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This paper compares several methods (ordinary least squares, nonlinear least squares, maximum
likelihood in an error correction model, principal components, and canonical correlations) of
estimating cointegrating vectors. Although all of them are superconsistent, an empirical example
shows that the estimates can vary significantly. The paper examines the asymptotic distribution of
the estimators resulting from these methods, and shows that maximum likelihood in a fully specified
error correction model (Johansen's approach) has clearly better properties than the other es-
timators. A Monte Carlo study indicates that finite sample properties are consistent with the
asymptotic results. This is so even when the errors are non-Gaussian or when the dynamics are
unknown.
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1. Introduction

Several methods to estimate cointegrating vectors (long-run equilibrium
relationships) have been proposed in the literature since Granger (1983) intro-
duced the idea of cointegration. Chronologically they are: ordinary least squares
(OLS) by Engle and Granger (1987), nonlinear least squares (NLS) by Stock
(1987), principal components (PC) by Stock and Watson (1988), canonical
correlations (CC) by Bossaerts (1988), maximum likelihood in a fully specified

Correspondence to: Jesus Gonzalo, Department of Economics, Boston University, 270 Bay State
Road, Boston, MA 02215, USA.

*I am grateful to my advisor Clive Granger and to Robert Engle and Soren Johansen for
many uscful conversations and suggestions. I also wish to thank Juan Dolado, Devajyoti
Ghose, David Hendry, Miguel Herce, Svend Hylleberg, two anonymous referees, and the partici-
pants in the Econometric Workshops at thc Universitics of Boston, California (San Diego),
California (Los Angeles), Harvard, Toronto, and Vanderbilt. An earlier version of this paper was
presented at the NSF-NBER Seminar on Time Series, San Diego, October 1990. I thank the Bank
of Spain and the Sloan Foundation for their financial support. I assume responsibility for all
remaining errors.

0304-4076/94/%06.00 ' 1994—Elsevier Science Publishers B.V. All rights reserved



204 J. Gonzalo, Five methods to estimate cointegrating vectors

error correction model (MLECM) by Johansen (1988),! instrumental variables
(IV) by Hansen and Phillips (1990), and spectral regression (SR) by Phillips
(1991).2 The goal of this paper is to compare the behavior of the first five
methods (the most-used in empirical research) asymptotically as well as in finite
samples via a Monte Carlo study.’

The conclusions obtained agree with the theoretical results in Phillips (1991)
who shows that the best way to proceed in the estimation of cointegrated
systems is full system estimation by maximum likelihood, incorporating all prior
knowledge about the presence of unit roots. This approach ensures that coeffi-
cient estimates are symmetrically distributed, median unbiased, asymptotically
efficient, and that hypothesis tests may be conducted using standard asymptotic
chi-squared tests. The simplest procedure is to estimate a fully specified error
correction model (ECM) by maximum likelihood (ML). This is exactly the
method proposed by Johansen and the one which performs better in our Monte
Carlo experiment, even when the errors are nonnormal distributed or when the
dynamics are unknown.

Since the estimators resulting from the above methods are superconsistent
(the rate of convergence is T instead of T'1/2), it is assumed that there should not
be a big difference among their estimates with real data if the number of
observations is not too small. That is not the case with the example in table 1,
which presents different estimates (based on these five methods) of the cointe-
grating vector between short-term and long-term interest rates. Without arguing
whether the cointegrating vector should be one, as the expectation theory of the
term structure suggests, or greater than one, indicating an overreaction of the
long-term interest rates, the fact is that the estimates of the cointegrating vector
can vary significantly depending on the method we use to estimate it. For
instance, using Johansen’s method [MLECM(12)] with twelve lags in the ECM,
we can easily reject the null hypothesis that the cointegrating vector belongs to
the space spanned by (1, — 1) or (1, — 4,,) when the long-term interest rate has
a maturity longer than one year. Notice also that in the methods based on
dynamic regressions we get different estimates depending on the number of lags
we choose. This is discussed in section 3.1.

This paper is organized as follows. Section 2 describes the five estimators
and derives and compares their asymptotic distributions. The asymptotic

' The asymptotic distribution of the Gaussian MLE in a vector error correction model was
independently derived by Johansen (1988) and Ahn and Reinsel (1991).

2Since I last submitted this paper, two more methods to estimate cointegrating vectors have been
proposed. One is the three-step estimator by Engel and Yoo (1989) and the other a single-equation
error correction model with leads and lags proposed by Phillips and Loretan (1991), Saikkonen
(1991), and Stock and Watson (1988). These new estimators are asymptotically equivalent to
MLECM.

3The asymptotic distribution of PC and CC are derived in this paper for the first time.
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Table 1

Different point estimates of the cointegrating vector.*®*
Yi=0+ By, +z

where Y, is the long-term interest rate, y, is the short-term interest rate, and z, is 1(0).

OLS NLS (0) NLS(12) MLECM (0) MLECM (12) PC CC
(1) Y, = Tbém, y, = Tb3m (sample period 1959:1-1979:7)
g 0.9926 1.006 1.044 0.9868 1.013 0.9960 0.9934
(2) Y, = Tnly, y, = Tb3m (sample period 1954:1-1979:7)
g 1.029 1.070 1.120 1.027 1.072 1.043 1.043
3) Y, = TnSy, y, = Tb3m (sample period 1954:1-1979:7)
B 0.8685 1.085 1.123 0.9278 1.074 0.9342 1.013
4) Y, = Tnl0y, y, = Tb3m (sample period 1954:1-1979:7)
I 0.8253 1.093 1.136 0.9940 1.120 0.9201 1.063
5 Y, = Tn20y, y, = Tb3m (sample period 1954:1-1979:7)
g 0.8256 1.137 1.211 1.089 1.222 0.9406 1.114

2 Monthly data from CITIBASE. 3- and 6-month Treasury bills (secondary market): Tb3m, Tb6ém.
1-, 5-, 10-, and 20-year Treasury notes (constant maturity): Tnly, TnS5y, Tn10y, Tn20y.

®In October 1979, the Federal Reserve changed its operating procedure.

¢See table 2 for a description of these methods.

distribution of PC and CC are derived for the first time in this paper. Section 3
carries out a Monte Carlo study and reports and comments on the results.
Situations where MLECM does not perform so well, where OLS is better than
NLS, or where PC and CC are inappropriate are shown. The conclusions are
provided in section 4.

A word on notation. We use the symbol ‘=" to signify convergence in
distribution and the symbol * = to signify equality in distribution. Stochastic
processes such as the Brownian motion B(r) on [0, 1] are frequently written as
B to achieve notational economy. Similarly, we write integrals with respect to
Lebesgue measure such as jéB(s)ds more simply as jB. Vector Brownian
motion with covariance matrix Q is written ‘BM(Q)’. Finally, all limits given in
the paper are taken as the sample size T — co.

2. Different methods of estimating cointegrating vectors: Asymptotic results

In order to simplify the comparison proposed, the following bivariate data
generating process (DGP) is used:
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DGP(1)

Vo= PBx,+ 2z, z=pz-q t ez, 2.1
()
Ax, = ey, lol <1, Ex. 0)7\0o10, o3 (2.2)

Both series are I(1), but there is a linear combination [the cointegrating vector
a = (1, — BY] of y, and x, that is 1(0).

All the results can be expanded in a simple way to the case with n (n > 2)
variables, r (r < n) cointegrating vectors, and more complex dynamics.

A very useful representation of the DGP(1) is its error correction model (a
VAR model where the cointegration constraint has been imposed):

Ay, _ p—f Uy,
(Ax,>—( 0 >(y"1_ﬂx'_1)+<u2,>’ (2.3)

u, = Pe,, +e, and uy =e,.

with

Since Ax, is weakly exogenous with respect to § (for any value of #), we can
estimate (without any loss of information) the cointegrating vector a = (I, —fY
from the conditional model

Ay, =, Ax, + (p— Dye-1 — Bxi—1) + 20, (2.4)
where

g
uy 2= Ay, — E(Ay | Axi z-) = e, — 0 J—‘ex..

2

The parameter a, (‘short-run or impact multiplier’) in (2.4), defined in general by
E{Ayr | A, z,— 1, lags (Ay;, Axr)} = ay Ax, + oz, +1ags(Ay;, Ax,), (2.5)

plays a key role in the results of this paper, especially its relation with the
long-run multiplier 8.

A brief summary of the five alternative estimators for a general bivariate
framework is in table 2. Their asymptotic distributions (a.d.) are shown in
table 3. The derivations of these a.d.s are in the appendix.

In the next subsections we comment the asymptotic results.
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Table 2
Summary of different methods of estimating the cointegrating vector «’' = (1, — B).

Ordinary least squares (OLS)
Estimate of OLS y, = fix, + z,.
ﬁols = E N

Nonlinear squares (NLS (q))

q q
Estimate by OLS Ay, = nyyyoy + mipx oy + ) Ay + Y 8:Ax, - +uy, .
i=1 i=1

Bow = — TyafRyy .

Maximum likelihood in ECM (MLECM (q))

4
AH = —yd'H,_+ ¥ LAH,_, + u, where H, = (y,, x,)’ and u, = iid N (0, A).

i=1

Regress AH, on AH,_,.....AH,_,. Save the residuals R,,.

Regress H,_; on AH,_, ... \AH,_,. Save the residuals R,,.
T

Si=T 'Y R,R,. jk=01.

t=1
Solve the eigenproblem (S,,S,," S,0)4; = v:S,,4;, i=1,2.

This is equivalent to solve the symmetric eigenproblem [(F')™'S,,S5!S,(F)™! — v, I]Fd; =0,
where FF' = §,,.

Rank the eigenvalues in descending order.

Brim = — d12/%11 -

Principal components (PC)

,
M=Y HH,.

t=1
Solve the eigenproblem Mp, = u,p,. i=12
Rank the eigenvalues in descending order.

Epc = - 1322/1521 -

Canonical correlations (CC)

T
My=Y H_;H . jk=01
t=1
Solve the eigenproblem (Mo, M [ M ,4)é; = 8;Mool;, i = 1, 2, or the symmetric equivalent.
Rank the eigenvalues in descending order.

Bcc = - 522/521 -
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Table 3
Asymptotic distributions of estimators of the cointegrating vector.*®

DGP: yo=PBx, 4z, z,=pz-,+e, [e, —idN 0 ’ o} 001202
Ax, = ey, lpl <1, ey, 0 0,0, a3
OLS

- 1 1
T(ﬂols - ﬁ)ﬁ(j‘B%)"{(%)(l — OZ)I/ZIBZdW + <1—_;>(a, — ﬂ)sz dBZ + <m>9010’2}

NLS

T(Bus — B)=(IB%>“{<1—"};>U - 622 (B, dW + (

1
> @, [ B,dB,

MLECM
T(Bseem — B)=(]B3) ™! {(1%)“ — g2 j'B2dW}
PC
T(Boe — ﬁ)=(j3%)"*{<1”_‘p>u —6%)"2{B,dW + (ﬁ)(al — B)fB,dB,
(e ()55 )
CC

. 1 1
T(fec — ﬁ)=>(jB%)"{<1 d ,,)“ —6%)12[B,dW + (m)‘“ ~ f)[ B, dB,

(N ()]

*B, = BM (¢3) and W = BM(1) are independent.
Yy, is defined by E(Ay,|Ax,, z,—1) = a; Ax, + (p — Dz, .

2.1. Ordinary least squares (OLS)

The asymptotic distribution of OLS involves three different parts. The first
has a distribution that is a mixture of normals (W and B, are independent
Brownian motions). The second is the usual unit root term, ({B3)™ ' [B,dB,,
that among other things, makes the distribution nonsymmetric. The third one is
a kind of simultaneous equation bias caused by the long-run covariance between
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v, and z,. The last two terms produce a finite sample bias (asymptotically the
bias will vanish) in median and mean, respectively, and invalidate the use of
standard distributions for testing hypothesis about the cointegrating vector [see
Phillips (1991)].

Notice that if the long-run ( §) and the short-run (o, ) multipliers are equal, the
last two terms in the a.d. of f,; vanish, and OLS is asymptotically equivalent to
MLECM. This is because «, =  implies 8 = 0, and therefore x, is strictly
exogenous. There is no information in eq. (2.2) to estimate f in eq. (2.1).

2.2. Nonlinear least squares (NLS)

The idea behind this method is that of two-stage least squares (2SLS).
Egs. (2.1) and (2.2) form the structural model, and the unrestricted VAR
IUVAR),

Ay, =T Yoy + maXoq + lags(Ay,, Ax,) + uy,
(2.6)
AX; = Ty Y- + oo X, oy + lags(Ay,, Ax,) + uy,

1s the reduced form. Let us assume for simplicity that z, is white noise (p = 0).
Then, the 2SLS estimator of f§ is obtained from the regression of y, on x,_ (an
instrument for x,). Because the long-run covariance between x, , and z, is zero,
f is esimated without the simultaneous equation bias that characterizes the
OLS estimator (the third element of its a.d.). Yet, while this bias is actually
eliminated, the unit root part (the second term) does create additional problems.
If the UVAR (2.6) 1s estimated by OLS equation by equation (as NLS does), we
implicitly assume that the total multiplier matrix [T has full rank, and therefore
we do not incorporate the information about the presence of unit roots. This
omission will induce a median bias and will complicate inference, first, through
the presence of nuisance parameters, and second, because the asymptotic dis-
tribution will not be a mixture of normals.

Comparing the a.d. of OLS and NLS, it is seen that although for the NLS
estimator the ‘simultaneous equation bias’ term has disappeared, the fact that
the unit root term, szde, does not vanish can make OLS to perform ‘better’
than NLS in finite samples. This is the case if the short-run multiplier o, is big
enough and close to the long-run multiplier . This result agrees with our Monte
Carlo study, and explains why in other Monte Carlo experiments, NLS has
always beaten OLS. For instance, in Stock (1987) the DGP used is

@) (o) e
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where u, = iid N(0, I) and y, = 0 (or y, = — 7). In this experiment «,, the
coefficient of Ax, in the conditional expectation of Ay, with respect to Ax,, z,—,,
and lags (Ay,, Ax,), equals zero. Notice that with the DGP(1), NLS and
MLECM are asymptotically equivalent when a; = 0.

Notice that NLS does not necessarily perform better if Ax, and z, are
uncorrelated. In fact, in the DGP(1) this can make things worse (6 = 0 implies
a; = B), depending on the size of . The relevant parameter in the a.d. of li.ls is
a,, which in some way measures the importance of the mistake made in
estimating f§ from the marginal distribution of Ay, [the first equation of the
ECM (2.3)] rather than from the conditional distribution (2.4). Note that the
value of a,; has nothing to do with the fact that x, is weakly (or strongly)
exogenous with respect to § in the DGP(1).

2.3. Maximum likelihood in an error correction model (M LECM)

The method of MLECM estimates a by maximum likelihood in the fully
specified ECM,

AH, = ya'H,_ + lags(AH,) + u, (2.8)

[see Johansen (1988)]. This is a nonlinear estimation problem that can be
simplified to a simple eigenproblem by applying reduced rank regression tech-
niques* [see appendix B in Gonzalo (1991) for a general review of these tech-
niques]. Table 2 shows how to implement this method. An empirical application
can be found in Johansen and Juselius (1988).

The asymptotic distribution of MLECM has the smallest variance among all
these five estimators. As an example compare the a.d. of OLS and MLECM.The
covariance between

() 2 oo
() 2 o 22

4The main results concerning the estimation of a reduced rank regression coefficient were
obtained by Anderson (1951), Rao (1965), and Brillinger (1981) and restated in Izenman (1980), Velu
et al. (1986), and Robinson (1973). Most of these results are based on an application of the
Eckart-Young Theorem [see Eckart and Young (1936)].

and
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i1s zero because B, and W are two independent Brownian motions. Therefore the
variance of the a.d. of ,anecm has to be smaller than that of Bo,s Nevertheless, this
does not imply that MLECM is more efficient since they do not have the same
asymptotic distribution. To prove the asymptotic efficiency of MLECM, see
Saikkonen (1991).

It is important to notice that in cointegrated systems the inclusion of the
correct information will not only increase the efficiency, as in the stationary case,
but will also decrease the bias in mean and median (simultaneous equation bias
and unit root bias, respectively) and make the asymptotic distribution symmet-
ric. This can be seen when comparing the a.d. of ﬁm,ecm with the a.d. of the other
estimators.

As important as the above remarks is the fact that the asymptotic distribution
of ﬁm,ecm is a mixture of normals (W and B, are two independent Brownian
motions). Therefore, hypothesis tests may be conducted using standard asymp-
totic chi-squared tests. This solves the problem of inference in cointegrated
systems [see Johansen (1988) and Phillips (1991}].

Two objections have been raised against Johansen’s method:

(a) The number of lags in the ECM (2.8) is unknown.
(b) {u,} may be non-Gaussian.

Both of them are discussed in sections 3.1 and 3.2.

2.4. Principal components (PC)

The method of PC is designed, as OLS, to find the linear combination of
{»,, x,) with minimum variance. This is the linear combination described by the
cointegrating vector (1, — f).

Let 2 be the covariance matrix of H, = (y,, x;), then PC solves the following
minimization (or maximization) problem:

minp'Xp subjectto pp=1. (2.9)
From the first-order conditions we have

2pi=wpi, i=12. (2.10)
Therefore var(p;H,) = 1, and hence the cointegrating vector is the eigenvector
corresponding to the smallest eigenvalue of £. An easy way of understanding
this technique is thinking in terms of orthogonal regression [see Malinvaud

(1980, pp. 9-13)]. The principal component with minimum variance is ortho-
gonal to the hine that minimizes the sum of the squared perpendicular distances
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from the points (X1, 1), -+ (X7, Y1)k

min(l + 27 Y, (i — Bx.)? . 2.11)

8} t=1

The asymptotic distribution of OLS and PC are very similar, since both are
regression methods in the same single equation y, = px, + z,. The only differ-
ence between the two lies in the mean bias. The mean of the asymptotic
distribution of PC contains the variance of z,, and this makes the method very
sensitive to the units of measurement (something confirmed by the simulation
results). This is so, because the normalization p’p = 1 is not the correct one.
Notice that the mean bias of PC can be bigger or smaller than that of OLS.

2.5. Canonical correlations (CC)

CC analysis searches for linear combinations of elements of H, = (y, ;)
(which define canonical variables ¢°H,) and linear combinations of H,—
(generating corresponding canonical variables ¢'H,-;) that are maximally
correlated.

CC analysis solves the following maximization problem:

max{cOchl/[coZooCO el Xy etV

(2.12)
subject to  ¢®Zooc® =1, ' ct=1,
where
Yoo =var(H,), 2.1 = var(H,—1), Zo1 = cov(Hy, H._.).
The solution from the first-order conditions is
St Z 0! = 8:Z00C? s Ti0Zoo Zorct = 80X ek, i=1,2. (2.13)

It can be shown that §; = [correlation (c®H,, ¢} H,=1)]?, then if 8y > 8,, it is
clear that the first canonical variable will be nonstationary. In fact, ¢§ = ¢} since
that will give maximum correlation (namely one). The crucial point is that the
remaining canonical variables cannot be defined by vectors ¢ and c3 in the
complement of the space spanned by {a}, since in that case they would be
nonstationary, and cointegrated with the first canonical variable (otherwise
cannot be one cointegrated vector). Therefore (c? H,) and (ci H,) does not satisfy
the requirements of being mutually uncorrelated. Consequently ¢9 (and c3) must
be defined by elements in the space spanned {a}, i.e., it will be the cointegrated
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vector. This method proposed by Bossaerts (1988) is related to the one used by
Aoki (1988) to find permanent and transitory components.

The difference between MLECM and CC in the DGP(1) is that, while
MLECM performs a canonical correlation analysis between AH, and H,_,, CC
does so between H, and H,_ . Such a slight difference has a big repercussion in
the asymptotic distribution. The main reason for this is that CC does not
incorporate any information on the presence of unit roots into the estimation
process.

3. Simulation results

The data generating process used for the Monte Carlo study is based on the
one used by Banerjee et al. (1986), Engle and Granger (1987), and Hansen and
Phillips (1990):

DGP(2)
Vo= Bx, =z, Zy = Pz e, (3.1)
e\ _ .. 0 1 6o
(o) =180} (o )]
a|y,— A X, =w, w=w_;+te,, (3.2)

The difference between DGP(2) and DGP(1) is that in the former y, can
appear (if a; # 0)in the second equation, and therefore the error correction term
(z,—,) can be present in both equations of the ECM. In this case x, is no longer
weakly exogenous [see Gonzalo (1991)].

In order for the reader to better understand our results, it is important to
notice that the above DGP can be rewritten as DGP(1) with MA errors [model
used in Phillips and Loretan (1991)],

1

_|1=pL

|l —a, (-1 1
ap—a; (1—pL) af—a

Vi=pBx+z, |z

Ax, = ey, €xt

or as an ECM [DGP used in Stock (1987)],

Ayc\ (" [(1—=B81{yi-1 Uy,
<Ax,> - <V2> <x1—1> i <“2r>’ G4
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with
az a,
= - 1 ) = - 1 )
71=_(p— D~ ra=(p =1~
1 1
Uy, = E( — az€, + ﬁewt) > Uy = 2( —a, ey + ewt)’

and

d=(a,f—ay).

An equivalent model to (3.4), but with uncorrelated errors, is obtained
diagonalizing the covariance matrix of u,,

Ay, (% % Y2 — V1 Yi—1 €y
()= (0o (7 " Jo=n (52« () e

COV(81,, 321)
O(1 =

where

€1 = Uy — Ayly, €3 = Uy,
var(ey,) ’

We have considered the parameter space (a; x a, x fx px o x 8 x T), where
a;=0, 1), a,= -1 =1, p=(09, 08, 0.5, ¢ =(0.25, 033, 0.5, 1, 2),
8 =(-05,0,0.5), and T = (100, 300), giving rise to 180 experiments.

In all the simulations we generated 500 series of length T+ 20, starting with
e,, = 0and e,, = 0, and then discarding the initial 20 observations. The GAUSS
matrix programming language and its RNDN functions were used to generate
the pseudo-normal innovations. The latter function uses the fast acceptance—
rejection algorithm proposed by Kinderman and Ramage (1976). For consis-
tency, given a point in the parameter space, all the methods have been computed
using the same random numbers.

A brief review of the methods studied is in table 2. The methods based on
dynamic regressions (MLECM and NLS) have been used in two ways: one with
the correct number of lags, the other with more lags than the true model. The
simulation results are summarized in tables 4, 5, 6, and 7. For simplicity, we only
present the case where § = — 0.5 and p = 0.8 (a copy of the entire experiment is
available on request). The results are presented in terms of the two parameters
that appear to be the relevant ones from the asymptotic distributions: (1) the
short-run multiplier «; and (2) the ratio signal-noise ¢ that measures how big
the random walk component of the variables is. The five estimators are com-
pared in terms of the mean, median, standard deviation (sd), and interquartile
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range (IQR) of their empirical distributions. Our conclusion will be based on the
median and IQR because all the estimators, except OLS which imposes a nor-
malization before the estimation, are ratios of random variables; therefore their
nnite sample moments may not exist, making the comparison in terms of the
second moments very unfair [see Anderson (1976)]. If one uses the criterion of
mean square error (MSE), then one must prefer (for 7= 100) s t0 Brmicem;
however the probability of B e falling in an interval about f may be greater
than the probability of §, falling in that interval for many intervals of interest
as 1t is shown in the bottom part of tables 4 through 7.

Our objective is to decide which estimator performs ‘better’ in finite samples.
We interpret ‘better’ in terms of the empirical distribution being more concen-
trated around the true value of the parameter. That is why we chose as the best
estimator the one that has smaller bias in median and smaller IQR.

The following comments summarize the Monte Carlo study. For simplicity
we focus most of our remarks on the case of a; = 0. The only estimator that can
1ake advantage of it is MLECM. To make a fair comparison our MLECM
sstimator has not incorporated this constraint. In doing that, the conclusion is
not affected by the value of a,.

All the results of the Monte Carlo are consistent with the asymptotic distribu-
tion shown in section 2. The bias and dispersion of all the empirical distribu-
tions. except that of NLS, decrease as the ratio signal-noise o increases and as
the difference between the short-run and long-run multiplier (o, — ) decreases.
In the case of NLS, its performance becomes worse when «, increases. This is
because NLS is estimating f§ from the first equation of the ECM (3.4) and o, is
measuring the cost of omitting a relevant variable Ax, in this equation
[see (3.5)].

ML in a fully specified ECM is less biased in mean and median and has
smaller sample dispersion (measured by IQR) than the other estimators.
This holds for both sample sizes 7 = 100 and T = 300. In the latter case the
SD 1s also smaller than that of the other methods, as the asymptotic distribu-
tons suggest. The true value = 1 is contained in a 95% confidence interval
around the sample mean of ,[?m,ecm in all the cases. Notice that, even in the
situations where MLECM does not perform so well (i.e., for small values of ) in
the sense of having a bigger standard deviation and bias in mean than NLS (see
tables 6 and 7), it still has less bias in median and smaller IQR than its
competitors.

OLS is downward biased in mean and median; the sample distribution is
skewed, but the sample dispersion (measured by the SD) is smaller than that of
the other estimators when 7 = 100 and similar to the one of MLECM when
T = 300. OLS has the smaller MSE when T = 100 because an arbitrary normal-
1zation has been imposed before the estimation. If we regress x and y instead of
von x, and we invert the estimates to get f,,,, the MSE is higher than that of the
other estimators in most of the cases (¢ < 2). Notice that even when OLS has

A s )

clined by E(Ay, [Ax, 2, () -
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smaller MSE than that of MLECM, the latter estimator has a greater probabil-
ity of obtaining an accurate estimate,

Prob(| fuieen — B1 < €) > Prob(l fo, — Bl < o) ,

as it is shown at the bottom of tables 4 to 7, for ¢ = 0.05. Different values of
¢ have been tried with the same conclusion. The true value =1 is not
contained in a 95% confidence interval around the sample mean of 8y, in any
case. The rate of convergence is slower than the theoretical one, in the sense that
when the sample size increases from 100 to 300, the bias decreases in a lower
proportion. OLS performs very well when the size of the random walk compo-
nent of the variables is big (¢ > 1).

NLS performs better than OLS when o < 0.5, but not in other cases. As we
have mentioned earlier, the reason why in other experiments NLS always beats
OLS is because a DGP with a very small a, has been used. In tables 4 through
7 we can see that this is a situation clearly favorable to NLS. In fact, when x; is
weakly exogenous with respect to f and a; = 0, NLS and MLECM are asymp-
totically equivalent and their finite sample performances are very similar (see
tables 4 and 5).

PC (orthogonal regression) performs a little better than OLS when o (or 2, }is
not very small; otherwise it is the worst method because of its high sensitivity to
units of measurement.

CC performs very similarly to MLECM when H, = (y,, x,) follows an AR(1),
although with a higher bias in median. In other situations (when the ECM has
more lags), CC could be worse than OLS, especially in the MA case (see table 8).

From the above remarks, it is clear why we propose MLECM (the Johansen
method) to estimate the cointegrating vector. It has the smallest bias in median
and sample dispersion (measured by IQR) and presents the greater probability
of obtaining a very accurate estimate (see the bottom part of tables 4-7). The
next two sections relate to the two major objections that have been raised
against this method.

3.1. Unknown number of lags in the ECM

The example in table 1 shows that Johansen's method gives different estimates
of B depending on the number of lags we choose in the ECM. In tables 4 to 7,
where H, follows an AR(1), it seems that the cost of overparametrizing by
including more lags in the ECM is small in terms of efficiency lost - MLECM(4)
still performs better than the other methods. This is not the case if the ECM is
underparametrized, as is shown in the first part of table 8, where the true model
for H, is an AR(2) and an AR(1) is fitted — OLS is superior to MLECM(0).
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Table 8
(=aracteristics of the empirical distribution of estimators of the cointegrating vector.®

{1.62,_1 - 0.8z,_; + e,
t

vmBu = e, — 09, e\ . 0\ /1 bo
oGP ! =idN R
diY, — @3N, =W, W, = Wl T+ ey, ey, 0/’ \fc o?

Parameters: f=1,a,=0,a,= —1,0= —05,06=1,2, =05 7 =100
OLS NLS (0) NLS 4) MLECM (0) MLECM 4) PC CcC

Bias in mean

AR - 0.0652 —0.0726 —0.0302 0.1584 0.0042 0.2990  0.0699

MA - 00015 — 0.0024 —0.0013 0.0076 0.0009 0.0377  0.0279
Bias in median

AR D - 00507 0.0040 — 0.0089 0.0360 0.0049 0.1276  0.0163

A - 0.0008 0.0028 — 0.0004 0.0053 0.0004 0.0204  0.0141

IQR 50
AR D 0.1041 0.2103 0.1053 0.1568 0.0985 0.2732 0.1224
My D 0.0048 0.0077 0.0043 0.0069 0.0029 0.0395 0.0279
SD
AR 0.1169 0.3667 0.1216 3.3394 0.1051 0.5428 0.4104
AUy 0.0066 0.0076 0.0049 0.0077 0.0031 0.0498 0.0400

* wm replications were used to calculate the Monte Carlo numerical summaries.
1. 1s defined by E(Ay,|Ax,. 2 -1) = A, + (p — D)z

Frung an ECM with four lags solves the problem. The same remains true in the
wecond part of table 8, where the true model for H, is an AR(00).

Further research will be oriented towards cases where there are not enough
degrees of freedom to choose the right number g of lags. According to the
Monte Carlo study, this seems to be the most serious drawback of Johansen’s
method.

2.2 Nonnormal errors

When the errors are non-Gaussian, there is no reason for Johansen’s method
to perform worse than the other four methods, if one realizes that this procedure
1s a particular case of reduced rank simultaneous least squares (RRSLS) where
no assumptions about any particular distribution of the error term is made. In
fact. it can be proved that the asymptotic distribution of Beesis is equivalent to
that of fmeem [see appendix B in Gonzalo (1991)].
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The experiment has been performed with different distributions of the errors
e; and e,,

ey, = geq, e, = (1/0)fe,, + (1 — 62)1%e,, t=1,...,T.

The distributions considered are two nonsymmetric (exponential and chi-
squared with one degree of freedom) ones and two with heavy tails (logistic and
student’s ¢ with three degrees of freedom). Simulations with the uniform [0, 1],
extreme value (type I), and ARCH distributions were also carried out. In all
these cases the ranking of the five methods did not change at all. Tables 9, 10,
and 11 present the results for the standardized chi-squared, student’s ¢, and
ARCH distributions (other results are available upon request).

Table 9
Characteristics of the empirical distribution of estimators of the cointegrating vector.?
oGp. N Bx, = z,, = pzo, +e, e, =(l/a)0e, + (1 —0%)7e,
Ay, —a;X,=w,, W, =w.; +e,. e, =0, €= y2(1df), i=1,2
Parameters: f=1,a,=0,a,= —1,p=08,0=05, and T= 100
o OLS NLS (0) NLS(4) MLECM (0) MLECM (4) PC CC
Bias in mean
0.25 —0.3557 0.2141 0.2311 0.0526 0.2894 1.0395 0.1121
0.5 —0.1778 - 00152 —00141 0.0263 0.1447 0.5142 0.0561
1 — 0.0889 - 01300 —0.1305 0.0132 0.0724 0.0231 0.0280
2 —0.0445 —0.0929 —0.2283 0.0066 0.0362 — 00184 0.0140
Bias in median
0.25 - 0.2817 0.1395 0.1375 0.0124 0.0094 1.8123 0.0659
0.5 —0.1408 0.0227 —0.0158 0.0062 0.0047 0.2525 0.0329
1 — 0.0704 —0.0969 — 0.0896 0.0031 0.0023 0.0156 0.0165
2 —0.0352 —0.1368 —0.1221 0.0015 0.0012 - 0.0124 0.0082
IQR150)
0.25 0.5570 0.5400 0.5433 0.5124 0.5537 3.7472 0.4855
0.5 0.2785 0.2477 02379  0.2562 0.2769 0.4552 0.2427
1 0.1392 0.1706 0.1762 0.1281 0.1384 0.1144 0.1214
2 0.0696 0.1883 0.2011 0.0640 0.0692 0.0555 0.0607
SD
0.25 0.4555 0.5363 0.6364 06777 3.3583 33.1260 0.6765
0.5 0.2277 0.2404 0.2829 0.3388 1.6792 1.0452 0.3382
1 0.1139 0.1621 03124  0.1694 0.8396 0.1192 0.1691
2 0.0569 3.3113 20292 0.0847 0.4198 0.0521 0.0846

500 replications were used to calculate the Monte Carlo numerical summaries.
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Table 10
Characteristics of the empirical distribution of estimators of the cointegrating vector.?
DGP: Vo= Bx, =z, =P e, e, = {1/0’)0&01 + (1 — 02)1"2‘32! '
Ay —aX =W, W, =w,_ | +e,, ¢, =o0oe, ¢ =tstudent (3df), i=1.2
Parameters: f=1,a,=0,a,= —1,p=08, 0= —05, T= 100
a OLS NLS (0) NLS (4) MLECM (0) MLECM (4) PC cC
Bias in mean
0.25 —0.3190 0.2074 0.2215 0.0693 0.0303 22794  0.1176
0.5 —0.1595 - 0.0108 — 0.000t 0.0347 0.0152 04851 0.0588
1 —0.0798 —0.1196  — 0.0905 0.0173 0.0076 0.0256  0.0294
2 —0.0399 — 02455 —0.1354  0.0087 0.0038 —0.0151 00147
Bias in median
0.25 —0.2378 0.1410 0.1281 0.0235 0.0138 1.7760  0.0743
0.5 —0.1189 0.0013 - 0.0016 0.0117 0.0069 02376 0.0371
| — 0.0594 - 00870 —0.0718 0.0059 0.0034 0.0167 0.0186
2 —0.0297 — 01385 —0.1117 0.0029 0.0017 — 00114  0.0093
1QR 50,
0.25 0.4868 0.4693 0.4961 0.4147 0.5337 3.5026 04522
0.5 0.2434 0.2089 0.2358 0.2074 0.2669 0.4607  0.2261
1 0.1217 0.1500 0.1570  0.1037 0.1334 0.0942 0.1130
2 0.0608 0.1858 0.1730  0.0518 0.0667 0.0494  0.0565
SD

0.25 0.4360 0.4962 0.5683 0.6281 1.3282 16.8231  0.5766
0.5 0.2180 0.2282 0.2555 0.3141 0.6641 1.4542  0.2883
1 0.1090 0.1601 0.3728 0.1570 0.3321 0.1158  0.1441
2 0.0545 1.0003 1.1177  0.0785 0.1660 0.0514 0.0721

500 replications were used to calculate the Monte Carlo numerical summaries.

4. Conclusions

The objective of the paper was to address the question of how best to
proceed in the estimation of a cointegrated system in empirical research.
To answer this question we have to recognize three elements in any cointegrated
system. First the existence of unit roots, second the multivariate aspect,
and third the dynamics. Not taking these elements into account may
create problems in estimation. In general the coefficient estimates will be
biased in mean and median as well as inefficient. The distribution will
be nonsymmetric and nonstandard, and there will be nuisance parameter

dependencies.
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Table 11
Characteristics of the empirical distribution of estimators of the cointegrating vector.*®

DGP: Vi = Bx, =z Zp=pL-y t & e:,=e1,((l _/‘Ll)+/;~1"-’:2,.,)”2a ARCH
T — X = W W =Wt e, € = e (- 02)1%e,,, e, = N(0,1)
Parameters: f=1,a,=0,a,= —1,p=08, §= —0.5and T=100
A OLS NLS (0) NLS (4) MLECM (0) MLECM ) PC cC
Bias in mean
0.3 — 00657 —0.0895 —00437 —0.0198 0.0304 — 0.0052 —0.0374
0.5 00637 —00356 —008!9 —00377 - 0.0087 — 0.0065 0.9080
0.7 — 00587 —00925 —0.0862 — 00235 0.0101 - 0.0077 —0.0018
Bias in median
0.3 — 00482 —00229 00180 —00045 00053 —0.0155 — 0.018!
0.5 00446 —00200 —00168 —00046 —0.0055 - 0.0162 - 0015
0.7 00390 —00213 —00161 —00029 00055 —0.0134 —0.0140
IQRs0)
0.3 0.0987 0.1198 0.1267 0.0977 0.1090 0.0935 0.0938
0.5 0.0991 0.1167 0.1255 0.0987 0.1026 0.0945 0.0969
0.7 0.0934 0.1199 0.1316 0.0919 0.1014 0.0887 0.0948
SD
0.3 0.1007 0.8515 0.2735 0.2973 0.9565 0.1299 0.4342
0.5 0.0991 0.3963 0.6054 0.5530 0.3441 0.1279 22.4588
0.7 0.0936 09217 0.8750 0.5163 0.3659 0.1058 0.1975

2500 replications were used to caiculate the Monte Carlo numerical summaries.

_1;2y 1 _ 52 . .2
b{E[eg,]}EZE[e‘:‘!]:{MI uHTH = 23 if 34t < l}-
o

otherwise

The method we are looking for should have the following characteristics:

—Incorporate all prior knowledge about the presence of unit roots; this elimi-
nates the median bias, the nonsymmetry, part of the nuisance parameter
dependencies, and increases efficiency.

—Full system estimation; this eliminates the simultaneous equation bias and
increases efficiency.

—Flexible enough to capture the dynamics of the system.

Of the five methods we have compared (OLS, NLS, ML in an ECM, PC, and
CC) only maximum likelihood in an error correction model satisfies these
requirements. As it is shown in section 2 and in Phillips (1991), this approach
ensures that coefficient estimates are symmetrically distributed and median
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unbiased, and that hypothesis tests may be conducted using standard asymp-
totic chi-squared tests. None of the other methods analyzed offer these proper-
ties (see table 3).

Although the above properties are based on asymptotic theory, the
paper shows, via a Monte Carlo study, that this conclusion is still valid for
finite samples. ML in an ECM (Johansen’s procedure) performs better
than single-equation methods (OLS and NLS) and multivariate methods
{PC and CC), even when the errors are nonnormal distributed or when the
dynamics are unknown and we overparametrize by including additional lags in
the ECM.

This paper suggests that further research on the estimation of a cointegrated
system should proceed in the direction of maximum likelihood in a fully
specified error correction model. In particular, first it should be investigated
whether the same conclusion is obtained when we analyze a large set of
variables, and second, which kind of solution can be offered when not enough
degrees of freedom to choose the right number of lags are available.

Appendix: Proof of the asymptotic results
Define

The partial sum process constructed from {¢,} satisfies the multivariate invari-
ance principle [see Theorem 23.1 of Billingsley (1968)],

[7r]
Xe(ry=T"'*) &=B(r) for re[0,1] and T oo, (A1)

=1

where

(B _
B(r) = <Bz(r)> = BM(Q) .

The covariance matrix of the Brownian motion is

Q = 2nf,.(0) = lim T“E{( XT: £,>< i 8,)1},
T—-x =1 =1
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which reduces to

T—a 1= =1 s=1

T T-1/t-1 T-1 -1 ’
Q= lim T_IE{Z£,8;+ Y <Zss)£;+ Y 8,(285)} (A.2)
t=1 2 s =2

0 X

= E(eoto) + Y. E(eoi) + 3, E(exeo) = Qo + Qy + Q) .

k=1 k=1

For the DGP(1), we have

ot fo,0 poi P fo,05
2
o _|t=F =T =p%) (1 —p)
0o — L] 1 —
00102 O'% 0 O
(A.3)
Therefore
B ] 0 ]
ol 1
(l—p)z o0, 1—p Wy W2
Q= = (A.4)

1
0610’2(1_p> o3 Wiy Wy

Proof of the ad. of Bos:

T(Bos — B) = <T2 i x3>_1<T1 i xfzr>- (A.5)

=1

By applying the invariance principle (A.1) it can be shown [see Phillips and
Durlauf (1986)] that

T(Bos — B) = ([B3) "' ([B,dB; + 4), (A.6)

where

¢ 1
A= Z E(e2081%) = (Qo + Q1 )21 = <——p>90’10'2 . (A7)

k=0
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B, can be decomposed into the sum of two independent Brownian motions,
B, = w032 By, +d W, (A.8)
where

D (1—py,

11/2:
"=

di; = (0 — 005
The a.d. of OLS follows from substituting (A.7), (A.8), and a;, = f + 6(c,/0,)
into (A.6). |
Proof of the a.d. of [?,,ls: The NLS estimator solves

T

min )’ [Ay, ~ 71(y-y — Bxi-1)]7 (A9)

Byo1=2
From the first-order conditions,

. T -1 T
T(Bus — B) = <T2 > X3> <T‘1 >, Ay — i'le)xH/vH) - (A10)
t 1=2

=2

Since Ay, = 71z,_1 + uy,, with y; = (p — 1) and u,, = fe,, + e.,, we may write
part of the numerator in (A.10) as

Ay, — 91z )% = [0 = 1)z 11+ upX -] .

Noting that 7, is a consistent estimator of y; and that

T
Var(Tﬁl Z Zl_1X[_1> = O(l) s

t=2

then

M= 0= (172 5 57) (1708 (e edxicain ) (a1

From the invariance principle (A.1),

T(Bus — B)= — (ng)_l{ﬁfBdez — 0010, + (1 — p)4

+(1 = p)|B2dB,} /s . (A12)
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The a.d. of NLS follows from substituting (A.7), (A.8), and y, = (p — 1) into
(A.12). 1

Proof of the a.d. ofﬁmlecm: From the DGP(1) we derive the expression (ECM),

Ay, _ -1 V-1 Uy
(ae)=(ToJo-n(i )+ (2) w13

where
vy=12+Pe,, and vy, =e,, .

By (A.1), the following multivariate invariance principle holds:

[Tr]
T2 % v = S(r)=BM(YP), (A.14)
t=1
where
. 1 B
¥ = FQF' th F= .
wi [0 1]
Then
o3 1
i 5 + 2p60,0, + B20% o0, + B3
—p 1 — l—p
B 1 2 2
fc,0, m + fo3 o3
lIlll q’lz
- . (A.15)
Yy Yo

Since the ML estimator of f maximizes

N T u P J - Sy
LG ¥ = —5In|¥] -3 Y (AH,—j2'H,_\Y¥ ' (AH, — jo'H,_1),

t=1

(A.16)
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with7=(—1,0)and a = (1, — BY, it can be proved [see Phillips (1991)] that
T(Bmeem — B)= ([ 7' (]52d512) » (A17)
where
S,.=8 ¥ vi'S,.

From (A.14) it is clear that S, = B, and S, = B, + fB,. By (A.8) it is obtained
that

Sl_zz<16_‘p>(1 -0 (A.18)

The a.d. of MLECM follows from inserting (A.18) in (A.17). 1
Proof of the ad. of ch: The method of PC solves the eigenproblem
Mp; = fpi,  i=12 (A.19)

with

Ranking the eigenvalues in descending order (4, > fi2), the PC estimator of a is
pa: pa can be decomposed as follows

p,=oab+oc, (A.20)

where 2 = (1, — Y, 0. = (B, 1), b=(a'2)" ly'p,,and ¢ = (o) o' pp. From
iA.20) we have

T(pb™ ' —a) = Ta,ch™'. {A.21)
Since the eigenvectors p; and eigenvalues f; satisfy
S(A:)pi =0, (A22)

where S() = il — M, it follows from substituting (A.20) into (A.22) and
multiplying (A.22) by o', from the left that

2, S(fia)ob + &, S(fiz)ae=0. (A.23)
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Thus,

cb™! = — (L S(fx)e ) el S(A2) (A.24)
and inserting (A.24) in (A.21) we obtain

T(p2b™ — o) = — o (T 22, S(fa)a )" H(T™ 1o S(fz)e) - (A.25)
It can be shown that &, and £, are O,(T?) and O,(T), respectively. Therefore

T2 S(fi)ay) = T2 (A o, — o May)

T T T
=T‘2{ﬁz(ﬁ2 +1) —[/VZ Y () + 2 "fz}}
=1 =1 =1
= — (2 + )*[B3 (A-26)

and

T e S(fz)a) = T™ (i, — o Ma)
T

=-T! z (,Byr + X))z
t=1

= —{(1 + B*)(|B,dB, + 4) + Bvar(z,)} . (A.27)
Substituting (A.26) and (A.27) in (A.25), we have
T(pob™ ' — )= —a {[(F* + DB '[(1 + B*)(|B,dB, + 4)
+(Bvar(z)]1}
= —a,D,. (A.28)

From (A.20) we may write b~ ' = (1 + B%)/(p21 — Bp22) With py = (P21, p22).
Then multiplying (A.28) by a', from the left, it follows that

ayT(pob ™" — ) = T(pay — Bpaz)” ' (Bpar + p22)(1 + %)
= T(1 = Bfoc) (B — Boc)(1 + B?)

= — (1 + p*)D,, (A.29)
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where ﬁpc = —(p22/p21). Noting that /?DC is consistent (PC is equivalent to
orthogonal regression), then

T(foe — B)=(1 + p2)D, = ([B) '([B,dB, + 1) +

var(z,)

(A.30)

p
1+ p2
The a.d. of PC follows from substituting (A.7), (A.8), and the expression of var(z,)
in (A.30). |
Proof of the ad. of /?cc: The method of CC solves the eigenproblem

Mo M (' M, o6 = 0;Mooéi, i=12, (A.31)

where
T
Mjk: Z H!—j ;7}“ j,k:(),l.
=1

Ranking the eigenvalues in descending order, the CC estimator of « is é,.
Following (A.20)—(A.25) with S(3;) = 6, Moo — Moy M ! M, we obtain

T(é:b™ ' —a) = — 2, [T 2, S(6,)x ] [T 7121 S(5,)a] - (A.32)

The expressions (A.33) and (A.34) are the asymptotic distributions of the ele-
ments of the denominator in (A.32),

T 20,0, Moot ) =T 725, Y. (By, + %)

M~

t=1

=8,(f* + 1)*[ B3, (A.33)
T 2 Moy M Moo ) =T [, Moy (TV?0, a,)]
x[(TY2a, o YM (T %0, )]
x (T2, o'y Y Moo, ]

= (p* + 1)*{ B3, (A.34)
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and (A.35) and (A.36) are the asymptotic distributions of the numerator,

T
T~ 10,0, Moot) = T 713, Y. (By, + x))z,

t=1
=6, {(B* + 1)([B,dB, + ) + Bvar(z)}, (A.35)
T_l(alMo1M1_11M1oa)=>(1 + ﬂz{(szdBﬂL/{)—HUle}
+{Bpcov(z,, z,-1)} . (A.36)

The last line is obtained using the same intermediate step as (A.34). Noting that
~ P
0y — 03 = (corr(z,, z,-1))* = p*

we have

T(.. — ﬁ)»(B%)‘l{(sz dB, + l%p ﬂ)} : (A37)

from inserting (A.33)—(A.36) in (A.32) and following (A.29).
The a.d. of CC is obtained (A.7) and (A.8) in (A.37). |
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