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ASYMPTOTICS FOR LINEAR PROCESSES

By PetEr C. B. PHILLIPS AND VICTOR SoLo

Yale University and Macquarie University

A method of deriving asymptotice for linear pracesses is introduced
which uses an explicit algebraic decomposition of the linear filter. The
technique is closely related to Gordin's method but has some advantages
aver it, especially in terms of its range of application. The method offers a
simple unified approach to strong laws, central limit theory and invariance
principles for linear processes. Sample means and sample covariances are
cavered. The resulis accommodate both homageneous and heterogeneous
innovations as well as innovations with undefined means and variances.

1. Introduction. Since the work of McLeish (1975a,b, 1977) a popular
approach to the development of asymptatics for time series has been the use of
limit theorems for dependent random variables that satisfy certain mixing
conditions. This approach has the advantage of allowing for heterogeneity as
well as dependence; it highlights the trade-off that occurs in limit theory
between moment conditions that control outlier probabilities and memory
conditions that control the extent of the temporal dependence; and it conve-
niently accommodates nonlinear function dependence on a series’ past history.
The latter property has ensured that the method is especially popu-
lar in the development of asymptotics for nonlinear statistical models [e.g.,
Gallant (1987), Chapter 7].

In spite of these advantages, the approach does have some drawhacks. First,
not all linear processes are strong mixing, for example, and it is necessary to
use functions of mixing processes to accommodate even simple time series like
the first order autoregression in a general theory. This is unfortunate because
maost of the stationary time series literature is still concerned with parametric
maodels that fall in the linear process class. Second, the mixingale theory of
MclLeigh is articulated in the I, norm and is therefore inapplicable in time
series models with infinite variance errors.

The aim of the present paper is to show the versatility of an alternative
approach that is especially designed for linear process. In this sense, the paper
represents something of a return to more traditional methods and models such
as those emphasized in major textbooks like Anderson (1971), Fuller (1976)
and Hannan (1970), all of which put linear processes in a central position
in the development of time series asymptotics. Our method involves little in
the way of probabilistic sophistication and relies almost exclusively on limit
theory for independent and identically distributed (i.i.d.) or independent and
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972 P. C. B. PHILLIPS AND V. SOLO

nonidentically distributed (i.n.i.d.) random variables {r.v.’s} and for martin-
gale difference sequences {(m.d.s.’s). The key to the approach is an algebraic
decompogition of the linear filter into long-run and transitory elements that
is known in the econometric literature as the Beveridge-Nelson or BN decom-
position—see Beveridge and Nelson (1981). The long-run component in this
decomposition yields the martingale approximation to the partial sum process
of a stationary time series. In this way, the approach is related to the method
pioneered by Gordin (1969) for developing central limit theorems (CLT's) for
gtationary processes via corresponding results for approximating martingales.
A detailed treatment of that method is given in Chapter 5 of Hall and Heyde
(1980).

Since our own approach relies on a purely algebraic decomposition of the
linear filter, it has some advantages over the martingale approximation ap-
proach. First, it can be readily used when the time series innovations are
heterogeneously distributed rather than stationary and ergodic martingale
differences. Second, we may relax moment conditions and work with innova-
tions whose first and second moments are not. finite. Our method can therefore
accommaodate a limit theory for moving averages of r.v.’s with regularly
varying tail probabilities, such as that developed in recent wark by Davis and
Resnick (1985a, b, 19886).

A wide spectrum of limit results is presented. We give strong laws of large
numbers (SLLN’s), a law of the iterated logarithm (LIL), CL'T’s and invariance
principles (IP’s), we include sample means and sample covariances of station-
ary and nonstationary time series and we give stable limit laws for sample
moments of linear processes whose domain of attraction is not the normal
distribution. Few of the results given are new and our main purpase is to
exhibit a unifying theme in the treatment of linear process asymptotics. The
approach should be of pedagogical interest to time series specialists.

2. Preliminaries. We start with a simple polynomial decompaosition that
is fundamental to our approach.

2.1 Lemma (BN). Let C(L) = £5¢; L. Then
L C(L) = C(1) - (1 - L)C(L),
where C(L) = L3, L7, é; = L5, ,¢,. If p = 1, then

(2) L Ple, <=L |&] <o and [C(1)| < .
i3 q
Ifp <1, then
(3) Lile,ff <a=T|§[ <
1 1]

2.2 REMARKS. (i) For linear processes such as (13) below, the decomposition
(1) vields directly the martingale approximation to the partial sum process of a
stationary time series [see Hall and Heyde (1980), Chapter 5]. Because (1) is
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purely algebraie, it turns out to be a useful device in reducing time series
asymptotics to known theorems for iid., inid. and m.d.s. sequences. The
decomposition can also be applied to deduce asymptotics for higher order
moments, invariance principles and stable limit laws for time series.

(ii) When p = 2, we have L3¢é? <" under

() Eljch < oo,

An alternative condition for £3é; < o is

(%) L J el <.
1

Observe that ¢; = 1//%*In(j + 1), for example, satisfies () but fails (./)),
so that () is a useful complement to (.5). Both coefficient preconditions will
be used repeatedly below.

(iii} The algebraic decomposition (1) was used explicitly (but without condi-
tions on the coefficients) by Beveridge and Nelson (1981) to decompose aggre-
gate economic time series into permanent and transitory components. For
convenience, we shall refer to (1) subgsequently as the BN decomposition
although it must certainly have been known and used in earlier work. For
finite lag polynomials, the decomposition was used by Fuller [(1976), page 374]
and by Bewley (1979). A proof of the result under () was given in Solo
(1988).

For later development, it will be useful to have available some standard
asymptoties for sequences of independent r.v.’s and martingale differences. We
start with the following result of Heyde and Seneta [see Hall and Heyde
(1980), page 36].

2.3 THEOREM (LLN). Let (Z)) be a sequence of r.v.'s adapted to the
filtration (&,). Let Z be a dominating r.v. for which E|Z] < « and
(4) P(|Z,| =2 x) <cP(Z| = x)

for each x = 0, n = 1 and for some constant ¢. Then as n - «,
l n
(5) =Y [2.- B@I%)] -, 0.
1

IfE(ZIn*|Z]) < < or if the Z, are independent or if (2,) is stationary and %,
is the natural filtration of Z,, then a.s. convergence applies in (5).

2.4 REmargs. (i) A sequence (Z,) satisfying (4) is said to be strongly
uniformly integrable (s.u.i.)—see Billingsley [(1968), page 32] and Solo (1982,
1986).

(i) If the Z, are identically distributed with E|Zj| < «, then (4) is auto-
matic and (5) holds with a.s. convergence.
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For our central limit theory a useful starting point is the following result of
McLeish (1974) [see also Hall and Heyde (1980)]. Suppose (Z;, %) is an m.d.s.,
S,=X%%Z,U2%=2X7Z% and 52 = E(U?) = E(S2). Then:

2.5 TueoreM (CLT). If (6) and (7) kold, then 5,18, -4 N, 1)

(6) 8, U7 =, 1,
(7) max |Zn.£l _)p 01 Zru', = S;IZE‘

l=zi=n

The invariance principle calls for more notation. Let [#r] denote the integer
part of nr with 0 < r < 1 and set

Wn(r) = SJIS[nr]!

— _ -1
£(ry=8.18,+s.'2Z,, (s, —8?) (rs2—s]) fors? <rs) <sl,.

From Brown (1971) [see also Hall and Heyde (1980), page 99)], we have:

2.6 TueoreM (IP). If (6) and either (7) or (8) hold, then W.(r), £,(r) =,
W(r), a standard Brownian motion on C[0, 1], where

(8) L E[Z21(1Z,] > €)] - 0
1
for any £ > 0. In fact, when (8) holds, conditions (7) and (8) are equivalent.
2.7 Assumprions. We work with two classes of assumptions concerning the

time geries innovations when these have finite means. They are letter coded as:
&7 for homogeneity assumptions; and & for heterogeneity assumptions.

() (£,) is ii.d. with zero mean and Elgj| < .
(&4,) (£,) isi.i.d. with zero mean and o7 = E(¢}) < .
(&) (e.) isi.i.d. with zero mean and finite fourth cumulant «,.
(4)) (=,) is i.i.d. with zero mean and Els [’ < «
4 for some p satisfying 2 < p < o,

2 {£,) is an m.d.&. and is s.u.i. with dominating r.v. Z
(%) that satisfies E(|Z|In*|Z[) < .
(%,) (g,) is an m.d.s., is s.wi. with E(Z? In*|Z[) < «

and, further, n 'L 2E(:}| F,_,) -, o2

For the case where the innovations ¢, may have undefined means, we make
the following domain of attraction assumptions (letter coded as 4’). We say
that £ is in the domain of attraction of a stable law with a parameter « and
write ¢ € Y a) if

(9) P(e>x) =cix L{x}{1 + ayx)), x>0,¢,20,
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and
(10) P(e < —x) = coux *L(x)(1 + ay(x)), 2>0,¢;20,

with 0 < & < 2, L(x) a slowly varying function at @ and a{(x) = 0 as x| — 2.
If L.(x) = 1 in (9) and (10), then £ is in the normal domain of attraction of a
stable law with parameter ¢ and we write £ € .4 %(a).
(€. (¢)isiid and g, € (). If a > 1, E(¢g,) =0and if a = 1,
then g, =; — ¢, (i.e, &, is symmetrically distributed).
(£,) (g,)isiid. and g, € #Z(a).If a > 1, E(g,) =0
and if & = 1, then ¢, =; — ¢,.

2.8 Remarks. (i) It follows from Theorem LLN that under (o)) or (&)
or (&,), we have n 'Llg, —_ _ 0. (ii) Similarly under (#,) we have both
n~'L%, »,, 0 and n_IZLE, us 02 (iil) For (#,) and (¢,), we define the
normalizing sequence

a, = inf{x: P(|g,| > x) <n™'}.

Under (£,), we have a, = n!/*L'(n), where L'(n)} is slowly varying at infinity.
Under (&,) we have a, = cn’/® for some constant ¢; when g, =; — ¢, and
¢, = ¢, = a” in (9) and (10), then ¢ = a. With this construction we have the
following results under either (£)) or (£,) and 0 < & < 2:

1L [nr]
(11) E_Est —2a Ua(l)i _Z £, — Ua(r)i
n 1
1 [nr] 1 f[nrl r 9
(12) > 1 —121 )ﬂd(Ua(r).fo(dUa) ]

Here U, (r) is the Lévy a-stable process and [{(dU,)? = [U,], is its quadratic
variation process. The first result of (11) is classical [e.g., Ibragimov and
Linnik (1971), Chapter 2]; the second is its functional version; and (12) is a
joint functional limit law for the first and second sample moments that is
proved in Resnick [(1986), pages 94-95].

3. Limit theory for linear processes,

A. BN in direct mode and homogeneous innovations. Suppose X, is the
linear process

(13) X,=C(L)e,= Y ce,.;,, C(L) =Y ¢L7,
Q a
with 0 < [C(1)| < = and

(14) Y ¢? <
0
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Our abject is to show how simply some of the clasgical time series asymptotics
can be worked out by applying the BN decomposition (1) directly to (13). For
{¢,) we employ either (7)) or (&7,). Applying (1) to {13), we get

(15) X, =C(l)e, + £, — &,
with

& =C(L)g,= Y ée,;, =Y ¢
o
Under (&7,), E(£?) < = if
(16) Yy E? < o,
0 *
which by the BN lemma holds if () holds. Now sum (15) to find
1z 1» 1
(17) ;ZIX£=C(1);ZI.€:+;(EO—EH).

So a SLLN for X, follows directly from a SLLN for ¢, [see Remark 2.9(i))] if
only

nl,->,,. 0 and n %, >, 0.

These hold if
ZE(Eg)n_2<m and EE(éﬁ)n_2<M,
1 1

which hold if E(£2) = E(2) < «, which holds if (.#) does. Thus, we have
established:

3.1 TuroreM (SLLN). Under (&) and (A4), n"'271X, >, . 0.

With a little more effort and a strengthening of (.#]), we can relax the
second moment condition in (&7,), giving:

3.2 TueoreM (SLLN). Under (&) and (A), n"'L1X, —, . 0, where

() )?ﬂcfl <.

An LIL for partial sums of X, can be obtained in a similar way. Let
¢, = {2n In,(n)}'”% where In,(n} = In(In(n)). Replace (17) by the expression

1 2 1z 1
17 — VX, =C(1)—X & +—(5, -4,
(17') ¢Z; ()%);s gc,(o )

n 1 mn

and then the LIL for £2X, follows from the LIL for ¥ 7e, if

_1" -]
@, €0 as. 0 and Prn En _’a.s. 0
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These hold by the Borel-Cantelli lemma if
E£,]? <o forsome g > 2.

The laster condition holds under (16) and the strengthened moment condition
(7)) with g < p, leading to:

3.3 THeoREM (LIL). Under (&) and (.#) or (),

b x” - 41 as,

1

lim sup, lim inf [

n—s o

Ty Py

F R L]

where of = a2C(1)~

Lai and Wei [(1982), Theorem 3] obtained a comparable loglog law for linear
processes under (16) and (7)) without the identical distribution assumption.

Continuing with quick results, we now use the BN decompaosition to deliver
a CLT and IP for partial sums of X,. From (15),

[nr] 1 [nr] go é[n.r]

(18) W;Xt:C(I)WZLEt+—n1,2_nl‘m'

Under (&7,) we easily obtain a CLT and IP for the first term from Theorem
2.7. We need

. Z 83 _'p 0-82

which holds by Theorem LLN; this ensures that (6) holds and (8) follows
because

1
— Y E[ef1(e? > nd)] = E[e31(ef > n8)} - 0 forany 5 > 0
nog

by dominated convergence. Thus,

1 n [nr]
V) Y £ g N(O, 0'52) and ) E g —q o W(r)
1

by Theorems CLT and IP. To prove the CLT for X, we see from (18) with
r = 1, that it is sufficient to show that

1~ -1s2
n~'ég—,0 and n”E —, 0.

These hold if E(£2) = E(£2) < o, which as before holds if (.~;) does.
For the IP for X, we need [Billingsley (1968), Theorem 4.1]:

£
1,’2

sn]
1/2

[nr] 1 [nr]

(19) sup m 2 X, - C(1) 7 ): 5 + sup
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which holds if
—1z2
lrsnkz:;cn(n sk) -, 0.

This is equivalent to
T
(20) J, = ;);1‘, [821(8% > né)] », 0 forany s >0

fcf. Hall and Heyde (1980), page 53, and (36) below]. But (20) holds because
E(J,) = E[£31(83 > nd)| » 0

by dominated convergence since (.#]) ensures that E(£3) < . We therefore

have the following:

34 TuegoreM (CLT and IP for means). Under (&7,) and (), (a)
n~12L1X, -, N(@©,a2C(1)%), (b) n~12LMIX, -, o, W(r).

3.5 REMARKS. (i} We have used (.7) as the summability condition in
Theorem 3.4 but it is clear from the proof that the results hold under (186),
which is precisely the condition given for the use of the IP in [Hall and Heyde
(1980), Theorem 5.5, pages 141 and 146] due to Heyde (1975). () may be
preferable for applications because it is a little more concrete in terms of the
coefficients of the process (13).

(ii) One advantage of Theorem 3.4(b) is that no proof of tightness for the
partial sums of dependent sequences is required. Under (19) all we need to call
upon is the IP for partial sums of i.i.d. sequences and here we can rely on
existing tightness arguments with no difficulty [e.g., Billingsley (1968), pages
137-138].

Our next step is to use a second order BN decomposition to establish the
limit theory for sample variances. We start by writing
(21) X2 =(C(L)e,)" = X,, + 2X,,
with

Xt E C?S?—j =fa(L)5:2:
0

-] k-1 oo
Xp= Y 2 CiCiarbsjlij—r = Y f(L)ee,,
1

r=1j=0
(22) f:;(L) = Z ckck+ij = ):. f}kLk-
k=0 k=0
Next, employ the BN decomposition to the lag polynomial £,(L) giving
(23) f(L) =f;(1) - (1 - L) fi(L)
with

:(L) = kzofkak, f:l'k = E Je = E cscs+j'

s=k+1 s=k+1
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The validity of (23) follows from:

3.6 LEMMA.
o . @ o 2
(a) Z ff2k= E ( Z cscs+j) < o
k=0 E=0\s=k+1
and
at @ 2
(b) ¥ (): cscw] <o
J=0\1s5=0
if
(A) T s1/%2 < .

We use the decomposition (22} on both components of (21), namely,

(24) X, = fo(1)e? — (1 = L) X,,,
(25) Xy _55: p— (1 _L)Xbu
where
Xa.z =f0(L)£:2; fa(L) = E fokLka fok = ): foe = E 2
0 E+1 R+l

on

(26) Ezf—l = E f}(l)b‘:—j = Z Y€1
1

1
e = )_:, )‘j-(L)sfer_j.
Observe that y; = f{1} = Ljc,c,,; and the autocovariance function of X, is
v, = E(XX;) = 0%
Finally, under (.#) by Lemma 3.6(b) we have:
(27) af = E(ef_l)z = aff ¥? < .
L

As we did for the sample mean, the approach is now to develop a SLLN and a
CLT for partial sums of X2 by summing in (21}, (24) and (25), using results
for the innovations ¢, and dlsposmg of the terms that involve X, and X,. We
obtain:

3.7 THEOREM (SLLN for variances). Under (2%,) and (),

1 n o
- Z Xt2 s Yo T E(Xg) = 0:922 CE’
noy 0
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where

() T se? < o,
R

3.8 TueoreM (CLT and IP for variances). Under (&,) and (%) (a)
n~2EHXE — yy) =g N(O,0(0)), where v(0) = o + k) f(1)* + 40’0} =
kYo + 26257 ¥2. (b)) n T 2EUXE — y4) =4 00 PW().

3.9 Remagrgs. (i) Sample covariances may he treated in the same way as
variances by using a second order BN decomposition. We write, treating c; as
zero for all § < 0,

X X, 5 =C(L)e,C(L)g,yy

« ]
- 2
= 3,06 Et; + 2 Y CiChujurEejEr i,
0 J=0r=—h—j, #0

a ol

=fu(L)el+ L Y CiChijerfe € s

r=-—o, 0 j=—-h—-r

an

ogy IR T felDas

= fh(L)Ef + E [fhi-r(L)St—ret + fk—r(L)££+r£t]
r=1
= fu1)ed + Z_'.l [ Fuer(L)eoree + fr_,(Dee, 6] = (1= L) fi( L)ef

=D E (Ao D)eeerti  Fuer(Bs].
Without detailing all the remainder algebra we now get, as in Theorem 3.7,
% Ej X Xioh 2an (102 = v4;
and, as in Theorem 3.8, we have

1 n 1 n
1/2 Z (XX, on — va) ~ (1) 12 Z (Ezz - 0.22)]
n 1 n 1

o 1 =
+ );1 [ Farr(1) + fk—r(l)l[m ):1‘, 5:5:—:-]

—gq N(0,u(R)),
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with

o(h) = (20 4 k) + T (FaarlD) + foo D)0

_ =2 4 = = =
= Ky¥n + a, Z [7f2r.+r + 'yh+r'yh—r] -

(ii) Results for sample correlations also follow easily. Set
B LiX, X _Ya fi(1)

rh—

n 3 Pr = - .
) Xf » Yo fa(1})
Then, using (28), we obtain

nl’jz(rk =)

1 e
~ (; Zl Xf] {);'.l[fa”(l) + fuon (1) = pp(£(1) +F_(1))]

M

x 1/2 Z EiEiy
r 1

(29)

—q N(0,w(h))
with

w(h) = Z (pk+r + Ph-r — 2phpr)2'
r=1
The result for the limit distribution of serial correlations holds as in Theorem
3.8. But, in view of (29), we need only (7)) rather than («7,), thereby
corresponding to the original result of Anderson and Walker (1964)—see
Anderson [(1971), page 489] and Hall and Heyde (1980), page 188,

The results in this section are not, in general, the best possible. But the
approach has the advantage that the results come very easily, it involves just
algebraic calculation on top of i.i.d. limit theory, and the role of the summahil-
ity conditions on the coefficients of the linear pracess is easily understood. For
these reasons the approach seems to be quite useful for pedagogical purposes.

The price we pay for the convenience of the explicit use of the BN decompo-
sition lies in the summability conditions that are employed in its justification.
To obtain improved results we weaken these conditions and use the BN
decomposition only indirectly, as we now demonstrate.

B. BN in indirect mode and homogeneous innovations. The idea behind
the indirect approach is to use the BN decomposition to suggest an appropriate
approximation and then to analyze the error of approximation rather than
work directly with the remainder terms in the BN construction. Thus, in the
case of the linear process (13), the BN decomposition gives C(l)e, as an
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approximation to X,. Instead of working with £, as in the explicit construction
(15), we now consider the remainder X, — C(1)¢,. For the CLT we have

w 1 =
= 3 [ X, - C(1)e,]
nl/2 nl/2 - t i

and the CLT follows if we can show n~!E(w?2) — 0. Similarly, the SLLN

follows if we can show n~'w, —,, 0. This approach has been used before and

is evident, for example, in Hannan [(1970), pages 246-248] and in Hall and

Heyde [(1980), Theorem 5.3, pages 133-134] in the proof of time series CLT"s.
The following results make systematic use of the method.

3.10 TueoreM (SLLN). Under (&4,) and (A4), n"'LtX, -, . 0, where

(%) i In sle,| < .
1

3.11 TugoreMm (CLT). Under (&/,) and (), n~'/2L'X, >,
N(0, a2C(1)?), where

(7} 0 <|C(1)] < .

REMARKS, (i) A result that is very similar to Theorem 3.10 is obtained by
using McLeish’s (1976a) mixingale convergence theorem [Hall and Heyde
(1980), pages 22 and 41]. Let %, = o(g,, €,_4, ...} be the natural filtration for
(£,) and set

A1/ w y1/2
b =N EKIn)la — (ELERI 70 - (£ 2] e

Then, McLeish’s SLLN [Corollary 1.9 and Example 1 of McLeish (1975a)]
requires i, to be of size —1/2, that is, ¢, = O(m " 2L{(m)~ 1), where L(m)
is slowly varying at ® and satisfies the summability requirement
Lim L(m) ' < . This leads to ¢2 = O(m 'L(m) ?) and since
Lim 'L(m) ? < », we deduce the implied summability condition

Y Y ocl=Yscl<m.
m=1s=m 0

This is our (/%) and is weaker than (%), but only by a slowly varying factor.
For example, ¢, = s~ YIn(1 + s)]™ " satisfies (_#5) but fails (/). Thus McLeish’s
mixingale approach leads to a stronger result but involves more work and
sophistication.

(ii) Theorem 3.11 offers a new proof of the minimal result given in Hall and
Heyde [1989, Corollary 5.2, page 135]—see also Hannan [(1970), Theorem 11,

page 221].

C. BN in direct mode and heterogeneous innovations. The explicit form of
(15) makes it just as easy to work with heterogeneous as homogeneous



ASYMPTOTICS FOR LINEAR PROCESSES 983

innovations in the decomposition. Again the simplicity of the direct mode
approach is that we can appeal immediately to established theory for inid.
and m.d.s. sequences and need only attend to the remainder terms to produce
a rigorous theory for linear processes under assumptions like (&,) or (4,) on
the innovations. The following are a selection of first and second moment
results that are easy to obtain. The proofs are just like those for the homoge-
neous case.

3.13 TueoreM (SLLN). Under (8,) and (#), n 'EL1X, —»,, 0.
3.14 TaEOREM (SLLN). Under (8)) and (#), n 'L1X, »,, 0.

3.15 TuroreM (CLT and IP). Under (B,) and (A),

1 n
() —7 L X, =4 N(0,07C(1)").
1
Under (#,) and with (B,) strengthened so that E(Z**") < = for some 0 > 0,
1 [nr]
(b} —i7a & Xe 22 oC(HW(r).
1

3.16 TueoreM (SLLN for variances). Under (%) and with (#,) strength-
ened so that E(Z*) < o, we have n 1L X} =, 7.

3.17 REMaRKS. (i) Theorem 3.13 is related to a result of Hannan and
Heyde (1972) [see also Hall and Heyde (1980), page 184] who require only

() )élcslaﬂ

in place of (.#,} and only E(Z?) in (&,).

(ii) Theorem 3.14 gives us an extension of the Markov SLLN to linear
processes. The theorem continues to hold, by virtue of theorem LLN, if we
replace (4,) with:

() (&,) is an independent sequence, is s.u.i. with dominating r.v. VA
YV and E1Z) < . |

Thus, all that is needed to extend theorem LLN from independent sequences
to linear processes is (#). This result and Theorem 3.14 would appear to be
new.

(iii) Theorem 3.16 is also related to Hannan and Heyde (1972) [see also Hall
and Heyde (1980), page 184]. Again, they require only E(Z?*) < » in our (%))
and only () in place of our (.#}); but they show convergence in probability
not a.s. convergence in this case.

(iv) Hannan and Heyde (1972) also extend the Anderson and Walker (1964)
limit theory for autocorrelations to the heterogeneous case. Their Theorem 2

may be obtained using our approach.
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D. BN ir direct mode and stable limit laws. Stable limit laws for the
linear process X, given by (13) can be deduced in much the same way as the
classical SLLN and CLT agymptotics. We rely again on the BN decomposition
that leads to (15). First observe that, if ¢, satisfies condition (¢)), X, = L3¢;s,_;
is convergent a.s. provided

(%) % ;[P < e
for 0 < p <a and p < 1 [e.g., Brockwell and Davies (1987), page 480]. Simi-

larly, £, = £3¢;¢,_; in (15) is convergent a.s. provided Ljlé,|° < « and this
holds by the BN lemma if

(%) Y jlef <o for0<p<aandp <1
1

With the validity of (15), in hand, it is a simple matter to deduce asymptotics
for standardized sums and cross products of X,. We give the following two
useful results.

3.18 TueoremM (Stable limit for means). Under (£} and (A,},

1 n
. L X, -4 C(1)UL().

no1

3.19 THEOREM (Stable limit for covariances). Under (&) and (A,),

'l2 ﬁ [X£21 XtXt+1: st XtXH-h]
(a) o
=a[ fo(D)s A1) D] [ U,
(b) . =, on = fi(1) /fo(1).

3.20 RemaRrks, (i) Theorem 3.18 gives a result that seems first to have
been established by Davis and Resnick [(1985a), Theorem 4.1, page 189]. Their
proof uses truncation arguments and point process theory and is more in-
volved than ours; but they need only (_#4) in place of our (#y). As in Section
3(a), the explicit construction (15) leads to a substantial simplification but is
achieved at the cost of somewhat stronger conditions on the coefficients of
C(L).

(ii) Theorem 3.19 also gives results that appear in Davis and Resnick
[(1985a), Theorem 4.2, page 192]. Again, they require (.~4) rather than (.}
and they obtain the asymptotic distribution of r;, so our results are therefore
mainly of pedagogical interest.

(jii) Interestingly, Theorem 3.18 does not extend directly to a functional
version, as it does in the case of finite variance innovations (ef. Theorem 3.3).
This has been discovered by Avram and Taqqu (1986, 1989). In the present
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context, we can explain the failure in terms of the BN decomposition. We have,
as before,
1 [»r] 1 [nr] 1
a Zl‘, Xt = C(I)Z El g, + :1_”_(60 — E[m.])

and, according to (11), a,'Ti*! -, U(r) in the space D[0,1] with the
Skorohod topology. However, the remainder term does not vanish in probabil-
ity in general. For instance, the distance between a'é,,, and the zero
function in the Skorohod J;, metric is simply

= max a,’§,l.
O=<hzn

(30) Slrlp’a;lg[nr]

But, under (.#}), &, € 9(a) and thus, when a < 2, (30) does not converge in
probability to zero [Breiman (1965), Theorem 2, page 323]. So the functional
law ¢ 'L*1X, -, C()U(r) does not apply in D[0,1] endowed with the
usual Skorohod topology, even though all the finite-dimensional distributions
converge.

4. Supplementary remarks. (i) The BN Lemma 2.1 continues to hold
for matrix polynomials using conventional matrix norms in the summability
conditions. Thus, the decomposition (15) also applies to vector linear processes.
The limit theory of Sections 3A-C can then be extended to the multivariate
case.

(ii) The decomposition (15) is important in the vector case to the theory of
cointegration—see Engle and Granger (1987). Suppose (1 — L)Y, = X, =
C(L)e, = £5_oC;L’z,, where ¢, is an m.d.s. and £5,%C;l* < = with |[C)]| =
[tr(C;C,)]"/%. Then Y, is stationary and if C(1) # 0, at least some components
of Y, are integrated processes. The components of Y, are cointegrated if C(1)
is a singular matrix. Using (15) we have

(1-L)Y,=C(1l)s, +¢,_, — &,

and by summation and with Y, = 0 we get
t
Y,=C(1)8, + & — &, 8= L e,
L

Thus, if « is a vector for which o’C(1) = 0, then o' annihilates the integrated
element C(1)S, of Y, (i.e., the martingale approximation to Y,) and we have

(31) «'Y, = a' (g — &) as,
which is a stationary time series under the stated summability condition. In
econometric models, the equation (31) is interpreted as describing stationary
deviations about a long-run equilibrium relation o'Y, = Q. Phillips (1991),
Johansen (1988) and Phillips and Loretan (1991) provide further discussion
arid develop optimal inference procedures.

(iii} The BN lemma also has a version that is suitable for frequency domain
applications. In effect, we can expand the polynomial C(L) in a Taylor series
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about an arbitrary point on the unit circle, say ¢** rather than unity, giving
(32) C(L) = C(e?) — (1 —e LY (L)
with
éA(L) = Y &L, €er = e} ckemk‘
Q g+1

This leads to the following decomposition for the discrete Fourier transform
(d.ft.), @rn) VI 2X 02 of X, in terms of the d.f.t. of £, and a residual:

wy(A) = C(eMyw,(A) + (2rn) | Ry, — ™ X,,,
with )
X:;\ = CA( L)e, = Z CorBp_s-
0

This decomposition leads in much the same way as Theorem 3.4 to a CLT for
wy(A) and joint CLT’s for the d.f.t's at many frequencies. In the above form,
the decomposition (32) is used by Hannan and Deistler [(1988), page 156] and
is apparently due to Bouaziz. It is justified, as in Lemma BN, by conditions
such as (.4). This frequency domain BN approach may also be applied in what
we have termed the indirect mode in Section 3B. As such, the idea appears in
Hannan [(1970), Theorem 1, page 248).

5. Proofs. We start with some useful bounds provided by the following
lemma.

5.1 LEMMA.
(a) YutP<b 7t b>0.
t+1
t
(b) Yul<e ™, 0<e<l.
1
¢
(c) Yult<l+Int.
1

Proor. If0 <u <s,then s 1 < x~' and
s_lgfs v 'du=Ins—In(s-1)
s—1

so that £¢_,s~! < In¢ and (c) follows. Results (b) and (a) follow by similar
arguments. O
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5.2 ProoF oF LEMMA 2.1. The case p = 1 iz obvious so we take p > 1.
Then for a suitably chosen constant a and by Hélder’s inequality we have

p

> (): k“-|euk-ﬂ)

Jj+l

P o o B/q
<3 (): kamcm)( 5 k) (/p+1/q=1)

i+1 J+1

1 X nd ap 2 1-ag p/a

L3 (£ el
1

Jj+1

=

8

[using 5.1 (a) with 1 /¢ < a < 1]

1 = k-1
- % kamc,,w( £ |
1

aqg — 17

1 @
< ka.plc |Pk1 +pig-ap
(ag — 1)(1 +p/q—ap)§ ¢

fusing 5.1 (b) with a < 1/p + 1/g]

1 oa
< kP e
S Caa T (L7 pra —ap) & Hll

for1/g <a <1/p + 1/g = 1. To prove {3) we note that for p < 1,

P

@
& =L % e
J+1

olls
olls

o an an
s L Ylal =X kel
0 i+l 1

Finally,

- C'j
[C(1)| <leql +| 2 ;_
1

@ p]-/P o 1 l/q9
s|ca|+(>:(|c,,-|j)] (z};) <o O
1 1

5.3 Proor oF THEOREM 2.6, This follows from MecLeish’s (1974) theorem
quoted in Hall and Heyde [(1980), page 58]. That theorem also requires that
E(max, _; ., 22,) is bounded uniformly in n. But in our context this can be
dispensed with since it is bounded by E(X2Z2%) = 1. O

5.4 Proor oF TaeoreM 2.7. This follows from Brown (1971) [see also Hall
and Heyde (1980), page 99]. To show that (7) implies (8} we note that
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0 < L{Z%1Z,,| > &) < £7Z2,. If each of the following are true:

(33) ); Z}1(1Z,,| > €) =, 0 forany « > 0,
(34) ); Z: -, 1,
(35) E(E Zfs) -1,

1

then, by a version of the dominated convergence theorem {cf. Hall and Heyde
(1980), page 2811, (8) immediately follows. But (34) is simply (6), while (35) is
trivially true. Finally (33) is equivalent to (8) since [¢f. Hall and Heyde (1980),

page 53]

(36) P( max |Z,,| > ¢) =P(): Z21(|Z,,| > £) > £2].
1

l<i=n

To show (8) implies (7) we have, in view of (36), only to show (33). But, of
course, (8) implies (33). Thus, when (6) holds, conditions (7) and (8) are
equivalent. O

5.5 Proor oF THEOREM 3.2. From (16),

£,.

2o

12 1 1
(37) ;let=C(1);EISE+ ;80—

By Theorem LLN the first term —_, 0. Because |Z,| < « a.s., the second term
-, . 0 also. The third term of (37) is

1. 12 1 12 1=
—&, = — Z CiEp; = — Z Chos€s = — Z C, _E; T —Z ntE g
n n n_, n n

Intraduce ¢, = L7, ,lc.| and note that
L é) = =% Y el <
1 1 1

£+
under (.#3). Then

1 1 1=
;|€u|5;2|Cz||£n-:|+zzcn+;|£_:|
Q0 1

sle,] < oo

]—‘ME
.—-MB

-]

< l( max |s,|)()§ w] + %): Ele |,

R ‘0=<t=<n 1

(38)

Now max, ., . (n e l) »,, 0if n~Ye,| >, O, which holds if ™'z, —_, 0,
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which holds since

1 1-nln-t

1 "n
;£u=—£21£}-—4-28j—’&&0—0=0.

n—1 %

Next ¥5¢,l¢,| <  a.s. since its expectation is finite. Thus, both terms of (38)
—,, 0 and the result follows from (37). O

5.6 Proor or THEOREM 3.3. By stationarity we have

T

E|,[" = E|5| = E

n

-
¥ Cie_;
Q

Let u,=13%é .£_; and require 2 < ¢ < p. By Burkholder’s inequality [Hall
and Heyde (1980), page 23], there is a constant ¢, for which

N q/2
E|u~|q£CqE(Zéfs2—J) :
0

Applying Minkowski’s inequality to the right side we find
N q/2 o q/2
Eluy|® < cq( )y c'f) Eleg* < cq(z éf] Ele,|* = d,, say.
0 0
Now choose g such that 2 < ¢ < p and we have
E(lunl®)" = Bluyl <d,.

Since p/q > 1 it follows that {|u 5|% N = 1,2,...} is uniformly integrable. But
uy —, £4 50 that

2
Eluy" = E|gf <d, <.
We deduce that ¢ '£y, ¢, '€, —., 0 and then by (17,

1

lim sup

n—m

coft)

By the Hartman-Wintner LIL for iid r.v.’s [Hall and Heyde (1980), page 116]
we have

(): x” ~ limsup

B

Ty, TxPp

" lim sup, lim inf
n—om now d.8,

(£e)- 21 as

1

Noting that o3 'C(1)g, = sgn{C(1)} the LIL for £{X, follows directly. O
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5.7 Proor oF LEMMA 3.6.

£ o] £ (£

E+1

1A

( ¥ sl ( 5 cf+,,-s-1f2)

k+1

oh [} o
<[Lse||T § s ]

k=0s=k+1

A
I—'MB =

]

[

S

[k

b

= s—1
£ e
=0

=1

o - 2 .
<(Zov)| T (s i) fﬂ)ﬁ(isv%?] s
1 1

The proof of (b) follows in the same way. O

5.8 Proor oF THECREM 3.7. From (21) we have to show

1 n
(39) ; E as. Yoo
1
1 n
(40) PO
We shall prove (40) first. From (25) this follows if
1.
(41) ;an _’a.s. 0
and
(42) - E E:S:f—l s 0.
Ry

By Kronecker's lemma, (42) holds if 7, = £7¢7 s,/ | converges a.s. But T, is
a martingale so by the L, martmgale convergence theorem [e.g., Hall an.d
Heyde (1980), page 18], T, converges a.a. if sup, E(T?) < «, which holds
because sup, E(T?) < E""(ar %0/t 2) < «. Next (41) holds if Z“"E(X 2 <o,
which holds if E(X?) < w, whlch holds if (%) holds, as shown in Lemma 5.9
helow,

To prove (39) we note from (24) that this holds if the following are true:

(43) ;‘i“an aa. 0’

. L n
(44) - Z £t2 a5 O -
n
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But (44) follows from Theorem LLN under (%7,) so we need only to prove (43).
As in (38) above we have

1. = 1 1= .
(45) ;Xan = ;% fogfi—k.—“--;(omax 3:)(2 foa) + ;21 flksfk.

“=fan
Now n~'max,_,_, &2 —»,, 0if n7%2 =, 0 which holds because
1 1—n_1 n-1
—g, = — - 2
ns ):s ) Elej—»“(l

Also % for = £9L%, 162 < T%9s¢? < ® 80 that the first term of (45) converges
a.s. to zero. Moreover, this ensures that E(E%f,,£2,) < @ so that 5,2, <
o a.3. and the second term of (45) converges a.s. to zero. O

5.9 LemMa., Under (s4,) and (#}), E(X2) < =.

Proor.
E(an) = E . k% 0f:'kf}k’E(en—ksn—j—ksn—k’en—j’—k’)
Joi=1k k=
(46) = E ?.k Fin i (8750nw0 + 8o wsjBur n4s0L)
FAAE N 4

-]

= u);ﬂf al+ }: E f hk{k Ak E fok“

k=0 k'=

=

But the first term of (46) is bounded since

oo [+1] [ -] - -] 2

Y ¥ ii-¥ >:( L e

= s=k+1

SEE(E o £ e
= §= s=k+1

(47)

o - 2

=( 22 1} =(}:sc§) <a.
s=1 k= 1

Next, using the Cauchy inequality for double suma, we get for the second term

(Z fk’—k.kfk—k',k’)z =< { )y fhz'—h,k)2

kR k&

(g

=0 k=0
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since (47) is finite. Finally

Lha-%(s ef)gs(fez)(ﬁ r <

k=0 k=0 \s=k+1 1 k=0zs=k+1

“(Ea(EaE ) - (E)(Ee] <

Thus all terms ot (46) are finite and the required result follows. O

5.10 ProoF oF THEOREM 3.8. From (21), (24) and (25) we have the decom-
position
1 & 2 L - P 23 f
nl’2 E (Xg - 70) = ni/2 Z ['}’0(83 -, ) + 28383_1]
1 1

(48)

1, . 2 . -
W(Xa(] - Xan] + W[Xbﬂ - an)'

From Lemma 5.9, E(X?2,) < « and the final term of (48) converges in prohabil-
ity to zero. Further

E(X.),  E(X.,)-= 2)2‘ —a2¥ L o2 —0'2Zsc <

k=0 k+1l

+

so that the second term on the right side of (48} also converges in probability
to zero. It remains to show that the first term of (48) converges weakly to
N(0,0(0)). We apply theorem CLT and need only verify

1 n
(49) n £ 22 0(0),

(50) % E[221(Z? > ¢n)] - 0

HMQ

with
Z, = %y(sl — ) + 28,8]_,.

Now (50) is just E[ZJ1(Z¢ > en)] > 0, which follows hy dominated conver-
gence since E(Z2) = v(0) < «, by (&7;). Next we apply theorem LLN to (49)

giving
1 n
— ¥ (27 - E(ZHF1)] =, 0.
L
So we need only show that

1 n
— ¥ E(ZH %) =, v(0)
1
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which follows directly if

n

(51) =% (¢£.))" -, oF.
1.

This holds hy the pointwise ergodic theorem since a'f2 < ® but we can also
establish it by appealing to our own SLLN, Theorem 3.7—see Lemma 5.11
below.

To prove the IP [part (b)] we again emplay the decompaosition

1 lerl ,
27 L (X = %)

1 fnrl 1. _ 2 ;. .
= 72 21" Z, + nt7? (Xa.O - Xa[nr]] + W(xba - Xb[nr])-

Since (50) and (51) hold, we have n~/22(""1Z, — , v(0)'/2W(r) directly from
Theorem IP. The IP for X? - y, then follows provided

max (n7'XJ) >, 0, max (n7'X3) -, 0.

But these are equivalent [ef. (20)] to

[X21( %2, > )] -, 0,

gt-q

]
R
HMG’S

on [J‘{fkl(f{fk > na)] -, 0

1
2|~
- 1=

which in turn hold because
E(Jd,,) = E[X21(X% > n8)] > 0;  E(J,,) - E| XZ1( X5 > ns)] - 0
for any & > 0 by dominated convergence. J

5.11 LemMa. Under (94y) and (A), n 'L el ) >, , of.

Proor. We appeal to Theorem 3.7. Because ¢/ ; = L3%,¢,_,, We require
Y7872 < o for this theorem to be used. Observe that

[+ ) -] ] 2
Y syl = Z 5( Z ctct+s)
1 g=1 t=1

= & 2 -] o 2
<2} 3( = C:C:+1) +23 s( )y tht'l-s) .
=1 g=1

s t=1 t=s+1
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The second term in the above expression is dominated by twice times
@ oo oo oo @ 1 t—1
£s ¥ it T et s(Lat|E ;L sk,
1 1

s=1 f=z+1 t=s+1 t=1 t &=

IA

I IA
e e

)-'MB HMS I—MS
hgn e-?t:a
1s 0[]
e £
mnm
-«nto i

[

< o under (.#5).

o
3
-~

For the first term, consider

N 5 P N 5
Ry= ¥ [ ] < ¥ s(>: t)(zz]
- 1

=1 i=1 t=1

a0 N 5 oo N
(T F T = (z :cf] T2 Y sk,
1 z2=1 =1 1 f=1 g=¢
oo N N+t -] N N
[T T e T ez s (zch) WEDY
1 =1 r=2¢ 1 i=1 ra=¢
oo 2N 2N o aN r
AT T e Y r2e - (): tcf} S 22 o2
1 t=1 r=f 1 r=1 t=1
e aN
< (Y te2| ¥ rel
1 r=1
an 2
< | Y te?
1

Since R, is nondecreasing, Ry — R, < . Thus, the first term is also finite if
(%) holds, thereby proving the lemma. O

5.12 ProoF oF THEOREM 3.10. Set n™'w, = n7'L}[ X, — C(1)¢,]. We need
to show

= 1
(562) 21 ?E(wf) < o

—~1vn

so that n~'w, —,, 0 and thus n"'E£}X, »,, 0 since n"'L]¢, —»,, 0 under
(24,). Now

E(Xti Es) = ﬁ Zt Ct—sa.t:2

1 1 1

t—-1 n

(E Cj)o-e? = 0222 [C(l) - Et—l]

0

i

>
2
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so that
1 ) s 1 g 2 n
() = B(X%) + 2ol - 5CWaf T [CQ) - &)

. 1
) E(X?) - ~a20(1)°

+ 2ar2(:(1)[i2 ):_‘, ]
1]

=a, + 202C(1)b,, say.
Next

HMS I—MQ
o

1A
~ |- h|5

» TDs
&

+

o
=12

1

A
HMB HMS HMB

<]

=

1 n-1 2 a—1 1 e
an=—(7o+2E v,) -5 L r%—;(70+22%)
(54) 1 1 1
g = 2 n—1
=_;‘§?r_?21r1’r

and, then, by use of Lemma 5.1 again we deduce that
-3 o 1 4 L] 1 n—1
Yla =2y =Y |nl+2E 5 L ry)
1 1 *oa 1 o

o = 1
<2¥ |y (lnr+1) +2Y rly.| ¥ o)
1 1

a=r+1l

<2F Iy, Klnr +1) + 25 |, .
1 1
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But

1 - -]
ST lnrlyls ¥ ¥ Inrle,lle,.|
1

a, r=1s=0
I -]

< L lel X In(r + 8)le,., |
r=1

s=1{

k-

= X le.] X Inplc,|

g=0 p=s+1

8

1A

-1
L Inple,l X lel
= =0

p=1

Y. Inple,| T le](ns + 1) <o
p=1 =0

1A

under (#3). Thus Efle,| < =, £71b,| < « and (52) follows. O

5.13 ProoF or THEOREM 3.11. From (21) and (54) we have

1 n-1 202C(1) »~
@) = <25y - 2T+ 2O T,

0

But ¥}y, converges to LTv,, which is finite under (./%) since y, + 2Ly, =
C(1)%> Thus, £2y, > 0 as n — . Further, by Kronecker’s lemma,
n~'L%ry, — 0. Finally, if é - 0 as t > =, then, by the Toeplitz lemma,

n 'L, — 0. However, é,= L7, ¢, > 0 as ¢ > ® because Ljc, = C(l) is
convergent. under (.5). Hence n~'/%w, —,6 0 and n“ﬂi *X,
Cn~Y2L%e, + 0,(1) =, N0, s2C(1)%) as requlred D

5.14 Proor oF THEOREM 3.13. This follows the proof of Theorem 3.1. By
Remark 2.9Gi), n 'L e, =, , 0 under (2,). The result then follows if E(#2)is
bounded above uniformly in n, which it is in view of (.#)) and (&,). D

5.15 Proor oF THEOREM 3.14. This follows the proof of Theorem 3.2. We
just note that Theorem LLN ensures that n~ 'L ¢, —», . 0 while () ensures
that Ele,| < E|Z| < = sothat £7¢,le] < ®as. O

5.16 Proor oF THEOREM 3.15. The proof is similar to that of Theorem 3.4.
We work from equation (18). The CLT for n~ /2L ¢, follows from theorem
CLT if

2|
HMK
o
™ ha
l
b=
3

(55)
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and
1"
(56) —~ ¥ E[sfl(sf > ne)] - 0.
1

Now (55) follows from (,), as indicated in Remark 2.9(i). Next, from
Billingsley [(1968), page 223] we have

E[e}1(e} > ne)]| = enP(e? > ne) + me(ef > s} ds
< c[snP(22 >ne) + [ P(2%>s) ds]

= cE[Z2%1(Z? > ne)].

Thus, dominated convergence and E(Z?) < ® yield (56). This establishes
that n~2glrle, 5, ¢ W(r). Theorem 3.15(a) now holda because n~1'/%,,
~1/2g, -, 0 since

£2 1> 1=
B(2) - 2L aE(ed,) <y DR o
1] 0

under () and (8,).
To prove the IP {part (b)] we need to verify (19) or equivalently (20), that is,

1 n .
~-% [£21(¢% > n8)] -, 0 forany s > 0.
1
This holds if
1 21 (22
- 3 £y >
- E Jl\‘l'[.ts,,el(s,‘2 nﬁ)] -0
which holds if the variables £ are uniformly integrable, which holds by
Minkowski’s inequality applied to E|5,|>*" and (.#;) when sup, El¢,|**" < o
for some n > 0. Thus, (.3) and the strengthened version of (#,) suffice to
establish the IP. O
5.17 Proor or THEOREM 3.16. This follows the proof of Theorem 3.7. We

need to verify (41)-(44). As noted in Remark 2.9(i), (4,) gives (44). For (43)
the same proof as in 5.7 applies and we just need

E( )y fmzszk) < .
L
But % f4, <  under (.#;), and by (,), we have
(£2,) = f (624> 8 dsscf P(Z%> s)ds = cE(2?) < .

For {41) the same proof as in 5.7 again applies. All we need is the result of
Lemma 5.8 and this holds under (.#;) and the strengthened version of (8,),
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since sup, E(s )s E(Z*) < «. Finally, we consider (42). As in Section 5. 7
T, = L%t 'e,e/ | is still 2 martingale and we ﬁnd

E(T?) = ); t—gE[sf(stf_l ] - ); tg):«; E(e2:2.)

< sup, E(e}) Y
1
5.18 ProoF oF THEOREM 3.18. From (15),
1 » 1 = 1
a—n Zl‘, Xt = C(l);; Zl £, + ’;::(EO - En)
and a,; 'L %, -, U (1) under (£,) by (10) so the result follows provided
’ a;l(ga - éﬂ_) _>P 0.

But under (¢)) and (.#%), é,, is strictly stationary and in 2(a) [e.g., Brockwell
and Davis (1987), page 481]. Thus for any 5 > 0 we have

P(a.'|é,| > 8) = P(|,| > a,8) = O(n™1)
and a, 'é,| -, 0 as required. O

5.19 LemMa.  (8) Under (#), £%._ ojfhwﬂ <wand LI 5 o furralf <

Proor.
an p/2 @ = p/2 @ a " )
Z | le = E E CiCivi = Z E fcsfp’, |cs+k|p/’
= J=0]zg=5+1 f=0s=5+1
/2 23&1 % 2 /2
= |cs|p |Cs+k|p/ 2 1= E s|cs[pf |cs+klp
1 J=0 =1

e i

31/2rcs rp/231/2lcs+k rp/ﬂ
1

&

«© L/2¢ & 1,2
< Zs|c5|") (}:(s+k)|cs+k|”]
=1

z=1
o0
< Y sle,f <o
g=1

under (%), giving (a). Use L', to signify the summation £7___ , ., and we
have

p

<)

Z cscs+h+r |csrp|cs+h+r|Fl

) FANENT

nMs w["!
DMB QMS

ol Tlevnsr? < | rr’]2<m

under {.#},). O
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5.20 ProoF oF THEOREM 3.18. We use (28) and write
XtX£+h = fh(l)ﬁf + £:+hszh - (1 - L) fh(L)Ezz

(L =LY L [Farrl DYerrnrron + Frol L) eronireren],

r=1
where e = L% _\[fi,, (Vs p_, + fr_,De, 1., ] In view of Lemma 5.19(b),
e} € 9(a) and, because s, is independent of &?, we have ¢,,,s* € D(a).
Thus,

(57)

1
2

(58)

n
Z£:+h£z p 0.
@y
2

Next set £, -f(L)s thj n—j- By Lemma 5.1%a) the series for £
converges a.s. and £2 € .@(a/2) Hence for any 4 > 0, P(a ;%2 > 8) = O(n"Y)
and so

(59) —2 —)p 0.
Next note that under (.4),

o 2] . p (=] [+ ] --]
Z E |fh+r,k| = Z E E rcscs+h+rlp
r=1 k=0 r=Lk=0z=k+1

< @,

5 s|cs|")( ¥ el

s=1 r=10

Z Z S‘lC |p|cs+~k+rr <

r=1gs=1

so that £7_ 55 _¢ fus s Jz.c:H,! —r—#Es+h_p converges as. and is in Z(a). Thus

(60) _-_—2" E +r(L)£n+h—r8n+k _’p 0

Ay =1

and similarly
1 = _
(61) ;;?: g f —rEn+h+rEn+h _’p 0.

Summing (57), scaling by ¢, % and using (58)-(61) we deduce that

6 Lyxx, -h0 )z 24 oy(1) = D) [ (AU
n 1 ﬂ-

by (12). The joint convergence of a"Q[E X2, ..,):’l‘XtX,+ »] follows directly.
Part (b) follows since

E1X, Xern _ £(1)
LiXZ fu0)
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