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A note on auforegressive-moving average identification

By E. J. HANNAN
Department of Statistics, Australian National University, Canberra

SUMMARY

A discussion is given of the identification and parameterization of autoregressive-moving
average systems in relation to the use of certain canonical forms.

Some key words: Autoregressive-moving average system; Canonical form; Identification; MeMillan
degree; Prior constraint; Time series.

This note refers to the stationary p-variate autoregressive-moving average model,

X(t) = 3A(5) X(t—j) +e) + 5Bl elt—5) m

Ble(t)} = 0, Efe(s)e(t)'} = 8,6,

and the discussion of its identification by Tuan (1978). The notation of that paper will be
used and the conditions imposed will be maintained, namely that

Mz) = I-SA(j)#, g(z) = I+ B(j)#

are left prime, that A~1g is analytic and nonsingular for |z| <1 and that & is nonsingular.
Nevertheless (1) is not uniquely specified. However (Hannan, 1969), if, for prescribed g¢, r,
[A(q) i B(r)] is of rank p then (1) is uniquely specified. This will be called the rank condition.
Some structures {1) cannot be brought to a form where this condition is satisfied {Hannan,
1971), so that the condition is overidentifying. The set, C, ., of all structures satisfying the
rank condition for given ¢ and r is mapped, by using the elements of 4(j) and B(j) and the
on and above diagonal elements of &, onto an open set in Euclidean space, if it is required
that A~'g is nonsingular for |z{< 1, and hence constitutes an analytic manifold. For ¢ and r
fixed the set of structures (1) not in C,, is evidently of lower dimension than C,,.

Tuan (1978, end of §1) states a number of objections to the use of C,, and we wish to
discuss these, and the general problem of parameterizing (1). For this last purpose Tuan
(1978) used a family of canonical forms, called by him the quasiautoregressive-moving
average representation. With any structure (1) is associated a set of integers m; (j = 1,...,p)
which determine the form of this representation (Tuan, 1978, p. 101). Thus given any
structure (1) there is associated a set of m, and a matrix of polynomials u(z), with unit
determinant, such that ug and %k are in the canonical form. Of course the matrix function «
is an extremely complicated function of g and 4. Using K as a symbol for the m; (j = 1,..., p),
we may also map the set Cy of all structures with these m, into an open set in Euclidean
space, if A~1g is nonsingular for {z|< 1. Now there is no overidentification. However, there
is a major problem if there are prior constraints imposed on (1) for it seems almost impossible,
in general, to translate these constraints into constraints on the canonical forms hecause %
is such a complicated function of g and . On the other hand, the set of all structures (1) for
given g and ¢ is very complicated to parameterize. However, for the reason mentioned at the
end of the previous paragraph, almost all of that set is constituted by €, ,, which is easily
parameterized. Tuan (1978) objects to C,, because of overidentification and because con-
straints may cause the rank condition to fail, and for other reasons to be discussed below.
Tt is most unlikely that constraints would make [4(q) | B(r)] identically of rank less than p,
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that is, for all parameter values satisfying the constraints, if only because such constraints
are unlikely to be applied to the B{j). If that problem did arise then other requirements
would be needed (Deistler, Dunsmuir & Hannan, 1978). In any case it seems strange to
criticize U, on the basis of the possibility of constraints since the cananical forms seem very
difficult to use when these arise. It should be mentioned, of course, that the system might
originally be built in state space form (Tuan, 1978, formula (2-1)) and that this will be con-
strained. In that case both €, , and Cy will be unusable. In that case also it seems likely that
the constraints will identify the system so that a unique parameterization is obtained and in
particular the constraints will specify the McMillan degree so that no problems will arise.
We shall therefore not discuss this case further.

In the unconstrained case the use of the Cyx has considerable appeal. However the union,
Cy, say, of all Cx, for K such that Zm; = d, itself constitutes an analytic manifold as dis-
cussed by J. M. C. Clark in an unpublished paper, and the decomposition of C; anto the Oy
is somewhat arbitrary (Tuan, 1978, p. 102). The integer 4 is called the McMillan degree.
To cover C, a total of (d —1)1/{(p —1)! (d — p)!} coordinate neighhourhoods is required. Each
of these coordinate neighbourhoods may be chosen to constitute an open submanifold of €
that is dense in C;. The submanifold, Cx, for m; = m,, j<j,; m; = mg—1, j>j,, which we
shall call G, is one of these but the remaining Cy- are submanifolds of lower dimension. Thus,
ag Tuan (1978, p. 102) says, a more appealing way to proceed may be to first choose 4 and
then to choose the point in €, say by maximum likelihood ; see also Hannan (1979).

A second objection raised by Tuan (1978) to C,, is that if g, and r, are the true
values and g¢>g¢, r>r,, then the standard likelihood ratio tests are not appropriate,
hecause the estimate of the A(j) and B(j) will not then converge in any reasonable
fashion. To this author that does not seem a valid objection for two reasons. The first is that
the objection applies equally well to the Cx or C;. Thus if d>d, or m; > m; for some j, then
the same phenomenon will oceur. Indeed this problem seems to have nothing specially to do
with the use of C,,. The second reason is as follows. The use of the tests mentioned is
required in arder to determine ¢, r, or 4 or K. However, instead of proceeding via tests one
might set out to directly estimate ¢, #, or 4 or K, by forming say

logdet G, +{dim (C,,) log N}/N, {2)

where ¢, is the maximum likelihoad estimate of &, given ¢, r, and dim (¢, ,) is the dimension
of the manifold. Analogous quantities may be formed for C; or Cg. Under rather general
conditions it may be shown that the estimate {¢,#) obtained by minimizing (2}, subject to
¢<@, r< R,Q, R fixed a priori, will converge almost surely to ¢,,r,. The proof of this kind of
proposition is long and fairly difficult and will have to be given elsewhere. Thus the diffieulty
in finding the asymptotic distribution of the likelihood ratio tests does not seem so impartant.

In favour of the procedure bhased on the Oy, Tuan {1978) refers to a method introduced by
Akaike (1976) for a first determination of the m, and a first estimate of the parameter point
in Ox, given the m;. That method is not designed to be consistent since a true set of m; is
not postulated. The method is computationally cheaper than a full examination of the Cy
but, of course, is also less than fully efficient. A first consistent estimation procedure for the
C,. 18 also available (Hannan, 1975). Experience suggests that this, inefficient, procedure
does not work well unless the sample is large but the same may be true of Akaike’s
(1976) procedure. The smallest sample size used in simulations there, for a low order system
with p = 2, is 700.

The problem of constructing a good algorithm for any one of the sequences C;, Oy and
C, . s considerable. For G, it manifests itself in the possibly large number of coordinate
systems. Full examination of one of them, say C;, should locate the maximum of the likeli-
hood, far the same kind of reason as was used in relation to C,,, at the end of the first para-

.

graph. Nevertheless this examination would be difficult if that eoordinate system was
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inappropriate, so that the optimum point lay near the boundary. Since the (% for m; =d
make up C, it is evident that the problem for the Cx is essentially the same as for C;. For C,
the problem may manifest itself by near failure of the rank condition. It is probably for
these kinds of reasons that there has been little use so far of these systems for > 1, in the
unconstrained case. The dimension of (), namely 2pd—§p(p—1), may be large and the
topological structure of C; is complicated, so that the estimation problem is very difficult
unless prior constraints are imposed that confine the possibilities to a manageable set.

BEFERENCES

Axatge, H. (1976). Canonical correlation analysis of time series and the use of an information criterion.,
In Systems Identification: Advances and Case Studies, Eds R. K. Mehra and D. G. Lainiotis, pp- 27-94.
New York: Academic Press.

DEersTLER, M., Dunsmurr, W. T. M. & Hannaw, E. J. (1978). Vector linear time series models: corrections
and extensions. Adv. Anpl. Prob. 10, 360-72.

Hanwan, E. J. (1969). The identification of vector mixed autoregressive moving average system.
Riometrike 56, 222-5.

Hanwaw, BE. J. {1871). The identification problem for multiple equation systems with moving aversge
errors. Economeirica 39, T51-66,

HannaN, E. J. {1975). The estimation of ArRMA models. Ann. Statist. 3, 975-81.

Hawman, E. J. (1979). The statistical theary of linear systems. In Developments in Statistics, Vol. IT, Ed.
P. R. Krishnaiah, pp. 83-121. New York: Academic Press,

Tiawn, P.-D.- (1978). On the fitting of multivariate processes of the autoregressive-moving average type,
Biometrika 65, 99-107.

[Received November 1978, Revised April 1979]



