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Lecture Note 2 - Stationary Processes

In this lecture we are concerned with models for stationary (in the weak sense) processes. The
focus here will be on linear processes. This is clearly restrictive given the stylized facts of financial
time series. However linear time series models are often used as building blocks in nonlinear models.
Moreover linear models are easier to handle empirically and have certain optimality properties that
will be discussed. Linear time series models can be defined as linear difference equations with constant
coefficients.
We start by introducing some examples. The simplest case of a stochastic process is one with

independent observations. From a second order point of view this transforms into uncorrelatedness.

Example 2.1 (White Noise). The process {εt} is called white noise if it is weakly stationary with
Eεt = 0 and autocovariance function

γεε(h) =

½
σ2 h = 0
0 h 6= 0

and we write εt ∼WN(0,σ2). A special case is {εt} with εt ∼ iid(0,σ2).
The white noise process is important because it can be used as a building block for more general

processes. Consider the following two examples.

Example 2.2 (Moving Average). The process {xt} is called a moving average of order one or
MA(1) if {xt} is stationary and

xt = εt + θεt−1

and εt is white noise.

It follows immediately that γxx(0) = σ2(1 + θ2), γxx(1) = θσ2 and γxx(h) = 0 for |h| > 1. A
slightly more complicated situation arises when we consider the following autoregressive process.

Example 2.3 (Autoregression). The process {xt} is called autoregressive of order one or AR(1)
if {xt} is stationary and satisfies the following stochastic first order difference equation

xt = φxt−1 + εt (2.1)

and εt−1 is white noise.

By iterating on (2.1) we find

xt = εt + φεt−1 + ...φk−1εt−k+1 + φkxt−k.

By stationarity Ex2t−k is constant and if |φ| < 1 then E(xt −
Pk
j=0 φ

jεt−j)2 = φ2kEx2t−k tends to
zero as k →∞. Therefore

xt =
∞X
j=0

φjεt−j (2.2)

in mean square and therefore in probability. It can also be shown that (2.2) holds almost surely.
Equation (2.2) is the stationary solution to (2.1). It is called causal because it only depends on past
innovations.



Under the stationarity assumption we can see that

Ext = φExt−1 + 0⇒ Ext = 0

and
Extxt−h = φExt−1xt−h +Eεtxt−h

such that
γxx(h) = φγxx(h− 1). (2.3)

By premultiplying equation (2.1) by xt on both sides and taking expectations we also have γxx(0) =
φγxx(1) + σ

2 such that together with γxx(1) = φγxx(0) we can solve for γxx(0) = σ
2/(1− φ2). This

now leads to

γxx(h) =
σ2φh

(1− φ2) .

This derivation of the form of γxx(h) is based on solving the Yule Walker equations (2.3). An
alternative way to derive this result is to directly calculate the autocovariances based on the solution
(2.2).

2.1. Lag Operators

For more general time series models it is less easy to find the solution by repeated substitution of the
difference equation. It is therefore necessary to develop a few tools to analyze higher order difference
equations. We introduce the lag operator L which maps a sequence {xt} into a sequence {yt} and is
defined by its operation on each element in the sequence

yt = Lxt = xt−1 ∀t.
If we apply L repeatedly then we use the convention that

Lp =L ◦ L ◦ ... ◦ L| {z } .
p

L has an inverse L−1 such that L−1Lxt = LL−1xt = xt. It is also immediate that L is linear

Laxt = aLxt = axt−1.

We can use the operator L to define more complex linear operators, the polynomial lag operators.
Let φ(L) = 1 − φ1L − ... − φpLp then φ(L) is a polynomial of order p in L. It follows that φ(L) is
again a linear operator. For p = 1 we can write the AR(1) model in compact form

φ(L)xt = εt.

In the same way as before φ(L) has an inverse φ(L)−1 such that φ(L)−1φ(L)xt = φ(L)φ(L)−1xt = xt.
For the case of p = 1 it is easy to find φ(L)−1 in terms of a polynomial expansion. Since L is a
bounded operator and if |φ1| < 1

(1− φ1L)(1 +
kX
j=1

φj1L
j) = 1− φk+11 Lk+1 → 1 as k →∞

such that

φ(L)−1 = (1 +
∞X
j=1

φj1L
j). (2.4)

One way to find the inverse of higher order polynomials is therefore to factorize them into first order
polynomials and then use relation (2.4). This is also the idea behind the solution of a p-th order
difference equation to which we turn now.
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2.2. Linear Difference Equations

We consider solutions {xt} of the p-th order linear difference equation
xt + α1xt−1 + ...+ αpxt−p = 0 (2.5)

where α1, ...αp are real constants. In lag polynomial notation we write α(L)xt = 0. A solution then
is a sequence {xt} such that (2.5) is satisfied for each t. A set of m ≤ p solutions {x(1)t , ..., x(m)t } are
linearly independent if

c1x
(1)
t + ...+ cmx

(m)
t = 0 for all t = 0, 1, ..., p− 1

implies c1, ..., cm = 0. Given p independent solutions and p initial conditions x0, ..., xp−1 we can then
solve 

x
(1)
0 · · · x

(p)
0

...
...

x
(1)
p−1 · · · x

(p)
p−1


 c1
...
cp

 =
 x0
...
xp−1


for the vector of coefficients (c1, ..., cp). The unique solution to (2.5) is then c1x

(1)
t + ...+cmx

(m)
t = xt

since this is the only solution xt that satisfies the initial conditions. All values for xt, t > p are then
uniquely determined by recursively applying (2.5).
From fundamental results in Algebra we know that the equation α(L) = 0 has p possibly complex

roots such that we can write

α(L) =

jY
i=1

(1− ξ−1i L)ri (2.6)

where ξi, i = 1, ..., j are the j distinct roots of α(L) and ri is the multiplicity of the i-th root. It is
therefore enough to find solutions x(i)t such that (1− ξ−1i L)rix

(i)
t = 0. It then follows from (2.6) that

α(L)x
(i)
t = 0. We now show the following result.

Lemma 2.4. The functions h(k)t = tkξ−t, k = 0, 1, ..., j−1 are linearly independent solutions to the
difference equation

(1− ξ−1L)jht = 0
Proof. For j = 1 we have

(1− ξ−1L)ξ−t = ξ−t − ξ−1Lξ−t
= ξ−t − ξ−1ξ−t+1 = 0.

For j = 2 we have (1− ξ−1L)2ξ−t = 0 from before and

(1− ξ−1L)2tξ−t = (1− ξ−1L)(tξ−t − (t− 1)ξ−t)
= tξ−t − 2(t− 1)ξ−t + (t− 2)ξ−t = 0

and similarly for j > 2. This follows from repeated application of

(1−mL)(a0 + a1t+ ...+ aktk)mt = mt

Ã
kX
r=0

ar(t
r − (t− 1)r)

!
= (b0 + b1t+ ...+ bk−1tk−1)mt

where b1, ..., bk−1 are some constants. Finally we note that h
(k)
t are linearly independent since if¡

c0 + c1t+ ....+ ck−1tk−1
¢
ξ−t = 0 for t = 0, 1, ..., k − 1
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then the polynomial
¡
c0 + c1t+ ....+ ck−1tk−1

¢
of degree k − 1 has k zeros. This is only possible if

c1, ..., ck = 0.
Lemma (2.4) shows that α(L)xt = 0 has p solutions tnξ−ti , n = 0, 1, ..., ri − 1, i = 1, ..., j. The

general solution to (2.5) then has the form

xt =

jX
i=1

ri−1X
n=0

cint
nξ−ti . (2.7)

The p coefficients cin are again determined by p initial conditions. The coefficients are unique if the
p solutions tnξ−ti are linearly independent. This follows if

jX
i=1

ri−1X
n=0

cint
nξ−ti = 0 for t = 0, 1, 2, ...

implies cin = 0 ∀i, n. For a proof see Brockwell and Davis (1987), p.108.

2.3. The Autocovariance function of the ARMA(p,q) Model

In this section we use the previous results to analyze the properties of the ARMA(p, q) model. The
ARMA(p, q) process is defined next.

Definition 2.5. The process {xt} is called ARMA(p, q) if {xt} is stationary and for every t
xt − φ1xt−1 − ...− φpxt−p = εt + θ1εt−1 + ...+ θqεt−q. (2.8)

A more compact formulation can be given by using lag polynomials. Define

φ(L) = 1− φ1L− ...− φpLp

and
θ(L) = 1 + θ1L+ ...+ θqL

q.

then (2.8) can be written as φ(L)xt = θ(L)εt. It is useful to find different representations of this
model. For this purpose we introduce the following notions

Definition 2.6. The ARMA(p,q) process (2.8) is said to be causal if there exists a sequence {ψi}∞i=0
such that

P |ψi| <∞ and

xt =
∞X
i=0

ψiεt−i.

It can be shown, that an ARMA(p,q) process such that θ(L) and φ(L) have no common zeros is
causal if and only if φ(z) 6= 0 for all z ∈ C such that |z| ≤ 1. Then the coefficients ψi are determined
from

ψ(z) =
∞X
i=0

ψiz
i = θ(L)/φ(L) (2.9)

by equating coefficients in the two polynomials. We only discuss the if part. Assume φ(z) 6= 0 for
|z| ≤ 1. Then there exists an ² > 0 such that 1/φ(z) has a power series expansion

1/φ(z) =
∞X
j=0

ξjz
j for |z| ≤ 1 + ².

This implies ξj(1 + ²/2)
j → 0 as j →∞ so that there exists a positive finite constant K such that¯̄

ξj
¯̄
< K(1 + ²/2)−j . Thus

P∞
j=0

¯̄
ξj
¯̄
<∞ and ξ(z)φ(z) = 1. This now justifies writing

xt = θ(L)/φ(L)εt.

Another related property of the ARMA(p, q) process is invertibility. This notion is defined next.
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Definition 2.7. The ARMA(p,q) process (2.8) is said to be invertible if there exists a sequence
{πi}∞i=0 such that

P |πi| <∞ and

εt =
∞X
i=0

πixt−i.

It can again be shown that (2.8), such that θ(L) and φ(L) have no common zeros, is invertible
if and only if θ(z) 6= 0 for all z ∈ C such that |z| ≤ 1. Invertibility means, that the process can
be represented as an infinite order AR(p) process. This property has some importance in applied
work since AR(p) models can be estimated by simple projection operators while models with moving
average terms need nonlinear optimization.
Causality can be used to compute the covariance function of the ARMA(p, q) process. Under

causality we can write

xt =
∞X
i=0

ψiεt−i

such that

γxx(h) = σ
2
∞X
i=0

ψiψi+|h|.

This expression is however not very useful since it does not show the dependence on the underlying
parameters of the process. Going back to (2.9) we write ψ(z)φ(z) = θ(z) and equate the coefficients
on zi. This leads to

ψj −
X
0<k≤j

φkψj−k = θj , 0 ≤ j < max(p, q + 1)

and in particular for j = 0, 1, 2, ..

ψ0 = 1

ψ1 = θ1 + φ1
ψ2 = θ2 + φ2 + θ1φ1 + φ

2
1.

...

We can now obtain the covariance function of xt by premultiplying both sides of (2.8) by xt−h
and using the representation xt =

P∞
i=0 ψiεt−i. Taking expectations on both sides then gives

γxx(h)− φ1γxx(h− 1)− ...− φpγxx(h− p) = σ2
X
h≤j≤q

θjψj−h, (2.10)

for 0 ≤ h < max(p, q + 1)

and
γxx(h)− φ1γxx(h− 1)− ...− φpγxx(h− p) = 0 for h ≥ max(p, q + 1). (2.11)

Note that if q + 1 > p then there are more initial conditions than linearly independent solutions to
the difference equation. In this case the first q − p + 1 autocorrelation coefficients are determined
from the first q− p+1 initial conditions. The general solution to this system of difference equations
is now given by (2.7) as

γxx(h) =

jX
i=1

ri−1X
n=0

cinh
nξ−hi for h ≥ max(p, q + 1)− p

where ξi are the distinct roots of the AR polynomial φ(z) and cin are p coefficients determined by
the initial conditions (2.10). The covariances γxx(h), 0 ≤ h < max(p, q + 1)− p are also determined
from (2.10).
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Example 2.8. We look at the autocovariance function of the causal AR(2) process

(1− ξ−11 L)(1− ξ−12 L)xt = εt.

where |ξ1|,|ξ2| > 1 and ξ1 6= ξ2. Assume σ2 = 1 w.l.g. The autoregressive parameters are given by
φ1 = ξ−11 + ξ−12 and φ2 = −ξ−11 ξ−12 . It now follows that ψ0 = 1 and ψ1 = ξ−11 + ξ−12 . Then the
boundary conditions are

γ(0)− φ1γ(1)− φ2γ(2) = 1

γ(1)− φ1γ(0)− φ2γ(1) = 0.

Now, using the general solution γ(h) = c1ξ
−h
1 + c2ξ

−h
2 for h ≥ 0 and substituting into the boundary

conditions gives

c1 = ξ31ξ
2
2

£
(ξ21 − 1)(ξ2 − ξ1)(ξ1ξ2 − 1)

¤−1
c2 = ξ21ξ

3
2

£
(ξ22 − 1)(ξ2 − ξ1)(ξ1ξ2 − 1)

¤−1
which fully describes the covariance function in terms of underlying parameters. Substituting into
the general solution then gives

γ(h) =
σ2ξ21ξ

2
2

(ξ2 − ξ1)(ξ1ξ2 − 1)
[(ξ21 − 1)−1ξ1−h1 − (ξ21 − 1)−1ξ1−h1 ].

Another interesting question is for what values of φ1,φ2 the roots lie outside the unit circle. Solving
for ξ−11 , ξ

−1
2 in terms of φ1,φ2 gives

ξ−11,2 =
φ1 ±

q
φ21 + 4φ2

2

such that ξ−11,2 = 1 if φ2 = 1− φ1 and ξ−11,2 = −1 if φ2 = 1 + φ1. ξ−11,2 is complex if φ21 + 4φ2 < 0. The
modulus of the complex roots is larger than one if φ2 < −1.

2.4. Linear Projections and Partial Autocorrelations

We begin by reviewing some basic properties of linear vector spaces. A vector space V is a set
(here we only consider subsets of Rn or Cn) with two binary operations, vector addition and scalar
multiplication. A vector space is closed under linear transformations, i.e. αx+ βy ∈ V for x, y ∈ V
and α,β scalars.
A norm is a function k.k : V → [0,∞) such that kλxk = |λ| kxk , kx+ yk ≤ kxk + kyk and

kxk = 0 ⇒ x = 0. A function without the last property is called a seminorm. A normed vector
space is a vector space equipped with a norm. We can then define the metric ρ(x, y) = kx− yk on
V. A vector space is called complete if every Cauchy sequence converges. A complete normed space
is called a Banach space. We use the notation z̄ for the complex conjugate of z if z ∈ C.
An inner product on a complex normed vector space is a function hx, yi : V 2 → C such that

hx, yi = hy, xi, hαx+ βy, zi = a hx, zi + b hy, zi for a, b ∈ C and hx, xi = kxk2 . A complete inner
product space is called a Hilbert space.

Definition 2.9 (Basis of a Vector Space). A basis of a complex vector space V is any set of
linearly independent vectors v1, ...vn that span V, i.e, for any v ∈ V there exist scalars αi ∈ C such
that v =

Pn
i=1 αivi.

A basis is said to be orthonormal if hvi, vji = 1 for i = j and hvi, vji = 0 for i 6= j.
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Definition 2.10. A subspace of a vector space is a subset M ⊂V such that M itself is a vector
space. If V is an inner product space then we can define the orthogonal complement ofM denoted
byM⊥ as

M⊥ = {x ∈ V : hx, yi = 0,∀y ∈M}.
Proposition 2.11 (Vector Decomposition). Any element x ∈ V can be written as the sum of
two vectors y1, y2 such that y1 ∈M and y2 ∈M⊥ for any subspaceM ⊂V.
Proof. Let v1, ...vp be an orthonormal basis ofM. Let y1 =

Pp
i=1 hy, vii vi. Let y2 = y−y1. Clearly,

y1 ∈M. Also, for j = 1, ..., p,

hy2, vji = hy, vji− hy1, vji = hy, vji−
*

pX
i=1

hy, vii vi, vj
+
= hy, vji− hvj, vji hy, vji = 0.

So, y2 is orthogonal to vj , j = 1, ..., p, thus y2 ∈M⊥.
An alternative way to express this result is to write V =M⊕M⊥. Let x ∈ V andM a linear

subspace of V. A projection PM(x) of x ontoM is an element ofM such that

kx− PM(x)k = inf
y∈M

kx− yk .

Theorem 2.12 (Projection Theorem). (a) PM(x) exists, is unique and is a linear function of x.
(b) PM(x) is the projection of x onM iff x− PM(x)⊥M.

Proof. (a) By the proof that V =M⊕M⊥, we can write x = x1+x2 where x1 ∈M and x2 ∈M⊥

and x1 =
Pp
i=1 hx, vii vi. Then for any y ∈M we have

kx− yk2 = hx− x1 + x1 − y, x− x1 + x1 − yi
= kx− x1k2 + kx1 − yk2
≥ kx− x1k2

where the inequality is strict unless kx− yk2 = 0 or y = x1. Hence x1 is the projection of x ontoM
and it is unique.
(b) If PM(x) is a projection of x ontoM then by part (a) PM(x) = x1 and x−PM(x) = x2 ∈M⊥.

Conversely if PM(x) is some element ofM for which x−PM(x) ∈M⊥, then x1+x2−PM(x) ∈M⊥,
x1 − PM(x) ∈ M⊥, since x2 ∈ M⊥ and x1 − PM(x) ∈ M since x1, PM(x) ∈ M. This implies
x1 − PM(x) = 0. Therefore PM(x) is the projection of x ontoM.
In this section we need some properties of complex L2 spaces defined on the random variables

X on (Ω,F , P ). By definition E |X|2 <∞ for X ∈ L2(Ω,F , P ). The space L2 is a complex Hilbert
space with inner product

hX,Y i = E(XY ).
From the previous definition of a linear subspace M of a Hilbert space H we know that M is a
subset M ⊂ H such that 0 ∈M and for x1, x2 ∈M it follows that y = a1x1 + a2x2 ∈M for all
a1, a2 ∈ C. A closed linear subspace is a subspace that contains all its limit points.
Definition 2.13 (Closed Span). The closed span sp{xt, t ∈ T } of any subset {xt, t ∈ T } of the
Hilbert space H is the smallest closed subspace of H which contains each element of {xt, t ∈ T }.
The closed span of a finite set {x1, ..., xn} contains all linear combinations y = a1x1 + .... + anxn,
a1, ..., an ∈ C.
We defined the projection PM(x) of x ∈ H onto the subspace M as the element x̂ ∈ M such

that hx− x̂, x− x̂i = infy∈M hx− y, x− yi . The projection x̂ is unique by the projection theorem.
Moreover x− x̂ ∈M⊥ whereM⊥ is orthogonal toM.
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It is now obvious from the definition of PM(x) that the projection onto sp{x1, ..., xn} has the
form

Psp{x1,...,xn}(x) = a1x1 + ....+ anxn

since Psp{x1,...,xn}(x) ∈ sp{x1, ..., xn} and the coefficients have to satisfyX
ai hxi, xji = hx,xji for j = 1, ...n.

Using the concept of projection onto linear subspaces we can now introduce the partial auto-
correlation function. The partial autocorrelation function measures the correlation between two
elements xt+k and xt of a time series after taking into account the correlation that is explained
by xt+1, ...xt+k−1. In the following we assume stationarity of xt and normalize t = 1. Formally the
partial autocorrelation function of a stationary time series is defined as

α(1) = Corr(x2, x1) = ρ(1)

and
α(k) = Corr(xk+1 − Psp{x2,...,xk}(xk+1), x1 − Psp{x2,...,xk}(x1)).

The partial autocorrelation is therefore the correlation between the residuals from a regression of xk+1
on x2, ..., xk and the residuals from a regression of x1 onto x2, ..., xk. An alternative but equivalent
definition can be given in terms of the last regression coefficient in a regression of xt onto the k
lagged variables xt−1, ...xt−k. If

Psp{x1,...,xk}(xk+1) =
kX
i=1

φikxk+1−i

where 
ρ(0) ρ(1) · · · ρ(k − 1)

. . .
. . .

...
. . . ρ(1)

ρ(0)



φ1k
...
...
φkk

 =

ρ(1)
...
...
ρ(k)

 (2.12)

then α(k) ≡ φkk. It can be shown that the two definitions are equivalent. We consider two examples
next.

Example 2.14. Let xt follow a causal AR(p) process such that

xt − φ1xt−1 − ...− φpxt−p = εt with εt ∼WN(0,σ2).

Then, for k ≥ p
Psp{x1,...,xk}(xk+1) =

pX
j=1

φjxk+1−j (2.13)

which can be seen from looking at any y ∈ sp{x1, ..., xk}. By causality y ∈ sp{εj , j ≤ k} such that
< xk+1 −

Pp
j=1 φjxk+1−j , y >= 0. By the projection theorem this implies that (2.13) holds. It now

follows that for k > p

α(k) = Corr(xk+1 −
pX
j=1

φjxk+1−j , x1 − Psp{x2,...,xk}(x1))

= Corr(εk+1, x1 − Psp{x2,...,xk}(x1))
= 0.
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We see that the partial autocorrelation for the AR(p) process is zero for lags higher than p. The
next example considers theMA(1) process. For the invertible case this process can be represented as
an AR(∞). We therefore expect the partial autocorrelations to die out slowly rather than collapsing
at a finite lag. This is in fact the case.

Exercise 2.1. Let xt be driven by a MA(1) process

xt = εt − θεt−1 with |θ| < 1, εt ∼WN(0,σ2)
then we know from before that α(1) = ρ(1) = −θ/(1 + θ2). Equations (2.12) now become

1 −θ
(1+θ2)

· · · 0

−θ
(1+θ2)

. . .
. . .

...
. . .

. . . −θ
(1+θ2)

0 −θ
(1+θ2)

1



φ1k
...
...
φkk

 =


−θ
(1+θ2)

0
...
0


Then φik is the solution to the difference equation

−θφi−1k + (1 + θ2)φik − θφi+1k = 0
with initial condition

(1 + θ2)φ1k − θφ2k = −θ
and terminal condition

(1 + θ2)φkk − θφk−1k = 0
The difference equation can be written as (1− (1 + θ2)/θL+ L2)φi = 0 with roots θ and 1/θ. The
general solution is then φi = c1θ

i+c2θ
−i. Substitution into the initial and terminal conditions allows

to solve for the constants c1 and c2, in particular

c1 =
−1

1− θ2(k+1) and c2 =
θ2k+2

1− θ2(k+1) .

The constants depend on k because of the terminal condition. The terminal value φkk is then found
from substituting back into the general solution. This leads to

α(k) = − θ
k(1− θ2)
1− θ2(k+1) .

We see from the two examples and the results on the autocovariance function that the highest
order of AR polynomial can be determined from the point where the partial autocorrelations are zero
and the highest order of the MA polynomial can be determined from the autocovariance function in
the same way. This has lead to method of identifying the correct specification for an ARMA(p, q)
model by looking both at the autocorrelation and partial autocorrelation function of a process. It is
clear that for a general model the decay patterns of these functions can be quite complicated. It is
therefore usually difficult to reach a clear decision regarding the correct specification by looking at
the empirical counterparts of autocorrelations and partial autocorrelations.

Exercise 2.2. Find the partial autocorrelation function for xt where

xt = εt − εt−1
and εt is white noise.
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