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Lecture 6: Multivariate Time Series and VARs

The theory on linear time series models developed for the univariate case extends in a natural
way to the multivariate case.
Let z, = (x1.4,...,2k¢) be a k-dimensional vector of univariate time series. Then x; is weakly
stationary if
Exy =p Vi
and E (z; — p) (vep — p) = T(k) Vt exists and |[T(0)]| < oo where ||A|| = (tr AA’)/? is the
n n
euclidean matrix norm. It follows immediately for any n and any vectors ay, ..., a, that > > a;T'(i—
i=11=1
l)a; > 0. The spectral density matrix of y; is defined as

o
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provided >~ ||T'(h)|| < co. Note that the diagonal elements of f()) are the univariate spectral
densities of z;;. The off-diagonal elements of f(\) are called the cross spectra between x;; and .
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Note that v;,,(h) # 7;,,(—=h) in general so that the off-diagonal elements of f(\) are in general
complex valued. '

As for the univariate case there is an infinite moving average representation of ;. Assume that
x4 is purely non-deterministic and weakly stationary, then

oo
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=0

o0 .
where W(L) = )~ ¥;L7 and & is a multivariate sequence of white-noise processes such that
j=0

E€t = 0
Ests; =
and Estslj =0 for t # s

The coefficients matrices W; of dimension k x k satisfy Y 77, H\I/JH2 < o0. If the polynomial ¥(L)

can be approximated by a rational matrix polynomial ®(L)~!©(L) then the model has an ARMA
representation

(L)(x — p) = O(L)er.

The vector ARMA model is causal if ®(L)~! is well defined, i.e., if it has a convergent power series
expansion. This is the case if ®(z) is invertible for |z| <1 or if det ®(z) # 0 for |z| < 1.



In the same way the ARMA representation is invertible if det ©(z) # 0 for |z| < 1. We can then
write

O(L) (L) (2 — p) = &t

or
o0

(e —p) = ZH@- (T1—i — p) + &
i=1
where I —II(L) =1 — Y2 ILL" = ©(L)~'®(L).
In practice, it is usually assumed that II(L) can be approximated by a finite order polynomial.
This leads to the VAR(p) model

ye =Ihys 1+ .+ Iy p + e,

where y; = x; — p. The VAR(p) model can be represented in companion form by stacking the vectors
yz in the following way

Yt IIL o OHp Yt—1 Eot
T

Yi—pt1 ’ I 0 Yi—p O

Y; = Y + e

The autocovariance function of y; can be found from considering the Yule Walker equations

p
I0) = Eyw, =Y LBy iy, + Eey,
=1

and

by stacking TI' = [ITy, ..., TI,)] and F; = [[(—1)...'(—p)] . These equations can be written as

o) = I‘;H + X
and
Iy =Tpll
with
[F(p)]ij =T(—J)
such that

S =T(0) — I T,)IL
For the AR(1) case we have

o) = T(-DI, +3%
(k) = I(h—1)II,



and
I'(1) = T(0)II, or ['(—1) = II,T(0)

such that T'(0) = I, T(0)IT; + 3 and
vecT'(0) = (I} ® IT; ) vecT'(0) 4 vec X
solving for vecI'(0) gives us 7
vecD(0) = (1 —I; @ ;) ' vec S,

The best linear predictor for the VAR (p) model can be found in the same way as for the univariate
case

Y1 = Puyier =y + o+ 1y pia
= H(L)yi+1
) (- T e
= (U(L)—1)ets

o
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where W(L) = Y70 (W, L = (I —II(L))~" and for the h-step ahead prediction error we have

o
Jt+n = Pr,Yien = Z Veet—sth
s=h

with prediction error
h—1

Yi+h — Yth = Z Ve€i—sth-

s=0
The prediction error therefore has variance
h—1
var (Yeon — Gran) = S+ »_ U N,
s=1

6.1. Estimation of a VAR(p)

We stack the vectors y; such that
x, = (yt_l,yt_Q,...,yt_p) and I = [Hl,...,Hp]
1xkp

then we can write )
yr =l xy + &4

or y; = ;11 + ¢,. We stack the variables into matrices

such that the model can be written as



In vectorized form this is
vecY = (I ® X)vecIl + vece.

Note that E(vece)(vece) = X Ir. The likelihood is then approximately proportional to

Tk T 1 el
— log(2m) — 3 log || — i(vec e) (57" @ Ir) vece,

where
’

(vec e) (N1 w0 Ip)vec e = tr £ tee’ = tr £ LY — XTI)(Y — XTI)

The ML estimator is now immediately seen to be

vec Il = [(I@X’) (E el (s X)y1 (I(}o X’) (1 & 1) vecy

(B @ x'X) " (37 @ X ) veey

’ -1 ’
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which shows that the ML estimator is equivalent to OLS carried out equation by equation.
Now

(veo(fr-m)) = (5o (x'%) 7 ) vece
= <I<><> (X’X)_1> (1 00 X") vece,
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where (I % (%X X) ) L I@r, " and—L (I ® X ) vec & 5 N (0,2 ®T,) with T, = Exa,
follows from noting that
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and
0 if t#s

’
VAl TEpE T, = .
LEbE)s s { o¢;I'p  otherwise.

Therefore the distribution of the parameter estimates is asymptotically

VTvee (I—11) 4 N (0, (16T, 1) (S0 T,) (I0T,')) = N (0.5 0T, ).

. This

If we have blockwise restrictions as in the case of Granger-non causality then we still can estimate
the system equation by equation. If we have more general restrictions then we need to estimate the

full system.



6.2. Prediction error variance decomposition

If we want to analyze the contributions of the error terms €; to the total forecast error variance then
we need to orthogonalize the system. Let Ee;e, = ¥ and RER' = I where R is lower triangular.
Then ERee,R' = Enn, = I. We now look at the transformed model

oo
Y = Z‘I’jR_lREtfj = ZCjnt*j'
j=0
The forecast error of an h-step ahead forecast now is

h—1 h—1
var (Ye4n — Je4n) =X+ Z C;C; =%+ Z R RV

j=1 j=1
The coefficients C'; can be obtained from
C;=JAJR™!
where
11, I, 1II,
I 0
J' =[I},0...0], A=
—— . :
kxkp I 0

Then, according to Sims (1981), the proportion of the h-step ahead forecast error variance in variable
[ accounted for by innovations in variable 7, , is given by

h—1
2 2
Tyt E Cli,j»
=1

where r;; = [Pfl] i and ¢ ; = [Cj]“. To see this, note that the forecast error is given by

!
h—1
Yorh = Jeen = R + Z Cing—j,
j=1
while the forecast error resulting from 7, , ; is given by

h—1
R, '+ Z CiNit—j

i=1

where Ri_1 is the ith column of R~! and C; ; is the it" column of C;. The relative forecast error
variance is then given by

2 h—1 2
i+ 2251 Chi

var (Yirh — Ueh),

where var (Y, — Gs+n); is the [*" diagonal element of var (yi4n — J141) -

If one is interested in innovations in the original variables rather than the orthogonalized innova-
tions 7, then an identification scheme as discussed in the next section is needed. In particular, since
1, = Re; with R lower triangular, we can identify the first element of ¢, with the first element of 7,.
Since the ordering of the vectors y; is arbitrary this identification scheme applies to all elements of
Et.



6.3. Impulse response functions

Closely related to the concept of error variance decomposition is the concept of an impulse response
function.

We are interested in the effect of a shock e;; onto the variable y;;yp.  Using the MA(o0)
representation for y;,j we find

o
Yt+rh = E Wicithj
=0

so the impact of e; onto y;4p is WUpey. If we are interested in a unit variance shock of ;; then we
need to take into account the fact that e; is correlated with other shocks. This is again done by
orthogonalizing the innovations

1, = Ret

where R is lower triangular such that and 7, is orthogonal. Then e; = R 1, and in particular,
€1t = T117M14- Since the ordering of the variables is arbitrary we can restrict attention to the first
innovation without loss of generality. Note that once the value of 14 is fixed, the value of the other
innovations follow from e, = R~'n, where we set 7y, = .... = 1;,, = 0. The impact of £1; onto y;4p
is therefore

[\I/hR_l] first column of ¥, R~*

At

The impact onto variable [ is then 7
[\IlnRil] Li-

Typically the ordering of the variables is chosen to reflect a certain structure of shocks in the
economy. For example, if we want to model monetary policy shocks as the original source of
randomness then we would place a monetary variable in the first equation.

6.4. Granger causality

Assume that y; = (y14,y2:) is partitioned into two subvectors. Granger defined the concept of
causality in terms of forecast performance. In this sense y;; does not g-cause yo; if it does not help
in predicting yo;. Formally,

Definition 6.1 (Granger Causality). Let y; be a stationary process. Define the linear subspaces

M = p{yi,s <t}
M; = 5p{yss,s <t}

Then y1; causes yoy if
PMLlqufl (y2t) # PMi1 (y21)

and yq4 causes yo; instantaneously if
PM%U/M?71 (y?t) # PJM571 (yQt)

It follows at once from the definition of Granger causality and the projection theorem that w4
does not g-cause yo; if

var (5%) = var (5%)



where e} = yoy — Py ymez | (y2e) and € = yo — Pz (y2¢). Another way to characterize Granger
noncausality is by noting that

cov(Y2t, Yre—h — Pagz (y1e-n)) = 0 for h > 0.
To see this note that by Granger causality

yor — P

J

wffl(yzt) 1 M%A U M%—l
which implies that
cov(y2r — Prz (W2t),y1e-n — Pz (y1e-1)) =0 for >0

since y11—p, — Prgz | (y11—n) € M}_; UM?_,. But by the projection theorem it follows that yis_j, —

Pre (y1e—n) L MG_; such that

J

cov(Ppyz

J

(W2t),y1e—h — Pagz_ (y11-n)) = 0.

1

It has to be emphasized that this notion of causality is strongly related to the notion of sequentiality
in the sense that an event causing another event has to precede it in time. Moreover, the definition
really is in terms of correlation rather than causation. Finding evidence of Granger causality can be
an artifact of a spurious correlation. On the other hand, lack of Granger causality can be misleading
too if the true causal link is of nonlinear form.

An alternative definition of causality is due to Sims.

Definition 6.2 (Sims Causality). For y;; and yo; stationary we say that y1; does not cause yo; if

cov(Yat+j, Y1t — Pagz(y1¢)) = 0 for all j > 1.

It can be seen immediately that this definition implies that all the coefficients d; for 7 < 0 in the
projection

oo
Y1t = Z djyat—j + wy

j=—o0

are zero and the projection residual wy is uncorrelated with all future values 324 ;.
Theorem 6.3. Granger Causality and Sims Causality are equivalent.
Proof. Assume y; does not Granger cause y7. Then

cov(Yat,Y1t—n — Prz (Y1e—n)) = 0 for h > 0.

2
t—1

Note that PM?,l,h(yQt) = PMz PM%71U/\4571 (ygt) = PM%71U/’\/12 (ygt) such that yQt*PJMf,h(yQt) 1

t—1—h t—1—h

M} UMZ_, for h > 0 such that
cov(Yat, Yy1e—h — PM?,h(ylt—h)) =0 for h > 0. (6.1)
By stationarity this is equivalent to
cov(Yatth, Y1t — Py (y1¢)) = 0 for h > 0.

The reverse implication follows from the fact that by (6.1) ya: — Pag2 (y2r) L M} UM;Z | which
corresponds to Granger causality. l



6.5. Granger causality in a VAR
Let

o) onm ) e ]=12]

where e1; and €95 are uncorrelated for all ¢ and s. Then yq; fails to Granger cause ys; if ®o1(L) = 0.
This follows from the fact that

Puiomz (y2e) = (Po2(L) — 1) yor + Por(L)yne
= P/\/i571 (yQt)

if and only if ®9;(L) = 0. If ®(L)~! exists then the MA(co) representation of the system is

HESCIFIR I
Thus ®(L)W(L) = I so in particular
<I>12(L)\D11(L) + <I>22(L)\1121(L) =0

e
(L) | [ e
if y1+ fails to Granger cause yo;. Thus we have
y1e = Vi1 (L)ery + Wia(L)eay
and Poo(L)yor = €94 80 Y14 = Uy (L)ery + Uio(L)Poo(L)ys;. Then
PM$ (Y1) = Wio(L)Poo(L)yay

which implies oy (L) = 0 if $a3(L) # 0. We see that

Yit _ \1’11(L) U,y
yor | | O Wo

(SR o)

since Wq1(L)e14 is orthogonal to M7. It now follows immediately that

cov (Y245, Y1t — Vi2(L)Poa(L)yar)
= CcoVv (y?.t+j; \1’11([1)6115) =0 v_] >0
This establishes that Granger causality implies Sims causality. It can also be shown that Sims
causality implies Granger causality. It thus follows that the two concepts are equivalent.

We can test the null of Granger non-causality by estimating the unrestricted VAR equation by
equation by OLS and then test if the coefficients 15y ;...1I2; p in

Yor = Co + IA121.1y1tf1 + ...+ 12121.;7,@1.1&7;7 + ﬁ22.1y2t71---ﬁ22.py2t7p (%)

are jointly significantly different from zero. For a bivariate system this can be carried out by a
standard F-test. Calculate the unrestricted residuals RSS; = 3 &7 and residuals from the restricted
regression

Yor = G + Moo 1y2g1 + o + ]-:-[22.py2t7p~

as RSSy = > &/. Then under normality

RSSy — RSS:

RSS, (T—2p—1)/p~F(pT—2p—1)

An asymptotically equivalent test is T (RS Sy — RSS1)/RSS) 4, X;% under the null Hypothesis of no
Granger causality.



6.6. Structural VARs

Assume we have a structural economic model which is driven by behavioral sources of variation
collected in a vector process €(t). The structural model connects economic variables to current and

past values of driving shocks
o oo
ZAsytfs = Z Bgey s (62)
s=0 5=0
We also assume that Y; has an equivalent VAR (oco0) representation

v =Y Ty o+ (6.3)

If the number of elements in ¢; is equal to the number of elements in y; and if knowledge of A; and
B; is enough to solve for ¢; in terms of lagged y; then we can write

B(L) Y A(L)y; = Boe; (6.4)

with
> .
B(L)=I1+) BB;'L'
=1

where B(L)~! has a polynomial expansion >~ C;L" and
B(L)™"A(L) = B(L)™" [Ao + (A(L) — Ao)] .

Since B(L)~! satisfies (I+ ;¢ B;By L") (3" C;L") = I it must hold that Co = I.  This
establishes that (6.4) is

Aoy + Z Csyi—s = Boey
s=1

with Cy such that B(L)~" (A(L) — Ap) = 3,22, CsL®. Substitution from (6.3) then gives

Aoug + i (AOHS + Os) Yi—s = Boey

s=1

If the structural and reduced forms are identical it has to hold that AgIl, = —C’S. Then the unre-
stricted innovations of the VAR are related to the behavioral innovations &; by

-1
Uy = AO BOE;t-

Note that I, are unrestricted reduced form parameters that can always be estimated from the data.
If the theoretical model (6.2) does not restrict the dynamics of the system then we can always set
Iy, = Ay 1C,. Identification of the system then reduces to finding the matrices Ay and B.

Since we can consistently estimate the reduced form residuals @; we can estimate ¥ = var(u,) by

S = % > iy

If we now impose the restriction that the policy disturbances e; be uncorrelated and that 2 = var (e;)
is diagonal and that By = I then

The matrix Ag can then be identified by imposing that it is lower triangular. In other words, if the
only restrictions on the system are that Ag is the lower triangular and that 2 is diagonal then the
structural VAR is just identified.



It is clear that the just identified case with triangular matrix is only one of many possibilities to
identify Ag.

Another interesting example is Blanchard and Quah’s decomposition. Their goal is to decompose
GNP into permanent and transitory shocks. They postulate that demand side shocks have only
temporary effects on GNP while supply side or technology shocks have permanent effects. Unem-
ployment on the other hand is affected by both shocks. They postulate

- (28 2]

2
Uy CQl(L) C22 (L) Edt

with ¢11(1) = 0 such that €5 has no long-run effect on AY;. Also assume Este:; =1.
The V AR(p) representation of the system is

][ 83

Ut azn (L) az(L) Ut—1 Nt

Since in this case Ag = I, it follows that
Me | _ | €1(0) c12(0) | | est
Mat 21(0)  22(0) Edt

The goal is to estimate the structural residuals €; which can be done if we know the coefficients of
the matrix Cy = C(0). From En,n, = ¥ we have

¥ = CoC
ie.,
varn, = 011(0)2 +012(0)2
varn, = co1 (0)2 + 022(0)2
cov (n1,m2) = c11(0)c21(0) + c12(0)e22(0)

These are three restrictions for four variables. The fourth restriction can be obtained from the long-
run restriction ¢17(1) = 0. Note that (I — A(L)L) ' Cy = C(L) by the MA(c0) representation of
the VAR and 7, = Cyey. So in particular, (I — A(1))™' Cy = C(1). Now

1 1 —agz(l) +(112(1)

=AD" =5 | () 1-an()

where D = det(I — A(1)). The upper corner of C(1) is zero by the long run restrictions such that we
have an additional equation to determine the coefficients

(1 —a2(1))e11(0) + a12(1)c21(0) = 0.
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