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It is obvious that forecasts are of great importance and widely used in economics and

finance.  Quite simply, good forecasts lead to good decisions.  The importance of forecast

evaluation and combination techniques follows immediately -- forecast users naturally have a

keen interest in monitoring and improving forecast performance.  More generally, forecast

evaluation figures prominently in many questions in empirical economics and finance, such

as:

Are expectations rational? (e.g., Keane and Runkle, 1990; Bonham and Cohen, 1995)

Are financial markets efficient? (e.g., Fama, 1970, 1991)

Do macroeconomic shocks cause agents to revise their forecasts at all horizons, or just
at short- and medium-term horizons? (e.g., Campbell and Mankiw, 1987;
Cochrane, 1988)  

Are observed asset returns "too volatile"? (e.g., Shiller, 1979; LeRoy and Porter, 1981)

Are asset returns forecastable over long horizons? (e.g., Fama and French, 1988; 
Mark, 1995)

Are forward exchange rates unbiased and/or accurate forecasts of future spot prices at
various horizons?  (e.g., Hansen and Hodrick, 1980)

Are government budget projections systematically too optimistic, perhaps for strategic
reasons?  (e.g., Auerbach, 1994; Campbell and Ghysels, 1995)

Are nominal interest rates good forecasts of future inflation?  (e.g., Fama, 1975;
Nelson and Schwert, 1977)

Here we provide a five-part selective account of forecast evaluation and combination

methods.  In the first, we discuss evaluation of a single forecast, and in particular, evaluation

of whether and how it may be improved.  In the second, we discuss the evaluation and

comparison of the accuracy of competing forecasts.  In the third, we discuss whether and how

a set of forecasts may be combined to produce a superior composite forecast.  In the fourth,
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we describe a number of forecast evaluation topics of particular relevance in economics and

finance, including methods for evaluating direction-of-change forecasts, probability forecasts

and volatility forecasts.  In the fifth, we conclude.

In treating the subject of forecast evaluation, a tradeoff emerges between generality

and tedium.  Thus, we focus for the most part on linear least-squares forecasts of univariate

covariance stationary processes, or we assume normality so that linear projections and

conditional expectations coincide.  We leave it to the reader to flesh out the remainder. 

However, in certain cases of particular interest, we do focus explicitly on nonlinearities that

produce divergence between the linear projection and the conditional mean, as well as on

nonstationarities that require special attention.

I.  Evaluating a Single Forecast

The properties of optimal forecasts are well known; forecast evaluation essentially

amounts to checking those properties.  First, we establish some notation and recall some

familiar results.  Denote the covariance stationary time series of interest by y .  Assuming thatt

the only deterministic component is a possibly nonzero mean, µ, the Wold representation is

 where  and WN denotes serially

uncorrelated (but not necessarily Gaussian, and hence not necessarily independent) white

noise.  We assume invertibility throughout, so that an equivalent one-sided autoregressive

representation exists. 

The k-step-ahead linear least-squares forecast is  

and the corresponding k-step-ahead forecast error is
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(1)

(2)

Finally, the k-step-ahead forecast error variance is

Four key properties of errors from optimal forecasts, which we discuss in greater detail below,

follow immediately:

(1)  Optimal forecast errors have a zero mean (follows from (1));

(2)  1-step-ahead optimal forecast errors are white noise (special case of (1)

corresponding to k=1);

(3)  k-step-aheadoptimal forecast errors are at most MA(k-1) (general case of (1));

(4)  The k-step-ahead optimal forecast error variance is non-decreasing in k (follows

from (2)).

Before proceeding, we now describe some exact distribution-free nonparametric tests

for whether an independently (but not necessarily identically) distributed series has a zero

median.  The tests are useful in evaluating the properties of optimal forecast errors listed

above, as well as other hypotheses that will concern us later.  Many such tests exist; two of

the most popular, which we use repeatedly, are the sign test and the Wilcoxon signed-rank

test.

Denote the series being examined by x , and assume that T observations are available. t

The sign test proceeds under the null hypothesis that the observed series is independent with a
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      If the series is symmetrically distributed, then a zero median of course corresponds to a1

zero mean. 

zero median.   The intuition and construction of the test statistic are straightforward -- under1

the null, the number of positive observations in a sample of size T has the binomial

distribution with parameters T and ½.  The test statistic is therefore simply

where

In large samples, the studentized version of the statistic is standard normal, 

Thus, significance may be assessed using standard tables of the binomial or normal

distributions.

Note that the sign test does not require distributional symmetry.  The Wilcoxon

signed-rank test, a related distribution-free procedure, does require distributional symmetry,

but it can be more powerful than the sign test in that case.  Apart from the additional

assumption of symmetry, the null hypothesis is the same, and the test statistic is the sum of

the ranks of the absolute values of the positive observations, 
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where the ranking is in increasing order (e.g., the largest absolute observation is assigned a

rank of T, and so on).  The intuition of the test is simple -- if the underlying distribution is

symmetric about zero, a "very large" (or "very small") sum of the ranks of the absolute values

of the positive observations is "very unlikely."  The exact finite-sample null distribution of the

signed-rank statistic is free from nuisance parameters and invariant to the true underlying

distribution, and it has been tabulated.  Moreover, in large samples, the studentized version of

the statistic is standard normal, 

Testing Properties of Optimal Forecasts

 Given a track record of forecasts,  and corresponding realizations,  forecast

users will naturally want to assess forecast performance.  The properties of optimal forecasts,

cataloged above, can readily be checked.

a.  Optimal Forecast Errors Have a Zero Mean

A variety of standard tests of this hypothesis can be performed, depending on the

assumptions one is willing to maintain.  For example, if  is Gaussian white noise (as

might be the case for 1-step-ahead errors), then the standard t-test is the obvious choice

because it is exact and uniformly most powerful.  If the errors are non-Gaussian but remain

independent and identically distributed (iid), then the t-test is still useful asymptotically. 

However, if more complicated dependence or heterogeneity structures are (or may be)

operative, then alternative tests are required, such as those based on the generalized method of
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moments.

It would be unfortunate if non-normality or richer dependence/heterogeneity structures

mandated the use of asymptotic tests, because sometimes only short track records are

available.  Such is not the case, however, because exact distribution-free nonparametric tests

are often applicable, as pointed out by Campbell and Ghysels (1995).  Although the

distribution-free tests do require independence (sign test) and independence and symmetry

(signed-rank test), they do not require normality or identical distributions over time.  Thus, the

tests are automatically robust to a variety of forecast error distributions, and to

heteroskedasticity of the independent but not identically distributed type.

For k>1, however, even optimal forecast errors are likely to display serial correlation,

so the nonparametric tests must be modified.  Under the assumption that the forecast errors

are (k-1)-dependent, each of the following k series of forecast errors will be free of serial

correlation:  {e , e , e , ...}, {e , e , e , ...}, {e , e , e ,1+k,1  1+2k,1+k  1+3k,1+2k   2+k,2  2+2k,2+k  2+3k,2+2k   3+k,3  3+2k,3+k  3+3k,3+2k

...}, ..., {e , e , e , ...}.  Thus, a Bonferroni bounds test (with size bounded above by )2k,k  3k,2k  4k,3k

is obtained by performing k tests, each of size /k, on each of the k error series, and rejecting

the null hypothesis if the null is rejected for any of the series.  This procedure is conservative,

even asymptotically.  Alternatively, one could use just one of the k error series and perform

an exact test at level , at the cost of reduced power due to the discarded observations.

In concluding this section, let us stress that the nonparametric distribution-free tests are

neither unambiguously "better" nor "worse" than the more common tests; rather, they are

useful in different situations and are therefore complementary.  To their credit, they are often

exact finite-sample tests with good finite-sample power, and they are insensitive to deviations
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from the standard assumptions of normality and homoskedasticity required to justify more

standard tests in small samples.  Against them, however, is the fact that they require

independence of the forecast errors, an assumption even stronger than conditional-mean

independence, let alone linear-projection independence.  Furthermore, although the

nonparametric tests can be modified to allow for k-dependence, a possibly substantial price

must be paid either in terms of inexact size or reduced power.

b.  1-Step-Ahead Optimal Forecast Errors are White Noise

More precisely, the errors from linear least squares forecasts are linear-projection

independent, and the errors from least squares forecasts are conditional-mean independent. 

The errors never need be fully serially independent, because dependence can always enter

through higher moments, as for example with the conditional-variance dependence of

GARCH processes.

Under various sets of maintained assumptions, standard asymptotic tests may be used

to test the white noise hypothesis.  For example, the sample autocorrelation and partial

autocorrelation functions, together with Bartlett asymptotic standard errors, may be useful

graphical diagnostics in that regard.  Standard tests based on the serial correlation coefficient,

as well as the Box-Pierce and related statistics, may be useful as well.

Dufour (1981) presents adaptations of the sign and Wilcoxon signed-rank tests that

yield exact tests for serial dependence in 1-step-ahead forecast errors, without requiring

normality or identical forecast error distributions.  Consider, for example, the null hypothesis

that the forecast errors are independent and symmetrically distributed with zero median.  Then

median(e e ) = 0; that is, the product of two symmetric independent random variablest+1,t t+2,t+1
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      s is a cutoff lag selected by the user.2

with zero median is itself symmetric with zero median.  Under the alternative of positive

serial dependence, median(e e ) > 0, and under the alternative of negative serialt+1,t t+2,t+1

dependence, median(e e ) < 0.  This suggests examining the cross-product seriest+1,t t+2,t+1

 for symmetry about zero, the obvious test for which is the signed-rank test,

  Note that the z  sequence will be serially dependent even if thet

e  sequence is not, in apparent violation of the conditions required for validity of the signed-t+1,t

rank test (applied to z ).  Hence the importance of Dufour's contribution -- Dufour shows thatt

the serial correlation is of no consequence and that the distribution of W  is the same as thatD

of W.

c.  k-Step-Ahead Optimal Forecast Errors are at Most MA(k-1)

Cumby and Huizinga (1992) develop a useful asymptotic test for serial dependence of

order greater than k-1.  The null hypothesis is that the e  series is MA(q) (0  q  k-1)t+k,t

against the alternative hypothesis that at least one autocorrelation is nonzero at a lag greater

than k-1.  Under the null, the sample autocorrelations of e ,  aret+k,t

asymptotically distributed   Thus,2

is asymptotically distributed as  under the null, where  is a consistent estimator of V.

Dufour's (1981) distribution-free nonparametric tests may also be adapted to provide a

finite-sample bounds test for serial dependence of order greater than k-1.  As before, separate

the forecast errors into k series, each of which is serially independent under the null of (k-1)-

dependence.  Then, for each series, take  and reject at significance level
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      Extensions of this idea to nonstationary long-memory environments are developed in3

Diebold and Lindner (1995).

bounded above by  if one or more of the subset test statistics rejects at the /k level.

d.  The k-Step-Ahead Optimal Forecast Error Variance is Non-Decreasing in k

The k-step-ahead forecast error variance,  is non-

decreasing in k.  Thus, it is often useful simply to examine the sample k-step-ahead forecast

error variances as a function of k, both to be sure the condition appears satisfied and to see the

pattern with which the forecast error variance grows with k, which often conveys useful

information.   Formal inference may also be done, so long as one takes care to allow for3

dependence of the sample variances across horizons.

Assessing Optimality with Respect to an Information Set

The key property of optimal forecast errors, from which all others follow (including

those cataloged above), is unforecastability on the basis of information available at the time

the forecast was made.  This is true regardless of whether linear-projection optimality or

conditional-mean optimality is of interest, regardless of whether the relevant loss function is

quadratic, and regardless of whether the series being forecast is stationary.

Following Brown and Maital (1981), it is useful to distinguish between partial and full

optimality.  Partial optimality refers to unforecastability of forecast errors with respect to

some subset, as opposed to all subsets, of available information, .  Partial optimality, fort

example, characterizes a situation in which a forecast is optimal with respect to the

information used to construct it, but the information used was not all that  could have been

used.  Thus, each of a set of competing forecasts may have the partial optimality property if
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      In such regressions, the disturbance should be white noise for 1-step-ahead forecasts but4

may be serially correlated for multi-step-ahead forecasts.

each is optimal with respect to its own information set.

One may test partial optimality via regressions of the form  where

  The particular case of testing partial optimality with respect to  has received a

good deal of attention, as in Mincer and Zarnowitz (1969).   The relevant regression is

 or  where partial optimality corresponds

to ( , ) = (0, 0) or ( , ) = (0, 1).   One may also expand the regression to allow for0  1      0  1
4

various sorts of nonlinearity.  For example, following Ramsey (1969), one may test whether

all coefficients in the regression  are zero.

Full optimality, in contrast, requires the forecast error to be unforecastable on the basis

of all information available when the forecast was made (that is, the entirety of ). t

Conceptually, one could test full rationality via regressions of the form  If

 for all  then the forecast is fully optimal.  In practice, one can never test for full

optimality, but rather only partial optimality with respect to increasing information sets.

Distribution-free nonparametric methods may also be used to test optimality with

respect to various information sets.  The sign and signed-rank tests, for example, are readily

adapted to test orthogonality between forecast errors and available information, as proposed

by Campbell and Dufour (1991, 1995).  If, for example, e  is linear-projection independentt+1,t

of  then   Thus, in the symmetric case, one may use the signed-rank

test for whether  and more generally, one may use the sign test for
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      Again, it is not obvious that the conditions required for application of the sign or signed-5

rank test to z  are satisfied, but they are; see Campbell and Dufour (1995) for details.t

      Our discussion has implicitly assumed that both e  and g(x ) are centered at zero.  This6
t+1,t  t

will hold for e  if the forecast is unbiased, but there is no reason why it should hold fort+1,t

g(x ).  Thus, in general, the test is based on  where µ  is a centering parameter such ast             t

the mean, median or trend of g(x ).  See Campbell and Dufour (1995) for details.t

whether   The relevant sign and signed-rank statistics are5

 and   Moreover, one may allow for nonlinear

transformations of the elements of the information set, which is useful for assessing

conditional-mean as opposed to simply linear-projection independence, by taking

 where g(.) is a nonlinear function of interest.  Finally, the tests can be

generalized to allow for k-step-ahead forecast errors as before.  Simply take 

divide the z  series into the usual k subsets, and reject the orthogonality null at significancet

level bounded by  if any of the subset test statistics are significant at the /k level.6

II.  Comparing the Accuracy of Multiple Forecasts

Measures of Forecast Accuracy

In practice, it is unlikely that one will ever stumble upon a fully-optimal forecast;

instead, situations often arise in which a number of forecasts (all of them suboptimal) are

compared and possibly combined.  The crucial object in measuring forecast accuracy is the

loss function,  often restricted to  which charts the "loss," "cost" or

"disutility" associated with various pairs of forecasts and realizations.  In addition to the shape

of the loss function, the forecast horizon (k) is also of crucial importance.  Rankings of

forecast accuracy may be very different across different loss functions and/or different
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horizons.  This result has led some to argue the virtues of various "universally applicable"

accuracy measures.  Clements and Hendry (1993), for example, argue for an accuracy

measure under which forecast rankings are invariant to certain transformations.

Ultimately, however, the appropriate loss function depends on the situation at hand. 

As stressed by Diebold (1993) among many others, forecasts are usually constructed for use

in particular decision environments; for example, policy decisions by government officials or

trading decisions by market participants.  Thus, the appropriate accuracy measure arises from

the loss function faced by the forecast user.  Economists, for example, may be interested in

the profit streams (e.g., Leitch and Tanner, 1991, 1995; Engle et al., 1993) or utility streams

(e.g., McCulloch and Rossi, 1990;  West, Edison and Cho, 1993) flowing from various

forecasts.

Nevertheless, let us discuss a few stylized statistical loss functions, because they are

used widely and serve as popular benchmarks.  Accuracy measures are usually defined on the

forecast errors,  or percent errors,   For example, the

mean error,  and mean percent error,  provide

measures of bias, which is one component of accuracy.

The most common overall accuracy measure, by far, is mean squared error,

 or mean squared percent error,   Often the square

roots of these measures are used to preserve units, yielding the root mean squared error,

 and the root mean squared percent error,  

Somewhat less popular, but nevertheless common, accuracy measures are mean absolute

error,  and mean absolute percent error, 
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MSE admits an informative decomposition into the sum of the variance of the forecast

error and its squared bias,

or equivalently

This result makes clear that MSE depends only on the second moment structure of the joint

distribution of the actual and forecasted series.  Thus, as noted in Murphy and Winkler (1987,

1992), although MSE is a useful summary statistic for the joint distribution of  and 

in general it contains substantially less information than the actual joint distribution itself. 

Other statistics highlighting different aspects of the joint distribution may therefore be useful

as well.  Ultimately, of course, one may want to focus directly on estimates of the joint

distribution, which may be available if the sample size is large enough to permit relatively

precise estimation.

Measuring Forecastability

It is natural and informative to evaluate the accuracy of a forecast.  We hasten to add,

however, that actual and forecasted values may be dissimilar, even for very good forecasts. 

To take an extreme example, note that the linear least squares forecast for a zero-mean white

noise process is simply zero -- the paths of forecasts and realizations will look very different,

yet there does not exist a better linear forecast under quadratic loss.  This example highlights

the inherent limits to forecastability, which depends on the process being forecast; some

processes are inherently easy to forecast, while others are hard to forecast.  In other words,

sometimes the information on which the forecaster optimally conditions is very valuable, and
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      This section draws heavily upon Diebold and Mariano (1995).7

sometimes it isn't.

The issue of how to quantify forecastability arises at once.  Granger and Newbold

(1976) propose a natural definition of forecastability for covariance stationary series under

squared-error loss, patterned after the familiar R  of linear regression2

where both the forecast and forecast error refer to the optimal (that is, linear least squares or

conditional mean) forecast. 

In closing this section, we note that although measures of forecastability are useful

constructs, they are driven by the population properties of processes and their optimal

forecasts, so they don't help one to evaluate the "goodness" of an actual reported forecast,

which may be far from optimal.  For example, if the variance of  is not much lower than

the variance of the covariance stationary series y , it could be that either the forecast is poor,t+1

the series is inherently almost unforecastable, or both.

Statistical Comparison of Forecast Accuracy 7

Once a loss function has been decided upon, it is often of interest to know which of the

competing forecasts has smallest expected loss.  Forecasts may of course be ranked according

to average loss over the sample period, but one would like to have a measure of the sampling

variability in such average losses.  Alternatively, one would like to be able to test the

hypothesis that the difference of expected losses between forecasts I and j is zero (i.e.,

 ), against the alternative that one forecast is better.
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      Stekler uses RMSE, but other loss functions may be used.8

      See, for example, Bradley (1968), Chapter 4.9

Stekler (1987) proposes a rank-based test of the hypothesis that each of a set of

forecasts has equal expected loss.   Given N competing forecasts, assign to each forecast at8

each time a rank according to its accuracy (the best forecast receives a rank of N, the second-

best receives a rank of N-1, and so forth).  Then aggregate the period-by-period ranks for each

forecast,

I = 1, ..., N, and form the chi-squared goodness-of-fit test statistic,

Under the null,   As described here, the test requires the rankings to be independent

over space and time, but simple modifications along the lines of the Bonferroni bounds test

may be made if the rankings are temporally (k-1)-dependent.  Moreover, exact versions of the

test may be obtained by exploiting Fisher's randomization principle. 9

One limitation of Stekler's rank-based approach is that information on the magnitude

of differences in expected loss across forecasters is discarded.  In many applications, one

wants to know not only whether the difference of expected losses differs from zero (or the

ratio differs from 1), but also by how much it differs.  Effectively, one wants to know the

sampling distribution of the sample mean loss differential (or of the individual sample mean
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      In such cases, the  form should be used.10

losses), which in addition to being directly informative would enable Wald tests of the

hypothesis that the expected loss differential is zero.  Diebold and Mariano (1995), building

on earlier work by Granger and Newbold (1986) and Meese and Rogoff (1988), develop a test

for a zero expected loss differential that allows for forecast errors that are nonzero mean, non-

Gaussian, serially correlated and contemporaneously correlated.

In general, the loss function is   Because in many applications the loss

function will be a direct function of the forecast error,  we

write  from this point on to economize on notation, while recognizing that certain loss

functions (such as direction-of-change) don't collapse to the  form.   The null10

hypothesis of equal forecast accuracy for two forecasts is E[L(e )] = E[L(e )], or E[d ] =i   j
t+k,t   t+k,t   t

0, where d   L(e ) - L(e ) is the loss differential.t  t+k,t   t+k,t
i   j

If d is a covariance stationary, short-memory series, then standard results may be usedt 

to deduce the asymptotic distribution of the sample mean loss differential, 

where  is the sample mean loss differential,

 is the spectral density of the loss differential at frequency zero,

 is the autocovariance of the loss differential at displacement ,

and µ is the population mean loss differential.  The formula for f (0) shows that the correctiond

for serial correlation can be substantial, even if the loss differential is only weakly serially

correlated, due to the cumulation of the autocovariance terms.  In large samples, the obvious
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statistic for testing the null hypothesis of equal forecast accuracy is the standardized sample

mean loss differential,

where  is a consistent estimate of 

It is useful to have available exact finite-sample tests of forecast accuracy to

complement the asymptotic tests.  As usual, variants of the sign and signed-rank tests are

applicable.  When using the sign test, the null hypothesis is that the median of the loss

differential is zero,   Note that the null of a zero median loss

differential is not the same as the null of zero difference between median losses; that is,

  For this reason, the null

differs slightly in spirit from that associated with the asymptotic Diebold-Mariano test, but

nevertheless, it has the intuitive and meaningful interpretation that 

When using the Wilcoxon signed-rank test, the null hypothesis is that the loss

differential series is symmetric about a zero median (and hence mean), which corresponds

precisely to the null of the asymptotic Diebold-Mariano test.  Symmetry of the loss

differential will obtain, for example, if the distributions of  and  are the same

up to a location shift.  Symmetry is ultimately an empirical matter and may be assessed using

standard procedures.

The construction and intuition of the distribution-free nonparametric test statistics are
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straightforward.  The sign test statistic is  and the signed-rank test statistic is

  Serial correlation may be handled as before via Bonferroni

bounds.  It is interesting to note that, in multi-step forecast comparisons, forecast error serial

correlation may be a "common feature" in the terminology of Engle and Kozicki (1993),

because it is induced largely by the fact that the forecast horizon is longer than the interval at

which the data are sampled and may therefore not be present in loss differentials even if

present in the forecast errors themselves.  This possibility can of course be checked

empirically.

West (1994) takes an approach very much related to, but nevertheless different from,

that of Diebold and Mariano.  The main difference is that West assumes that forecasts are

computed from an estimated regression model and explicitly accounts for the effects of

parameter uncertainty within that framework.  When the estimation sample is small, the tests

can lead to different results.  However, as the estimation period grows in length relative to the

forecast period, the effects of parameter uncertainty vanish, and the Diebold-Mariano and

West statistics are identical.

West's approach is both more general and less general than the Diebold-Mariano

approach.  It is more general in that it corrects for nonstationarities induced by the updating of

parameter estimates.  It is less general in that those corrections are made within the confines

of a more rigid framework than that of Diebold and Mariano, in whose framework no

assumptions need be made about the often unknown or incompletely known models that

underlie forecasts. 

In closing this section, we note that it is sometimes informative to compare the
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accuracy of a forecast to that of a "naive" competitor.  A simple and popular such comparison

is achieved by Theil's (1961) U statistic, which is the ratio of the 1-step-ahead MSE for a

given forecast relative to that of a random walk forecast   that is,

Generalization to other loss functions and other horizons is immediate.  The statistical

significance of the MSE comparison underlying the U statistic may be ascertained using the

methods just described.  One must remember, of course, that the random walk is not

necessarily a naive competitor, particularly for many economic and financial variables, so that

values of the U statistic near one are not necessarily "bad."  Several authors, including

Armstrong and Fildes (1995), have advocated using the U statistic and close relatives for

comparing the accuracy of various forecasting methods across series.

III.  Combining Forecasts

In forecast accuracy comparison, one asks which forecast is best with respect to a

particular loss function.  Regardless of whether one forecast is "best," however, the question

arises as to whether competing forecasts may be fruitfully combined -- in similar fashion to

the construction of an asset portfolio -- to produce a composite forecast superior to all the

original forecasts.  Thus, forecast combination, although obviously related to forecast

accuracy comparison, is logically distinct and of independent interest.

Forecast Encompassing Tests
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      Note that MA(k-1) serial correlation will typically be present in  if k>1.11

Forecast encompassing tests enable one to determine whether a certain forecast

incorporates (or encompasses) all the relevant information in competing forecasts.  The idea

dates at least to Nelson (1972) and Cooper and Nelson (1975), and was formalized and

extended by Chong and Hendry (1986).  For simplicity, let us focus on the case of two

forecasts,   Consider the regression

If ( , , ) = (0,1,0), one says that model 1 forecast-encompasses model 2, and if  ( , ,0  1  2               0  1

)= (0,0,1), then model 2 forecast-encompasses model 1.  For any other ( , , ) values,2             0  1  2

neither model encompasses the other, and both forecasts contain useful information about y . t+k

Under certain conditions, the encompassing hypotheses can be tested using standard

methods.   Moreover, although it does not yet seem to have appeared in the forecasting11

literature, it would be straightforward to develop exact finite-sample tests (or bounds tests

when k>1) of the hypothesis using simple generalizations of the distribution-free tests

discussed earlier.

Fair and Shiller (1989, 1990) take a different but related approach based on the

regression

As before, forecast-encompassing corresponds to coefficient values of (0,1,0) or (0,0,1). 

Under the null of forecast encompassing, the Chong-Hendry and Fair-Shiller regressions are

identical.  When the variable being forecast is integrated, however, the Fair-Shiller framework

may prove more convenient, because the specification in terms of changes facilitates the use
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      The generalization to the case of M>2 competing unbiased forecasts is straightforward,12

as shown in Newbold and Granger (1974).

of Gaussian asymptotic distribution theory.

Forecast Combination

Failure of one model's forecasts to encompass other models' forecasts indicates that all

the models examined are misspecified.  It should come as no surprise that such situations are

typical in practice, because all forecasting models are surely misspecified -- they are

intentional abstractions of a much more complex reality.  What, then, is the role of forecast

combination techniques?  In a world in which information sets can be instantaneously and

costlessly combined, there is no role; it is always optimal to combine information sets rather

than forecasts.  In the long run, the combination of information sets may sometimes be

achieved by improved model specification.  But in the short run -- particularly when deadlines

must be met and timely forecasts produced -- pooling of information sets is typically either

impossible or prohibitively costly.  This simple insight motivates the pragmatic idea of

forecast combination, in which forecasts rather than models are the basic object of analysis,

due to an assumed inability to combine information sets.  Thus, forecast combination can be

viewed as a key link between the short-run, real-time forecast production process, and the

longer-run, ongoing process of model development.

Many combining methods have been proposed, and they fall roughly into two groups,

"variance-covariance" methods and "regression-based" methods.  Let us consider first the

variance-covariance method due to Bates and Granger (1969).  Suppose one has two unbiased

forecasts from which a composite is formed as 12



ŷ c
t k,t ŷ 1
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Because the weights sum to unity, the composite forecast will necessarily be unbiased. 

Moreover, the combined forecast error will satisfy the same relation as the combined forecast;

that is, 

with a variance  where  and  are

unconditional forecast error variances and  is their covariance.  The combining weight that12

minimizes the combined forecast error variance (and hence the combined forecast error MSE,

by unbiasedness) is

Note that the optimal weight is determined by both the underlying variances and covariances. 

Moreover, it is straightforward to show that, except in the case where one forecast

encompasses the other, the forecast error variance from the optimal composite is less than

  Thus, in population, one has nothing to lose by combining forecasts and

potentially much to gain.

In practice, one replaces the unknown variances and covariances that underlie the

optimal combining weights with consistent estimates; that is, one estimates  by replacing *
ij

with  yielding

In finite samples of the size typically available, sampling error contaminates the combining
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weight estimates, and the problem of sampling error is exacerbated by the collinearity that

typically exists among primary forecasts.  Thus, while one hopes to reduce out-of-sample

forecast MSE by combining, there is no guarantee.  In practice, however, it turns out that

forecast combination techniques often perform very well, as documented Clemen's (1989)

review of the vast literature on forecast combination.

Now consider the "regression method" of forecast combination.  The form of the

Chong-Hendry and Fair-Shiller encompassing regressions immediately suggests combining

forecasts by simply regressing realizations on forecasts.  Granger and Ramanathan (1984)

showed that the optimal variance-covariance combining weight vector has a regression

interpretation as the coefficient vector of a linear projection of y  onto the forecasts, subjectt+k

to two constraints:  the weights sum to unity, and no intercept is included.  In practice, of

course, one simply runs the regression on available data.

In general, the regression method is simple and flexible.  There are many variations

and extensions, because any "regression tool" is potentially applicable.  The key is to use

generalizations with sound motivation.  We shall give four examples:  time-varying

combining weights, dynamic combining regressions, Bayesian shrinkage of combining

weights toward equality, and nonlinear combining regressions.

a.  Time-Varying Combining Weights

Time-varying combining weights were proposed in the variance-covariance context by

Granger and Newbold (1973) and in the regression context by Diebold and Pauly (1987).  In

the regression framework, for example, one may undertake weighted or rolling estimation of

combining regressions, or one may estimate combining regressions with explicitly time-
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varying parameters.

The potential desirability of time-varying weights stems from a number of sources. 

First, different learning speeds may lead to a particular forecast improving over time relative

to others.  In such situations, one naturally wants to weight the improving forecast

progressively more heavily.  Second, the design of various forecasting models may make

them relatively better forecasting tools in some situations than in others.  For example, a

structural model with a highly developed wage-price sector may substantially outperform a

simpler model during times of high inflation.  In such times, the more sophisticated model

should received higher weight.  Third, the parameters in agents' decision rules may drift over

time, and certain forecasting techniques may be relatively more vulnerable to such drift.

b.  Dynamic Combining Regressions

Serially correlated errors arise naturally in combining regressions.  Diebold (1988)

considers the covariance stationary case and argues that serial correlation is likely to appear in

unrestricted regression-based forecast combining regressions when   More

generally, it may be a good idea to allow for serial correlation in combining regressions to

capture any dynamics in the variable to be forecast not captured by the various forecasts.  In

that regard, Coulson and Robins (1993), following Hendry and Mizon (1978), point out that a

combining regression with serially correlated disturbances is a special case of a combining

regression that includes lagged dependent variables and lagged forecasts, which they

advocate.

c.  Bayesian Shrinkage of Combining Weights Toward Equality

Simple arithmetic averages of forecasts are often found to perform very well, even
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      See Winkler and Makridakis (1983), Clemen (1989), and many of the references therein.13

relative to "optimal" composites.   Obviously, the imposition of an equal weights constraint13

eliminates variation in the estimated weights at the cost of possibly introducing bias. 

However, the evidence indicates that, under quadratic loss, the benefits of imposing equal

weights often exceed this cost.  With this in mind, Clemen and Winkler (1986) and Diebold

and Pauly (1990) propose Bayesian shrinkage techniques to allow for the incorporation of

varying degrees of prior information in the estimation of combining weights; least-squares

weights and the prior weights then emerge as polar cases for the posterior-mean combining

weights.  The actual posterior mean combining weights are a matrix weighted average of

those for the two polar cases.  For example, using a natural conjugate normal-gamma prior,

the posterior-mean combining weight vector is

 = (Q + F'F) (Q  + F'F ), posterior    -1 prior  ^

where  is the prior mean vector, Q is the prior precision matrix, F is the design matrix forprior

the combining regression, and  is the vector of least squares combining weights.  The

obvious shrinkage direction is toward a measure of central tendency (e.g., the arithmetic

mean).  In this way, the combining weights are coaxed toward the arithmetic mean, but the

data are still allowed to speak, when (and if) they have something to say.

d.  Nonlinear Combining Regressions

There is no reason, of course, to force combining regressions to be linear, and various

of the usual alternatives may be entertained.  One particularly interesting possibility is

proposed by Deutsch, Granger and Teräsvirta (1994), who suggest
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The states that govern the combining weights can depend on past forecast errors from one or

both models or on various economic variables.  Furthermore, the indicator weight need not be

simply a binary variable; the transition between states can be made more gradual by allowing

weights to be functions of the forecast errors or economic variables.

IV.  Special Topics in Evaluating Economic and Financial Forecasts

Evaluating Direction-of-Change Forecasts

Direction-of-change forecasts are often used in financial and economic decision-

making (e.g., Leitch and Tanner, 1991, 1995; Satchell and Timmermann, 1992).  The

question of how to evaluate such forecasts immediately arises.  Our earlier results on tests for

forecast accuracy comparison remain valid, appropriately modified, so we shall not restate

them here.  Instead, we note that one frequently sees assessments of whether direction-of-

change forecasts "have value," and we shall discuss that issue.

The question as to whether a direction-of-change forecast has value by necessity

involves comparison to a naive benchmark -- the direction-of-change forecast is compared to

a "naive" coin flip (with success probability equal to the relevant marginal).  Consider a 2x2

contingency table.  For ease of notation, call the two states into which forecasts and

realizations fall "I" and "j".  Commonly, for example, I = "up" and j = "down."  Figures 1 and

2 make clear our notation regarding observed cell counts and unobserved cell probabilities. 

The null hypothesis that a direction-of-change forecast has no value is that the forecasts and

realizations are independent, in which case   As always, one proceeds under

the null.  The true cell probabilities are of course unknown, so one uses the consistent
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estimates  and   Then one consistently estimates the expected cell counts

under the null,  by   Finally, one constructs the statistic

  Under the null, 

An intimately-related test of forecast value was proposed by Merton (1981) and

Henriksson and Merton (1981), who assert that a forecast has value if   They

therefore develop an exact test of the null hypothesis that  against the

inequality alternative.  A key insight, noted in varying degrees by Schnader and Stekler

(1990) and Stekler (1994), and formalized by Pesaran and Timmermann (1992), is that the

Henriksson-Merton null is equivalent to the contingency-table null if the marginal

probabilities are fixed at the observed relative frequencies,  and   The same

unpalatable assumption is necessary for deriving the exact finite-sample distribution of the

Henriksson-Merton test statistic.

Asymptotically, however, all is well; the square of the Henriksson-Merton statistic,

appropriately normalized, is asymptotically equivalent to C, the chi-squared contingency table

statistic.  Moreover, the 2x2 contingency table test generalizes trivially to the NxN case, with

Under the null,   A subtle point arises, however, as pointed out by Pesaran

and Timmermann (1992).  In the 2x2 case, one must base the test on the entire table, as the

off-diagonal elements are determined by the diagonal elements, because the two elements of

each row must sum to one.  In the NxN case, in contrast, there is more latitude as to which

cells to examine, and for purposes of forecast evaluation, it may be desirable to focus only on
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      The probability forecast assigned to the Nth event is implicitly determined by the14

restriction that the probabilities sum to 1.

the diagonal cells.

In closing this section, we note that although the contingency table tests are often of

interest in the direction-of-change context (for the same reason that tests based on Theil's U-

statistic are often of interest in more standard contexts), forecast "value" in that sense is

neither a necessary nor sufficient condition for forecast value in terms of a profitable trading

strategy yielding significant excess returns.  For example, one might beat the marginal

forecast but still earn no excess returns after adjusting for transactions costs.  Alternatively,

one might do worse than the marginal but still make huge profits if the "hits" are "big," a

point stressed by Cumby and Modest (1987).

Evaluating Probability Forecasts

Oftentimes economic and financial forecasts are issued as probabilities, such as the

probability that a business cycle turning point will occur in the next year, the probability that a

corporation will default on a particular bond issue this year, or the probability that the return

on the S&P 500 stock index will be more than ten percent this year.  A number of specialized

considerations arise in the evaluation of probability forecasts, to which we now turn.  Let P t+k,t

be a probability forecast made at time t for an event at time t+k, and let R =1 if the eventt+k

occurs and zero otherwise.  P  is a scalar if there are only two possible events.  Moret+k,t

generally, if there are N possible events, then P  is an (N-1)x1 vector.   For notationalt+k,t
14

economy, we shall focus on scalar probability forecasts.

Accuracy measures for probability forecasts are commonly called "scores," and the



QPS 1
T

T

t 1
2 Pt k,t Rt k

2.

GSB 2 P̄ R̄ 2,

P̄ 1
T

T

t 1
Pt k,t R̄ 1

T

T

t 1
Rt k.

-30-

      The "2" that appears in the QPS formula is an artifact from the full vector case.  We15

could of course drop it without affecting the QPS rankings of competing forecasts, but we
leave it to maintain comparability to other literature.

most common is Brier's (1950) quadratic probability score, also called the Brier score,

Clearly, QPS  [0,2], and it has a negative orientation (smaller values indicate more accurate

forecasts).   To understand the QPS, note that the accuracy of any forecast refers to the15

expected loss when using that forecast, and typically loss depends on the deviation between

forecasts and realizations.  It seems reasonable, then, in the context of probability forecasting

under quadratic loss, to track the average squared divergence between P  and R , which ist+k,t  t+k

what the QPS does.  Thus, the QPS is a rough probability-forecast analog of MSE.

The QPS is only a rough analog of MSE, however, because P  is in fact not at+k,t

forecast of the outcome (which is 0-1), but rather a probability assigned to it.  A more natural

and direct way to evaluate probability forecasts is simply to compare the forecasted

probabilities to observed relative frequencies -- that is, to assess calibration.  An overall

measure of calibration is the global squared bias, 

where  and   GSB  [0,2] with a negative orientation.  

Calibration may also be examined locally in any subset of the unit interval.  For example, one

might check whether the observed relative frequency corresponding to probability forecasts

between .6 and .7 is also between .6 and .7.  One may go farther to form a weighted average

of local calibration across all cells of a J-subset partition of the unit interval into J subsets
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      For example, Diebold and Rudebusch (1989) split the unit interval into ten equal parts.16

chosen according to the user's interest and the specifics of the situation.   This leads to the16

local squared bias measure, 

where T  is the number of probability forecasts in set j,  is the average forecast in set j, andj

 is the average realization in set j, j = 1, ..., J.  Note that  and LSB = 0 implies

that GSB = 0, but not conversely.

Testing for adequate calibration is a straightforward matter, at least under

independence of the realizations.  For a given event and a corresponding sequence of

forecasted probabilities  create J mutually exclusive and collectively exhaustive

subsets of forecasts, and denote the midpoint of each range , j = 1, ..., J.  Let R  denote thej         j

number of observed events when the forecast was in set j, respectively, and define "range j"

calibration statistics,

and an overall calibration statistic,

where   and   Z  is a joint test of0

adequate local calibration across all cells, while the Z  statistics test cell-by-cell localj
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      One may of course test for adequate global calibration by using a trivial partition of the17

unit interval -- the unit interval itself.

calibration.   Under independence, the binomial structure would obviously imply that17

 and   In a fascinating development, Seillier-

Moiseiwitsch and Dawid (1993) show that the asymptotic normality holds much more

generally, including in the dependent situations of practical relevance.

One additional feature of probability forecasts (or more precisely, of the corresponding

realizations), called resolution, is of interest:

RES is simply the weighted average squared divergence between  and the  a measure

of how much the observed relative frequencies move across cells.  RES  0 and has a positive

orientation.  As shown by Murphy (1973), an informative decomposition of QPS exists,

where  is the QPS evaluated at   This decomposition highlights the tradeoffs

between the various attributes of probability forecasts.

Just as with Theil's U-statistic for "standard" forecasts, it is sometimes informative to

compare the performance of a particular probability forecast to that of a benchmark.  Murphy

(1974), for example, proposes the statistic 

which measures the difference in accuracy between the forecast at hand and the benchmark

forecast   Using the earlier-discussed Diebold-Mariano approach, one can also assess the
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      Although  is an unbiased estimator of h , it is an imprecise or "noisy" estimator. 18
t+k

For example, if   has a conditional mean of h  becauset+k

  Yet, because the median of a  distribution is 0.455,  more than

fifty percent of the time. 

significance of differences in QPS and  differences in QPS or various other measures

of probability forecast accuracy across forecasters, or differences in local or global calibration

across forecasters.

Evaluating Volatility Forecasts

Many interesting questions in finance, such as options pricing, risk hedging and

portfolio management, explicitly depend upon the variances of asset prices.  Thus, a variety of

methods have been proposed for generating volatility forecasts.  As opposed to point or

probability forecasts, evaluation of volatility forecasts is complicated by the fact that actual

conditional variances are unobservable.

A standard "solution" to this unobservability problem is to use the squared realization

 as a proxy for the true conditional variance h , because t+k

  where   Thus, for example,18

  Although MSE is often used to measure volatility forecast

accuracy, Bollerslev, Engle and Nelson (1994) point out that MSE is inappropriate, because it

penalizes positive volatility forecasts and negative volatility forecasts (which are meaningless)

symmetrically.  Two alternative loss functions that penalize volatility forecasts

asymmetrically are the logarithmic loss function employed in Pagan and Schwert (1990),
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and the heteroskedasticity-adjusted MSE of Bollerslev and Ghysels (1994),

Bollerslev, Engle and Nelson (1994) suggest the loss function implicit in the Gaussian quasi-

maximum likelihood function often used in fitting volatility models; that is,

As with all forecast evaluations, the volatility forecast evaluations of most interest to

forecast users are those conducted under the relevant loss function.  West, Edison and Cho

(1993) and Engle et al. (1993) make important contributions along those lines, proposing

economic loss functions based on utility maximization and profit maximization, respectively. 

Lopez (1995) proposes a framework for volatility forecast evaluation that allows for a variety

of economic loss functions.  The framework is based on transforming volatility forecasts into

probability forecasts by integrating over the assumed or estimated distribution of   By

selecting the range of integration corresponding to an event of interest, a forecast user can

incorporate elements of her loss function into the probability forecasts.

For example, given  and a volatility forecast  an options

trader interested in the event  would generate the probability forecast
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ĥt k,t

uy,t k

ly,t k

fzt k dzt k,

E[It k,t It,t k,It 1,t k 1,...Ik 1,1] (1 ),

It k,t

1, if yt k [Ly,t k, Uy,t k]

0, if otherwise.

f zt k D (0,1),

l , t k, u , t k

yt k µt k,t t k µt k,t E yt k t ,

µ̂t k,t ly, t k, uy, t k

-35-

where z  is the standardized innovation,  is the functional form of  andt+k

 is the standardized range of integration.  In contrast, a forecast user interested in

the behavior of the underlying asset,  where  might

generate the probability forecast

where  is the forecasted conditional mean and  is the standardized range of

integration.

Once generated, these probability forecasts can be evaluated using the scoring rules

described above, and the significance of differences across models can be tested using the

Diebold-Mariano tests.  The key advantage of this framework is that it allows the evaluation

to be based on observable events and thus avoids proxying for the unobservable true variance.

The Lopez approach to volatility forecast evaluation is based on time-varying

probabilities assigned to a fixed interval.  Alternatively, one may fix the probabilities and vary

the widths of the intervals, as in traditional confidence interval construction.  In that regard,

Christoffersen (1995) suggests exploiting the fact that if a (1- )% confidence interval

(denoted [L , U ]) is correctly calibrated, then y,t+k  y,t+k

where
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      In general, one wants to test whether  where  is all information19
t

available at time t.  For present purposes,  is restricted to past values of the indicatort

sequence in order to construct general and easily applied tests.

That is, Christoffersen suggests checking conditional coverage.   19

Standard evaluation methods for interval forecasts typically restrict attention to

unconditional coverage,   But simply checking unconditional coverage is

insufficient in general, because an interval forecast with correct unconditional coverage may

nevertheless have incorrect conditional coverage at any particular time.

For one-step-ahead interval forecasts (k=1), the conditional coverage criterion

becomes

 or equivalently, 

Given T values of the indicator variable for T interval forecasts, one can determine

whether the forecast intervals display correct conditional coverage by testing the hypothesis

that the indicator variable is an iid Bernoulli(1- ) random variable.  A likelihood ratio test of

the iid Bernoulli hypothesis is readily constructed by comparing the log likelihoods of

restricted and unrestricted Markov processes for the indicator series {I }.  The unrestrictedt+1,t

transition probability matrix is

where  and so forth.  The transition probability matrix under the
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      The likelihoods are approximate because the initial terms are dropped.  All the likelihood20

ratio tests presented are of course asymptotic, so the treatment of the initial terms is
inconsequential.

null is   The corresponding approximate likelihood functions are

and 

where n  is the number of observed transitions from I to j and I is the indicator sequence.  ij
20

The likelihood ratio statistic for the conditional coverage hypothesis is

where  are the maximum likelihood estimates.  Under the null hypothesis, 

The likelihood ratio test of conditional coverage can be decomposed into two

separately interesting hypotheses, correct unconditional coverage,  and

independence, =1- .  The likelihood ratio test for correct unconditional coverage (given11 00

independence) is

where   Under the null hypothesis,   The

independence hypothesis is tested separately by 

Under the null hypothesis,   It is apparent that LR  = LR  + LR , in small ascc  uc  ind

well as large samples.

The independence property can also be checked in the case where k=1 using the group

test of David (1947), which is an exact and uniformly most powerful test against first-order
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dependence.  Define a group as a string of consecutive zeros or ones, and let r be the number

of groups in the sequence {I }.  Under the null that the sequence is iid, the distribution of rt+1,t

given the total number of ones, n , and the total number of zeros, n , is1        0

where n=n + n , and0  1

Finally, the generalization to k>1 is simple in the likelihood ratio framework, in spite

of the fact that k-step-ahead prediction errors are serially correlated in general.  The basic

framework remains intact but requires a k -order Markov chain.  A k -order chain, however,th      th

can always be written as a first-order chain with an expanded state space, so that direct

analogs of the results for the first-order case apply.

V.  Concluding Remarks

Three modern themes permeate this survey, so it is worth highlighting them explicitly. 

The first theme is that various types of forecasts, such as probability forecasts and volatility

forecasts, are becoming more integrated into economic and financial decision making, leading

to a derived demand for new types of forecast evaluation procedures.

The second theme is the use of exact finite-sample hypothesis tests, typically based on

distribution-free nonparametrics.  We explicitly sketched such tests in the context of forecast-
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error unbiasedness, k-dependence, orthogonality to available information, and when more

than one forecast is available, in the context of testing equality of expected loss, testing

whether a direction-of-change forecast has value, etc.

The third theme is use of the relevant loss function.  This idea arose in many places,

such as in forecastability measures and forecast accuracy comparison tests, and may readily

be introduced in others, such as orthogonality tests, encompassing tests and combining

regressions.  In fact, an integrated tool kit for estimation, forecasting, and forecast evaluation

(and hence model selection and nonnested hypothesis testing) under the relevant loss function

is rapidly becoming available; see Weiss and Andersen (1984), Weiss (1995), Diebold and

Mariano (1995), Christoffersen and Diebold (1994, 1995), and Diebold, Ohanian and

Berkowitz (1995).
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Figure 1
Observed Cell Counts

Actual i Actual j Marginal

Forecast i O O Oii ij i.

Forecast j O O Oji jj j.

Marginal O O Total: O.i .j

Figure 2
Unobserved Cell Probabilities

Actual i Actual j Marginal

Forecast i P P Pii ij i.

Forecast j P P Pji jj j.
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