phillips and Solo (1992). 
An alternative approach is to use mixing conditions, which permit an explicit 

tradeoff between the number of moments and the degree of temporal dependence 
in u, and which admit certain nonstationarities (which are asymptotically negligible 
in the sense above). This approach was introduced to the unit roots literature by 
Phillips (1987a), who used Herrndorf’s (1984) mixing-condition FCLT, and much 
of the recent unit roots literature uses these conditions. Phillips (1987b) derives the 
local-to-unity result (2.17) using Herrndorf’s (1984) mixing-condition FCLT. 

An elegant approach to defining I(0) is simply to make the high-level assumption 
that u, is I(0) if its partial sum process converges weakly to a constant times a 
standard Brownian motion. Thus (2.9) is taken as the assumption rather than the 
implication of (2.1)-(2.3). With additional conditions assuring convergence of 
sample moments, such as sample autocovariances, this “high-level” assumption 
provides a general definition of I(O), which automatically incorporates u, which 
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satisfy Herrndorf’s (1984) FCLT’s. The gain in elegance of this approach comes at 
the cost of concreteness. However, the results in this chapter that rely solely on 
the FCLT and CMT typically can be interpreted as holding under this alternative 
definition. 

The FCLT approach is not the only route to asymptotic results in this literature. 
The approach used by Fuller (1976) Dickey and Fuller (1979) and Sargan and 
Bhargava (1983a) was to consider the limiting behavior of quadratic forms such as 
C,r= ,u: expressed as $A,v], where q is a T x 1 standard normal variate; thus the 
limiting behavior is characterized by the limiting eigenvalues of A,. See Chan (1988) 
and Saikkonen and Luukkonen (1993b) for discussions of computational issues 
involved with this approach. 

There is a growing literature on numerical evaluation of these asymptotic 
distributions. In some cases, it is possible to obtain explicit expressions for moment 
generating functions or characteristic functions which can be integrated numerically; 
see White (1958, 1959), Evans and Savin (1981a), Perron (1989b, 1991a), Nabeya 
and Tanaka (1990a, 1990b) and Tanaka (1990a). Finally, under normality, exact 
finite-sample distributions can be computed using the Imhof method; see, for 
example, Evans and Savin (198 1 b, 1984). 

3. Unit autoregressive roots 

This section examines inference concerning c1 in the model 

y, = d, + u I) u,=c(u,-l +u,, t= 1,2,...,T (3.1) 

where CI is either close to or equal to one and u, is I(O) with spectral density at 
frequency zero of d/27c. Unless explicitly stated otherwise, it is assumed that u0 
might be random, with Euf, < co, and that u, is a linear process satisfying (2.1)-(2.3). 

The trend term d, will be specified as known up to a finite-dimensional parameter 
vector /?. The leading cases for the deterministic component are (i) no deterministic 
term (d, = 0); (ii) a constant (d, = PO); and (iii) a linear time trend (d, = p,, + Prt). 
Extensions to higher-order polynomial trends or trends satisfying more general 
conditions are typically straightforward and are discussed only briefly. Another 
possibility is a piecewise-linear (or broken) trend [Rappaport and Reichlin (1989), 
Perron (1989a, 1990b)], a topic taken up in Section 5. 

Most of the procedures for inference on CI treat the unknown parameters in the 
trend term d, as nuisance parameters, so that many of the statistics can be 
represented generally in terms of detrended data. Throughout, yp denotes a general 
detrended process with unspecified detrending. For specific types of detrending, we 
adopt Dickey and Fuller’s (1979) notation: yr denotes demeaned data and y: denotes 
linearly detrended data when the detrending is by OLS as in (2.12). 
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The focus of this section is almost exclusively on the case in which there is at 

most a single real unit root. This rules out higher orders of integration (two or more 
real autoregressive unit roots) and seasonal unit roots (complex roots on the unit 
circle). These topics have been omitted because of space limitations. However, the 
techniques used here extend to these other cases. References on estimation and 
testing with seasonal unit roots include Hasza and Fuller (198 l), Dickey et al. (1984), 
Chan and Wei (1988), Ghysels (1990) Jegganathan (1991), Ghysels and Perron 
(1993), Hylleberg et al. (1990), Diebold (1993) and Beaulieu and Miron (1993). See 
Banerjee et al. (1992a) for an overview. 

In the area of testing when there might be two or more unit roots, an important 
practical lesson from the theoretical literature is that a “downward” testing 
procedure (starting with the greatest plausible number of unit roots) is consistent, 
while an “upward” testing procedure (starting with a test for a single unit root) is 
not. This was shown for F-type tests in the no-deterministic case by Pantula (1989). 
Based on simulation evidence, Dickey and Pantula (1987) recommend a downward- 
testing, sequential t-test procedure. Pantula (1989) proves that the distribution of 
the relevant t-statistic under each null has the standard Dickey-Fuller (1979) 
distribution. Also, Hasza and Fuller (1979) provide distribution theory for testing 
two versus zero unit roots in an autoregression. 

3.1. Point estimation 

The four main qualitative differences between regressions with I(1) and I(0) 
regressors are that, in contrast to the case of I(O) regressors, inference on certain 
linear combinations of regression coefficients is nonstandard, with: (i) estimators 

which are consistent at rate T rather than at the usual rate fi; (ii) limiting 
distributions of estimators and test statistics which are often nonstandard and have 

nonzero means; (iii) estimators which are consistent even if the regression misspecifies 
the short-run dynamics, although, in this case, the limiting distributions change; 
and (iv) limiting distributions which depend on both the true and estimated trend 
specifications. 

These differences between I(0) and I( 1) regressors can be seen by examining the OLS 
estimator of CY in (3.1). First, consider the no-deterministic case, so oi = CT= 2ytyt _ i/ 

C,‘= &_ i. When 1 ct 1 < 1 and u, = E,, conventional fi asymptotics apply and oi has 
a normal limiting distribution, 

ifIx < 1, T”‘(d - a) A N(0, 1 - cr2), (3.2) 

which was derived by Mann and Wald (1943) under the assumptions that E, is i.i.d. 
and all the moments of E, exist. 

In contrast, suppose that the true value of LY is 1, and let u, follow the general 
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linear process (2.1)-(2.3). Then the OLS estimator can be rewritten, 

T-’ it AY,Y,-, 
t=2 

T(&-1)= T ~ 

Tp2 2 yf-, 
1=2 

T-‘(yZ,-my:)- T-’ f: (AY,)' 
1=2 

r2 i~:-~ 

1=2 

(3.3) 

where the second line uses the identity y: - yf = 2C,T=,Ay,y,_ 1 + CTE2(AyJ2. 
Although the conditions for Mann and Wald’s result do not apply here because of 
the unit autoregressive root, an asymptotic result for T(oi - 1) nonetheless can be 
obtained using the FCLT (2.9) and the CMT. Because Eni < co, T-‘12yl = 

T - “‘(u, + vl) -% 0. Thus, because y, = u0 + C’= 1 us, by (2.9) and the CMT, we have 
T-‘i2yT=~W(1) and T-2CtT=2yf_1 =z-w2~Ws?. Also, T - ‘CT= 2(Ay,)2 = y*,,(O) % 

Y,,(O) = Y,(O). Thus, 

ifa = 1, T(& - l)= 
#V(l)2 - K) 

JW2, 
where K =T, (3.4a) 

This expression was first obtained by White (1958) in the AR(l) model with K = 1 

(although his result was in error by a factor of $) and by Phillips (1987a) for 
general K. 

An alternative expression for this limiting result obtains by using the continuous- 
time analogue of the identity used to obtain the second line of (3.3), namely 
IWdW=i(W(1)2 - 1) [Arnold (1973, p. 76)]; thus, 

ifa = 1, T(oi - l)= Wdw- $c - 1) w2. (3.4b) 

This result can also be obtained from the first line in (3.3) by applying Theorem 2.4 
of Chan and Wei (1988). 

The results (3.2) and (3.4) demonstrate the first three of the four main differences 
between I(0) and I(1) asymptotics. First, the OLS estimator of cI is “superconsistent”, 

converging at rate T rather than ,,&. While initially surprising, this has an intuitive 
interpretation: if the true value of cc is less than one, then in expectation the mean 
squared error E(y, - cly,_ 1)2 is minimized at the true value of c( but remains finite 
for other values of cc In contrast, if CI is truly 1, then E(AyJ2 is finite but, for any 
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fixed value of CI # 1, (1 - clL)y, = by, + (1 - cr)y,_ 1 has an integrated component; 
thus the OLS objective function T- ‘C,TZ 2(yt - ccy,_ J2 is finite, asymptotically, for 
CI = 1 but tends to infinity for fixed tl # 1. An alternative intuitive interpretation of 
this result is that the variance of the usual OLS estimator depends on the sampling 
variability of the regressors, here CT= 2 yf_ 1 ; but, because y, is I(l), this sum is O,( T*) 
rather than the conventional rate O,(T). 

Second, the limiting distribution in (3.4) is nonstandard. While the marginal 
distribution of W(l)* is XT, the distribution of the ratio in (3.4a) does not have a 
simple form. This distribution has been extensively studied. In the leading case that 
u, is serially uncorrelated, then 0’ = y,(O) so that K = 1 and (3.4a) becomes 
+( W( 1)2 - 1)/jW2 [and (3.4b) becomes j W d W/j W2], This distribution was tabulated 
by Dickey (1976) and reproduced in Fuller (1976, Table 85.1). The distribution is 
skewed, with asymptotic lower and upper 5 percent quantiles of - 8.1 and 1.28. 

Third, oi is consistent for c1 even though the regression of y, onto y,_i is 

misspecified, in the sense that the error term v, is serially correlated and correlated 
with (differences of) the regressor. This misspecification affects the limiting distribu- 
tion in an intuitive way. Use the definition of K to write 

Because o* can be thought of as the long-run variance of u,, +(K - 1) represents the 
correlation between the error and the regressor, which enters as a shift in the 
numerator of the limiting representation but does not introduce inconsistency. This 
term can increase the bias of d in finite samples. Although this bias decreases at the 
rate T-i, when u, is negatively serially correlated, so that +(K - 1) is positive, in 
sample sizes often encountered in practice this bias can be large. For example, if u, 
follows the MA(l) process u, = (1 - HI+,, then +(K - 1) = e/(1 - e)‘, so for 8 = 0.8, 
3(K - 1) = 20. 

To examine the fourth general feature of regressions with I(1) variables, the 

dependence of limiting distributions on trend specifications, consider the case that 
d, = PO + /I, t. Substitute this into (3.1), transform both sides of (3.1) by (1 - crL), and 
thus write 

y,=6,+6,t+cry,-, +u,, t= 1,2 ,..., T, (3.5) 

where 6, = (1 - g)po + LX/~, and 6, = (1 - a)/3,. If both PO and pi are unrestricted, 
(3.5) suggests estimating c( by the regression of y, onto (1, t, y,_ ,); if b, is restricted 
a priori to be zero, then CI can be estimated by regressing y, onto (1, yt_ i). Consider, 
for the moment, the latter case in which d, = /I, where fi, is unknown. Then, by the 

algebra of least squares, the OLS estimator of c(, oi”, can be written (after centering 
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and scaling) as 

T-l i AY,Y:- , 
T(@- l)= 

t=2 

r2 i (YP~J’ 
1=2 

t 
2 

T-‘(y’;2_y;2)- T-’ ’ x2 (AyJ2 
(3.6) 

where yr_ 1 =Y~_~ -(T- 1)-‘Z~~2y,_1. 
The method for obtaining a limiting representation of T(&” - 1) under the 

hypothesis that c( = 1 is analogous to that used for T(B - l), namely, to use the FCLT 
to obtain a limiting representation for T - “‘yr_ 1 and then to apply the continuous 

mapping theorem. Expression (2.13a) provides the needed limiting result for the 
demeaned levels process of the data; applying this to (3.6) yields 

T(@- 1)=${W”(1)2 - Wp(O)2 - ti)/jWp2 = { jWYdW-+(K- l)}/jM’f12 

(3.7) 

where the second representation is obtained using PV’(O) = - SW. 

The detrended case can be handled the same way. Let 8’ denote the estimator of 
rl obtained from estimating (3.5) including both the constant and time as regressors. 
Then T(oi’ - 1) can be written in the form (3.6), with y: replacing yr. The application 

of (2.13b) to this modification of (3.6) yields the limiting representation 

T(c?- I)=+{ Wr(l)2 - Wr(O)2 - tc]/jWr2 = {jW’dW-+(c I)}/jW? 

(3.8) 

Because the distributions of W, Wp and W’ differ, so do the distributions in (3.4), 
(3.7) and (3.8). When u, = E, so that K = 1, the distribution of T(B” - 1) is skewed and 
sharply shifted to the left, with asymptotic lower and upper 5 percent quantiles of 
- 14.1 and - 0.13. With linear detrending, the skewness is even more pronounced, 
with 5 percent quantiles of - 21.8 and - 2.66. This imparts a substantial bias to the 
estimates of CY: for example, with T= 100 and u, = E,, the mean of 8’, based on the 
asymptotic approximation (3.8), is 0.898. 

Another feature of regression with I(1) regressors is that, when the regression 
contains both I( 1) and I(0) regressors, estimators of coefficients (and their associated 
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test statistics) on the I(1) and I(0) regressors, in a suitably transformed regression, 
are asymptotically independent. This is illustrated here in the AR(p) model with a 
unit root as analyzed by Fuller (1976). General treatments of regressions with 
integrated regressors in multiple time series models are given by Chan and Wei 
(1988), Park and Phillips (1988) and Sims et al. (1990). When u, has nontrivial 
short-run dynamics so that w2 # y,,(O), an alternative approach to estimating c( is 
to approximate the dynamics of o, by a pth order autoregression, u(L)u, = e,. In the 
time-trend case, this leads to the OLS estimator, oi’, from the regression 

Ay,=60+6it+(~-l)y,_i + t ajAY,-j+c,, t=1,2 ,..., T. (3.9) 
j=l 

If u, in fact follows an AR(p), then e, = E, and (3.9) is correctly specified. To simplify 
the calculation, consider the special case of no deterministic terms, conditional 
homoskedasticity and p = 1, so that y, is regressed on (y,_ i,Ay,_i). Define 
TT = diag( T 1/Z T), let a=(a,,a-l)‘, let zl-i=(Ayt_i,yt_i), and let d be the 
OLS estimator’of a. Then 

l-&3-a)= 3-F’ i Zt_lZ;_lr;l ( 
-1 

) ( 3”;’ 5 Z,_lE, . 

1=2 t=2 > 

A direct application of the FCLT and the CMT shows that Yg ‘CT= 2z,_ lzip 1 Y, I* 

dia&,,(0), w2~W2), h w ere cc) = oJ( 1 - a(l)) (in the special case p = 1, a( 1) = al). 
Similarly, 

r,’ i Z,_lE,= 

r=2 
T-1'21i2A~,-~&p T-l,i2~t-l~t)'. 

Because Ay,_ 1 E, is a martingale difference sequence which satisfies Theorem 1, 
T~“2CT=2Ayt_1.zt%~*, where ‘I* _ N(0, 01 E(AyJ2). Direct application of Chan 
and Wei’s (1988) Theorem 2.4 (or, alternatively, an algebraic rearrangement of the 

type leading to (3.4b)) implies that the second term has the limit o,oJW d W. From 
Theorem 2.2 of Chan and Wei (1988), this convergence is joint and moreover the 
(W, q*) are independent. Upon completing the calculation, one obtains the result 

{ T1’2(Lil - a,), T(oi - l)} _i N(O, 1 - ~:~>~@4~~dW’~2}, (3.10) 

where asymptotically the two terms are independent. The joint asymptotic distri- 
bution of { T1j2(b1 -a,), T(B - l)} was originally obtained by Fuller (1976) using 
different techniques. The result extends to values of p > 1 and to more general time 
trends. For example, in the AR(p) model with a constant and a linear time trend, 
T(&‘- l)=+(~,/w)~W~dW/f(W’)~. 
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Ordinary least squares estimation is not, of course, the only way to estimate (x. 
Interestingly, the asymptotic distribution is sensitive to seemingly minor changes 
in the estimator. Consider, for example, Dickey’s et al. (1984) “symmetric least 
squares” estimator in the no-deterministic case 

a, = 
i*Y,Yt-1 

T-l 

c Y: + 3(Y: + Y’,) 
r=2 

Straightforward algebra and an application of the FCLT reveals that 

- + T- ’ i (Ay,)’ 

T(cc,- l)= 
t=2 K 

a-p 
T-l 

T-2 c Y: + +(Y: + Y$) 
2 

1=2 

(3.1 la) 

(3.1 lb) 

so that T(@, - 1) is negative with probability one. 
If point estimates are of direct interest, then the bias in the usual OLS estimator 

can be a problem. For example, if one’s object is forecasting, then the use of a biased 
estimator of (Y will result in median-biased conditional forecasts of the stochastic 
component.6 This has led to the development of median-unbiased estimators of ct. 

This problem is closely related to the construction of confidence intervals for cz and 
is taken up in Section 3.3. 

3.2. Hypothesis tests 

3.2.1. Test of c( = 1 in the Gaussian AR(l) model 

The greatest amount of research effort concerning autoregressive unit roots, both 
empirical and theoretical, has been devoted to testing for a unit root. Because of 
the large number of tests available, a useful starting point is the no-deterministic 
i.i.d. Gaussian AR( 1) model, 

Yt = NY, - 1 + 5, E, i.i.d. N(0, a’), t = 1,2,. . . , T, (3.12) 

‘When (al < 1 and a is fixed, bi is also biased towards zero. In the Gaussian AR(l) model with d, = 0, 
Hurwicz (1950) derives the approximation Eoi = {(T’ ~ 2T+ 3)/(T2 - l)}x for a close to zero. When G( 
is close to one, Hurwicz’s approximation breaks down but the distribution becomes well-approximated 
using the local-to-unity approximations discussed in the next section, and the downward bias remains. 
Approximate biases in the stationary constant model are given by Marriot and Pope (1954). For an 
application of these bias expressions, see Rudebusch (1993). Also see Magnus anctpesaran (1991) and 
Stine and Shaman (1989). 
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where y, = 0. Suppose further that rs2 is known, in which case we can set rr2 = 1. 
Because there is only one unknown parameter, CI, the NeymanPearson lemma can 
be used to construct the most powerful test of the null hypothesis c1= a, vs. 
the point alternative c( = Cc. The likelihood function is proportional to L(a) = 
k, exp( --$(a - E)‘CT= 2yf_ i), where k, does not depend on ~1. The Neyman 
Pearson test of 01= 1 vs. c1= C? rejects if L(c()/L(l) is sufficiently large; after some 
manipulation, this yields a critical region of the form 

[T(a-I)]2T-2~y;_1-2T(E-l)~~1 5 y,_,Ay,<k, 
t=2 t=2 

(3.13) 

where k is a constant. 
The implication of (3.13) is that the most powerful test of c1= 1 vs. tl = & is a linear 

combination of two statistics, with weights that depend on a. It follows that, even 
in this simplified problem, there is no uniformly most powerful (UMP) test of a = 1 
vs. 1~1 < 1. This difficulty is present even asymptotically: suppose that the alternative 
of interest is local to one in the sense (2.15), so that Cr = 1 + f/T, where C is a fixed 
constant. Then, T(& - 1) = C. Under the null 

T-2 i yf_,,2T-’ 5 yt_tAy, w2, w(1)2 - 1 1 
t=2 t=2 

so both terms in (3.13) are O,(l). Thus, there is no single candidate test which 

dominates on theoretical grounds, either in finite samples [Anderson (1948), Dufour 
and King (1991)] or asymptotically.’ 

From the perspective of empirical work, the model (3.12) is overly restrictive 
because of the absence of deterministic components and because the errors are 
assumed to be i.i.d. The primary objective of the large literature on tests for unit 
autoregressive roots has, therefore, been to propose tests that have three characteris- 
tics: first, the test is asymptotically similar under the general I(1) null, in the sense 
that the null distribution depends on neither the parameters of the trend process 
(assuming the trend has been correctly specified) nor the nuisance parameters 
describing the short-run dynamics of u,; second, it has good power in large samples; 
and third, it exhibits small size distortions and good power over a range of 

empirically plausible models and sample sizes. The next three subsections, respec- 
tively, summarize the properties of various unit root tests in terms of these three 
characteristics. 

‘This draws on Rothenberg (1990). Manipulation of(3.13) shows that the Dickey-Fuller (1979) p test, 
which rejects if T(ci - 1) < k’ (where k’ < 0 for conventional significance levels), is efficient against E = 2k’, 
although this does not extend to the demeaned or detrended cases. We thank Thomas Rothenberg and 
Pentti Saikkonen for pointing this out. 
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3.2.2. Tests of the general I( 1) null 

This subsection describes the basic ideas used to generalize tests from the AR(l) 
model to the general I(1) null by examining four sets of tests in detail. Some other 
tests of the general I( 1) null are then briefly mentioned. 

If u, follows an AR(p) and d, = p,, + Pit, then the regression (3.9) serves as a basis 
for two tests proposed by Dickey and Fuller (1979): a test based on the t-statistic 
testing 01= 1, z*‘, and a test based on p’ = (Cr)AR/BJT(& - l), where d& is the 
autoregressive spectral density estimator (the AR estimator ofo”): 

(3.14) 

where (a,, a,, . . . ,c?,) are the OLS estimators from (3.9), modified, respectively, to 
omit t or (1, t) as regressors in the d, = /I0 or d, = 0 cases. In the time-trend case, 
under the null hypothesis u = 1 and the maintained AR(p) hypothesis, the limiting 
representations of these statistics are 

(3.15) 

neither of which depends on nuisance parameters. Thus these statistics form the 
basis for an asymptotically similar test of the unit root hypothesis in the AR(p)/time- 
trend model. Their distributions have come to be known as the Dickey-Fuller 
(1979) “p” and “Y distributions and are tabulated in Fuller (1976), Tables 8.51 
and 8.5.2, respectively. In the constant-only case (d, = PO), the only modification is 
that t is dropped as a regressor from (3.9) and W’ replaces W’ in (3.15). In the no- 
deterministic case, the intercept is also dropped from (3.9) and W replaces W’. 

In an important extension of Fuller (1976) and Dickey and Fuller (1979), Said and 
Dickey (1984) used Berk’s (1974) results for AR( co) I(0) autoregressions to analyze 
the case that o, follows a general ARMA(p, q) process with unknown p, q. In this 
case, the true autoregressive order is infinite so the regression (3.9) is misspecified. 
If, however, the autoregressive order pT increases with the sample size (specifically, 
pT-+ co, p;/T+O), then Said and Dickey (1984) showed that the results (3.15) 
continue to hold. Thus the Dickey-Fuller/Said-Dickey tests have a nonparametric 
interpretation, in the sense that they are valid under a more general I(0) null with 
weak conditions on the dynamics of u,.~ 

8Berk’s (1974) conditions on c(L) (in the notation of (2.1)) are less restrictive than Said and Dickey’s 
(1984) assumption that v, obeys an ARMA(p, q). For a related discussion and extension to the 
multivariate case, see Lewis and Reinsel(l985) and especially Saikkonen (1991). 
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Alternative tests were proposed by Phillips (1987a) and Phillips and Perron 
(1988). They recognized that if K in (3.4) were consistently estimable, then T(oi - 1) 
from the misspecified AR(I) model could be adjusted so that it would be asymp- 
totically similar. This reasoning led Phillips (1987a) to propose the corrected 
statistics 

Z,= T(oS-- l)+ s 
WdW 

g?? - l)& --f‘ 

Tp2 5 y:+ 
s 

w= ’ 

(3.16a) 

(3.16b) 

where I? and d2 are consistent estimators of K and III’, and where r is the t-statistic 
testing for a unit root in the OLS regression of y, onto y,_, . Phillips and Perron 
(1988) extended these statistics to the constant and time-trend cases by replacing 
the regression of y, onto y,_ 1 with a regression of y, onto (1, y,_ r) in the constant 
case or, in the linear-trend case, onto (1, t, yt- 1). The limiting distributions for these 
two cases are as in (3.16), with Wb or W’, respectively, replacing W. 

Because +(K - 1) = &,(O) - 02)/02, the estimation of the correction entails the 
estimation of 02. Phillips (1987a) and Phillips and Perron (1988) suggested 
estimating o2 using a sum-of-covariances (SC) spectral estimator (the SC estimator 

of 02), 

IT 
A2 co SC = 

c tn= -IT k( > 

F r*;(m), 

T 

(3.17) 

A 

where y,(m) = V- ml- ‘CtTz lml + 1 (x, - X)(X,_,,, - X), k( .) is a kernel weighting func- 
tion and G, is the residual from the regression of y, onto y,_ t, (1, y, _ t) or (1, t, y,_ 1) 

in the no-deterministic, constant or linear-trend cases, respectively. The appropriate 
choice of kernel ensures that S.& > 0 [Newey and West (1987), Andrews (1991)]; 
Phillips (1987a) and Phillips and Perron (1988) suggested using Bartlett (linearly 
declining) weights. If [r increases to infinity at a suitable rate [e.g. $/T+O from 
Phillips (1987a, Theorem 4.2); see Andrews (1991) for optimal rates], then c;)& A w2 
as required. Like the SaiddDickey tests, the Phillips/Phillips-Perron tests thus 
provide a way to test the general (nonparametric) I( 1) null. 

A third test for the general I(1) null can be obtained .by generalizing a statistic 
derived by Sargan and Bhargava (1983a) in the no-trend and constant cases and 
extended to the time-trend case by Bhargava (1986). They used Anderson’s (1948) 
approximation to the inverse of the covariance matrix to derive the locally most 



Ch. 46: Unit Roots, Structural Breaks and Trends 2767 

powerful invariant (LMPI) test [although the test is not LMPI if the true inverse 
is used, as pointed out by Nabeya and Tanaka (1990b)l. The SarganBhargava 
statistics, E,, E;, and &, are 

r2 i (Y,)’ 
t=1 iiT=y-’ 

T- l 2 (AyJ2 
1=2 

(3.18a) 

r2 i (~3 
1=1 &--, 

T-’ i (AY,)' 
t=2 

(3.18b) 

(3.18~) 

where y;=yl- T-lC,T=Iyt and yf’=y,-&&‘t, where E= T-‘C,T=lyr- 

[(T+ 1)/2(T- l)](yT - y,) and j$’ = (yT - y,)/(T- 1). Note that @ is the maximum 
likelihood estimator (MLE) of ,4i under the null c1= 1 when u, is i.i.d. normal. Also, 
the statistic d, is asymptotically equivalent to minus one-half times the inverse of 
the symmetric least squares estimator T(ii, - 1) in (3.11). 

These statistics have seen little use in empirical work because of their derivation 
in the first-order case and because, in their form (3.18), the tests are not similar under 
the general I(1) null. They are, however, readily extended to the general I(1) null. 
While of independent interest, this extension is worth explaining here because it 
demonstrates a simple way that a large class of tests of the unit root model can be 
extended to the general I(1) case, namely, by replacing yI by y,/&. A direct 

application of the FCLT and the CMT yields ET 3 K-~~W~, @_=> K-‘J( W’)2 and 
i+-K_2 j( WB)2, where W’(E) = IV(n) - (1. - $W( 1) - SW. Thus, if li-’ is consistent, 
modified Sargan-Bhargava (MSB) statistics are obtained as R, = R2R”,, R; = g2E; 

and Rt = 12’k& which are similar under the general I(1) null. 
These statistics can be summarized using a compact functional notation. Note 

that the demeaned (say) MSB statistic with li;= y*,,(O)/ci, can be written as 
RI+ = IIK~T-‘C,~= 1 Y;(t/T)2, where Y;(E,) = T- 1’2yrT,l. This suggests the notation 

l-1 

MSB = 
J 

f (JJ2 d;l, (3.19) 
1=0 
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where f(A) = O- ’ Y,(n), & ’ Y;(1) and &‘YB,(J*), respectively, in the three cases, 

where Y,(I) = T- “*ytTsl and Y:(i) = T- “*yFTnl. 
The approach used to extend the SB statistic to the general I(1) null can be 

applied to other statistics as well. The NeymanPearson test regions (3.13) have the 
same drawback as the SB critical regions, that is, they depend on o under the general 
I( 1) null. Consider the no-deterministic case under which (3.13) was derived. Then, 
2T-‘CTZ2y_,Ayf = (T-*/‘yT)* -y,(O) + o,(l), so the critical regions in (3.13) are 
asymptotically equivalent to critical regions based on (T(i - l))2T-2CT=2y:_1 - 
T(cl - l)( T - “*yT)*, which has the limiting representation o*{F*~W* - CW(1)2}. 
While this depends on w, if Q2 -%02 under the null and local alternatives, then 
an asymptotically equivalent test can be performed using the statistic P, = 
d-2(C2T-2~~=2y~_1 - CT- ‘yi}. Because P,=z-C*~W* - EW( l)*, this test is asymp- 

totically similar and is moreover asymptotically equivalent to the NeymanPearson 
test in the case that u, is i.i.d. N(0, a*). 

When deterministic terms are present, it is desirable to modify the P, statistic. 
A feature of the tests discussed so far is that they are invariant to the values of the 
parameters describing the deterministic terms (PO and pi in the linear-trend case), 
that is, a change in the value of b does not induce a change in the value of the test 
statistic. This feature is desirable, particularly in the case of p,,. For example, when 
a test is performed on a series in logarithms, then a change in the units of 
measurement of the series (from thousands to millions of dollars, say) will appear, 
after taking logarithms, as an additive shift in /IO. It is natural to require a test for 
unit roots to be unaffected by the units of measurement, which translates here into 
requiring that the test be invariant to /IO. 

This line of reasoning led Dufour and King (1991), drawing on King (1980), to 
develop most powerful invariant (MPI) finite-sample tests of cI = a, vs. c1= c~i, where 
t1e is a general value, not necessarily one, in the Gaussian AR(l) model with 
Eui < co. The finite-sample distribution of these tests hinges on the Gaussian AR(l) 
assumption and they are not similar under the general I(1) null. These were extended 
by Elliott et al. (1992) to the general case using the same device as was used to extend 
the Neyman-Pearson tests to the statistic P,. The resultant statistics, P$ and P;, are 
asymptotically MPI against the alternative c = C. These statistics have forms similar 
to P,, but are constructed using demeaned and detrended series, where the trend 
coefficients are estimated by generalized least squares (GLS) under a local 
alternative (c = C), rather than under the null. This “local” GLS detrending results 
in intercept estimators which are asymptotically negligible, so that P;=E-C~~W* - 

Cl+‘(l)*. This suggests examining other unit root test statistics using local detrending. 
One such statistic, proposed by Elliott et al. (1992), is their DickeyyFuller GLS 
(DF-GLS) statistic, in which the local GLS-demeaned or local GLS-detrendcd 
series is used to compute the r-statistic in the regression (3.9), where the intercept 
and time trend are suppressed.’ The construction of the P;,P;, DF-GLV and 

‘The DF-GLS’ statistic is computed in two steps. Let z, = (1, t). (1) /I0 and PI are estimated by GLS 
under the assumption that the process is an AR(l) with coefficient E = 1 + F/T and u0 = 0. That is, PO 
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DF-GLS’ tests requires the user to choose C. Drawing upon the arguments in King 
(1988), a case can be made for choosing C so that the test achieves the power envelope 
against stationary alternatives (is asymptotically MPI) at 50 percent power. This 
turns out to be achieved by setting C = - 7 in the demeaned case and C = - 13.5 in 
the detrended case. 

Another statistic of independent interest is the so-called resealed range (R/S) 
statistic which was proposed and originally analyzed by Mandelbrot and Van Ness 
(1968), Mandelbrot (1975) and Mandelbrot and Taqqu (1979). The statistic is 

T- “2(max,= i,....ry, - 
R/S=- mm*= l,...,TYr 1 

T-’ i (AyJ2 . 
1=2 

(3.20) 

Although the R/S statistic was originally proposed as a method for measuring the 
differencing parameter in a fractionally integrated (fractionally differenced) model, 

the R/S test also has power against stationary roots in the autoregressive model. In 
functional notation, the statistic is supJ(A)- infnf(lZ), which is a continuous 
functional from C[O, l] to B’. As Lo (1991) pointed out, this statistic is not similar 
under the general I(1) null, but if evaluated using f(1) = T- 1’2yI,,1/Q it is 
asymptotically similar (note that this statistic needs no explicit demeaning in the 
d, = /i’e case). Thus, the asymptotic representation of this modified R/S statistic 
under the general I( 1) null is sup, W(n) - inf, W(1). 

Although a large number of unit root tests have been proposed, many fall in the 
same family, in the sense that they have the same functional representation. It will be 
shown in the next section that if two tests have the same functional representation 
then they have the same local asymptotic power functions. However, as will be seen 
in Section 3.2.4, tests which are asymptotically equivalent under the null and local 
alternatives can perform quite differently in finite samples. 

3.2.3. Consistency and local asymptotic power 

Consistency. A simple argument proves the consistency of unit root tests which 
can be written in functional notation such as (3.19). Suppose that a test has the 
representation g(f), where g: C[O, l] -tB is continuous, and f is T-“2y,,.,/&, 
T- 1’2yFT.I/c& or T- 1’2y;PIjc3 in the no-deterministic, demeaned or detrended cases, 
respectively. If g(0) falls m the rejection region, then consistency follows immediately, 
provided that the process being evaluated is consistent for zero under all fixed 

and /I1 are estimated by regressing [y,,(l - 07L)y,,. .(l_- aL)y,] onto [zr,(l - KC)z,, ,(l - cX)Z,]: 
call the resulting estimator &s. Detrended J, = yr - z&Ls is then computed. (2) The Dickey-Fuller 
regression (3.9) is run using j$ without the intercept and time trend; the r-statistic on J,- 1 is the DF-GLS’ 
statistic. The DF-GLS’ statistic is computed similarly except that the regressor t is omitted in the first 
step. The DF-GLS’ statistic has the no-deterministic Dickey-Fuller r* distribution and the distribution 
of DF-GLS is tabulated in Elliott et al. (1992). 
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alternatives. As a concrete example, let d, = /I,, and consider the demeaned MSB 
statistic (3.19) with f= 0-l Y;. The test rejects for small values of the statistic, so 
consistency against the general I(0) alternative follows if Q- i Y; A 0. Now if U, is 
I(O) then Pr[sup, ( Y;(;I)I > S] + 0 for all 6 > 0 [the proof is along the lines of (2.8)]. 
It follows that Q-i Y; LO if cj L k > 0 for some constant k under the I(O) 
alternative. Thus, with this additional assumption, MSB’ = j(& ’ Y;(1))’ dA + 
o,,( 1) A 0 under the fixed I(0) alternative, and the test is consistent. 

The assumption that d2 5 k > 0 for some constant k under the I(0) alternative 
is valid for certain variants of both the SC and AR spectral estimators. For the AR 
spectral estimator, this was shown by Stock (1988, Lemma 1). For the SC spectral 
estimator, test consistency is an implication of Phillips and Ouliaris’ (1990, Theorem 
5.1) more general result for tests for cointegration. These results, combined with 
some additional algebra, demonstrate the consistency for the MSB, Z,, Z,, P, and 
R/S statistics. lo 

Local asymptotic power. Power comparisons are a standard way to choose among 
competing tests. Because finite-sample distribution theory in nearly Z(1) models is 
prohibitively complicated, research has focused on asymptotic approximations to 
power functions. For consistent tests, this requires computing power against 
alternatives which are local to (in a decreasing neighborhood of) unity. Applications 
of asymptotic expansions commonly used in T”‘-asymptotic problems, in par- 
ticular Edgeworth expansions and saddlepoint approximations, provided poor 
distributional approximations for c1 near unity [Phillips (1978); also, see Satchel1 
(1984)]. This led to the exploration of the alternative nesting, cur = 1 + c/T; 
important early work developing this approach includes Bobkoski (1983), Cavanagh 
(1985), Phillips (1987a, 1987b), Chan and Wei (1987) and Chan (1988, 1989). 

The treatment here follows Bobkoski (1983) as generalized in Example 4 of 
Section 2.3. The key observation is that, under the local-to-unity alternative (2.15), 
the processes T- 1/2u1Pl =oW,(.), where WC is a diffusion process on the unit interval 
satisfying d W,(A) = c W,(A) + d W(A) with W,(O) = 0. In addition, both the SC and 
AR spectral estimators have the property that d2 ’ * o2 under the local alternative.” 
These results directly yield local-to-unity representations of those test statistics with 
functional representations such as (3.19). 

toNot all plausible estimators of& will satisfy this condition. For example, consider the SC estimator 
constructed using not the quasi-difference d - By;d_ 1, as in (3.17), but the first difference A$. These two 
estimators are asymptotically equivalent under the null, but under the alternative y, is overdifferenced. 
Thus, the spectrum of Afl at frequency zero is zero under the I(O) alternative, the SC estimator of the 
spectrum does not satisfy the positivity condition, and tests constructed using the first-differenced SC 
estimator are not in general consistent. [Precise statements of this result are given by Stock and Watson 
(1988b) in the MA(q) case with I, fixed and by Phillips and Ouliaris (1990, Theorem 5.2) in the general 
case.] This problem of overdifferencing by imposing a = 1 when nuisance parameters are estimated also 
results in the inconsistency of Solo’s (1984) Lagrange multiplier (LM) test for a unit AR root in an 
ARMA(p,q) model, as demonstrated by Saikkonen (1993). 

“See Phillips (1987b) for the SC estimator and Stock (1988) for the AR estimator. 
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As a concrete example, again consider the MSB’ statistic. Under the local-to- 
unity alternative, Y!+-o( W, - IWJ = o WE. Thus, test statistics of the form g(6 i Y’“,) 
have the local-to-unity representation g( W,“). An important implication is that the 
local asymptotic power of these tests does not depend on the nuisance parameter 
o, simplifying their comparison. 

Phillips (1987b, Theorem 2) showed that this framework bridges the gap between 
the conventional Gaussian I(0) asymptotics and the nonstandard I( 1) asymptotics. 
Specifically, as c + - cc the (suitably normalized) local-to-unity approximations for 
T(bi - 1) and the associated t-statistic approached their I(O) Gaussian limits and, as 
c -+ + co, these distributions, respectively, tend to Cauchy and normal, in accordance 
with the asymptotic results of White (1958, 1959) and Anderson (1959) for the 
Gaussian AR(l) model with ICX/ > 1. 

Another application of this approach is to derive the asymptotic Gaussian power 
envelope for unit root tests, that is, the envelope of the power functions of the family 
of most powerful unit root tests. Because there is no UMP test (or, in the time-trend 
case, no uniformly most powerful invariant test), this envelope provides a concrete 
way to judge the absolute asymptotic performance of various unit root tests. In the 
no-deterministic case, this envelope is readily derived using the local-to-unity limit 
(2.17) and the Neyman-Pearson critical regions (3.13). Assume that (i) the process 
is a Gaussian AR( 1) so that o2 = a:; (ii) En: < co; (iii) the alternative against which 
the test is most powerful is local-to-unity, so that F = T(i - 1) is fixed; and (iv) the 
true process is local-to-unity with c = T(cc - 1). Then, the probability of rejecting 

CI = 1 against the one-sided alternative l&l - 1 is, asymptotically, 

Pr (T(&- 1))2T-2 i y:_i -2T(E- l)T-’ i yt_iAy,<k 
t=2 r=2 1 

Wz-CWc(1)2<k) , 1 (3.21) 

where k and k’ are constants which do not depend on c. When c = C, the second 
expression in (3.21) provides the envelope of the power functions of the most 
powerful (Neyman-Pearson) tests and, thus, provides an asymptotic performance 

bound on all unit root tests in the Gaussian model. 
This result is extended in several ways in Elliott et al. (1992). The bound (3.21) is 

shown to hold if d, is unknown but changes slowly, in the sense that d, satisfies 

T 

T-’ 1 (Ad,)‘+0 and T-‘j2 max ld,l+O. (3.22) 
I=1 f= l,...,T 

If d, = &, + /IIt, then the bound (3.21) cannot be achieved uniformly in pi, but a 
similar bound can be derived among the class of all invariant tests, and this is 
achieved by the Pi statistic. Although the bound (3.21) was motivated here for u, i.i.d. 



2112 J.H. Stock 

N(O,aZ), this bound applies under the more general condition that u, obeys a 

Gaussian AR(p). 
We now turn to numerical results for asymptotic power, computed using the 

local-to-unity asymptotic representations of various classes of statistics. In addition 
to the tests discussed so far, we include expressions for the Park (1990) J(p, q) 
variable-addition test [also, see Park and Choi (1988)] and, in the no-deterministic 
case, the modified asymptotically LMPI test [invariant under change of scale, this 
test rejects for small values of (T- 1izyr/Q)2 and is obtained by letting c --, 0 in (3.13) 
and rearranging]. Let W.f penote a general OLS-detrended WC process, that is, 
Wf = WC in the no-determmtstic case, W:(A) = W;(A) = W,(i) - j WC in the demeaned 

case and W:(A) = W;(A) = WC(A) - (4 - 6n)l W, - (122 - 6)fs W,(s) ds in the detrended 
case [cf. (2.13)]. Let Wf denote the asymptotic limit of the Bhargava-detrended 
process T - “‘yf3,., used to construct the Bhargava statistic (3.18~) in the detrended 
case; specifically, W:(A) = W,(A) - (A - i) Wc( 1) - s WC. Finally, let Vc(A) = W,(A) - 
n{E+WE(l)+(l -c+)3IrW,( )d } h Y r , w ere Zt = (1 - C)/(l - C + C2/3), denote the limit of 
the detrended process obtained from local GLS detrending, which is used to 
construct the Pk and DF-GLS’ statistics. The local-to-unity representations for 
various classes of unit root test statistics are given by the following expressions: 

b-class 

Q-class 

SB-class 

SB-class 

R/S 

J@, 1) 

JCL 2) 

- l{ w;(l)2 - w:(o)2 - l}; 

-l/2 
{ w;(l)2 - w:(o)2 - 1 }; 

s 
(Wf)” (no-deterministic, demeaned cases); 

s 
( WF)2 (detrended case); 

IsiP1J W:(A) - inf W,“(A); 
J.c(O.1) 

s 
( yj2 

~ - 1 

s 

(demeaned case); 

(WZ)” 

(3.23a) 

(3.23b) 

(3.23~) 

(3.23d) 

(3.23e) 

(3.23f) 

s 
(Wi)’ 

- - 1 

s 

(detrended case); 

(WZ)’ 

w%) 
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LMPI W,( 1)2 (no-deterministic case only); (3.23h) 

PT c2 s w; -cwc(q2 ( no-deterministic, demeaned cases); (3.231) 

PT C2 
s 

Vf - (C - l)VC( 1)2 (detrended case); (3.23j) 

DFPGLS ; 
- l/2 

{ Wc( 1)2 - Wc(O)2 - 1 } (demeaned case); (3.23k) 

DF-GLS ; 
- l/2 

{ VC(l)2 - VC(0)’ - l} (detrended case). (3.231) 

The p class includes the Dickey-Fuller (1979) p tests and the Phillips (1987a)/Phillips- 
Perron (1988) 2, tests. The f class includes the Dickey-Fuller (1979) t-tests and the 
Phillips (1987a)/PhillipsPerron (1988) 2, tests. The SB class includes the Schmidt- 
Phillips (1992) test. Most of these representations can be obtained by directly 
applying the previous results. For those statistics with functional representations 
already given and where the statistic is evaluated using OLS detrending [the 
SB-class (demeaned case) and R/S statistics], the results obtain as a direct 
application of the continuous mapping theorem. In the cases involving detrending 
other than OLS in the time trend case (the SB-class and DF-GLS’ statistics), an 
additional calculation must be made to obtain the limit of the detrended processes. 
The other expressions follow by direct calculation.i2 

Asymptotic power functions for leading classes of unit root tests (5 percent level) 

are plotted in Figures 1, 2 and 3 in the no-deterministic, constant and trend cases, 
respectively. i3 The upper line in these figures is the Gaussian power envelope. In 
the d, = 0 case, the power functions for the t, p and SB tests are all very close to 
the power envelope, so this comparison provides little basis for choosing among 
them. Also plotted in Figure 1 is the power function of the LMPI test. Although 
this test has good power against c quite close to zero, its power quickly falls away 
from the envelope and is quite poor for distant alternatives. 

r2References for these results include: for the p, Q statistics, Phillips (1987b) (Z, statistic) and Stock 
(1991) (DickeyyFuller AR(p) statistics); for the SB-class statistics, Schmidt and Phillips (1992) and Stock 
(1988); for the P,- and DF-GLS statistics, Elliott et al. (1992). 

‘“The asymptotic power functions were computed using the functional representations in (3.23) 
evaluated with discrete Gaussian random walks (T= 500) replacing the Brownian motions, with 20,000 
Monte Carlo replications. Nabeya and Tanaka (1990b) tabulate the power functions for tests including 
the SB and Q tests, although they do not provide the power envelope. Because they derive and integrate 
the characteristic function for these statistics in the local-to-unity case, their results presumably have 
higher numerical accuracy than those reported here. Standard errors of rejection rates in Figures l-3 
are at most 0.004. Some curves in these figures originally appeared in Elliott et al. (1992). 
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In the empirically more relevant cases of a constant or constant and trend, the 
asymptotic power functions of the various tests differ sharply. First, consider the 
cased, = /?,. Perhaps the most commonly used test in practice is the DickeyyFuller/ 
Said-Dickey t-test, Q@; however, its power is well below not just the power envelope 
but the power of the 6” (equivalently, Zd) test. The SB-class statistics have 

-- 
-- 

-- 
_-- 

-- 
/- LMPI 

01 I 
OO 4 8 12 i6 20 24 28 32 
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Figure 2 
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Figure 3 

asymptotic power slightly above the jY’ statistics, particularly for power between 

0.3 and 0.8, but remains well below the envelope. In contrast, the asymptotic local 
power function of the Pt test, which is, by construction, tangent to the power 
envelope at 50 percent power, is effectively on the power envelope for all values of 
c. Similarly, the DF-GLS‘ power function is effectively on the power envelope. 

Pitman efficiency provides a useful way to assess the importance of these power 
differences. Pitman’s proposal was to consider the behavior of two tests of the same 
hypothesis against a sequence of local alternatives, against which at least one of the 
tests had nondegenerate power. The Pitman efficiency [or asymptotic relative 
efficiency (ARE)] is the ratio of the sample sizes giving, asymptotically, the same 

power for that sequence. In conventional fi-normal asymptotics, often the ARE 
can be computed as a ratio of the variances entering the denominators of the two 
Studentized test statistics. Although this approach is inapplicable here, the ARE 
can be calculated using the asymptotic power functions. Suppose that two tests 
achieve power /I against local alternatives cl(B) and cZ(b); then the ARE of the first 
test relative to the second test is ci(fi)/c,(/?) [Nyblom and Makelainen (1983)]. Using 
this device, the ARE of the P; test, relative to the optimal test, at power of 50 percent 
is 1 .O, by construction, and the ARE of the DF-GLS’ test is effectively 1. In contrast, 
the ARE’s of the SB-, p- and ?-class tests, relative to the Pt test, are 1.40, 1.53 and 
1.91. That is, to achieve 50 percent power against a local alternative using the 
DickeyyFuller t-statistic asymptotically requires 90 percent more observations than 
are needed using the asymptotically efficient P; test or the nearly efficient DF-GLS’ 
test. 
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The results in the detrended case are qualitatively similar but, quantitatively, the 
power differences are less. The Y-class statistics have low power relative to the 
envelope and to the SB- and ,Y-class tests. The SB-class tests have power slightly 
above the b’-class tests and all power functions are dominated by the P; test. Some 
of the other tests, in particular the R/S test, have power that is competitive with the 
MSB- and fir-class tests. At 50 percent power, the Pitman efficiency of the Q tests is 
1.39 and of the 1 tests is 1.25. Interestingly, the power function of P; actually lies 
above the power function of z*‘, even though P; involves the additional estimation 
of the linear-trend coefficient /II. Comparing the results across the figures highlights 
a common theme in this literature: including additional trend terms reduces the 
power of the unit root tests if the trends are unnecessary.14 

So far, the sampling frequency has been fixed at one observation per period. A 

natural question is whether power can be increased by sampling more frequently, 
for example, by moving from annual to quarterly data, while keeping the span of 
the data fixed. A simple argument, however, shows that it is the span of the data 
which matters for power, not the frequency of observation. To be concrete, consider 
the demeaned case and suppose that the true value of CI is 1 + cl/T, based on T 
annual observations, where c1 is fixed. Suppose that the MSB statistic is used with 
sufficiently many lags for cG2 to be consistent. With the annual data, the test statistic 
has the limiting representation j( W;,)‘. The quarterly test statistic has the limiting 

representation S(WQ2, where c4 is the local-to-unity parameter at the quarterly 
frequency and the factor of 4 arises because there are four times as many quarterly 
as annual observations. Because tl = 1 + cl/T at the annual level, at the quarterly 
level this root is ~1~‘~ z 1 + (cJ4T) = 1 + (c4/T), so c4 = cJ4. Thus, I(W&J2 = @‘;I)2 
and the quarterly and annual statistics have the same limiting representations and, 
hence, the same rejection probabilities. Although there are four times as many 
observations, the quarterly root is four times closer to one than the annual root, 
and these two effects cancel asymptotically. For theoretical results, see Perron 
(1991b); for Monte Carlo results, see Shiller and Perron (1985). More frequent 
observations, however, might improve estimation of the short-run dynamics, and 
this, apparently, led Choi (1993) to find higher finite-sample power at higher 
frequencies in a Monte Carlo study. 

The case of uO drawn from its unconditional distribution. The preceding analysis 
makes various assumptions about u 0: to derive the finite-sample Neyman-Pearson 
tests, that ue = 0 (equivalently, u0 is fixed and known) and for the asymptotics, that 

i4Asymptotic power was computed for the Dickey-Fuller (1981) and Perron (1990a) F-tests, but this 
is not plotted in the figures. These statistics test the joint restriction that a = 1 and that 6, = 0 in (3.5) 
or (3.9). Unlike the other tests considered here, these F-tests are not invariant to the trend parameter 
under local and fixed alternatives. The power of the two F-tests depends on p, under the alternative, so 
for drifts sufficiently large their power functions can, in theory, exceed the power envelope for invariant 
tests. If /I, =0 or is small, the F-tests have very low asymptotic power; well below the f-class tests, 
Perron’s (1990a) calculations indicate, however, that for p, sufficiently large, the F-tests can have high 
(size-adjusted) power. 
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T- r’*uO LO, as specified after (2.9). Under the null, the tests considered are 
invariant to /I, and thus to uO. Although this finite+, case has received the vast 
majority of the attention in the literature, some work addresses the alternate model 
that u0 is drawn from its unconditional distribution or is large relative to the sample 
size. In finite samples, this modification is readily handled and leads to different 
tests [see Dufour and King (1991)]. The maximum likelihood estimator is different 
from that when u0 is fixed, being the solution to a cubic equation [Koopmans (1942); 
for the regression case, Beach and MacKinnon (1978)]. 

As pointed out by Evans and Savin (1981b, 1984) and further studied by 
Nankervis and Savin (1988), Perron (1991a), Nabeya and Sorensen (1992), Schmidt 
and Phillips (1992) and DeJong et al. (1992a), the power of unit tests depends on 
the assumption about uO. Analytically, this dependence arises automatically if the 
asymptotic approximation relies on increasingly finely observed data, in Phillips 
(1987a) terminology, continuous record asymptotics [see Perron (1991a, 1992), 
Sorensen (1992) and Nabeya and Sorensen (1992)]. Alternatively, equivalent 
expressions can be obtained with the local-to-unity asymptotics used here if 
T-“*IL, = O,(l) [in the stationary AR(l) case, a natural device is to let T-“*u, be 
distributed N(0, af/T(l - CX~))-+ N(0, - ~cT~/c), where c < 0, so that an additional 
term appears in (2.17)]. Elliott (1993a) derives the asymptotic power envelope under 
the unconditional case and shows that tests which are efficient in the unconditional 
case are not efficient in the conditional case in either the demeaned or detrended 

cases. The quantitative effect on the most commonly used unit root tests of drawing 
u0 from its unconditional distribution is investigated in the Monte Carlo analysis 
of the next subsection. 

3.2.4. Finite-sample size and power 

There is a large body of Monte Carlo evidence on the performance of tests for a 
unit AR root. The most influential Monte Carlo study in this literature is Schwert 
(1989), which found large size distortions in tests which are asymptotically similar 
under the general I(1) null, especially the Phillips-Perron (1988) Z, and Z, statistics. 
A partial list of additional papers which report simulation evidence includes Dickey 
and Fuller (1979), Said and Dickey (1985), Perron (1988,1989c, 1990a), Diebold and 
Rudebusch (1991 b), Pantula and Hall (1991), Schmidt and Phillips (1992), Elliott 
et al. (1992), Pantula et al. (1992), Hall (1992a), DeJong et al. (1992b), Ng and Perron 
(1993a, 1993b) and Bierens (1993). 

Taken together, these experiments suggest four general findings. First, all the 
asymptotically valid tests exhibit finite-sample size distortions for models which are 
in a sense close to I(0) models. However, the extent of the distortion varies widely 
across tests and depends on the details of the construction of the spectral estimator 
c3*. Second, the estimation of nuisance parameters describing the short-run 
dynamics reduces test power, in some cases dramatically. Third, these two observa- 
tions lead to the use of data-dependent truncation or AR lag lengths in the 
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estimation of o2 and the resulting tests show considerable improvements in size 
and power. Fourth, the presence of nonnormality or conditional heteroskedasticity 

in the errors results in size distortions, but these are much smaller than the dis- 
tortions arising from the short-run dynamics. 

We quantify these findings using a Monte Carlo study with eight designs (data 
generating processes or DGP’s) which reflect some leading cases studied in the 
literature. In each, y, = u,, where u, = au,_ 1 + II,. Five values of CI were considered: 
1.0, 0.95,0.9,0.8 and 0.7. All results are for T= 100. The DGP’s are 

Gaussian MA( 1): 

0 = 0.8, 0.5,0, -0.5, -0.8, (3.24a) 

Gaussian MA(l), u0 unconditional: u, = E, - !3~,_ 1, u. - N(0, y,(O)), 

8 = 0.5,0, - 0.5, (3.24b) 

where in each case E, - i.i.d. N(0, 1). The Gaussian MA( 1) DGP (3.24a) has received 
the most attention in the literature and was the focus of Schwert’s (1989) study. The 
unconditional variant is identical under the null, but under the alternative u0 is 
drawn from its unconditional distribution N(0, y,(O)), where y,(O) = (1 + 8’ - 2&)/ 
(1 - a’). This affects power but the size is the same as for (3.24a). The unconditional 
model is of particular interest because the power functions in Section 3.2.3 were for 
the so-called conditional (uO fixed) case. 

The tests considered are: the Dickey-Fuller fi statistic T(6i - l)/(l - CT= iSj) 

[where &,a,, . .,A, are ordinary least squares estimators (OLSE’s) from (3.9)]; 
the Phillips (1987a)/Phillips_Perron (1988) Z, statistic (3.16a); the Dickey-Fuller z* 

statistic computed from the AR(p + 1) (3.9); the MSB statistic (3.19) computed using 
* 

o,,; the Schmidt-Phillips (1992) statistic, which is essentially (3.19) computed using 
&-; and the DF-GLS of statistic of Elliott et al. (1992).” 

Various procedures for selecting the truncation parameter 1, in O.& and the 
autoregressive order pT in ci)iR are considered. Theoretical and simulation evidence 
suggest using data-based rules for selecting 1,. Phillips and Perron (1988) and 
DeJong et al. (1992b) use the Parzen kernel, so this kernel is adopted here.16 The 
truncation parameter 1, was chosen using Andrews’ (1991) optimal procedure for 
this kernel as given in his equations (5.2) and (5.4). The AR estimator lag length pT 
in (3.14) (with a constant but no time trend in the regression, in both the demeaned 

“The results here are drawn from the extensive tabulations of 20 tests in 13 data generating processes 
(DGP’s) in Elliott (1993b). Other tests examined include: the Dickey-Fuller (1981) and Perron (1990b) 
F-tests; the Phillips-Perron Z, test; the modified R/S statistic; Hall’s (1989) instrumental variable 
statistic; Stock’s (1988) MZ, statistic; and the Park J(p,p + 3) tests for p = 1, 2. In brief, each of these 
tests had drawbacks - distorted size, low power or both - which, in our view, makes them less attractive 
than the tests examined here, so, to conserve space, these results are omitted. 

‘6TheParzenkernelisgivenby:k(x)=1-6x2+6~x~3,O~~~~~~;k(x)=2(1-~~()3,~~~~~~1;and 
k(x)=O,Ixl> 1. 
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Size and size-adjusted power of selected tests of the I(1) null: Monte Carlo results 
(5 percent level tests, detrended case, T= 100, y, = u,, u, = au,_ I + u,, v, = E, - BE,_ ,).’ 

Test 
Statistic 

DF-I’ AR(4) 

DF-Q’ AR(BIC) 

DF-r^’ AR(LR) 

DF-p AR(BIC) 

Z, SC(aut0) 

MSB AR(BIC) 

MSB SC(auto) 

DF-GLS’ AR(BIC) 

MA(l), 0 = 
Asymptotic 

a Power -0.8 -0.5 0.0 0.5 0.8 

1.00 0.05 0.03 0.05 
0.95 0.09 0.07 0.07 
0.90 0.19 0.10 0.12 
0.80 0.61 0.24 0.28 
0.70 0.94 0.40 0.45 

0.05 0.06 0.37 
0.07 0.08 0.09 
0.13 0.16 0.18 
0.32 0.43 0.49 

0.05 0.05 0.06 
0.07 0.08 0.08 
0.12 0.14 0.17 
0.28 0.32 0.44 
0.45 0.52 0.72 

1.00 0.05 0.10 0.07 
0.95 0.09 0.09 0.08 
0.90 0.19 0.16 0.14 
0.80 0.61 0.36 0.36 
0.70 0.94 0.57 0.58 

0.53 0.71 0.78 

0.05 0.09 0.58 
0.08 0.09 0.08 
0.15 0.18 0.17 
0.39 0.51 0.50 
0.64 0.81 0.80 

0.07 0.05 0.09 
0.08 0.08 0.09 
0.15 0.15 0.18 
0.36 0.39 0.52 
0.58 0.64 0.81 

1.00 0.05 0.09 
0.95 0.09 0.08 
0.90 0.19 0.14 
0.80 0.61 0.29 
0.70 0.94 0.42 

O.Jl 
0.09 
0.16 
0.39 
0.58 

0.08 0.22 0.65 0.1 I 0.08 0.22 
0.09 0.10 0.09 0.09 0.09 0.09 
0.17 0.22 0.17 0.16 0.18 0.20 
0.46 0.56 0.42 0.39 0.47 0.56 
0.74 0.76 0.57 0.58 0.74 0.77 

1.00 0.05 
0.95 0.10 
0.90 0.23 
0.80 0.70 
0.70 0.97 

0.21 0.16 
0.09 0.09 
0.18 0.18 
0.42 0.45 
0.62 0.67 

0.13 0.21 0.81 0.16 0.13 0.21 
0.10 0.10 0.08 0.09 0.09 0.10 
0.20 0.22 0.17 0.18 0.19 0.20 
0.49 0.58 0.47 0.43 0.48 0.57 
0.74 0.87 0.73 0.66 0.73 0.86 

1.00 0.05 0.00 0.01 0.05 0.65 J.00 0.01 0.05 0.65 
0.95 0.10 0.09 0.09 0.11 0.10 0.09 0.09 0.10 0.09 
0.90 0.23 0.19 0.20 0.25 0.25 0.16 0.20 0.23 0.21 
0.80 0.70 0.56 0.62 0.74 0.73 0.44 0.62 0.73 0.70 
0.70 0.97 0.89 0.92 0.98 0.97 0.72 0.92 0.98 0.97 

1.00 0.05 0.23 0.17 0.13 0.12 0.49 0.17 0.13 O.J2 
0.95 0.10 0.10 0.09 0.10 0.10 0.08 0.09 0.09 0.09 
0.90 0.25 0.19 0.20 0.21 0.21 0.16 0.18 0.19 0.19 
0.80 0.73 0.42 0.45 0.48 0.50 0.42 0.41 0.44 0.46 
0.70 0.97 0.60 0.65 0.69 0.74 0.69 0.61 0.64 0.69 

1.00 0.05 0.00 0.01 0.03 0.46 0.99 0.01 0.03 0.46 
0.95 0.10 0.10 0.10 0.11 0.11 0.11 0.09 0.10 0.10 
0.90 0.25 0.24 0.24 0.28 0.27 0.22 0.21 0.24 0.23 
0.80 0.73 0.63 0.66 0.75 0.74 0.42 0.61 0.70 0.65 
0.70 0.97 0.89 0.91 0.97 0.94 0.42 0.86 0.93 0.89 

1.00 0.05 
0.95 0.10 
0.90 0.27 
0.80 0.8 1 
0.70 0.99 

0.1 I 0.08 0.07 O.JJ 0.58 
0.11 0.10 0.10 0.11 0.12 
0.23 0.23 0.24 0.28 0.27 
0.53 0.57 0.61 0.72 0.70 
0.75 0.80 0.84 0.94 0.91 

0.08 0.07 0.11 
0.09 0.09 0.09 
0.19 0.19 0.21 
0.46 0.49 0.54 
0.67 0.71 0.76 

Unconditional: 
MA( 1). 0 = 

-0.5 0.0 0.5 

“AR(BIC) indicates that the AR spectral estimator based on (3.9) with the time trend suppressed was 
used. See the notes to Table 1. 
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and the detrended cases) was selected using the Schwartz (1977) Bayesian information 
criterion (BIG), with a minimum lag of 3 and a maximum of 8. For comparison 
purposes a sequential likelihood ratio (LR) downward-testing procedure with 10 
percent critical values, as suggested by Ng and Perron (1993b), was also applied to 
the Dickey-Fuller t-statistic.’ 7 

The results for tests of asymptotic level 5 percent are summarized in Table 1 for 
the demeaned case and in Table 2 for the detrended case. For each statistic, the first 
column provides the asymptotic approximation to the size (which is always 5 
percent) and to the local-to-unity power. The remaining entries for c1= 1 are the 
empirical size, that is, the Monte Carlo rejection rate based on asymptotic critical 
values. The entries for ICC/ < 1 are the size-adjusted power, that is, the Monte Carlo 
rejection rates when the actual 5 percent critical value computed for that model 
with c( = 1 is used to compute the rejections. Of course, in practice the model and 
this correct critical value are unknown, so the size-adjusted powers do not reflect 
the empirical rejections based on the asymptotic critical values. However, it is the 
size-adjusted powers, not the empirical rejection rates, which permit examining the 
quality of the local-to-unity asymptotic approximations reported in the first 
column. 

These results illustrate common features of other simulations. Test performance, 
both size and power, varies greatly across the statistics, the models generating the 
data and the methods used to estimate the long-run variance. The most commonly 
used test in practice is the Dickey-Fuller z* statistic. Looking across designs, this 
statistic has size closer to its level than any other statistic considered here, with size 

in the range 5-10 percent in both the demeaned and detrended cases with 8 6 0.5, 
for both the AR(4) and BIC choices of lag length. However, as the asymptotic 
comparisons of the previous subsection suggest, this ability to control size in a 
variety of models comes at a high cost in power. For example, consider the case 
13 = -0.5. In the demeaned case with c( = 0.9, the DF-r* test has power of 0.22 (BIC 
case) while the DF-GLS test has power of 0.59. In the detrended case, as the 
asymptotic results suggest, the power loss from using the DF-Q statistic is less, 
Again in the 0 = - 0.5, CI = 0.9 case, the powers of the DF-Q and the DF-GLS 
statistics are 0.14 and 0.23. Typically, the p- and SB-class tests also have better 
size-adjusted power than the DF-z^ statistics. 

Three lag length selection procedures are compared for the DF ?fl and t*’ statistics, 
and the choice has important effects on both size and power. In the 8 = 0 case, for 

example, using 4 lags results in substantial power declines against distant alternatives, 
relative to either data-dependent procedure. DeJong et al. (1992b) show that in- 
creasing p typically results in a modest decrease in power but a substantial 
reduction in size distortions. The results here favor the BIC over the LR selector; 

“Alternative strategies, both data-based and not, were also studied, but they, typically, did not 
perform as well as the procedures reported here and thus are not reported here to save space. In general, 
among SC estimators, the Andrews (1991) procedure studied here performed substantially better (in 
terms of size distortions and size-adjusted power) than non-data-based procedures with I, = k(T/100)0~2 
with k = 4 or 12. See Elliott (1993b). 



2782 J.H. Stock 

a finding congruent with Hall’s (1992b) proof that the asymptotic null distribution 
of the DF statistic is the same using the BIC as if the true order were known 
(assuming the maximum possible lag is known and fixed). However, Ng and Perron 
(1993b) provide evidence supporting the sequential LR procedure. In any event, 
currently available information suggests using one of these two lag selection 
procedures. 

Although the size distortions are slight for the cases with positive serial 
correlation in u,, the introduction of moderate negative serial correlation results 
in very large size distortions for several of the statistics. This is the key finding of 
Schwert’s (1989) influential Monte Carlo study and is one of the main lessons for 
practitioners of this experiment. For several statistics, these size distortions are 
extreme. For example, for the Gaussian MA(l) process with 8 = 0.5, which 
corresponds to a first autocorrelation of u, of - 0.4, the detrended Phillips-Perron 
Za statistic has a rejection rate of 65 percent. These large size distortions are 
partially but not exclusively associated with the use of the SC spectral estimator. 
For example, the sizes of the MSB’/AR(BIC) test and Schmidt and Phillips’ (1992) 
version of this test implemented with the Parzen kernel, the MSB”/SC(auto) 
statistic, are respectively 9 percent and 38 percent in the 0 = 0.5 case. Similarly, 
the Z, test can be modified using an AR estimator to reduce the distortions 
substantially, although they remain well above the distortions of the DF-? or 
DF-GLS statistics. Ng and Perron (1993a) give theoretical reasons for the 
improvement of the AR over SC estimators. Part of the problem is that the SC 
estimators are computed using the estimated quasidifference of ya or y:, where the 
quasidifference is based on 8, which in turn is badly biased in the very cases where 
the correction factor is most important [see the discussion following (3.4b)].‘* 

Looking across the statistics, the asymptotic power rankings provide a good 

guide to finite-sample size-adjusted power rankings, although the finite-sample 
power typically falls short of the asymptotic power. As predicted by the asymptotic 
analysis, the differences in size-adjusted powers is dramatic. For example, in the 
demeaned 8 = 0 case with c1= 0.9, the Dickey-Fuller t-statistic (BIC case) has 
power of 22 percent, Z, has power of 44 percent, and DF-GLS has power of 60 
percent. 

There is some tradeoff between power and size. The DF-t statistic exhibits 
the smallest deviation from nominal size, but it has low power. Other tests, such 
as the Z, and MSB/SC (auto) statistics, have high size-adjusted power but very 
large size distortions. The DF-GLS statistic appears to represent a compromise, 
in the sense that its power is high - based on results in Elliott et al. (1992), typically 
as high as the asymptotic point-optimal test P, - but its size distortions are low, 

*aConsistent with the asymptotic theory, introducing generalized autoregressive conditional hetero- 
skedasticity [GARCH, Bollerslev (1986)] has only a small effect on the empirical size or power of any 
of the statistics. Elliott (1993b) reports simulations with MA(l) GARCH(1, 1) errors and coefficients 
which add to 0.9. For example, for the DF-GLS statistic, demeaned case, 0 = 0 or -0.5, size and power 
(T= 100) differ at most by 0.03 from those in Table 1 for a = I to 0.7. 
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although not as low as the DF-r statistic. In the demeaned results, DF-GLS has 
sizes of 0.07-0.11, compared to the DF-r (BIC) which has sizes 0.06-0.08 (except 
in the extreme, 19 =0.8, case). In the detrended case, the DF-GLS has sizes of 
0.07-0.11, while DF-r has sizes in the range 0.05-0.10. 

Drawing the initial value from its unconditional distribution changes the 
rankings of size-adjusted power; in particular the size-adjusted power of DF-GLS 
drops, particularly for distant alternatives. However, the DF-GLS power remains 
above the DF-r^ (BIC) power in both demeaned and detrended cases, and, of 
course, the large size distortions of the other tests are not mitigated in this DGP. 
Recent Monte Carlo evidence by Pantula et al. (1992) suggests that, in the correctly 
specified demeaned AR(l) model, better power can be achieved against the 
unconditional alternative by a test based on a weighted symmetric least squares 
estimator. However, the unconditional case has been less completely studied than 
the conditional case and it seems premature to draw conclusions about which 
tests perform best in this setting. 

3.2.5. Effects of misspecifying the deterministic trend 

The discussion so far has assumed that the order of the trend has been correctly 
specified. If the trend is misspecified, however, then the estimators of c( and the 
tests of tl = 1 can be inconsistent [Perron and Phillips (1987) West (1987,1988a)]. 

This argument can be made simply in the case where the true trend is 
d, = /?, + /?, t with /?, a nonzero constant, but the econometrician incorrectly uses 
the constant-only model. Because y, contains a linear time trend, asymptotically 
the OLS objective function will be minimized by first-differencing yt, whether or 
not u, is I(l), and a straightforward calculation shows that c? L 1.” It follows that 
b and f tests will not be consistent. This inconsistency is transparent if one works 
with the functional representation of the tests: T- ’ Y!+ * hP, where h”(A) = /3,(A - i). 
In finite samples, the importance of this omitted variable effect depends on the 
magnitude of the incorrectly omitted time-trend slope relative to w [West (1987) 
provides Monte Carlo evidence on this effect]. This problem extends to other types 
of trends as well, and in particular to misspecification of a piecewise-linear trend 
(a “broken” trend) as a single linear trend [see Perron (1989a, 1990b), Rappoport 
and Reichlin (1989) and the discussion in Section 5.2 of this chapter]. 

The analogy to the usual regression problem of omitted variable bias is useful 
here: if the trend is underspecified, unit root tests (and root estimators) are 
inconsistent, while if the trend is overspecified, power is reduced, even asymptotically. 
This contrasts with the case of mean-zero I(O) regressors, in which the reduction 
in power, resulting from unnecessarily including polynomials in time, vanishes 
asymptotically. The difference is that while I(0) regressors are asymptotically 

“See West (1988a), Park and Phillips (1988) and Sims et al. (1990) for extensions of this result to 
multiple time series models. 
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uncorrelated with the included time polynomials, I( 1) regressors are asymptotically 
correlated (with a random correlation coefficient). This asymptotic collinearity 
reduces the power of the unit root tests when a time trend is included. A procedure of 
sequential testing of the order of the trend specification prior to inference on c1 will 
result in pretest bias arising from the possibility of making a type I error in the tests 
for the trend order. This problem is further complicated by the dependence of the 
distributions of the trend coefficients and test statistics on the order of integration 
of the stochastic component.20 

3.2.6. Summary and implications for empirical practice 

If one is interested in testing the null hypothesis that a series is I(1) - as opposed 
to testing the null that the series is I(0) or to using a consistent decision- or 
information-theoretic procedure to select between the I(0) and I(1) hypotheses - then 
the presumption must be that there is a reason that the researcher wishes to control 
type I error with respect to the I(1) null. If so, then a key criterion in the selection 
of a unit root test for practical purposes is that the finite-sample size be 
approximately the level of the test. 

Taking this criterion as primary, we can see from Tables 1 and 2 that only a 
few of the proposed tests effectively control size for a range of nuisance parameters. 
In the demeaned case, only the Dickey-Fuller z^fl and DF-GLS’ tests have 
sizes of 12 percent or under (excluding the extreme 8 = 0.8 case). However, the z*’ 

statistic has much lower size-adjusted power than the DF-GLS’ statistic. Moreover, 
asymptotically, the DF-GLS’ statistic can be thought of as approximately UMP 
since its power function nearly lies on the Neyman-Pearson power envelope in 
Figure 2, even though, strictly, no UMP test exists. When u0 is drawn from its 
unconditional distribution, the power of the DF-GLS’ statistic exceeds that of ?’ 
except against distant alternatives. These results suggest that, of the tests studied 
here, the DF-GLS’ statistic is to be preferred in the d, = PO case. 

In the detrended case, only t^’ and DF-GLS’ have sizes less than 12 percent 
(excepting 0 = 0.8). The size-adjusted power of the DF-GLS’ (BIC) test exceeds 
that of the t^’ (BIC) test in all cases except u. unconditional, 8 = 0.5 and a = 0.7. 
Because the differences in size distortions between the ?’ and DF-GLS’ tests is 
minimal, this suggests that again the DF-GLS’ test is preferred in the detrended 
case. 

In both the demeaned and the detrended cases, an important implication of the 
Monte Carlo results here and in the literature is that the choice of lag length or 
truncation parameter can strongly influence test performance. The LR and BIC 

“In theory, this can be addressed by casting the trend order/integration order decision as a model 
selection problem and using Bayesian model selection techniques, an approach investigated by Phillips 
and Ploberger (1992). See the discussion in Section 6 of this chapter. 
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rules have the twin advantages of relieving the researcher from making an arbitrary 
decision about lag length and of providing reasonable tradeoffs between controlling 
size with longer lags and gaining size-adjusted power with shorter lags. 

One could reasonably object to the emphasis on controlling size in drawing 
these conclusions. In many applications, particularly when the unit root test is 
used as a pretest, it is not clear that controlling type I error is as important as 
achieving desirable statistical properties in the subsequent analysis. This suggests 
adopting alternative strategies: perhaps testing the I(0) null or implementing a 
consistent classification scheme. These strategies are respectively taken up in 
Sections 4 and 6. 

3.3, Interval estimation 

Confidence intervals are a mainstay of empirical econometrics and provide more 
information than point estimates or hypothesis tests alone. For example, it is more 
informative to estimate a range of persistence measures for a given series than 
simply to report whether or not the persistence is consistent with there being a 
unit root in its autoregressive representation [see, for example, Cochrane (1988) 
and Durlauf (1989)]. This suggests constructing classical confidence intervals for 
the largest autoregressive root ~1, for the sum of the coefficients in the autoregressive 
approximation to u,, or for the cumulative impulse response function. Alternatively, 
if one is interested in forecasting, then it might be desirable to use a median-unbiased 
estimator of a, so that forecasts (in the first-order model) would be median-unbiased. 
Because a median-unbiased estimator of u corresponds to a 0 percent equal-tailed 
confidence interval [e.g. Lehmann (1959, p. 174)], this again suggests considering 
the construction of classical confidence intervals for a. Moreover, a confidence 
interval for tl would facilitate computing forecast prediction intervals which take 
into account the sampling uncertainty inherent in estimates of a. 

The construction of classical confidence intervals for a, however, involves 
technical and computational complications. Only recently has this been the subject 
of active research. Because of the nonstandard limiting distribution at u = 1, it is 
evident that the usual approach of constructing confidence intervals, as, say, + 1.96 
times the standard error of 61, has neither a finite-sample nor an asymptotic 
justification. This approach does not produce confidence intervals with the correct 
coverage probabilities, even asymptotically, when c( is large. To see this, suppose 
that a is estimated in the regression (3.9) and that the true value of a is one. Then 
the usual “asymptotic 95 percent” confidence interval will contain the true value 
of a when the absolute value of the r-ratio testing a = 1, constructed using ar, is 
less than 1.96. When u = 1, however, this t-ratio has the Dickey-Fuller t? 
distribution, for which Pr[lt^‘l > 1.961 jO.61. That is, the purported 95 percent 
confidence interval actually has an asymptotic coverage rate of only 39 percent! 

It is, therefore, useful to return to first principles to develop a theory of classical 
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interval estimation for CI. A 95 percent confidence set for c(, S(y,, . . . , yT), is a 
set-valued function of the data with the property that Pr[a&] = 0.95 for all values 
of CI and for all values of the nuisance parameters. In general, a confidence set can 
be constructed by “inverting” the acceptance region of a test statistic that 
has a distribution which depends on a but not on any nuisance parameters. Were 
there a UMP test of cx = CQ, available for all null values CY~, then this test could be 
inverted to obtain a uniformly most accurate confidence set for a. However, as 
was shown in Section 3.2.1, no such UMP test exists, even in the special case of 
no nuisance parameters, so uniformly most accurate (or uniformly most accurate 
invariant or invariant-unbiased) confidence sets cannot be constructed by inverting 
such tests. Thus, as in the testing problem, even in the finite-sample Gaussian 
AR(l) model the choice of which test to invert is somewhat arbitrary. 

As the discussion of Section 3 revealed, a variety of statistics for testing a = cl,, 

are available for the construction of confidence intervals. Dufour (1990) and Kiviet 
and Phillips (1992) proposed techniques for constructing exact confidence regions 
in Gaussian AR(l) regression with exogenous regressors and Andrews (1993a) 
develops confidence sets for the Gaussian AR(l) model in the no-deterministic, 
demeaned and detrended cases with no additional regressors. Dufour’s (1990) 
confidence interval is based on inverting the Durbin-Watson statistic, Kiviet and 
Phillips (1992) inverted the t-statistic from an augmented OLS regression, and 
Andrews (1993a) inverted 61“ - u (in the detrended case bir - ~1). In practice, the 
inversion of these test statistics is readily performed using a graph of the confidence 
belt for the respective statistics, which plots the critical values of the test statistic as a 
function of the true parameter. Inverting this graph yields those parameters which 
cannot be rejected for a given realization of the test statistic, providing the desired 
confidence interval [see Kendall and Stuart (1967, Chapter 2O)].‘l 

In practice one rarely, if ever, knows a priori that the true autoregressive order 
is one and that the errors are Gaussian, so a natural question is how to construct 
confidence intervals for a in the more general model (3.1). If treated in finite 
samples, even if one maintains the Gaussianity assumption this problem is quite 
difficult because of the additional nuisance parameters describing the short-run 
dependence. However, as first pointed out by Cavanagh (1985), the local-to-unity 
asymptotics of Section 3.2.3 can be used to construct asymptotically valid confidence 
intervals for TV when a is close to one. 

21Dufour studied linear regression with Gaussian AR(l) disturbances, of which the constant and 
constant/time-trend regression problems considered here are special cases. Both Dufour (1990) and 
Andrews (1993a) computed the exact distributions of these statistics using the Imhof method. In earlier 
work, Ahtola and Tiao (1984) proposed a method for constructing confidence intervals in the Gaussian 
AR(l) model with no intercept. Ahtola and Tiao’s approach can be interpreted as inverting the score 
test of the null p = pO, with two important approximations. First, they use a normal-F approximation 
to the distribution of the score test, which seems to work well over their tabulated range of a. Second 
(and more importantly), their proposed procedure for inverting the confidence belt requires the belt to 
be linear and parallel, which is not the case over a suitably large range of a, even at the scale of the 
local-to-unity model a = I + c/T. 
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If the local-to-unity asymptotic representation of the statistic in the general I(1) 
case has a distribution which depends only on c [a condition satisfied by any 
statistic with the limiting representations in (3.23)] then this test can be inverted 
to construct confidence intervals for c and, thus, for CI. In the finite-sample case, 
~1 cannot be determined from the data with certainty, and similarly in the asymptotic 
case c cannot be known with certainty even though a is consistently estimated. 
However, the nesting a = 1 + c/Tprovides confidence intervals that shorten at the 

rate T-’ rather than the usual T- 112. 
To be concrete, the Dickey-Fuller t-statistic from the pth order autoregression 

(3.9) (interpreted in the Said-Dickey sense of p increasing with the sample size) 
has the local-to-unity distribution (3.23b) which depends only on c and, so, can 
be used to test the hypothesis c = c0 against the two-sided alternative for any finite 
value of c,,. The critical values for this test depend on ce. The plot of these values 
constitutes an asymptotic confidence belt for the local-to-unity parameter c, based 
on the Dickey-Fuller t-statistic. Inverting the test based on this belt provides an 
asymptotic local-to-unity confidence interval for c. Asymptotic confidence belts 
based on the Dickey-Fuller t-statistic in (3.9) and, alternatively, the modified 
Sargan-Bhargava (MSB) statistic are provided by Stock (1991) in both the 
demeaned and the detrended cases. Stock’s (1991) Monte Carlo evidence suggests 
that the finite-sample coverage rates of the interval based on the Dickey-Fuller 
t-statistic are close to their asymptotic confidence levels in the presence of MA(l) 
disturbances, but the finite-sample coverage rates of the MSB-based statistics 
exhibit substantial distortions relative to their asymptotic confidence levels. 

Both the finite-sample AR( 1) and asymptotic AR(p) confidence intervals yield, as 
special cases, median-unbiased estimators of a. The OLS estimates of a are biased 
downwards, and both the finite-sample and asymptotic approaches typically 

produce median-unbiased estimates of a larger than the OLS point estimates. 
While this approach produces confidence intervals and median-unbiased esti- 

mators of a, the researcher might not be interested in the largest root per se but 
rather in some function of this root, such as the sum of the AR coefficients in the 
autoregressive representation. To this end, Rudebusch (1992) proposed a numerical 
technique based on simulation to construct median-unbiased estimators of each 
of the p + 1 autoregressive parameters; his algorithm searches for those autoregres- 
sive parameters for which the median of each of the AR parameters equals the 
observed OLS estimate for that parameter. Andrews and Chen (1992) propose a 
similar algorithm, except that their emphasis is the sum of the autoregressive 

parameters rather than the individual autoregressive parameters themselves and 
their calculations are done using the asymptotic local-to-unity approximations. 

A completely different approach to interval estimation which has been the subject 
of considerable recent research and controversy is the construction of Bayesian 
regions of highest posterior probability and an associated set of Bayesian tests of 
the unit AR root hypothesis. (References are given in Section 6.2.) Although 
these procedures examine the same substantive issue, they are not competitors of 
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the classical methods in the sense that, when interpreted from a frequentist 
perspective, many of the proposed Bayesian intervals have coverage rates that 
differ from the stated confidence levels, even in large samples. A simple example 
of this occurs in the Gaussian AR( 1) model with a constant and a time trend when 
there are flat priors on the coefficients. Then, in large samples, the Bayesian 95 
percent coverage region is constructed as those values of CI which are within 1.96 
standard errors (conventional OLS formula) of the point estimate [Zellner (1987)]. 
As pointed out earlier in this subsection, if c( = 1 this interval will contain the 
true value of c( only 39 percent of the time in the detrended case. Of course these 
Bayesian regions have well-defined interpretations in terms of thought-experiments 
in which CI is itself random and have optimality properties, given the priors. 
However, given the lack of congruence between the classical and the Bayesian 
intervals in this problem, and the sensitivity of the results to the choice of priors 
[see Phillips (1991a) and his discussants], applied researchers should be careful in 
interpreting these results. 

4. Unit moving average roots 

This section examines inference in two related models, the moving average model 
and the unobserved components model. The moving average model is 

y, = d, + u t, Au, = (1 - BL)o, (4.1) 

where u, is, in general, an I(0) process satisfying (2.1)-(2.3). If 0 = 1, u, = u, + (ue - u,), 
so that with the initial condition that u0 = uO,u, = u, is a purely stochastic I(O) 

process. If 1131 < 1, then (1 - BL)- ’ yields a convergent series and (1 - BL) is 
invertible, so u, is I(1). The convention in the literature is to refer to 101 = 1 as the 
noninvertible case. 

The unobserved components (UC) model considered here can be written 

y, = d, + u ,> u, = vt + i,, ,q = P,- 1 + v,, t = 42,. . . , T, (4.2) 

where [, and v, are I(0) with variances at and 0: and where d, is a trend term as 
in (1.1). If [, and v, have a nondegenerate joint distribution, then, in general, the 
I(1) component pt and the I(0) component [, cannot be extracted from the observed 
series without error, even with known additional parametric structure; hence the 
“unobserved components” terminology. 

It should be observed at the outset that the unit MA root/UC models 
are a mirror image of the unit AR root model, in the sense that the unit AR root 
model parameterizes the I(1) model as a point (c1= 1) and the I(0) model as a 
continuum ()c11 < l), while in the unit MA root/UC models the reverse is true. In 
the latter two models, the I(0) case is parameterized as a point (0 = 1 in the unit MA 
root model, 0,’ = 0 in the UC model), while the I(1) case is parameterized as a 
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continuum (I 81 < 1 in the MA model, 0: > 0 in the UC model). This suggests that, 
at least qualitatively, some of the general lessons from the AR problem will carry 
over to the MA/UC problems. In particular, because the points 0 = 1 and 0: = 0 
represent discontinuities in the long-run behavior of the process, it is perhaps not 
surprising that, as in the special case of a unit AR root, the first-order asymptotic 
distributions of estimators of 0 and 0,” exhibit discontinuities at these points. In 
addition, just as the unit AR root model lends itself to constructing tests of the 
general I(1) null, the unit MA root model lends itself to constructing tests of the 
general I(0) null. 

Although the MA model (4.1) and UC model (4.2) appear rather different, they 
are closely related. To see this, consider only the stochastic components of the 
models. In general, for suitable choices of initial conditions, all MA models (4.1) 
have UC representations (4.2) and all UC models (4.2) have MA representations 
of the form (4.1). To show the first of these statements, we need only write Au, = 
(1 - 8L)o, = (1 - 0)u, + BAv,; then, cumulating Au, with the initial condition u0 = o0 
yields 

u,=(l -e) i u,+eu,. 
s=o 

(4.3) 

By construction (1 - 0)Cf, ,,u, is I(1) and 8u, is I(0). Therefore, the MA model (4.1) 
has the UC representation (4.3) with v, = (1 - t9)0, and i, = 8u,. If 0 = 1, then the 
I(1) term in (4.3) vanishes and u, is I(0). To argue that all UC models have MA 
representations of the form (4.1), it is enough to consider the two cases, cz = 0 
and 0,” > 0. If 0: = 0 and pc, = 0, then u, = [,, which is I(O), so (4.1) obtains with 
ue = u0 and 8 = 1. If 0: > 0, then u, is I(l), so Au, = v, + A[, is I(O), and it follows that 
Au, has a Wold decomposition and hence an MA representation of the form (4.1) 
where (01 < 1. 

A leading special case of the UC model which is helpful in developing intuition 
and which will be studied below is when (Al,, v,) are serially uncorrelated and are 
mutually uncorrelated. Then, Au, in the UC model has MA(l) autocovariances: 
Au, = A[, + vt, so that ~~~(0) = 20: + a:, y,,(l) = - 6: and ydu(j) = 0, 1 jl > 1. Thus 
Au, has the MA(l) representation (4.1), Au, = (1 - 8L)e,, where e, is serially 
uncorrelated, 8 solves 0 + 8-l - 2 = at/$ and 0,” = $/0. Because EA&v, = 0 
by assumption, this UC model is incapable of producing positive autocorrelations 
of AuI, so, while all uncorrelated UC models have an MA(l) representation, the 
converse in not true. [The MA(l) model will, however, have a correlated UC 
representation and a UC representation with independent permanent and transitory 
components which themselves have complicated short-run dynamics; see Quah 
(1992).] 

The UC model can equivalently be thought of as having I( 1) and I(0) components, 
or as being a regression equation with deterministic regressor(s) d, (which in general 
has unknown parameter(s) /I), an I(0) error and a constant which is time-varying 
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and follows an I( 1) process. Thus the problem of testing for a unit moving average 
root and testing for time variation in the intercept in an otherwise standard 
time series regression model are closely related. 

4.1. ‘Point estimation 

When the MA process is noninvertible, or nearly noninvertible, estimators of 0 
fail to have the standard Gaussian limiting distributions. The task of characterizing 
the limiting properties of estimators of 8 when 19 is one, or nearly one, is difficult, 
and the theory is less complete than in the case of nearly-unit autoregressive roots. 
Most of the literature has focused on the Gaussian MA(l) model with d, = 0 and 
u, = Ed, and this model is adopted in this subsection, except as explicitly noted. One 
complication is that the limiting distribution depends on the specific maximand and 
the treatment of initial conditions. Because the objective here is pedagogical rather 
than to present a comprehensive review, our discussion of point estimation focuses 
on two specific estimators of 8, the unconditional and conditional (on s1 = 0) MLE. 

Suppose that the data have been transformed so that x, = Ay,, t = 2,. . . , T. Then 
8 can be estimated by maximizing the Gaussian likelihood for (x2,. . . , xT). The exact 
form of the likelihood depends on the treatment of the initial condition. If x2 is 
treated as being drawn from its stationary distribution, so that x2 = s2 - 0&i, then 
X=(X2,..., xJ has covariance matrix afQ,(@, where 0, ii= 1 + 0’ and s2,,ii, 1 = - 0. 
This is the “unconditional” case, and the Gaussian likelihood is 

%?2;‘X 
A (0, of) = - $ T In 27~0: - $ln det (0”) - 2 

frf ’ 

where det(R,) denotes the determinant of 0,. Estimation proceeds by maximization 
of A in (4.4). Numerical issues associated with this maximization are discussed at 
the end of the subsection. 

The “conditional” case sets .sl = 0, so that x2 = e2. The conditional likelihood is 
given by (4.4) with a, replaced by a,, where 0, = 0” except that a,,,, = 1. A 
principal advantage of maximizing the conditional Gaussian likelihood is that the 
determinant of the covariance matrix does not depend on 0, so maximization can 
proceed by minimizing the quadratic form X’0; ‘X. Because st = x, + es,_ r, with 
the additional assumption that .si = 0, the residuals e,(e) can be constructed 
recursively as (1 - BL)e,(8) = x, and estimation reduces to the nonlinear least 
squares problem of minimizing C,‘= 2 e,(8)2. 

If (8(< 1, so that the process is invertible, then standard ,/!? asymptotic theory 
applies. More generally, if an ARMA(p, 4) process ‘is stationary and invertible and 
has no common roots, then the Gaussian maximum likelihood estimator of the 

ARMA parameters is fi-consistent and has a normal asymptotic distribution; 

see Brockwell and Davis (1987, Chapter 10.8). In the MA(l) model, fi(&,,, - 0) 
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is asymptotically distributed N(0, 1 - 0”). This provides a simple way to construct 
tests of whether 8 equals some particular value. Alternatively, confidence intervals 
for 8 can be constructed as e+ 1.96( 1 - @)“’ (for a 95 percent two-sided confidence 

interval). 
These simple results fail to hold in the noninvertible case. This is readily seen by 

noting that the asymptotic normal approximation to the distribution of the MLE 
is degenerate when 8 = 1. The most dramatic and initially surprising feature of this 
failure is the “pileup” phenomenon. In a series of Monte Carlo experiments, 
investigators found that the unconditional MLE took on the value of exactly one 
with positive probability when the true value of 8 was near one, a surprising finding 
at the time since 0 can take on any value in a continuum. Shephard (1992) and Davis 
and Dunsmuir (1992) attribute the initial discovery of the pileup effect to unpublished 
work by Kang (1975); early published simulation studies documenting this pheno- 
menon include Ansley and Newbold (1980) Cooper and Thompson (1977), Davidson 
(1979, 198 l), Dent and Min (1978) and Harvey (198 1, pp. 13669); also see Plosser 
and Schwert (1977), Dunsmuir (198 1) and Cryer and Ledolter (198 1). 

The intuition concerning the source of the pileup effect is straightforward, and 
concerns the lack of identification of (0, a’) in the unconditional model. Note that 
n,(Q) = 820,(8-l); upon substituting this expression into the unconditional likeli- 
hood (4.4), one obtains A(& g2) = A(& ‘, e2a2) and A(0) = A(F’), where A denotes 
the likelihood concentrated to be an argument only of 8. Because A is symmetric 
in In 8 for B > 0, it follows immediately that A will have a local maximum at B = 1 if 
~2~/~~2),~,~O,sotheprobabilityofalocalmaximumat~=1isPr[~2~/~~2~,~,~O]. 
Sargan and Bhargava (1983b, Corollary 1) [also see Pesaran (1983) and Anderson 
and Takemura (1986, Theorem 4. l)] provide expressions for this limiting probability 
in the noninvertible case, which can be calculated by interpolation of Table I in 
Anderson and Darling (1952) and is 0.657. 

These results were extended to the case of higher-order MA and ARMA models 
by Anderson and Takemura (1986), where the estimation is by Gaussian MLE when 
the order of the ARMA process is correctly specified. Tanaka (1990b) considered 
a different problem, in which u, is a linear process which is I(O) but otherwise is only 
weakly restricted, but Q is estimated by using the misspecified Gaussian MA(l) 
likelihood. Tanaka (1990b) found that, despite the misspecification of the model 
order, the unconditional MLE continues to exhibit the pileup effect, in the sense 
that the probability of a local (but not necessarily global) maximum at i?= 1 is 
nonzero if the true value of 0 is one. Also see Tanaka and Satchel1 (1989) and 
Potscher (1991). 

Because of the close link between the UC and MA models, not surprisingly the 
pileup phenomenon occurs in those models as well. In this model, if the “signal-to- 
noise ratio” o,‘/c$ is zero or is in a T 2 neighborhood of zero, then 0,’ is estimated 
to be precisely zero with finite probability. However, the value of this point 
probability depends on the precise choice of maximand (e.g. maximum marginal 
likelihood or maximum profile likelihood) and the treatment of the initial condition 
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p0 (as fixed or alternatively as random with a variance which tends to infinity, or 
equivalently as being drawn from a diffuse prior). Various versions of this problem 
have been studied by Nabeya and Tanaka (1988), Shephard and Harvey (1990) 

and Shephard (1992, 1993). 
Research on the limiting distribution of estimators of 8 when 0 is close to one is 

incomplete. Davis and Dunsmuir (1992) derive asymptotic distributions of the local 
maximizer closest to one of the unconditional likelihood, when the true value is in 
a l/T neighborhood of 0 = 1. Their numerical results indicate that their distributions 
provide good approximations, even for 8 as small as 0.6 with T= 50. Their approach 
is to obtain representations of the first and second derivatives of the likelihoods as 
stochastic processes in T(1 - 0). They do not (explicitly) use the FCLT, and working 
through the details here would go beyond the scope of this chapter. 

A remark on computation. The main technical complication that arises in the 
estimation of stationary and invertible ARMA(p,q) models is the numerical 
evaluation of the likelihood when q 3 1. If the sample size is small, then Q;’ can 
be computed and inverted directly. In sample sizes typically encountered in econo- 
metric applications, however, the direct computation of 0; 1 is time-consuming and 
can introduce numerical errors. One elegant and general solution is to use the 
Kalman filter, which is a general device for computing the Gaussian log likelihood, 

P(Y r,. . , yr) with the factorization Z’(Yr,. . . , Y,)=~(Y,)+C,T_*~(YtIYt-l,...,Yl), 
when the model can be represented in state space form (as can general ARMA models). 
The Kalman filter operates by recursively computing the conditional mean and 
variance of Yt, which, in turn, specifies the conditional likelihood Y(y, 1 y,_ l,. . . , yl). 
The Gaussian MLE is then computed by finding the parameter vector that 
maximizes the likelihood. The chapter by Hamilton in this Handbook describes the 
particulars of the standard Kalman filter and provides a state space representation 
for ARMA models which can be used to compute their Gaussian MLE. The model 
(4.2) is a special case of unobserved components time series models, which in general 
can be written in state space form so that they, too, can be estimated using the 
Kalman filter; see Harvey (1989) and Harvey and Shephard (1992) for discussions 
and related examples. 

The literature on the estimation of stationary and invertible ARMA models is 
vast and it will not be covered further in this chapter. See Brockwell and Davis 
(1987, Chapter 8) for a discussion and references. For additional discussion of the 
Kalman filter with applications and a bibliography, see the chapter by Hamilton in 
this Handbook. 

4.2. Hypothesis tests 

4.2.1. Tests of 8 = 1 in the conditional Gaussian MAC1 ) model 

As Sargan and Bhargava (1983b) pointed out, the pileup phenomenon means that 
likelihood ratio tests cannot be used for hypothesis testing at conventional 
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significance levels, at least using the unconditional Gaussian MLE. Given this 
difficulty, it is perhaps not surprising that research into testing the null of a unit 
MA root has been limited and has largely focused on the MA(l) conditional 
Gaussian model. This model, therefore, provides a natural starting point for our 
discussion of tests of the general I(0) null. 

The conditional Gaussian MA(l) model with a general pth order polynomial time 

trend is 

yr=z:/?+ut, ui =~i, AU,=&,-t&i, t> 1 (4.5) 

where E, is i.i.d. N(0, crt) and z, = (1, t, . , t”)‘. Let z = (z,, . . . , zT)‘, and similarly define 
the T x 1 vectors y and u. Then y is distributed N(za, JCJ, where EC,, i = 0: and the 
remaining elements can be calculated directly from the moving average representa- 
tion Au, = (1 - 19L)q. 

The problem of testing values of 0 is invariant to transformations of the form 
y, + ay, + zib, /? -+ a/? + b and 0: + a*of. It is therefore reasonable to restrict 

attention to the family of tests which are invariant to this transformation, and 
among that family to find the most powerful tests of 0 = 1 against the fixed 
alternative 0 = I% An implication of the general results of King (1980, 1988) is that 
the MPI test of 0 = 1 vs. 0 = 8rejects for small values of the statistic 

where 6 = (ri,,zi *, . . . , t&-)), where {tit} are the residuals from the OLS regression of 
y, onto z,, 6 are the GLS residuals from the estimation of (4.5) under the alternative, 
and EUU’ = X,(g) is the covariance matrix of U = (u,, . . . , uT) under the alternative 
t? In the MA(l) model, the GLS transformation can be written explicitly, and GLS 
simplifies to the OLS regression of Y,(g) onto Z,(e), where Y,(g) = y, and 
(1 - &!,)Y,(@ = Ayr, t > 1, and similarly for Z,(f?). 

As in the case of MP tests for an autoregressive unit root discussed in Section 
3.2.1, the dependence of the MPI test statistic (4.6) on the alternative ecannot be 
eliminated, so there does not exist a UMPI test of f3 = 1 vs. 101 < 1. This has led 
researchers to propose alternative tests. A natural approach is to consider tests 
which have maximal power for local alternatives, that is, to consider the locally 
most powerful invariant test. In the special case that d, is zero, Saikkonen and 
Luukkonen (1993a) show that the LMPI test has the form, Tj2/8f, where 
y= T-‘C,T_lyf d an Si = T-‘Cf’,y: (which is the MLE of 0: under the null). In 
the case d, = /lo, Saikkonen and Luukkonen (1993a) use results in King and Hillier 
(1985) to derive the locally most powerful invariant unbiased test, which is based 
on the statistic 

(4.7) 
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where Y:,.(n) = T- “‘C$‘jy~ and (8,“)’ = T lx,‘= ,(yr)‘, where yt = y, - j [also see 
Tanaka (1990b)l. Note that (c?:)~ is the (conditional) MLE of 0: under the null 
hypothesis. Because the statistic was derived for arbitrarily small deviations from 
the null, the parameter 0 does not need to be estimated to construct L.22 

A natural generalization of (4.7) to linear time trends is to replace the demeaned 
process yf by the detrended process y:: 

(4.8) 

where Y;,(A) = T-1’2CjT_:]yz and (&I)* = T-‘CsT_l(y3)2, where y: = y, - z$ and fi 

is the OLS estimator from the regression of y, onto (1, t). 
The asymptotic null distributions of Lp and C are readily obtained using the 

FCLT and CMT, under the maintained assumption that the order of the estimated 
deterministic trend is at least as great as the order of the true trend. First consider 
Lw. As the second expression in (4.7) reveals, L@ can be written as a continuous 
functional of Y;,/BE. To obtain limiting representations for Lfl it therefore suffices to 
obtain limiting results for the stochastic process Y&/C?:. The limit of the numerator 
of this process was derived in Section 2.3 (Example 3) and is given in (2.14a) for u, 
being a general I(0) process; because it is assumed in this subsection that u, = E, 

under the null, this result applies here with o = aE. In addition, the maintained 
assumption that the trend is correctly specified ensures that 8: A aE. It follows 
that Y;r/d:=W and that L@a~(B’)*, where B’(A) = W(I1) - ;CW(l) is a standard 
Brownian bridge. An identical argument applies to the linearly detrended case and 
yields the limit L’=>~(Br)2, where B’ is the second-level Brownian bridge in (2.14b). 
In the leading case that d, is a constant, L“ has the asymptotic distribution of the 
Cramer-von Mises statistic derived by Anderson and Darling (1952). Nyblom and 

Makeltiinen (1983, Table 1) provide critical values of the finite-sample distribution 
of L”, computed using the Imhof method for Gaussian errors. Kwiatkowski et al. 
(1992, Table 1) provide a table of critical values of J(BP)2 and J(W)’ which agrees 
closely with earlier computations, e.g. MacNeill (1978, Table 2). Although the 
motivation for the L-statistic comes from considering the Gaussian MA(l) model, 
it is evident from the preceding derivation that the same asymptotic distribution 
obtains for MA(l) models with errors which satisfy the weaker assumptions, such 
as being martingale difference sequences which satisfy (2.2). 

The Lstatistics (4.7) and (4.8) have intuitive interpretations. To be concrete, 
consider L’. Under the null hypothesis, y, - /3, is serially uncorrelated and the 
partial sum process of the demeaned data, Cl5’jy;, is I( 1). The statistic Lv thus can 
be seen to test the null hypothesis that y, is I(0) by testing its implication that the 

“Nabeya and Tanaka (1990b) showed that the statistic (4.7) is also locally MPI unbiased for the 
unconditional Gaussian MA(l) model with known d,. 
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process of accumulated (demeaned) y,‘s is I( 1). Rejection occurs if L’” is large, SO the 
statistic tests the null that the accumulation of y, is I( 1) against the alternative that it is 
1(2). Comparison of (4.7) to the expression (3.18b) for the Sargan-Bhargava statistic 
testing the null of a unit autoregressive root in the d, = 8, case shows that the two 
statistics are closely related: the Sargan-Bhargava statistic rejects the I(1) null 
against the I(O) alternative when the sum of squared y,‘s is small, while the LMPI 
statistic Lp rejects the I(0) null against the I(1) alternative when the sum of-squared 

accumulated y,‘s is large. 
Because of the similarities between the UC and MA models, not surprisingly the 

L-statistics can be alternatively derived as tests of rrt = 0 in the UC model. In this 
formulation, the tests have the interpretation that they are testing the null that the 
regression intercept in (4.2) is constant, versus the alternative that it is time-varying, 
evolving as a martingale. To be concrete, suppose that yt is generated by (4.2) with 
(&, vt) i.i.d. N(0, a: diag(1, q)), p. = 0, and set q = cs/c$. Then (yr,. . . , yT) is distributed 
N(z/?, af&(q)), where i&-(q) = I + qf2 *, where Qc = min(i, j). Again, the results 
of King (1980) imply that the most powerful invariant test of q = 0 against q = 4 > 0 
is a ratio of quadratic forms similar to (4.6) but involving &(4). The resulting 
statistic depends on 4, so no uniformly MPI test exists. 

Because there is no UMPI test, it is reasonable to examine the locally MPI test 

in the UC model. In the case d, = PO, Nyblom and Makelainen (1983) derived the 
LMPI test statistic and showed it to be Lp. Nyblom (1986) extended this analysis 
to the case d, = Do + flit and showed the LMPI statistic to be L’. Nabeya and 
Tanaka (1988) extended these results to the general Gaussian regression problem 
in which coefficients on some of the variables follow a random walk while others 
are constant. The special case of Nabeya and Tanaka’s (1988) results, of interest 
here, is when d, = z$, where z, = (1, t,. . . , tP)’ and the intercept term, pt in (4.2), 

follows a random walk. Then Nabeya and Tanaka’s (1988) LM test statistic 
simplifies to (4.7), except that yf, the residual from the OLS regression of y, onto the 
time polynomials z,, replaces yr and Y: = T- ‘/‘CL= lyl replaces Y;.23 

Despite the differences in the derivations in the MA and UC cases, the fact that 
the same local test statistics arise has a simple explanation. As argued above, Au, 
generated by the UC model has an MA(l) representation with parameters (0,af) 
which solve q=&‘+&2 and 0 g2 = 0:. Thus, the distribution of (y,, . . . , yT) can 
be written as N(z/I, a2Z,c(B)), wheri z = (z,, . . . ,zT), Z,, 11 = (1 + q)af/at =(1-o+ 
19’) and where the remaining elements of Z,,(0) equal those of EC(e). Thus the UC 
and conditional MA models are the same except for their treatment of the initial 

valueyl.But&c,,,(l)=~~ ,,(I), 
’ 

so, when 8 = 1 (equivalently, when q = 0), the two 
models are identical. 

A third interpretation of the L-tests arises from recognizing that the UC model 

Z3This simplification obtains from Nabeya and Tanaka’s (1988) equation (2.5) by noting that the tth 
element of their My is d, by recognizing that, in our application, their DX is the T x T identity matrix, 
and by carrying out the summation explicitly. See Kwiatkowski et al. (1992). 
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is a special case of time-varying parameter models, so that the tests can be viewed 
as a test for a time-varying intercept. This interpretation was emphasized by Nabeya 
and Tanaka (1988) and by Nyblom (1989). We return to this link in Section 5. 

Local optimality is not the only testing principle which can be fruitfully exploited 
here, and other tests of the hypothesis q = 0 in the UC model have been proposed. 
LaMotte and McWhorter (1978) proposed a family of exact tests for random walk 
coefficients, which contains the i.i.d. UC model (4.1) with d, = b, and d, = fi,, + fill 
as special cases, under the translation group y + y + zh, /I + p + 6. Powers of the 
LaMotte and McWhorter tests are tabulated by Nyblom and Makelainen (1983) 
(constant case) and by Nyblom (1986) (time-trend case). Franzini and Harvey (1983) 
considered tests in the Gaussian UC model with the maintained hypothesis of 
nonzero drift in p,, which is equivalent to (4.2) with ([,,v,) i.i.d. Gaussian and 
d, = fl, + flit. Franzini and Harvey (1983) suggested using a point-optimal test, that 
is, choosing an MPI test of the form where their recommendation corresponds to 
4 E 0.75 for T= 20. Shively (1988) also examined point-optimal tests in the UC 
model with an intercept and suggested using the MPI tests tangent to the power 
envelope at, alternatively, powers of 50 percent and 80 percent, respectively, corre- 
sponding to q = 0.023 and 0.079 for T= 51. 

4.2.2. Tests of the general I(0) null 

Because economic theory rarely suggests that an error term is i.i.d. Gaussian, the 
Gaussian MA( 1) and i.i.d. UC models analyzed in the previous subsection are too 
special to be of interest in most empirical applications. While the asymptotic null 
distributions of the L” and L’ statistics obtain under weaker conditions than 
Gaussianity, such as u, = E, where E, satisfies (2.2) these statistics are not asymptoti- 
cally similar under the general I(0) null in which u, is weakly dependent and satisfies 
(2.1))(2.3). A task of potential practical importance, therefore, is to relax this 
assumption and to develop tests which are valid under the more general assumption 
that u, is I(0). 

The two main techniques which have been used to develop tests of the general 
I(O) null parallel those used to extend autoregressive unit root tests from the AR(l) 
model to the general I(1) model. The first, motivated by analogy to the way that 
Phillips and Perron (1988) handled the nuisance parameter o in their unit root tests, 
is to replace the estimator of the variance of u, in statistics such as Lp and L’ with 
an estimator of the spectral density of u, at frequency zero; this produces “modified” 
Lp and L’ statistics.24 The second, used by Saikkonen and Luukkonen (1993a, 
1993b), is to transform the series using an estimated ARMA process for u,. 

The device of Section 3, in which unit root tests were represented as functionals of 

24This approach was proposed by Park and Choi (1988) to generalize their variable addition tests, 
discussed in the subsequent paragraphs, to the general I(0) null. It was used by Tanaka (1990b) to extend 
the L” statistic to the general I(0) null. [Tanaka’s (1990b) expression (7) is asymptotically equivalent to 
(4.7).] Kwiatkowski et al. (1992) used this approach to extend the L’ statistic to the general I(0) null. 
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the levels process of the data, can be applied in this problem to provide a general 
treatment of those tests of the I(O) null which involve an explicit correction using 
an estimated spectral density. The main modification is that, in the I(O) case, the 
tests are represented as functionals of the accumulated levels process rather than 
the levels process itself. This general treatment produces, as special cases, the 
extended L” and L’ statistics and the “variable addition” test statistics, G(p,q), 

proposed by Park and Choi (1988). 
Park and Choi’s (1988) G(p, q) statistic arises from supposing that the true trend 

is (at most) a pth order polynomial. The detrending regression is then intentionally 
overspecified, including polynomials of order q where q > p. If u, is I(O), then the 
OLS estimators of the coefficients on these additional q - p trends are consistent 
for zero. If, however, u, is I(l), then the regression of y, on the full set of 
trends introduces “spurious detrending”, as discussed in Example 2 of Section 2.3, 
and the LR test will reject the null hypothesis that the true coefficients on 

(t P+l 
, . . . , t”) are zero. These two observations suggest considering the modified LR 

statistic, G(p,q) = T(8’ - 62)/c22, where b2 and 6’, respectively, are the mean 
squared residuals from the regression of y, onto (1, t, . . . , tp) and of y, onto (1, r, . . . , P). 

In functional notation, the L and G(p, q)-tests have the representations 

L: L= gI,(f), g&f) = J f2> (4.9a) 

G(P, 4): G(P, 4) = g,(f), CI,(.II = j=$+ 1 2, (4.9b) 

where f denotes the random function being evaluated and hj is the jth Legendre 
polynomial on the unit interval. 

As the representations (4.9) make clear, to study the limiting behavior of the 
statistics it suffices to study the behavior of the function being evaluated and then 
to apply the CMT. Under the general I(0) null, T- 1/2~~~]1u,~wW, so that the 
general detrended process Yir (defined in Section 2.3, Example 3) has the limit 
Yd,,/c+(02/a,2)B (p). This suggests modifying these statistics by evaluating the 
functionals using I/&., where 

v”,(A) = Q,’ T - “’ 1 yf. 
s=l 

(4.10) 

If && is consistent for w2 then V”, * Bcp) and the asymptotic distributions of the 
statistics (4.9) will not depend on any nuisance parameters under the general I(0) 
null. The SC estimator&&is used for this purpose by Park and Choi (1988), Tanaka 
(1990b), Kwiatkowski et al. (1992) and Stock (1992). The rate conditions I, + cc and 
I, = o(T”~) are sufficient to ensure consistent estimation of o under the null and, 
as is discussed in the next subsection, test consistency under a (fixed) alternative. 
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A Second approach to extending the MA( 1) tests to the general I(O) null, developed 

by Saikkonen and Luukkonen (1993a, 1993b), involves modifying the test statistic 
by, in effect, filtering the data. Saikkonen and Luukkonen (1993a) consider the 
Gaussian LMPI unbiased (LMPIU) test under an ARMA(p, q) model for the I(0) 
errorsu=(u,,..., uT). Let the covariance matrix of u, be Z, and assume that C, were 
known. With Z, known, under the null hypothesis PO can be estimated by GLS 
yielding the estimator fiO, and let fi, denote residuals y, - &. The transformed GLS 
residuals are then given by Z = Z; ‘I2 ‘17. The Gaussian LMPIU test in this model is 

a ratio of quadratic forms in E analogous to (4.6), where the covariance matrix in 
the numerator is evaluated under the 8 = 1 null. In practice, the parameters of the 
short-run ARMA process used to construct Z:, must be estimated; see Saikkonen 
and Luukkonen (1993a) for the details. Saikkonen and Luukkonen (1993b) apply 
this approach to extend the finite-sample point-optimal invariant tests of the form 
(4.6) to general I(0) errors in the d, = & case and to derive the asymptotic 
distribution of these tests under the null and local alternatives.25 

4.2.3. Consistency and local asymptotic power 

Consistency. The statistics with the functional representations (4.9) reject for large 

values of the statistic. It follows that the tests based on the modified ~5~ and L’ 
statistics and on the G(p, q) statistics are consistent if V”, 5 co under the I(1) 
alternative. Consider, first, the case d, = 0, so that the numerator of V”, in (4.10) is 
T-“‘CE\u,. Under the I(1) alternative this cumulation is I(2) and T-3’2Cz\~,* 

OS: = ,, W(s) ds. Similarly, if 1, + co but I, = o(T”‘), then @c has the limit I&,! 

[TCfnT, _,,k(m/l,)] =f32jW2.26 Combining these two results, we have 

s 1 

W(s) ds 

N-i’V=/T v*, T where V*(n) = ’ 
i/2 (4.11) 

and NT = T/c:= +k(m/l,). Because the kernel k is bounded and I, = o(T”‘), 

25Bierens and Guo (1993) used a different approach to develop a test of the general I(0) null against 
the I(1) alternative, in which the distribution under the null is made free of nuisance parameters not by 
explicit filtering or estimation of the spectral density at frequency zero, but rather by using a weighted 
average of statistics in which the weights are sensitive to whether the I(0) or I(1) hypothesis is true. 

26Suppose that d, = 0 and that the SC estimator is constructed using a fixed number I autocovariances 
of y,, rather than letting I, * 00; this would be appropriate were the MA order of u, finite and known a 

priori. Ify, is I(l), T-Z~~=i+,y,y,~i-_T2~~=1~:~0,i= l,...,k, and moreover T~2~~=1y:*~2~WZ. 

It follows by direct calculation that 4&/[Tx’_ &n/l)] =.02~W2. The proof for the general SC 
estimator entails extending this result from fixed I to a sequence of I, increasing sufficiently slowly. For 
details see Phillips (199lb, Appendix) for the d, = 0 case; Kwiatkowski et al. (1992) for OLS detrending 
with a constant or a linear time trend; Perron (19914 for general polynomial trends estimated by OLS; 
and Stock (1992) under general trend conditions including an estimated broken trend. 
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N, + cc as T+ 03, so under the fixed I( 1) alternative Vr 3 co. Thus, tests which are 

continuous functionals of V, and which reject I(0) in favor of I(1) for large 
realizations of I’, will be consistent against the fixed I( 1) alternative. 

This is readily extended to general trends. For example, in the case d, = I_I,, 
N; ‘I2 I$(.)=- V*a, where P’*B(%) = Jt W“(s) ds/(JIV2} ‘12. In the detrended case, 
N; ‘I2 If;(.)= I/*‘, where P’*‘(n) = {t IV(s) ds/{~Wr2} l”, where W’ is the OLS- 
detrended Brownian motion in (2.13b). This, in turn, implies that, under the fixed 
I( 1) alternative, V; and V; 3 co, and consistency of the test statistics in (4.9) follows 
directly. 

Local asymptotic power. We examine local asymptotic power using a local version 
of the UC model (4.2): 

Y, = 4 + 4, 4 = uot + H,u,t (4.12) 

where uot and ult are respectively I(0) and I(1) in the sense that (uot,Ault) satisfy 
(2.1)-(2.3) and where H, = h/T, where h is a constant. Because H, -+O, the I( 1) 
component of y, in (4.12) vanishes asymptotically, so that (4.12) provides a model 
in which y, is a local-to-I(O) process. 

For concreteness and to make the link between the UC and MA models precise, 
we will work with the special case of (4.12) in which uot and Aui, are mutually and 
serially uncorrelated and have the same variance. Then the local-to-I(O) UC model 
(4.12) has the MA(l) representation, Au, = E, - 0r~,_ i, where 0, = 1 - h/T+ o(T-‘) 
and where E, is serially uncorrelated. Thus, the local-to-I(O) parameterization 
H, = h/T is asymptotically equivalent to a local-to-unit MA root with the nesting 
eT = 1 - hlT.27 

To analyze the local power properties of the tests in (4.9), we obtain a limiting 
representation of V”, under the local-to-I(O) model. First consider the case d, = 0. The 
behavior of the numerator follows from the FCLT and CMT. Define the indepen- 
dent Brownian motions W, and W, respectively as the limits T- ‘/2C~\uos~ 
q, W,(.) and T- ‘12u lIT,l+-~l WI(.). By assumption, w. = oi, so T-1’2C~~~~, = 
T- “‘C~‘=‘& + hT-3/2xfT’1 5= l~ts~~OUh(~), where u,,(J) = W,(A) + hJtW,(s)ds. It 
can additionally be shown that, in the local-to-I(O) model (4.12), the SC estimator has 

the limit 6ic A c$, [Elliott and Stock (1994, Theorem 2)]. Thus Vr=> U,, from 
which it follows that the statistics in (4.9) have the local asymptotic representation 
g(U,) for their respective g functionals. 

27The rate T for this local nesting is consistent with the asymptotic results in the unit MA root and 
UC test literatures, which in general find that this nesting is an appropriate one for studying rates of 
convergence of the MA estimators and/or the local asymptotic power of tests. In the MA unit root 
literature, see Sargan and Bhargava (1983b), Anderson and Takemura (1986), Tanaka and Satchel1 (1989), 
Tanaka (1990b) and Saikkonen and Luukkonen (1993b); in the UC literature, see Nyblom and Makelainen 
(1983) Nyblom (1986, 1989) and Nabeya and Tanaka (1988). 
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Table 3 
Power of MA unit root tests 

[S percent level tests, demeaned case (d, = &,)].” 

h PE LP POI(O.5) G(O, 1) WI 2) 

A. T= 50 
1 0.064 0.064 0.061 0.058 0.059 
2 0.103 0.101 0.095 0.087 0.089 
5 0.304 0.299 0.298 0.279 0.268 

10 0.631 0.570 0.633 0.583 0.596 
15 0.823 0.717 0.815 0.745 0.776 
20 0.909 0.803 0.898 0.823 0.864 
30 0.976 0.878 0.960 0.890 0.932 
40 0.992 0.914 0.979 0.912 0.954 

B. T= 100 
1 0.064 0.064 0.066 0.065 0.060 
2 0.106 0.107 0.101 0.103 0.090 
5 0.332 0.319 0.321 0.311 0.289 

10 0.659 0.605 0.664 0.623 0.629 
15 0.845 0.765 0.841 0.779 0.807 
20 0.931 0.852 0.919 0.857 0.890 
30 0.985 0.923 0.974 0.924 0.952 
40 0.996 0.958 0.99 1 0.944 0.974 

C. T=200 
1 0.062 0.063 0.064 0.062 0.063 
2 0.102 0.104 0.099 0.097 0.095 
5 0.314 0.309 0.316 0.305 0.299 

10 0.669 0.605 0.667 0.621 0.640 
15 0.851 0.758 0.841 0.779 0.811 
20 0.937 0.847 0.922 0.854 0.894 
30 0.988 0.934 0.980 0.924 0.956 
40 0.998 0.965 0.995 0.950 0.976 

D. T= 1000 
1 0.061 0.062 0.057 0.055 0.057 
2 0.099 0.102 0.087 0.086 0.08 1 
5 0.329 0.321 0.310 0.296 0.283 

10 0.661 0.613 0.663 0.624 0.632 
15 0.853 0.717 0.843 0.789 0.811 
20 0.944 0.866 0.929 0.871 0.900 
30 0.992 0.948 0.985 0.937 0.963 
40 0.999 0.978 0.996 0.962 0.981 

“Data were generated according to the unobserved components 
model, y, = u,, where u, = uO, + H,u,,, (u,,~, A+) are i.i.d. N(0, I) 
and H, = h/T. PE denotes the power envelope. The remaining tests 
are based on the indicated statistics as defined in the text. Based on 
5000 Monte Carlo repetitions. 

The power functions for the statistics in (4.9) along with the power envelope are 

summarized in Tables 3 (for the case d, = 8,) and 4 (for the case d, = p,, + fill). The 
power functions were computed by Monte Carlo simulation for various values of 
7’, so technically all the power functions are finite-sample although the simulations 
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Table 4 
Power of MA unit root tests 

[5 percent level tests, detrended case (d, = j& + Bit)].“ 

h PE L’ POI(O.5) G(L2) G(l,3) 

A. T= 50 
1 0.053 
2 0.062 
5 0.139 

10 0.349 
15 0.585 
20 0.744 
30 0.905 
40 0.958 

B. T= 100 
1 0.055 
2 0.064 
5 0.127 

10 0.359 
15 0.610 
20 0.775 
30 0.939 
40 0.984 

C. T=200 
1 0.055 
2 0.063 
5 0.136 

10 0.369 
15 0.613 
20 0.785 
30 0.948 
40 0.989 

D. T= 1000 
1 0.051 
2 0.060 
5 0.131 

10 0.370 
15 0.629 
20 0.815 
30 0.963 
40 0.994 

0.052 0.052 0.055 0.055 
0.062 0.061 0.062 0.062 
0.132 0.131 0.117 0.118 
0.322 0.348 0.259 0.299 
0.513 0.578 0.379 0.477 
0.659 0.746 0.469 0.603 
0.810 0.899 0.569 0.733 
0.880 0.954 0.618 0.795 

0.055 0.053 0.052 0.05 1 
0.063 0.063 0.060 0.060 
0.136 0.130 0.121 0.113 
0.349 0.359 0.277 0.298 
0.560 0.609 0.414 0.491 
0.704 0.777 0.507 0.632 
0.864 0.928 0.629 0.777 
0.928 0.975 0.689 0.842 

0.054 0.049 0.053 0.050 
0.064 0.056 0.062 0.062 
0.136 0.122 0.111 0.125 
0.357 0.362 0.269 0.323 
0.569 0.610 0.415 0.517 
0.718 0.776 0.521 0.655 
0.880 0.935 0.640 0.792 
0.950 0.980 0.708 0.867 

0.052 0.054 0.052 0.052 
0.059 0.063 0.062 0.060 
0.127 0.123 0.120 0.116 
0.353 0.366 0.323 0.335 
0.576 0.624 0.521 0.554 
0.743 0.805 0.671 0.712 
0.905 0.953 0.825 0.868 
0.969 0.990 0.893 0.942 

“See the notes to Table 3. 

suggest that the T= 1000 power is effectively the asymptotic local power.28 In 
addition, the power of the point-optimal tests which are tangent to the power 

“Tabulations of exact power functions and the finite-sample power envelope under the Gaussian 
model appear in several places in the literature. Those tabulations are based on the Imhof algorithm. 
When results in the literature are directly comparable to those in Tables 3 and 4, they agree to within 
two decimals. For results in the demeaned UC model, see Nyblom and Makelainen (1983) and Shively 
(1988); for tabulations in the detrended UC model, see Nyblom (1986). Tanaka (1990b) tabulates both 
finite-sample and limiting powers of the L” statistic, where the latter is computed by inverting numerically 
its limiting characteristic function [Tanaka (1990b, Theorem 2)]. Tanaka’s limiting power for L” agrees 
with the T= 1000 powers in Table 3 to within the Monte Carlo error. 
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envelope at power of 50percent are reported. In the demeaned case, this test was 
suggested by Shively (1988), and the test is the MPI test against the local alternative 
h= 7.74. In the detrended case, calculations suggest that the power envelope attains 
5Opercent at approximately h = 13, so the MPI test against the local alternative 
h= 13 is reported. This test, the POI(0.5) statistic in Table 4, is almost the same test 
as was proposed by Franzini and Harvey (1983): if the local-to-I(O) asymptotics are used 
to interpret their recommendations (which were based on a Monte Carlo experiment 
with T= 20), then the Franzini-Harvey statistic is the point-optimal invariant test 
which is point-optimal against the local alternative CE 17. (Interpreted thus, the 
Franzini-Harvey statistic is asymptotically MPI at a power of approximately 70 
percent.) These tables summarize the power findings of Nyblom and Makelainen 
(1983), Nyblom (1986), Shively (1988), Tanaka (1990b) and Saikkonen and Luukkonen 
(1993a, 1993b). 

Five main conclusions emerge from these tables. First, the convergence of the 
finite-sample powers to the asymptotic limits appears to be relatively fast, in the 
sense that the T = 100 powers and T = 1000 powers typically differ by less than 0.02. 
Second, as was the case with tests for a unit autoregressive root, the powers deteriorate 
as the order of detrending increases from demeaning to linear detrending, particularly 
for alternatives of h near zero. For example, the L@ statistic has a limiting power of 
0.61 against h = 10, while the corresponding power for the L’ statistic is 0.35. Third, 
the point-optimal tests perform better than the LMPIU test against all but the 
closest alternatives. Fourth, although the ParkkChoi G(p,p + 1) and G(p,p + 2) 
tests are strictly below the power envelope, they nonetheless perform rather well 
and in particular have power curves only slightly below the L” and L’ statistics. 
Fifth, it is important to emphasize that all these differences are rather modest in 
comparison to the large differences in powers found among the various tests for a 
unit AR root. For example, the Pitman efficiency of the LP statistic relative to the 
MPI test at power = 50 percent is approximately 1.1, indicating a loss of the 
equivalent of only 10 percent of the sample if the L’ statistic is used in this case 
rather than the MPI test. 

4.2.4. Finite-sample size and power 

A small Monte Carlo experiment was performed to examine the finite-sample size 
and power of tests of the I(0) null. Unlike for tests of the I( 1) null, as of this writing, 
there have been few Monte Carlo investigations of tests of the general I(0) null; 
exceptions include Amano and van Norden (1992) and Kwiatkowski et al. (1992). The 
simulation here summarizes the results of these two studies for the L’ statistic by 
using a similar design (autoregressive errors) and extends them to include the 
ParkkChoi G(p,p + 2) statistics and to examine the effect of kernel choice on test 
performance. 

In the d, = &, case, the experiment considers the modified L@ and G(O,2) statistics 
(based on I’“,); in the d, = /I, + fil t case, the statistics are the modified L’ and G( 1,3) 



Ch. 46: Unit Roots, Structural Breaks and Trends 2803 

statistics (based on V’,). The spectral density was estimated using two SC spectral 
estimators with a truncated automatic bandwidth selector. The automatic bandwidth 
is I, = min[f& 12(T/100)“~2], where &- is Andrew? (1991) automatic selector based 
on an estimated AR(l) model. The two kernels are the Parzen kernel and the QS 
kernel, the latter being Andrews’ (1991) optimal kernel, and the appropriate selector 
for each kernel is used. [The automatic bandwidth selector is truncated because 
unless ir is bounded in the I( 1) case it does not satisfy the o( T- 1’2) rate condition 
needed for consistency as described in Section 4.2.3.1 

The pseudo-data were generated so that u, followed the AR(l), 

Y, = u,> Au, = (1 - fX)u,, 

where u, = pu,_ I + Em, E, i.i.d. N(0, l), (4.13) 

where u. = 0 and u. is drawn from its unconditional distribution. When I p I < 1 and 
0 = 1, y, is I(0) and the experiment examines the size of the test. When IpI < 1 and 
181 < 1, y, is I(1). When p = 0, this is the MA(l) model and corresponds to the 
local-to-unity model (4.12) with (uor, AUK,) mutually and serially uncorrelated with 
the same variance, in which case 0 = 1 - h/T+ o(T- ‘). 

Empirical size (in italics) and size-adjusted power are presented for T= 100 in 
Table 5 (the demeaned case) and Table 6 (the detrended case). Size-adjusted power 
in a (p,B) design, 101 < 1, is computed using the 5 percent empirical quantile for 

(p, 0 = 1) for each value of p. 
These results suggest three conclusions. First, the choice of spectral estimator 

matters for size, less so for size-adjusted power. For example, if the Parzen kernel 
is used, the size deteriorates substantially when the serial correlation is large 
(p = 0.9). [If the Bartlett kernel is used, as suggested by Tanaka (1990b) and 
Kwiatkowski et al. (1992), similar size distortions arise (results not shown in these 
tables).] In contrast, the size is much better controlled using the QS kernel. This is 
true for both of the statistics examined, in both the demeaned and detrended cases. 
On the other hand, the size-adjusted powers for both statistics in both cases are 
comparable for the two spectral estimators. Interestingly, for distant alternatives 
the size-adjusted power declines in the p = 0 case for the demeaned statistics, and 
the decline is more pronounced for the QS statistics. 

Second, a comparison of the results in Tables 3 and 4 with those in Tables 5 and 
6, respectively, reveals that when p = 0 the finite-sample size-adjusted power is fairly 
close to the power predicted by the local-to-I(O) asymptotics of Section 4.2.3, at least 
for close and moderately close alternatives. At least in the p = 0 case, the use of the 
SC estimator seems to have little impact on either size or power. However, size- 
adjusted power deteriorates sharply as the autoregressive nuisance parameter 
increases towards one. Interestingly, detrending makes little difference in terms of 
size. This is noteworthy, given the large impact of detrending in the I(1) test 
situations. 
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Test 
Statistic 

V 
P(auto) 

Table 5 
Size and size-adjusted power of selected tests of the I(0) null: Monte Carlo results 

[5 percent level tests, demeaned case (d, = [j,), T= 1001 
[Data generating process: (1 - pL)Ay, = (1 - OL)a,, E, i.i.d. N(0, l)].” 

- 
1.00 
0.95 
0.90 
0.80 
0.70 

1.00 
QS(auto) 0.95 

0.90 
0.80 
0.70 

G(O, 2) 1.00 
P(aut0) 0.95 

0.90 
0.80 
0.70 

WI 2) 1.00 
QS(auto) 0.95 

0.90 
0.80 
0.70 

Asymptotic 
Power 

P= 

0.0 0.9 0.75 0.5 -0.5 

0.05 0.05 0.26 0.10 0.06 0.04 
0.32 0.29 0.26 0.25 0.25 0.29 
0.61 0.55 0.43 0.46 0.47 0.56 
0.87 0.69 0.53 0.58 0.60 0.79 
0.95 0.68 0.55 0.61 0.64 0.87 

0.05 0.05 O.fl 0.05 0.06 0.04 
0.32 0.30 0.24 0.2 1 0.24 0.29 
0.61 0.57 0.39 0.36 0.39 0.56 
0.87 0.72 0.46 0.47 0.43 0.80 
0.95 0.67 0.49 0.49 0.44 0.88 

0.05 0.05 0.29 0.10 0.05 0.03 
0.28 0.28 0.26 0.24 0.23 0.26 
0.63 0.58 0.48 0.49 0.49 0.57 
0.90 0.76 0.62 0.66 0.67 0.8 1 
0.96 0.76 0.65 0.70 0.72 0.88 

0.05 0.05 0.07 0.04 0.06 0.04 
0.28 0.29 0.19 0.16 0.21 0.26 
0.63 0.60 0.37 0.33 0.34 0.57 
0.90 0.78 0.49 0.47 0.37 0.81 
0.96 0.72 0.52 0.52 0.38 0.88 

“For each statistic, the first row of entries are the empirical rejection rates under the null, that is, the 
empirical size of the test, based on the asymptotic critical value. The remaining entries are the 
size-adjusted power for the model given in the column heading. The column Asymptotic Power gives 
the T= 1000 rejection rate for that statistic from Table 3 using 8, = 1 - h/T. The entry below the name 
of each statistic indicates the spectral density estimator used. P(auto) and QS(auto) refer to the SC 
estimator, computed respectively using the Parzen and QS kernels, each with lag lengths chosen by the 
respective truncated automatic selector in Andrews (1991). Based on 5000 Monte Carlo repetitions. 

Third, the differences in size-adjusted power across test statistics are modest. 
Because of its better size performance, we restrict the discussion to the results for 
the QS kernel. In the demeaned case, G(0,2) has somewhat better size-adjusted 
power than the modified LP statistic for distant alternatives when u, is positively 
correlated; for 0 near one, the modified LP statistic is more powerful. In the 
detrended case, G( 1,3) and modified L’ have essentially the same size-adjusted 
powers. 

4.2.5. Summary and implications for empirical practice 

The literature on tests of the general I(0) null against the I(1) alternative is still young. 
Subject to this caveat, the results here suggest several observations. The asymptotic 
power analysis of Section 4.2.3 suggests that there is little room for improvement 

on the performance of the currently proposed tests, at least in terms of local 
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Table 6 
Size and size-adjusted power of selected tests of the I(0) null: Monte Carlo results 

[5 percent level tests, detrended case (d, = t!&, + PI t). T= 1001 
[Data generating process: (1 - pL)Ay, = (1 - OL)E,,E, i.i.d. N(0, l)].” 

Test 
Statistic 

L’ 
P(aut0) 

c 
QS(auto) 

G(L 3) 
P(aut0) 

G(L 3) 
QS(auto) 

0 

1.00 
0.95 
0.90 
0.80 
0.70 

1.00 
0.95 
0.90 
0.80 
0.70 

1.00 
0.95 
0.90 
0.80 
0.70 

1.00 
0.95 
0.90 
0.80 
0.70 

“See the notes to Table 5 

Asymptotic 
Power 0.0 0.9 0.75 0.5 -0.5 

0.05 0.05 0.29 0.11 0.06 0.04 
0.13 0.13 0.12 0.12 0.12 0.12 
0.35 0.34 0.23 0.25 0.25 0.32 
0.74 0.62 0.36 0.41 0.43 0.65 
0.91 0.64 0.40 0.47 0.50 0.81 

0.05 0.05 0.10. 0.05 0.06 0.04 
0.13 0.13 0.10 0.09 0.12 0.13 
0.35 0.35 0.19 0.16 0.22 0.33 
0.74 0.65 0.28 0.25 0.25 0.67 
0.91 0.68 0.30 0.28 0.23 0.83 

0.05 0.04 0.30 0.12 0.07 0.04 
0.12 0.12 0.12 0.11 0.11 0.11 
0.34 0.31 0.25 0.24 0.23 0.28 
0.71 0.58 0.40 0.43 0.43 0.59 
0.87 0.62 0.46 0.49 0.51 0.73 

0.05 0.04 0.13 0.07 0.07 0.04 
0.12 0.12 0.10 0.08 0.10 0.11 
0.34 0.32 0.18 0.15 0.20 0.29 
0.71 0.61 0.28 0.24 0.25 0.60 
0.87 0.64 0.32 0.28 0.24 0.74 

P= 

asymptotic power. The various tests have asymptotic relative efficiencies fairly close 
to one, and the point-optimal tests (the Shively and Franzini-Harvey tests), 
interpreted in the local-to-I(O) asymptotic framework, have power functions that are 
close to the power envelope for a large range of local alternatives. 

The Monte Carlo results suggest, however, that there remains room for improve- 
ment in the finite-sample performance of these tests. With the Parzen kernel, the 
tests exhibit large size distortions; with the QS kernel, the size distortions are 
reduced but the finite-sample power can be well below its asymptotic limit. For 
autoregressive parameters not exceeding 0.75, both the G(p, p + 2) and L statistics, 
evaluated using the QS(auto) kernel, have Monte Carlo sizes near their asymptotic 
levels and have comparable power. 

5. Structural breaks and broken trends 

This section examines two topics: structural breaks and parameter instability in 
time series regression; and tests for a unit root when there are kinks or jumps in the 
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deterministic trend (the “broken-trend” model). At first glance these problems seem 
quite different. However, there are close mathematical and conceptual links which 
this section aims to emphasize. Mathematically, a multidimensional version of the 
FCLT plus CMT approach of Section 2 is readily applied to provide asymptotic 
representations for a variety of tests of parameter stability. [An early and 
sophisticated application of the FCLT to the change-point problem can be found 
in MacNeill(1974).] Conceptually, the unobserved components model with a small 
independent random walk component is in fact a special case of the more general 
time-varying-parameter model. Also, these topics recently have become intertwined 
in empirical investigations into unit roots when one maintains the possibility that 
the deterministic component has a single break, for example is a piecewise-linear 

time trend. 
Section 5.1 addresses testing for and, briefly, estimation of parameter instability 

in time series regression with I(O) regressors, including the case when there are lagged 
dependent I(0) variables and, in particular, stationary autoregressions. The main 
empirical application of these tests is as regression diagnostics and, as an example 
in Section 5.1.4, the tests are used to assess the stability of the link between various 
monetary aggregates and output in the U.S. from 1960 to 1992. The literature on 
parameter instability and structural breaks is vast, and the treatment here provides 
an introduction to the main applications in econometric time series regression from 
a classical perspective. The distribution theory for the tests is nonstandard. Here, 
the alternatives of interest have parameters which are unidentified under the null 
hypothesis; for example, in the case of a one-time change in a coefficient, under the 
null of “no break” the magnitude of the change is zero and the break date is 
unidentified. Davies (1977) showed that, if parameters are unidentified under the 
null, standard x2 inference does not obtain, and many of the results in Section 5.1 
can be seen as special cases of this more general problem. For further references on 
parameter instability and breaks, the reader is referred to the reviews and 
bibliographies in Hack1 and Westlund (1989) Krishnaiah and Miao (1988), Kramer 
and Sonnberger (1986) and, for Bayesian work in this area, Zacks (1983) and Barry 
and Hartigan (1993). 

Section 5.2 turns to inference about the largest root in univariate autoregression 
under the maintained hypothesis that there might be one-time breaks or jumps in 
the deterministic component. In innovative papers, Perron (1989a, 1990b) and 
Rappoport and Reichlin (1989) independently suggested that the broken-trend 
model provides a useful description of a wide variety of economic time series. Perron 

(1989a) argued, inter alia, that U.S. postwar real GNP is best modeled as being I(O) 
around a piecewise-linear trend with a break in 1973, and Rappoport and Reichlin 
(1989) argued that U.S. real GNP from 1909-1970 [the Nelson-Plosser (1982) data] 
was stationary around a broken trend with a break in 1940. These results seem to 
suggest that the long-term properties of output are determined not by unit-root 
dynamics, but rather by rare events with lasting implications for mean long-term 
growth, such as World War II and the subsequent shift to more activist governmental 



Ch. 46: Unit Roots, Structural Breaks and Trends 2807 

economic policy, or the oil shock and productivity slowdown of the mid-1970’s. 
Whether this view is upheld statistically is a topic of ongoing debate in which the 
tests of Section 5.2 play a central role. 

5.1. Breaks in coeficients in time series regression 

5.1 .l. Tests,for a single break date 

Suppose y, obeys the time series regression model 

Y, = a:x, - 1 + E;, (5.1) 

where under the null hypothesis /I, = fl for all t. Throughout Section 5.1, unless 
explicitly stated otherwise, it is maintained that E, is a martingale difference sequence 
with respect to the o-fields generated by {E, _ i , X, _ i, E, _ 2, X, _ 2,. . .}, where X, is a 
k x 1 vector of regressors, which are here assumed to be constant and/or I(0) with 

EX,X: = Z, and, possibly, a nonzero mean. For convenience, further assume that 
E, is conditionally (on lagged E, and X,) homoskedastic. Also, assume that 
T- ‘CyzA”,‘XSX: A AZ’, uniformly in 1 for 1~[0,1]. Note, in particular, that X,_ 1 can 
include lagged dependent variables as long as they are I(0) under the null. 

The alternative hypothesis of a single break in some or all of the coefficients is 

&=/I, t <r and p, =/?+ y, t > r, (5.2) 

where r, k + 1 < r < T, is the “break date” (or “change point”) and y # 0. 
When the potential break date is known, a natural test for a change in j? is the 

Chow (1960) test, which can be implemented in asymptotically equivalent Wald, 
Lagrange multiplier (LM), and LR forms. In the Wald form, the test for a break at 
a fraction r/T through the sample is 

F, r = 0 SSR,,, - WR,,, + SW+ 1,d 
T (S%,, + SSR,+,,,)MT- 2k) ’ 

(5.3) 

where SSR13, is the sum of squared residuals from the estimation of (5.1) on 

observations 1 , . . . , r, etc. For fixed r/T, F,(r/T) has an asymptotic xz distribution 
under the null. When the break date is unknown, the situation is more complicated. 
One approach might be to estimate the break date, then compute (5.3) for that break. 
However, because the change point is selected by virtue of an apparent break at 
that point, the null distribution of the resulting test is not the same as if the break 
date were chosen without regard to the data. The means of determining r/T must 
be further specified before the distribution of the resulting test can be obtained. 
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A natural solution, proposed by Quandt (1960) for time series regression and 
extended by Davies (1977) to general models with parameters unidentified under 
the null, is to base inference on the LR statistic, which is the maximal F, statistic 
over a range of break dates ro, . , rl. This yields the Quandt likelihood ratio (QLR) 
statistic. 

QLR = max _ r -10 ,..., r, F, (5.4) 

Intuition suggests that this statistic will have power against a change in /I even 
though the break date is unknown. The null asymptotic distribution of the QLR 
statistic remained unknown for many years. The FCLT and CMT, however, provide 
ready tools for obtaining this limit. The argument is sketched here; for details, see 
Kim and Siegmund (1989) and, for a quite general treatment of “sup tests” in 
nonlinear models, Andrews (1993b). 

To obtain the limiting null distribution of the QLR statistic, let F&/T) = SSR,,, - 
(SSR,,, + SSR,+,,,) and use (5.1) to write 

= - v,(l)‘VT(l)-‘v,(l) + VT ($(;)-‘vJ+) 

+[~,(l)-V,(:)][vWG(~)]-l[vr(l)-v,(~)]. 

(5.5) 

where vT(A) = T-1’2C~~~Xt_1~, and VT(A) = T-‘C~T_hjX,_lX~_l. Because E, is a 
martingale difference sequence, X,_ 1 E, is a martingale difference sequence. Addi- 
tionally, assume throughout Section 5.1 that X,_ 1 has sufficiently limited dependence 
and enough moments for X,_ 1~, to satisfy a multivariate martingale difference 
sequence FCLT, so vr-(.)=a,Z$‘* W,(*), w h ere W, is a k-dimensional standard 
Brownian motion. Also, recall that by assumption V,(A) 11, AZ, uniformly in ,I. By 
applying these two limits to the second expression in (5.5), one obtains 

&(+=a;F*(.), (5.6) 



Ch. 46: Unit Roots. Structural Breaks and Trends 2809 

where 

w&)‘%(n) + [W,(l) - ~k(4I’C~kU) - ~k(41 
F*(A) = - W,(l)‘W,(l) + - ~ 

1-A 

B;(A)‘B;(k) 

= n(1 -2) ’ 

where &(I.) = IV,(n) - Al+‘,(l), where W,(l) is a k-dimensional Brownian bridge. 

Because g,=sazF* and SSR,,,/(T- k) L cf under the null, (SSR,,, + SSR,, i,r)/ 
(T- 2k) -% cf uniformly in r. Thus F, a F *. It follows from the continuous 

mapping theorem that the QLR statistic has the limiting representation, 

‘3 (5.7) 

-where ,$ = lim T4mri/T, i = 0,l. For fixed 1, F*(x) has a x,’ distribution. 
Andrews (1993b, Table I) reports asymptotic critical values of the functional in 

(5.7), computed by Monte Carlo simulation for a range of trimming parameters and 
k = 1,. . . ,20. The critical values are much larger than the conventional fixed-break 
xf critical values. For example, consider 5 percent critical values with truncation 
fractions (A,,, 2,) = (0.15,0.85): for k = 1, the QLR critical value is 8.85, while the xf 
value is 3.84; for k = 10, the QLR critical value is 27.03, while the x:, critical value 
is 18.3. In practice the researcher must choose the trimming parameters r,, and ri. 
In some applications the approximate break date might be known and used to 
choose r0 and rI. Also, with nonnormal errors and small r. the fixed-r distribution 
of the FT(r/T) statistic can be far from x:, so one way to control size is to choose r. 

sufficiently large, say r,lT= 0.15 and r,lT= 0.85.” 

The error process has been assumed to be serially uncorrelated. If it is serially 
correlated but uncorrelated with the regressors, then the distribution of the 
change-point test differs. In the case of a known break date, this problem is well 
studied and the Wald test statistic should be computed using an autocorrelation- 
consistent estimator of the covariance matrix; for recent work and discussion of the 
literature, see Andrews (1991) and Andrews and Monahan (1992). For the extension 
to break tests with unknown break dates, see Tang and MacNeill (1993). 

29Functionals of Fr(L) other than the supremum are possible. Examples include the average of F,., 
perhaps over a restricted range, as studied by Andrews and Ploberger (1992) and Hansen (1990) [see 
Chernoff and Zacks (1964) and Gardner (1969) for historical precedents]. Andrews and Ploberger (1992) 
consider tests which maximize weighted average local asymptotic power, averaged over the unidentified 
nuisance parameters (here, the break date). The resulting family of optimal tests are weighted averages 
of exponentials, with the simple weighted average as the limit for nearby alternatives. The Andrews- 
Ploberger (1992) tests are reviewed in the chapter by Andrews in this Handbook. 
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The derivation of (5.6) assumes that T- “‘C~E~XS_ 1~, obeys an FCLT and 
T - ‘C~‘=“,lX,X’ s A AZ, uniformly in 2. These assumptions hold if X, contains a 
constant and/or I(0) regressors, but not if X, is I(1). A sufficient condition for (5.6) 
not to hold is that the standard Chow test for fixed r/T does not have an asymptotic 
x2 distribution, since F*(x) has a x2 distribution for any fixed 1. This will occur, in 
general, for I( 1) regressors (although there are exceptions in cointegrating relations; 
see Watson’s chapter in this Handbook) and, in these cases, the derivations must 
be modified; see Banerjee et al. (1992b), Chu and White (1992) and Hansen (1992) 
for examples. 

In principle this approach can be extended to more than one break. A practical 
difficulty is that the computational demands increase exponentially in the number 
of breaks (all values of the two-break F-statistic need to be computed for break 
dates (r,s) over the range of r and s), which makes evaluating the limiting 
distributions currently difficult for more than two or three break dates. More 
importantly, positing multiple exogenous breaks raises the modeling question of 
whether the breaks are better thought ofas stochastic or as the result of a continuous 
process. Indeed, this line of reasoning leads to a formulation in which the parameters 
change stochastically in each period by random amounts, which is the time-varying 
parameter model discussed in Section 5.1.3. 

A related problem is the construction of confidence intervals for the break date. 
A natural estimator of the break date is the Gaussian MLE 1, which is the value of 
~E(&,~,) which maximizes the LR test statistic (5.3). The literature on inference 
about the break date is large and beyond the scope of this chapter, and we make 
only two observations. First, 1 is consistent for ;1 when the break magnitude is 
indexed to the sample size (y = yr) and yr +O, T1j2yT+ co [Picard (1985), Yao 

(1987), Bai (1992)], although F itself is not consistent. Second, it is possible to 
construct asymptotic confidence intervals for 2, but this is not as straightforward 
as inverting the LR statistic using the QLR critical values because the null for the 
LR statistic is no break, while the maintained hypothesis for the construction of a 
confidence interval is that a break exists. Picard’s (1985) results can be used to 
construct confidence intervals for the break date by inverting a Wald-type statistic, 
an approach extended to time series regression with dependent errors by Bai (1992). 
Alternatively, finite-sample intervals can be constructed with sufficiently strong 
conditions on E, and strong conditions on X,; see Siegmund (1988) and Kim and 
Siegmund (1989) for results and discussion. 

5.1.2. Recursive coejicient estimates and recursive residuals 

Another approach to the detection of breaks is to examine the sequence of regression 
coefficients estimated with increasingly large data sets, that is, to examine p(A), the 
OLS estimator of /? computed using observations 1 , . . . , [TA]. These tests typically 
have been proposed without reference to a specific alternative, although the most 
commonly studied alternative is a single structural break. Related is Brown’s et al. 
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(1975) CUSUM statistic, which rejects when the time series model systematically 
over- or under-forecasts ytr more precisely, when the cumulative one-step-ahead 
forecast errors, computed recursively, are either too positive or negative. The 
recursive coefficients and Brown’s et al. (1975) recursive residuals and CUSUM 
statistic are, respectively, given by 

w 
f 

=Yt-if@- l)/VX,-1 
.l-t ’ 

(5.8) 

(5.9) 

CT11 

T”2 c ws 

CUSUM(n) = 
s=k+l 

ZE ’ 
(5.10) 

where d,= {T-1~~=k+l(~,-~)2)1’2 and f,= (1 +X:_l~~=:Xs_,X:_,)-‘X,_,)‘i2 
(this comes from noting that the variance of the one-step-ahead forecast error is 
eff:). The CUSUM test rejects for large values of sup,,< 1G 1 1 CUSUM(A)/(l + 2A)I. 

Because the recursive coefficients are evaluated at each point r, the distribution 
of the recursive coefficients differs from the usual distribution of the OLS estimator. 
The asymptotics readily obtain using the tools of Section 2. Under the null 
hypothesis /I, = /I, the arguments leading to (5.6), applied here, yield 

T”2(p(-)-p)= vT(pvT(‘)*p*(*), p*(n)= 
a,z,‘~2wk(A) 

~ (5.11) 

(Ploberger et al. (1989), Lemma A.l). For fixed I, p*(A) has the usual OLS asymptotic 
distribution. An immediate implication of (5.11) is that conventional “95 percent” 
confidence intervals, plotted as bands around the path of recursive coefficient 
estimates, are inappropriate since those bands fail to handle simultaneous inferences 
on the full plot of recursive coefficients. 

Combined with the CMT, (5.11) can be used to construct a formal test for parameter 
constancy based on recursive coefficients. An example is Ploberger’s et al. (1989) 
“fluctuations” test [also see Sen (198O)J which rejects for large changes in the 
recursive coefficients, specifically when b(A) - p(1) is large. From (5.1 l), note that - - 
T1’2(8(~)-B(1))ja,~,1’2(Wk(;l)/~- Wk(1)) uniformly in 1. Because the full-sample 
OLS estimator &f is consistent under the null, @r)(n) = 6E-1(T-‘x’X,_ lXi_ 1)1/2 x 
T”2(p(n) - B( 1)) =- W,(n)/2 - W,(l), uniformly in 1. This leads to Ploberger’s et al. 
(1989) “fluctuations” test and its limiting representation under the null of parameter 
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constancy, 

where BIT) is the ith element of BcT) and Bki is the ith element of the k-dimensional 
Brownian bridge B,. 

The null distribution of the CUSUM test is also obtained by FCLT and CMT 
arguments. If X,_ 1 is strictly exogenous and E, is i.i.d. N(0, G:), then w, is i.i.d. N(0, a:), 
so the FCLT and CMT imply 

CUSUM(.) =z. W( .), (5.13) 

where W is a l-dimensional Brownian motion. The same limit obtains with general 
I(O) regressors and a constant, but the calculation is complicated and is omitted 
here; for the details, see Kramer et al. (1988), who prove (5.13) for time series 
regressions possibly including lagged dependent variables and for general i.i.d. 
errors (their i.i.d. assumption can be relaxed to the martingale difference assumption 
used here). Critical values for sup,)CUSUM(i)/(l + 2A)( are obtained from results 
in Brownian motion theory; see Brown et al. (1975). 

An important feature of the CUSUM statistic is that, as shown by Kramer et al. 
(1988), it has local asymptotic power only in the direction of the mean regressors: 
coefficient breaks of order T- ‘I2 on mean-zero stationary regressors will not be 
detected. This has an intuitive explanation. The cumulation of a mean-zero 
regressor will remain mean-zero (and will obey an FCLT) whether or not its true 
coefficient changes, while the nonzero mean of the cumulation of the constant 
implies that breaks in the intercept will result in systematically biased forecast 
errors.3o This is both a limitation and an advantage, for rejection suggests a 
particular alternative (instability in the intercept or the direction of the mean 
regressors). 

Several variants of the CUSUM statistic have been proposed. Ploberger and 
Kramer’s (1992a) version, in which full-sample OLS residuals &, replace the recursive 
residuals Gi),, is attractive because of its computational simplicity. Again, the 
distribution is obtained using the FCLT and CMT. Their test statistic and its 

30Consider the simplest case, in which y, = et under the null while under the local alternative y, = 
T-1’2yl(t > r)X,_ 1 + E,. Since /J’ is known to equal zero, under the null (with y = 0 imposed) the cumulated 
residuals process is just T 
YT-‘p1’ x,_, 

-‘iz~~=Iy~. Under the local alternative, T - q:;;ys = T - “zc~;Es + 

s ,+I =>- W(A) + ymax(O,r/T- /I)EX,. If EX, is zero, the distribution IS the same under the 
local alternative and the null; the test only has power in the direction of the mean vector EX,. Estimation 
of /?, as is of course done in practice, does not affect this conclusion qualitatively because the alternative 
is local. Also see Ploberger and Kramer (1990). 



Ch. 46: Unit Roots, Strucrural Breaks und Trends 2813 

limiting null representation are 

max ~~~Yr-l-- 3 sup jLY$“)l, (5.14) 
ko[l,Tl 8, J.e[O,ll 

where B, is the one-dimensional Brownian bridge and the limit obtains using the 
FCLT and CMT. Other variants include Brown’s et al. (1975) CUSUM-of-Squares 
test based on w:, and McCabe and Harrison’s (1980) CUSUM-of-Squares test based 
on OLS residuals. See Ploberger and Kramer (1990) for a discussion of the low 
asymptotic power of the CUSUM-of-Squares test. See Deshayes and Picard (1986) 
and the bibliography by Hack1 and Westlund (1989) for additional references. 

If the regressors are I(l), the distribution theory for rolling and recursive tests 
changes, although it still can be obtained using the FCLT and CMT as it was 
throughout this chapter. See Banerjee et al. (1992b) for rolling and recursive tests 
with a single I(1) regressor, Chu and White (1992) for fluctuations tests in models 
with stochastic and deterministic trends, and Hansen (1992) for Chow-type (e.g. 
QLR) and LM-type [e.g. Nyblom’s (1989) statistic] tests with multiple I(1) 
regressors in cointegrating equations. Also, the distribution of the CUSUM statistic 
changes if stochastically or deterministically trending regressors are included; see 
MacNeill(l978) and Ploberger and Kramer (1992b). 

5.1.3. Tests against the time-varying-parameter model 

A flexible extension of the standard regression model is to suppose that the 
regression coefficients evolve over time, specifically 

y, = B;X,_ 1 + E,, /3, = /?_ 1 + vt, Ev,v; = .r2G, (5.15) 

where E, and vt are uncorrelated and v, is serially uncorrelated. The formulation 
(5.15), of course, nests the standard linear regression model when r2 = 0. By setting 
v, = y, t = I + 1 and v, = 0, t # r + 1, (5.15) nests the single-break model (5.2). The 
alternative of specific interest here, however, is when v, is i.i.d. N(0, t2G) (where G is 
assumed to be known) so that the coefficient & follows a multivariate stochastic 
trend and thus evolves smoothly but randomly over the sample period. When 
combined with the additional assumption that E, is i.i.d. N(0, a:), this is referred to 
as the “time-varying-parameter” (TVP) model [see Cooley and Prescott (1976), 
Sarris (1973) and the reviews by Chow (1984) and Nicholls and Pagan (1985)]. 
Maximum likelihood estimation of the TVP model is a direct application of the 
Kalman filter (/I, is the unobserved state vector and y, = &X,_ 1 + E, is the 
measurement equation) and the estimation of /3, and its standard error under 
the alternative is well understood; see the chapter in this Handbook by Hamilton. 
We therefore focus on the problem of testing the null that r2 = 0. 
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The TVP model (5.15) nests, as a special case, the MA(l) model considered in 
Section 4. Setting X, = 1 yields the unobserved components model (4.21, y, = PO + u,, 
where u, = (/?, - Do) + E, = C:= 1 v, + E,. Thus the testing problem in the general TVP 
model can be seen as an extension of the unit MA root testing problem. Starting with 
Nyblom and Makelainen (1983), several authors have studied the properties of 
locally most powerful tests of r2 = 0 against t2 > 0 in (5.15) or in models where only 
some of the coefficients are assumed to evolve over time (that is, where G has reduced 
rank); see for example King and Hillier (1985) King (1988) Nyblom (1989), Nabeya 
and Tanaka (1988), Leybourne and McCabe (1989), Hansen (1990), Jandhyala and 
MacNeill(l992) and Andrews and Ploberger (1992). [Also see Watson and Engle 
(1985) who consider tests against /?, following a stationary AR(l).] The treatment 
here follows Nyblom and Makeliinen (1983) and builds on the discussion in 
Section 4 of tests of the UC model. 

To derive the LMPI test of r2 =o;krsus r2 > 0, suppose that X,_ 1 is strictly 
exogenous (although the asymptotics hold more generally). Under the TVP model, 
(5.15) can be rewritten as y, =&X,-i + {(C:=,v,)‘X,_ 1 + ct}, where the term in 
curly brackets is an unobserved error. In standard matrix notation [Y denotes 

(Y i, . . . , yr)‘, X denotes (X,, . . , Xr- i)‘, etc.], the conditional distribution of Y, given 
X, is 

Y-NjXP,,o:[l,+(~)V,lj, where v,=fi*O(XGX’) (5.16) 

where 0: = min(i, j) and 0 denotes the, Hadamard (elementwise) product. The 
testing problem is invariant to scale/translation shifts of the form y + ay + b’X, so 
the most powerful invariant test against an alternative .r2 will be a ratio of quadratic 
forms involving I, + (?2/a%)vr.. However, this depends on the alternative, so no 
uniformly most powerful test exists. One solution is to consider the LMPI test, which 
rejects for large values of Fvr&/&‘c, where {e,} are the full-sample OLS residuals. 
Straightforward algebra shows that T-2&‘1/Te* = T-lx,‘= ,S,(s/T)‘GS,(s/T), where 

S,(A)= T-1’2C,T_[T1J+le*tXt_,, which provides a simpler form for the test: reject if 

T-lx,‘= ,S,(s/T)‘GS,(s/T) is large. Because this test and its limiting distribution 
depend on G, Nyblom (1989) suggested the simplification G=(T-lCT=lX,_ ,X;_,)-‘. 
Accordingly, the test rejects for large values of 

(5.17) 

Conditional on (X,> the TVP model induces a heteroskedastic random walk into 
the error term which is detected by L using the cumulated product of the OLS 
residuals and the regressors. 

Nyblom (1989) derived the statistic (5.17) by applying local arguments to a 
likelihood for generally nonlinear, nonnormal models, and his general statistic 
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simplifies to (5.17) in the Gaussian linear regression model. If X, = 1, (5.17) reduces 
to the LMPI test (4.7) of the i.i.d. null against the random walk alternative, or 
equivalently the test of the null of a unit MA root. 31 Henceforth, we refer to (5.17) 

as the Nyblom statistic. 
The asymptotics of the Nyblom statistic follow from the FCLT and the CMT. 

As usual, E, need not be i.i.d. normal and X, need not be strictly exogenous; rather 
the weaker conditions following (5.1) are sufficient for the asymptotics. Under those 
weaker conditions, E,X, 1 is a martingale difference sequence and, by the FCLT 
and CMT, S,(.)+CT$, k( , 1/2Bp .) where Bf: is a k-dimensional standard Brownian 

bridge. Because T- ‘Et’= 1X, _ 1 XL_ 1 -% Z, and SF L a:, under the null hypothesis, 

L=s 
s 

B$)‘B;(E.) dl. (5.18) 

The literature contains Monte Carlo results on the finite-sample power of the 
tests in Sections 5.1.1-5.1.3 against various alternatives. The range of alternatives 
considered is broad and some preliminary conclusions have firmly emerged. Many 
of the tests overreject in moderately large samples (T = 100) when asymptotic critical 
values are used. This is exacerbated if errors are nonnormal and, especially, if 
autoregressions have large autoregressive parameters [QLR and related tests; see 
Diebold and Chen (1992)]. In their Monte Carlo study of the QLR test, exponentially 
averaged F-tests, the CUSUM test and several other tests against alternatives of 
one-time breaks and random walk coefficients, Andrews et al. (1992) found that in 
general the weighted exponential tests performed well and often the QLR and 
Nyblom tests performed nearly as well. For additional results, see Garbade (1977) 
and the references in Hack1 and Westlund (1989, 1991). 

5.1.4. Empirical application: stability of the money-output relation 

At least since the work of Friedman and Mieselman (1963), one of the long-standing 
empirical problems in macroeconomics has been whether money has a strong and 
stable link to aggregate output; for a discussion and recent references, see Friedman 
and Kuttner (1992). Since their introduction to this literature by Sims (1972, 1980), 
Granger-causality tests and vector autoregressions have provided the workhorse 
machinery for quantifying the strength and direction of these relations in nonstruc- 
tural time series models (see the chapter by Watson in this Handbook for a 
discussion of vector autoregressions). But for such empirical models to be useful 
guides for monetary policy they must be stable, and the tests of this section can play 
a useful role in assessing their stability. Of particular importance is whether one of 
the several monetary aggregates is arguably most stably related to output. 

3’To show this, rewrite S,(s/T) using the identity that the mean OLS residual is zero 
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Table 7 
Tests for structural breaks and time-varying parameters in the moneyyoutput relation 

(Dependent variable: Nominal GDP growth) 
(Estimation period: quarterly, 1960:2 to 1992:2).’ 

F-tests on 
coefficients on: 

P-K 
M r R2 M r QLR CUSUM Nyblom L 

1 Base - 0.153 3.85** 40.23*** 1.43** 2.83** 
2 Base R-90 0.178 1.43 2.50* 54.15*** 1.36** 2.80 

3 Ml - 0.140 3.17** 32.57*** 1.22* 1.90 
4 Ml R-90 0.179 1.50 2.87** 51.02*** 1.35** 2.85 

5 M2 0.221 7.60*** - 20.82 0.73 1.31 
6 M2 R-90 0.332 8.40*** 3.19** 25.44 1.05 1.53 

“All regressions include 3 lags each of the nominal GDP growth rate, GDP inflation and the growth 
rate of the monetary aggregate. The M column specifies the monetary aggregate. The r column indicates 
whether the 90-day U.S. Treasury bill rate is included in the regression. If the interest rate is included, 
it is included in differences (3 lags) and one lag of an error-correction term from a long-run money 
demand equation is also included. The I? is the usual OLS adjusted R2. The F-tests are Wald tests of 
the hypothesis that the coefficients on the indicated variable are zero; the restriction that the error- 
correction term (when present) has a zero coefficient is included in the Wald test on the monetary 
aggregate. QLR is the Quandt (1960) likelihood ratio statistic (5.4) with symmetric 15 percent trimming; 
P-K CUSUM is the Ploberger-Kramer (1992a) CUSUM statistic (5.14); and the final column reports 
the Nyblom (1989) L statistic (5.17). Break test critical values were taken from published tables and/or 
were computed by Monte Carlo simulation of the limiting functionals of Brownian motion, as described 
in Section 2.3. Tests are significant at the *lO percent; **5 percent; ***l percent level. 

Table 7 presents regression summary statistics and three tests for parameter 
stability in typical money-output regressions for three monetary aggregates, the 
monetary base, Ml, and M2, over the period 1960:2-1992:2. The results are taken 
from Feldstein and Stock (1994), to which the reader is referred for additional detail. 
Based on preliminary unit root analysis, log GDP, the log GDP deflator, log money 
and the 90-day US. Treasury bill rate are specified as having a single unit root so 
that the GDP growth rate, GDP inflation, the money growth rate and the first 
difference of the interest rate are used in the regressions. Drawing on the cointegra- 
tion evidence in Hoffman and Rasche’s (1991) and Stock and Watson’s (1993) studies 
of long-run money demand, in the models including the interest rate we model log 
money, log output and the interest rate as being cointegrated so that the equations 
include an error-correction term, the cointegrating residual. The long-run cointe- 
grating equation was estimated by imposing a unit long-run income elasticity and 
estimating the interest semi-elasticity using the Saikkonen (1991)/PhillipssLoretan 
(1991)/StockkWatson (1993) “dynamic OLS” efficient estimator.32 The main 

32All data were taken from the Citibase data base. The hypothesis of two unit roots was rejected at the 
5 percent level for each series (demeaned case) using DF-GLS tests with AR(BIC), I <p < 8 except that 
a unit root in inflation is rejected at the 10 percent but not 5 percent level, For each series, DF-GLS 
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conclusions are insensitive to empirically plausible changes in the unit root 
specifications of interest rates and money; in particular see Konishi et al. (1993) for 
F-statistics in specifications where the interest rate is assumed stationary. 

The Granger-causality test results indicate that including the interest rate makes 
base money and Ml insignificant, although M2 remains significant (this is partly 
due to the error-correction term). The QLR test rejects the null hypothesis of 
parameter stability at the 1 percent level in all specifications including base money 
or M 1; the L-statistic rejects in the base-only specification; and the Ploberger-Kramer 
(1992a) CUSUM based on OLS residuals rejects in the base and Ml specifications. 
The hypothesis of stability is thus strongly rejected for the base-output and 
Ml-output relations. The evidence against stability is much weaker for the 
M22output relation; none of the stability tests reject at the 10 percent level. Once 
changes in velocity are controlled for by including the error-correction term in 
regression 6, both M2 and the interest rate enter significantly and there is no 
evidence of instability. As with any empirical investigation, some caveats are 
necessary: these results are based on only a few specifications, and stability in this 
sample is no guarantee of stability in the future. Still, these results suggest that, of 
the base, Ml, and M2, only M2 had a stable reduced-form relationship with output 
over this period. 

5.2. Trend breaks and tests for autoregressive unit roots 

5.2.1. The trend-break model and efSects of misspecifying the trend 

Rappoport and Reichlin (1989) and Perron (1989a, 1990b) argued that a plausible 
model for many economic variables is stationarity around a time trend with a break, 
and that autoregressive unit root tests based on linear detrending as discussed in 
Section 3 have low power against this alternative. Two such broken-trend 

failed to reject a single unit root at the 10 percent level (detrending for each variable except interest rates, 
for which the demeaned statistics were used), except for the interest rate, which rejected at the 10 percent 
but not 5 percent level. The 95 percent asymptotic confidence intervals, computed as in Stock (1991) by 
inverting the Dickey-Fuller r*’ statistic (+’ for interest rates) as described in Section 3.3, for the largest 
autoregressive roots are: log Ml, (0.821, 1.026); log M2, (0.998, 1.039); log base, (0.603, 0.882); go-day 
T-bill rate, (0.838, 1.015); log GDP, (0.950, 1.037); GDP inflation, (0.876, 1.032). The results are robust 
to using the AR(BIC) selector with 3 < p < 8, as in the Monte Carlo simulations, except that the M2 
confidence interval rises to (1.011, 1.040). For consistency, all monetary aggregates are specified in 
growth rates [but see Christian0 and Ljungqvist (1988) and Stock and Watson (1989)]. These results 
leave room to argue that inflation should be entered in changes, but for comparability with other 
specifications in the literature inflation itself is used. There is some ambiguity about the treatment of 
interest rates, but to be consistent with recent investigations of long-run money demand they are treated 
here as I(1). The evidence on cointegration involves statistics not covered in this chapter and the reader 
is instead referred to Hoffman and Rasche (1991) and Stock and Watson (1993). 
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specifications are 

(Shift in mean) d, = B, + /II l(t > r), (5.19) 

(Shift in trend) d, = B, + B, t + &(t - r)W > 4, (5.20) 

where l(t > r) is a dummy variable which equals one for t > r and zero otherwise.33 
For conciseness, attention here is restricted to the trend-shift model (5.20), a model 
suggested by Perron (1989a) and Rappoport and Reichlin (1989) for real GNP. 

It was emphasized in Section 3.2.5 that if the trend is misspecified then unit root 
tests can be misleading. This conclusion applies here as well. Suppose that (5.20) is 
correct and r/T-+ S,6 fixed, 0 < 6 < 1, but that statistics are computed by linear 
detrending. Then the power of the unit root test tends to zero against fixed 
alternatives. The intuition is simple: if a linear time trend is fitted to an I(0) process 
around a piecewise-linear trend, then the residuals will be I(0) around a mean-zero 
“Y-shaped trend. These residuals have variances growing large (with T) at the start 
and end of the sample and standard tests will classify the residuals as having a unit 
root.34 In the mean-shift case, Dickey-Fuller unit root tests are consistent but have 
low power if the mean shift is large [Perron (1989a); for Monte Carlo evidence, 
Hendry and Neale (199 l)]. See Campbell and Perron (1991) for further discussion. 
This troubling effect of trend misspecification raises the question of how to test for 
AR unit roots in the presence of a possibly broken trend. 

5.2.2. Unit root tests with broken trends 

If the break date is known a priori, as Perron (1989a, 1990b) and Rappoport and 
Reichlin (1989) assumed, then detrending can be done by correctly specified OLS, 
and the asymptotic distribution theory is obtained using a straightforward 
extension of Sections 2 and 3. However, as Christian0 (1992) and, subsequently, 
Banerjee et al. (1992b), Perron and Vogelsang (1992) and Zivot and Andrews (1992) 
pointed out, the assumption that the break date is data-independent is hardly 
credible in macroeconomic applications. For example, in Perron’s applications to 

33Under the null hypothesis of a unit root, the mean-shift model is equivalent to assuming that there 
is a single additive outlier in v, at time r + 1, since, under the null hypothesis, (3.1) and (5.19) imply 
Ay, = v, + j,l(t = r + 1). A third trend model is Perron’s (1989a) “model C,” with both a mean and a 
trend shift. 

34To show this, consider the AR(l) case, so that y,(O) = 02, and the Dickey-Fuller roe; test, T(c?‘_- 1). 
If the trend is, in fact, given by (5.20), then the detrended process is yi = u, + d,, where d, = (/lo - &,) + 
(8, - /ll)t + p2(t - r)l(t > r). For r/T+ 6,6 fixed, if u, is I(0) then straightforward but tedious calculations 

show that the scaled detrended process has the deterministic limit, T- 1y;T1, LB,, + pIA. + &(A - 6)&i > 6), 
uniformly in J., where fll and & are nonrandom functions of &,,/$,& and 6. It follows that T(B’ - l)= 
g(6), where g is nonrandom. An explicit expression for g(6) is given in Perron (1989a, Theorem l(b)). 
Perron (1989a) shows that g(6) is in the acceptance region of the detrended DF root test, so, asymptotically, 
the null is incorrectly accepted with probability one. 
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GNP, the break dates were chosen to be in the Great Depression and the 1973 oil 
price shock, both of which are widely recognized as having important and lasting 
effects on economic activity. Thus the problem becomes testing for a unit root when 
the break dates are unknown and determined from the data. 

Two issues arise here: devising tests which control for the nuisance parameters, 
in particular the unknown break date, and, among such tests, finding the most 
powerful. To date research has focused on the first of these topics. There is little 
work which addresses this problem starting from the theory of optimal tests, and 

this is not pursued here.35 
The procedures in the literature for handling the unknown date of the trend break 

are based on a modified Dickey-Fuller test. To simplify the argument, consider the 
AR(l) case, so that c.? = y,(O). Then, as suggested by Christian0 (1992), Banerjee 
et al. (1992b) and Zivot and Andrews (1992) one could test for a unit root by 
examining the minimum of the sequence of Dickey-Fuller r-statistics, constructed 
by first detrending the series by OLS using (5.20) for I over the range r,,, . . . , rI, 

t;;lp = min zd(S), (5.21) 
dE[&l.dll 

where 

T - l f: AY:'@)Y;- 169 
P( 6) = 

t=2 

(r3d)2(S)T-2 f: (y;_ ,(c?))~ 1’2’ 
t=2 

where ~$9 = Y, - z,W&% where B(S) = CE:T= ,z,(W,(@‘1~ ’ CCf” ,4-9~,1, z,kV = 
[l, t, (t - [Ts])l(t > [Ti?])] and (8d)2 (A) is the sample variance of the residual from 
the regression of y:(6) onto yy_ ,(6). 

Just as the null distribution of the QLR statistic differs from the distribution of 
the fixed-date F-statistics, the null distribution oft@’ differs from the distribution 
of rd for a fixed break point. The approach to obtaining the null distribution is 
similar; namely to obtain a limiting representation for the sequence of statistics p(S), 
uniformly in 6. Relative to the QLR statistic, this entails an additional complication, 
because under the null the broken-trend detrended process will be I(1). This leads 
to limit results for elements of O[O, 1) x O[O, 11. While no new tools are needed for 
these calculations, they are tedious and notationally cumbersome and the reader is 
referred to the articles by Banerjee et al. (1992b) and Zivot and Andrews 
(1992) for different derivations of the same limiting representation. Not surprisingly, 
the critical values of the minimal DF statistic are well below the critical values of 

“Elliott et al. (1992) show that the asymptotic Gaussian power envelope in the mean-shift model 
(5.19) with /I1 fixed equals the no-detrending power envelope plotted in Figure 1. 



2820 J.H. Stock 

the usual linearly detrended statistic; for example, with symmetric 15 percent 
trimming, the one-sided 10 percent asymptotic critical value is approximately - 4.13 
[Banerjee et al. (1992b, Table 2)], compared with - 3.12 in the linearly detrended 
case. 

5.2.3. Finite-sample size and power 

There are fewer Monte Carlo studies of the broken-trend and broken-mean unit 
root statistics than of the linearly detrended case, perhaps in part because the 
additional minimization dramatically increases the computational demands. None- 
theless, the results of Hendry and Neale (1991), Perron and Vogelsang (1992), Zivot 
and Andrews (1992) and Banerjee et al. (1992b) provide insights into the performance 
of the tests. The finite-sample distributions are sensitive to the procedures used to 
determine the lag length in the augmented DF regression, and the null distributions 
depend on the nuisance parameters even though the tests are asymptotically similar. 

Typically, the asymptotic critical values are too small, that is, the sizes of the tests 
exceed their nominal level. The extent of the distortion depends on the actual values 
of the nuisance parameters. Zivot and Andrews (1992) examined size distortions by 
Monte Carlo study of ARIMA models estimated using the Nelson-Plosser (1982) 
U.S. data set; for the mean-shift model (5.19), the finite-sample 10 percent critical 
values were found to fall in the range -4.85 to - 5.05, while the corresponding 
asymptotic value is - 4.58; for each series, tests of asymptotic level 2.5 percent 
rejected between 5 percent and 10 percent of the time. Perron and Vogelsang (1992) 
found larger rejection rates under the null when there is more negative serial 
correlation than present in the Zivot-Andrews simulations. 

The Monte Carlo evidence confirms the view that the finite-sample power of the 
unit root tests is reduced by trend- or mean-shift detrending, in the sense that if the 
true trend is linear then introducing the additional break-point reduces power. The 

extent of this power reduction, however, depends on the nuisance parameters and, 
in any event, if the broken-trend specification is correct then broken-trend detrending 
is necessary. The more relevant comparison is across different procedures which 
entail broken-trend detrending, but only limited results are available [see Perron 
and Vogelsang (1992) for some conclusions comparing four Dickey-Fuller-type 
tests with different lag length selection procedures]. 

5.2.4. Conclusions and practical implications 

Although the research on trend-break unit root tests is incomplete, it is possible to 
draw some initial conclusions. On a practical level, the size distortions found in the 
demeaned and linear detrended cases in Section 3 appear, if anything, to be more 
severe in the broken-trend case, and the power of the tests also deteriorates. One 
can speculate that this reflects a dwindling division between the I( 1) model and other 
competing representations; were the trend-shifts I(0) and occurring every period, 
then the extension of (5.20) would deliver an I(2) model for y,. 
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A useful way to summarize the broken-trends literature is to return to our original 
four motivating objectives for analyzing unit roots. As a matter of data description, 
Perron’s (1989a, 1990b) and Rappoport and Reichlin’s (1989) analyses demonstrate 
that the broken-trend models deliver very different interpretations from conven- 
tional unit root models, emphasizing the importance of a few irregularly occurring 
events in determining the long-run path of aggregate variables; this warrants 
continued research in this area. The practical implications concerning the remaining 
three objectives remain largely unexplored. From a forecasting perspective, if the 
single-break model is taken as a metaphor for multiple irregular breaks, then one 
must be skeptical that out-of-sample forecasts will be particularly reliable, since 
another break could occur. Equally importantly, for this reason treating the break 
as a one-time nonrandom event presumably leads to understating the uncertainty 
of multistep forecasts. Little is currently known about the practical effect of 
misspecifying trend breaks in subsequent multivariate modeling, although the 
asymptotic theory of inference in vector autoregressions (VAR) with unit roots and 
cointegration analysis discussed in Watson’s chapter in this Handbook must be 

modified if there are broken trends. Finally, the link between these trend+break 
models and economic theory is undeveloped. In any event, the statistical difficulties 
with inference in this area does not make one optimistic that trend-break models 
will parse economic theories, however capable they are of producing suggestive 
stylized facts. 

6. Tests of the I(1) and I(0) hypotheses: links and practical limitations 

Sections 3,4, and 5.2 focused on inference in the I( 1) and I(O) models. When inference 
is needed about the order of integration of a series, sometimes there is no compelling 
a priori reason to think that one or other of these models is the best starting point; 
rather, the models might best be treated symmetrically. In this light, this section 
addresses three topics. Section 6.1 examines some formal links between the I( 1) and 
I(0) models. Section 6.2 summarizes some recent work taking a different approach 
to these issues, in which the determination of whether a series is I(0) or I( 1) is recast 
as a classification problem, so that the tools of Bayesian analysis and statistical 
decision theory can be applied. Section 6.3 then raises several practical difficulties 
which arise in the interpretation of both these Bayesian classification schemes and 
classical unit-root hypothesis tests in light of the size distortions coupled with low 
power of the tests studied in the Monte Carlo experiments of Sections 3 and 4. 

6.1. Parallels between the I(0) and I(1) testing problems 

The historical development of tests of the I(0) and I( 1) hypotheses treated the issues 
as conceptually and technically quite different. To a large extent, these differences 



2822 J.H. Stock 

are artificial, arising from their ARMA parameterizations. Since an integrated I(0) 
process is I(l), a test of the I(0) null against the I( 1) alternative is, up to the handling 
of initial conditions, equivalent to a test of the I(1) null against the I(2) alternative. 
In this sense, the tests of the previous sections can both be seen as tests of the I(1) 
null, on the one hand, against I(0) and, on the other hand, against I(2). What is 
interesting is that this reinterpretation is valid not just on a heuristic level but also 
on a technical level. 

To make this precise, consider the cased, = fiO, v, = E,. The LMPIU test of the unit 
MA root in (4.1) rejects for large values of the Nyblom-Makelainen (1983) statistic 

where y; = y, - jj. If instead the null hypothesis is that u, is a Gaussian random 
walk and the alternative is that u, is an AR(l) with 1x1 < 1, then one could test 
this hypothesis by rejecting for small values of the demeaned Sargan-Bhargava 
statistic 

T-* t (yf)* 
R”;= t=1 

T-’ i (Ay;)’ 

(6.4 

t=2 

The Lp statistic rejects if the mean square of the I( 1) process, the cumulation of yp, 
is large, while &. rejects if the mean square of the I(1) process, y;, is small. Both 
tests can be seen as tests of the I(1) null but, respectively, against the I(2) and I(0) 
alternatives. 

6.2. Decision-theoretic classijication schemes 

A standard argument for using conventional hypothesis tests is that the researcher 
has a particular reason for wishing to control the Type I error rate. While this might 
be appropriate in some of the applications listed in Section 1, in others, such as 
forecasting, the ultimate objective of the empirical analysis is different and classical 
hypothesis tests are not necessarily the best tools to achieve those objectives. In such 
cases, the researcher might rather be interested in having a procedure which will 
deliver consistent inference, in the sense that the probability of correctly classifying 
a process as I( 1) or I(0) asymptotically tends to one; that is, the probabilities of both 
Type I and Type II errors tend to zero. 
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In theory, this can be achieved by using a sequence of critical values which tend 
to - co as an appropriate function of the sample size. To be concrete, suppose that 
the researcher computed the Dickey-Fuller? statistic, and evaluated it using critical 
values, b,. If the null is true, then Pr[2* < &.11(l)] +O for any sequence b, + - a3, 
so that the probability of correctly concluding that the process is I(1) tends to one. 
Similarly, it is plausible that for a suitable choice of b,, if the process is truly I(0) 
then Pr[f < b,l I(O)] + 1 and the Type II error rate tends to zero. For such a choice 
of b,, this would be a consistent classification scheme. Because the DickeyyFuller 
t-statistic tends to - co at the rate T’j2 under a fixed alternative, one candidate for 
b, is b, = - k, - k, In T for some positive constants (k,, k,). Thus the rule is 

Classify y, as I(0) if t* < - k, - k, In T (6.3) 

and, otherwise, classify y, as I(1). The problem with this scheme is that, in practice, 
the researcher is left to choose k, and k,. Because the sample size is, of course, fixed 
in an actual data set, the conceptual device of choosing this sequence is artificial 
and the researcher is left with little practical guidance. 

One solution is to frame this as a classification or decision-theoretic problem and 
to apply Bayesian techniques. In this context, an observed series is classified as I(0) 
or I(1) based on the posterior odds ratio Li’r, which we write heuristically as 

where BT = 
PrC(yI~...~h-)lW)l 
PrC(Y1,...,YT)lI(0)I’ 

(6.4) 

where rci and rco are prior weights that the series is I( 1) and I(0) and where B, is the 

Bayes ratio. If Z7r > 1, then the posterior odds favor the I(1) model and the series 
is classified as I( 1). 

Although (6.4) appears simple, numerous subtleties are involved in its evaluation 
and addressing these subtleties has spawned a large literature on Bayesian 
approaches to autoregressive unit roots; see in particular Sims (1988), Schotman 
and van Dijk (1990), Sims and Uhlig (1991), DeJong and Whiteman (1991a, 1991b), 
Diebold (1990), Sowell (199 1) and the papers by Phillips (199 1 a) and his discussants 
in the special issue of the Journal of Applied Econometrics (October-December, 
1991). In most cases, implementations of (6.4) have worked within specifications 
which require placing explicit priors over key continuous parameters, such as the 
largest autoregressive root. The proposed priors differ considerably and can imply 
substantial differences in empirical inferences [see the review by Uhlig (1992)]. 
Because of this dependence on priors, and given space limitations, no attempt will 
be made here to summarize this literature. Instead, we briefly discuss two recent 
approaches, by Phillips and Ploberger (1991) and Stock (1992), which provide 
simple ways to evaluate the posterior odds ratio (6.4) and which avoid explicit 
integration over priors on continuous parameters. These procedures require only 
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that the researcher place priors rrO and n, = 1 - rcO on the respective point 

hypotheses “I(0)” and “I( 1)“. 
Phillips and Ploberger (1991) derive their procedure from a consideration of the 

likelihood ratio statistic in the AR( 1) model, and obtain the rule 

Classify y, as I(0) if 2’ > In 7(1 + In + 0 i 
Ii Yf-1 

x0 c7 E i (6.5) 

and, otherwise, classify y, as I(l), where t* is the Dickey-Fuller t-statistic.36 The 
expression (6.5) bears considerable similarity to (6.3): a unit AR root is rejected 
based on the Dickey-Fuller r-statistic, with a critical value that depends on the 
sample size. The difference here is that the critical value is data-dependent; if y, is 
I(l), the “critical value” will be 2 In T+ O,(l), while if y, is I(O), it will be In T+ Op( 1). 
As Phillips and Ploberger (1992) point out, this procedure can be viewed as an 
extension to the I(1) case of the BIC model selection procedure, where the issue is 
whether to include or to exclude y,_ 1 as a regressor in the DF regression (3.9). The 
procedure is also closely related to the predictive least squares principle, see Wei 
(1992). 

Another approach is to evaluate the Bayes factor in (6.4) directly, using a reduced- 
dimensional statistic rather than the full data set. Suppose that 4r is a statistic which 
is informative about the order of integration, such as a unit root test statistic; then 
the expression for the Bayes factor in (6.4) could be replaced with 

B* = Wd4IU)) 
’ W&l I(O)) 

(6.6) 

The approach in Stock (1992) is to construct a family of statistics which have limiting 
distributions which, on the one hand, do not depend on nuisance parameters under 
either the I(1) or I(0) hypothesis but, on the other hand, diverge, depending on 
which hypothesis is true. The results in the previous sections can, in fact, be used 
to construct such statistics. Consider the process I’“, defined in (4. lo), and consider 
the no-deterministic case. If y, is a general I(0) process then Vr= W. On the other 
hand, if y, is a general I( 1) process then NT “‘I’, * I/*, where V* is defined in (4.11) 
and N, = TIC:= +&n/l,). In either case the limiting representation of Vr does not 
depend on any nuisance parameters. To make this concrete, consider the statistic 
4T = In L= ln{ T-‘CT= 1 Vf_ ,}. Then, for u, a general I(0) process, from (2.9) (in the 
I(0) case) and (4.11) (in the I( 1) case), 4r has the limiting representations 

ifI(0) #,*ln 
(s > 

IV* , (6.7a) 

36Phillips and Ploberger’s (1991) formula has been modified for an estimated variance as in Phillips 
(1992b). 
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ifI(1) 4,-lnJV,*ln 
U > 

V2 . (6.7b) 

The limiting distributions under the I(O) and I( 1) models can be computed numeri- 
cally from (6.7a) and (6.7b), respectively, which in turn permits the numerical 
evaluation of the Bayes factor (6.6) based on this statistic. 

It must be stressed that, although consistent decision-theoretic procedures such 
as these have both theoretical and intuitive appeal, they have properties which 
empirical researchers might find undesirable. One is that these procedures will 
consistently classify local-to-I( 1) processes as I( 1) rather than I(O), and local-to-I(O) 
processes as I(0) rather than as I( 1). That is, if y, is local-to-I(l) with local parameter 
tl = 1 + c/T, then, as the sample size increases, this process will be classified as I(1) 
with probability increasing to one, even though along the sequence it is always an 
I(0) process [see Elliott and Stock (1994) for details]. More generally, because these 
procedures can have large misclassification rates in finite samples (loosely, their size 
can be quite large), care must be taken in interpreting the results. 

Initial empirical applications [Phillips (1992b)] and Monte Carlo simulations 
[Elliott and Stock (1994), Stock (1992)] suggest that, for some applications such as 
forecasting and pretesting, these approaches are promising. To date, however, the 
investigation of the sampling properties of these and alternative procedures, and 
in particular the effect of their use in second-stage procedures, is incomplete. It 

would be premature to make concrete recommendations for empirical practice. 

6.3. Practical and theoretical limitations in the ability to distinguish I(0) 
and I( 1) processes 

6.3.1. Theory 

The evidence on tests of the I(1) null yields two troubling conclusions. On the one 
hand, the tests have relatively low power against I(0) alternatives that might be of 
interest; for example, with 100 observations in the detrended case, the local-to-unity 
asymptotics indicate that the 5 percent one-sided MPI test has a power of 0.27 
against c( = 0.9 and that the DickeyyFuller t-test has a power of only 0.19. On the 
other hand, processes which are I( 1) but which have moderate negative autocorrelation 
in first differences are incorrectly rejected with high probability, that is, the unit AR 
root tests exhibit substantial size distortions, although the extent of these distortions 
varies widely across test statistics. The same general conclusions were found for 
tests of the general I(0) null: the power against interesting alternatives can be low 
and, depending on the choice of spectral estimator, the rejection rate for null values 

that have substantial positive autocorrelation can be well above the asymptotic 
level. 

A natural question is how one should interpret these finite-sample size distortions. 
In this regard, it is useful to develop some results concerning the source of these 
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size distortions and whether they will persist in large samples. Section 4 examined 
the behavior of tests of the I(0) null in the event that y, was I( 1) but local-to-I(O) in 
the sense (4.12), and found that the I(0) tests with functional representations had 
nondegenerate asymptotic power functions against these alternatives. It is natural 
to wonder, then, what is the behavior of tests of the I(1) null, if the true process is 
I(1) but is local to I(O)? 

As a starting point, consider the d, = 0 case and the sequence of models 

u, = bT5, + i] rl,, (i,, qt) i.i.d. N(O,ozI). (6.8) 
s=1 

This is just the local-to-I(O) model (4.12), resealed by multiplication by h- ‘T where 
b = II-‘, with (Ault, u,,J Gaussian and mutually and serially uncorrelated. 

If in fact b = 0, then u, is a Gaussian random walk, so one might consider 
using the Sargan-Bhargava statistic i,. A direct calculation indicates that, for 

b > 0, under this nesting n?, 3;. It follows that Pr[R”, < k] = Pr[T& < Tk] + 1 
for any constant k, so that the rejection probability of the test tends to one. The 
implication is that (unmodified) Sargan-Bhargava tests of sequences which are local 
to I(0) in the sense (6.8) will incorrectly reject with asymptotic probability 1. The 
implication of this result is perhaps clearer when u, is cast in its ARIMA form, 
AU, = (1 - B,L).s,. For finite T, jOT/ < 1, but the limiting result indicates that the 
rejection probability approaches one and so can be quite large for finite T. 

A similar set ofcalculations can be made for tests of the I(0) null. Here, the relevant 

sequence ofnull models to consider are those models against which the AR unit root 
tests have nondegenerate local asymptotic power, namely the local-to-unity models 
studied in Section 3.2.3. Again let d, = 0 and suppose that the I(0) null is tested using 
the Lv statistic. A straightforward calculation shows that 

where W; is the demeaned local-to-unity diffusion process defined in Section 3.2.3. 
It follows that Pr[L” > k] = Pr[T-‘L” > T-‘k] -+ 1 for any constant k, so that the 
rejection probability of the test tends to one. For these processes, which are local 
to I(l), the Lp test rejects with probability approaching one even though, for fixed 
T,u, has the AR(l) representation (1 -p,L)u,= F, with (~~1 < 1. 

These results elucidate the Monte Carlo findings in Sections 3 and 4. In the AR 
case, the implication is that there are I(1) models which are local to I(0) for which 
the I(1) null will be incorrectly rejected with high probability. In the MA case, there 
are I(0) models which are local to I(1) for which the I(0) null will be incorrectly 
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rejected with high probability. Thus the high false rejection rates (the size distor- 
tions) found in the Monte Carlo analysis can be expected to persist asymptotically, 
but the range of models suffering size distortions will decrease. 

The foregoing analysis is limited both because of the tests considered and because 
it does not address the question of the size of the neighborhoods of these incorrect 
rejections; it was shown only that the neighborhoods are at least O(T- ‘). In the 
case of I(1) tests, Pantula (1991) has provided results on the sizes of these neighbor- 
hoods for several tests of the unit AR root hypothesis in the MA( 1) model. He found 
that these neighborhoods vanish at different rates for different tests, with the slowest 
rate being the Phillips-Perron (1988) statistic. This finding explains the particularly 
large size distortions of this statistic with negative MA roots, even with very large 

samples [e.g. T= 500; Pantula (1991, Table 2)]. In related work, Perron (1991d) 
and Nabeya and Perron (1991) provide approximations to the distribution of the 
OLS root estimator with sequences of negative MA and negative AR roots ap- 
proaching their respective boundaries. 

Because tests for the general I(0) null have only recently been developed, as of 
this writing there have been few empirical analyses in which both I(0) and I( 1) tests 

are used [exceptions include Fisher and Park (1991) and Ogaki (1992)]. The 
foregoing theoretical results suggest, however, that there will be a range of models 
for which the I(1) test will reject with high probability and the I(0) test will not, 
although the process is I(1); for which the I(0) test will reject and the I(1) test will 
not, although the process is I(0); and for which both tests will reject and the process 
is I(1). It also seems plausible that there are models that are truly I(0) but for which 
both tests reject with high probability, but this has not been investigated formally. 
There is currently little evidence on the volume of these regions of contradictory 
results, although Amano and van Norden’s (1992) Monte Carlo evidence suggests 
that they may well be large in moderate sample sizes. 

In summary, tests of the general I(0) null and tests of the general I(1) null are 
neither similar nor unbiased. Asymptotically, the tests have size equal to their stated 
level for fixed null models; but problems arise when we consider sequences of null 
and alternative models for which the I(0) and I( 1) models become increasingly close. 
On the one hand, there are null models which will be rejected with arbitrarily high 
probability; on the other hand, there are alternative models against which the tests 
will have power approaching the nominal level. Although these regions diminish 
asymptotically, in finite samples this implies that there is a range of I(0) and I(1) 
models amongst which the unit MA and AR root tests are unable to distinguish. 

6.3.2. Practical implications 

The asymptotic inability to distinguish certain I(0) and I(1) models raises the 
question of how these tests are to be interpreted, and this has generated great 
controversy in the applied literature on the practical value of unit root tests. Some 
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of the earliest criticisms of Nelson and Plosser’s (1982) stylized fact that many 
economic time series contain a unit root came from Bayesian analyses [Sims (1988), 
DeJong and Whiteman (1991a, 1991b); see the references in Section 6.2 following 
equation (6.4)], although the discussion here follows the debate from a classical 
perspective in Blough (1992), Christian0 and Eichenbaum (1990), Cochrane (1991 a), 
Rudebusch (1992, 1993) and Stock (1990). In particular, the reader is referred to 
Campbell and Perron’s (1991) thoughtful discussion and the comments on it by 
Cochrane (199 1 b). There has, however, been little systematic research on the practi- 
cal implications of this problem, so one’s view of the importance of this lack of 
unbiasedness remains largely a matter of judgment. Because of the prominence of 
this issue it nonetheless seems appropriate to organize the ways in which such 
judgment can be exercised. This discussion focuses exclusively on AR unit root tests, 
although several of the remarks have parallels to MA unit root tests. 

It is useful to return to the reasons, listed in the introduction, why one might wish 
to perform inference concerning orders of integration: as data description; for fore- 
casting; as pretesting for subsequent specification analysis or testing; or for testing 
or distinguishing among economic theories. Although this discussion proceeds in 
general terms, it must be emphasized that the size and power problems vary greatly 
across test statistics, so that the difficulties discussed here are worse for some tests 
than others. 

Data description. The size distortions and low power of even the best-performing 
tests imply that the literal interpretation of unit AR root tests as similar and unbiased 
tests of the I(1) null against the I(0) alternative is inappropriate. However, the Monte 
Carlo evidence provides considerable guidance in the interpretation of unit root test 
results. For some tests, such as the Dickey-Fuller t-statistic and the DF-GLS 
statistic, the size is well controlled over a wide range of null models so rejection can 
be associated rather closely with the absence of a unit root. In contrast, the severe 
size distortions of the Phillips-Perron tests [or other tests with the SC spectral 
estimator, such as the Schmidt-Phillips (1992) MSB statistic] in the presence of 
moderate negative MA roots and their low empirical rejection rates in the stationary 
case with moderate positive MA or second AR roots indicates that rejection by this 
statistic is only secondarily associated with the presence or absence of a unit root, 
and instead is indicative of the extent of positive serial correlation in the process. 
Interpretation of results based on extant versions of these statistics using SC 
estimators is, thus, problematic. In any event, confidence intervals for measures of 
long-run persistence are arguably more informative than unit root tests themselves; 
constructing these confidence intervals entails testing a range of possible values of 
tl, not just the unit root hypothesis. 

An important caveat is that the unit root tests and thus confidence intervals 
require that the trend order be correctly specified; depending on the type of misspeci- 
fication, the tests might otherwise be inconsistent. We agree with Campbell and 
Perron’s (1991) emphasis on the importance of properly specifying the trend order 
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before proceeding with the classical tests, and this is an area in which one should 
bring economic theory to bear to the maximum extent possible. For example, a 
priori reasoning might suggest using a constant or shift-in-mean specification in 
modeling interest rates, rather than including a linear time trend. We speculate that 
while one could develop a consistent downward-testing procedure, starting with the 
highest possible trend order and letting the test level decline with the sample size, 
such an approach would have high misclassification rates in moderate samples (size 
distortions and low power). The Bayesian approach in Phillips and Ploberger (1992) 
to joint selection of the trend and order of integration is theoretically appealing for 
fixed models but the finite-sample performance of this approach has not yet been 
fully investigated. 

Forecasting. Campbell and Perron (1991) and Cochrane (1991 b) examined the 

effect of unit root pretests on forecasting performance. In their Monte Carlo experi- 
ment, data were generated by an ARMA(l, 1) and forecasts were made using an 
autoregression. Their most striking finding was that, in models with a unit AR root 
and large negative correlation in first differences, the out-of-sample forecast error 
was substantially lower with the unit root pretest than if the true differences 
specification was used. This finding appeared both at short and long horizons (1 
and 20 periods with a sample of size 100). In cases with less severe negative 
correlation or with a stationary process, little was lost by pretesting relative to using 
the true model. Because economic forecasting is largely done using multivariate 
models, these initial results do not bear directly on most professional forecasting 
activities. Still, they suggest that for forecasting the size distortions might be an 
advantage, not a problem. A promising alternative to pretesting is to forecast using 
median-unbiased estimates of CI as discussed in Section 3.3. To date, however, there 
has been no thorough examination of whether this delivers finite-sample improve- 
ments in forecasts and forecast standard errors. 

Pretests for second-stage inference. Perhaps the most common use of unit root 
tests is as pretests for second-stage inference: as a preliminary stage for developing 
a forecasting model, for formulating a cointegrated system, or for determining 
subsequent distribution theory. In the final of these applications, the existing distri- 
bution theory for inference in linear time series regressions conditions upon the 
number and location of unit roots in the system, in the sense that the orders of 
integration and cointegration are assumed known. In empirical work, these orders 
are typically unknown, so one way to proceed is to pretest for integration or 
cointegration and then to condition on the results of these pretests in performing 
second-stage inference. In practice, this can mean using a unit root pretest to decide 
whether a variable should enter a second-stage regression in levels or differences, as 
was done in the empirical application in Section 51.4. Alternatively, if the relation- 
ship of interest involves the level of the variable in a second-stage regression, a unit 
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root pretest could be used to ascertain whether standard or nonstandard distribution 
theory should be used to compute second-stage tests. 

There has, however, been little research on the implications of this use of unit 
root tests. Some evidence addressing this is provided by Elliott and Stock (1994) 
who consider a bivariate problem in which there is uncertainty about whether the 
regressor has a unit root. In their Monte Carlo simulation, they find that unit root 
pretests can induce substantial size distortions in the second-stage test. If the 
innovations of the regressor and the second-stage regression error are correlated, 
the first-stage Dickey-Fuller t-statistic and the second-stage t-statistic will be 
dependent so the size of the second stage in this two-stage procedure cannot be 
controlled effectively, even asymptotically. Although this problem is important 
when this error correlation is high, in applications with more modest correlations 
the problem is less severe. 

Formulating and testing economic theories. This is arguably the application most 
damaged by the problems of poor size and low power. In special cases - the 
martingale theories of consumption and stock prices being the leading examples - 
simple theories predict that the series is not only I(1) but is a martingale. In this 
case, the null models are circumscribed and the problems of size distortions do 
not arise. However, the initial appeal of unit root tests to economists was that 
they seemed to provide a way to distinguish between broad classes of models: on 
the one hand, dynamic stochastic equilibrium models (real business cycle models) 
in which fluctuations were optimal adjustments to supply shocks, on the other hand, 
Keynesian models in which fluctuations arose in large part from demand distur- 
bances. Indeed, this was the original context in which they were interpreted in 
Nelson and Plosser’s (1982) seminal paper. 

Unfortunately, there are two problems, either of which alone is fatal to such an 
interpretation. The first is a matter of economic theory: as argued by Christian0 
and Eichenbaum (1990) stochastic equilibrium models need not generate unit 
roots in observed output, and as argued by West (1988b), Keynesian models can 
generate autoregressive roots that are very close to unity. Thus a rejection by an 
ideal unit root test (that is, one with no size distortions) need not invalidate a real 
business cycle model and a failure to reject should not be interpreted as evidence 
against Keynesian models. The second is the lack of unbiasedness outlined above: 
even if the match between classes of macroeconomic theories and whether macro- 
economic series are I( 1) were exact, the size distortions and low power would mean 
that the outcomes of unit root tests would not discriminate among theories. In this 
light the idea, however appealing, that a univariate unit root test could distinguish 
which class of models best describes the macroeconomy seems in retrospect overly 
ambitious. 

This said, inference about the order of integration of a time series can usefully 
guide the specification and empirical analysis of relations of theoretical interest in 
economics. For example, King and Watson (1992) and Fisher and Seater (1993) use 
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these techniques to provide evidence on which versions of money neutrality (long- 
run neutrality, superneutrality) can be investigated empirically. They show that 
long-run neutrality can be tested without specifying a complete model of short-run 
dynamics, as long as money and income are I(1). Similarly, investigations into 
whether there are unit roots in exchange rates have proven central to inferences 
about such matters as long-run purchasing power parity and the behavior of 
exchange rates in the presence of target zones [see Johnson (1993) and Svensson 
(1992) for reviews]. Finally, quantitative conclusions about the persistence in uni- 
variate series have proven to be a key starting point for modeling the long-run 
properties of multiple time series and cointegration analysis, an area which has seen 
an explosion of exciting empirical and theoretical research and is the topic of the 
next chapter in this Handbook. 
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