
1 In practice we do not observe the whole past of a time series, of course. What follows in this
section is only a theoretical exercise. The practical aspects will be addressed in section 3.
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1. Recursive best linear forecasting

Let  be a covariance stationary time series process, with . The best linear h-stepYt E[Yt] ' 0

ahead forecast of  given the observations on 1 is a linearYt%h , h ' 1,2,3,..., Yt ,Yt&1 ,Yt&2 , ....... ,

function of  j  =  0,1,..., say:Yt&j,

Ŷt%h*t ' j
4

j'0
(h, jYt&j, (1)

such that the mean-square forecast error

E Yt%h & Ŷt%h*t
2
' E Yt%h & j

4

j'0
(h,jYt&j

2

(2)

is minimal. Therefore, the coefficients  are such that the first-order conditions(h,j

E Yt%h & j
4

j'0
(h,jYt&j Yt&k ' 0 for k ' 0,1,2,... , (3)

are satisfied. 

Note that we can write (2) and (3) in terms of the covariance function

f(m) ' cov Yt,Yt&m ' E[YtYt&m ] (4)
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(the last equality follows from the assumption that ):E[Yt] ' 0

E Yt%h & Ŷt%h*t
2
' f(0) & 2j

4

j'0
(h,jf(h%j) % j

4

i'0
j
4

j'0
(h,i(h,jf(*i&j*) (5)

with first-order conditions:

f(h%k) ' j
4

j'0
(h,jf(*k&j*), k '0 ,1,2,....... (6)

Given the covariance function  f(), we can in general solve the coefficients   uniquely from (6).(h,j

Now consider the best linear one-step ahead forecast of :Yt%2

Ŷt%2*t%1 ' j
4

j'0
(1,jYt%1&j ' (1,0Yt%1 % j

4

j'0
(1,j%1Yt&j . (7)

This expression can be rewritten as

Ŷt%2*t%1 ' (1,0 Yt%1 & Ŷt%1*t % (1,0Ŷt%1*t % j
4

j'0
(1,j%1Yt&j . (8)

It follows from the first-order conditions that for k = 0,1,2,....

0 ' E Yt%2 & Ŷt%2*t%1 Yt&k ' E &(1,0 Yt%1 & Ŷt%1*t % Yt%2 & (1,0Ŷt%1*t & j
4

j'0
(1,j%1Yt&j Yt&k

' &(1,0E Yt%1 & Ŷt%1*t Yt&k % E Yt%2 & (1,0Ŷt%1*t & j
4

j'0
(1,j%1Yt&j Yt&k

' E Yt%2 & (1,0Ŷt%1*t & j
4

j'0
(1,j%1Yt&j Yt&k ,

(9)

hence:



3

Ŷt%2*t ' (1,0Ŷt%1*t % j
4

j'0
(1,j%1Yt&j . (10)

More generally we have:

THEOREM 1. Let  be a covariance stationary time series process, with . Let Yt E[Yt] ' 0 Yt&j

be observable for j = 0,1,2,.... Replacing in the expression for the best linear one-step ahead

forecast of  i.e.,Ŷt%h*t%h&1 Yt%h ,

Ŷt%h*t%h&1 ' j
4

j'0
(1,jYt%h&1&j ' j

h&2

j'0
(1,jYt%h&1&j % j

4

j'h&1
(1,jYt%h&1&j (11)

the unobserved  by best linear forecasts  respectively,  yieldsYt%h&1&j , j ' 0 ,....,h&2 , Ŷt%h&1&j*t ,

the best linear h-step ahead forecast of  Yt%h:

Ŷt%h*t ' j
h&2

j'0
(1,jŶt%h&1&j*t % j

4

j'h&1
(1, jYt%h&1&j . (12)

If    the best linear h-step ahead forecast takes the formE[Yt] ' µ … 0,

Ŷt%h*t ' *h % j
4

j'0
(h,jYt&j . (13)

Exercise 1: Show that 

*h ' 1 & j
4

j'0
(h,j µ (14)

with the coefficients   determined by (6), so that(h,j
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Ŷt%h*t ' µ % j
4

j'0
(h,j Yt&j & µ . (15)

The practical implication of this result is that in forecasting  we may first forecast , usingYt%h Yt%h & µ

the result of Theorem 1, and then add to the forecast involved.µ

Exercise 2: Prove that:

THEOREM 2: For the case  the  result of Theorem 1 becomesE[Yt] ' µ … 0

Ŷt%h*t ' j
h&2

j'0
(1,jŶt%h&1&j*t % j

4

j'h&1
(1,jYt%h&1&j % 1 & j

4

j'0
(1,j µ. (16)

2. Forecasting with an ARMA(p,q) model: Theory

Consider the ARMA(p,q) process

Yt ' µ % ut , "(L)u t ' $(L)et ,
where

"(L) ' 1 & j
p

j'1
"jL

j, $(L) ' 1 & j
q

j'1
$jL

j,

"(z) ' 0 Y *z* > 1, $(z) ' 0 Y *z* > 1 ,
et is white noise: E(et) ' 0, E(e 2

t ) ' F2 < 4 , E(etet&j) ' 0 for j … 0 .

(17)

Moreover, we have to assume that the lag polynomials  do not have common roots"(L) and $(L)

(Exercise 3: Why?). Since the lag polynomial  is invertible, because all its roots are outside the unit$(L)

circle, we can write this process as an AR( ) process:4

((L)(Yt & µ) ' et , where ((L) ' $(L)&1"(L) ' 1 & j
4

j'0
(jL

j%1 , (18)
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say. Note that  Thus:((z) ' 0 Y *z* > 1 .

Yt%1 ' * % j
4

j'0
(jYt&j % et%1 , where * ' 1 & j

4

j'0
(j µ. (19)

Consequently, the best linear one-step ahead forecast of  is:Yt%1

Ŷt%1*t ' * % j
4

j'0
(jYt&j ' µ % j

4

j'0
(j Yt&j & µ . (20)

(Exercise 4: Why?) Using Theorem 2, we can recursively find the best linear h-step ahead forecast of

 by Yt%h

Ŷt%h*t ' j
h&2

j'0
(jŶt%h&1&j*t % j

4

j'h&1
(jYt%h&1&j % 1 & j

4

j'0
(j µ. (21)

3. Forecasting with an ARMA(p,q) model: Practice

The practical problem with the above approach is three-fold: First, we usually do not observe

the whole process , but only a finite number of ‘s, say for t = 1,...,n. Second, p and q areYt Yt

unknown. We will address that problem later. Third, we do not observe the coefficients directly."i , $j

These coefficients have to be estimated. The latter can be done by maximum likelihood, but that

requires further assumptions on the distribution of the white noise errors et. 

An alternative approach is nonlinear least squares estimation, together with the assumption that 

et  = 0 for t < 1, hence  ut  = 0 for t < 1 and  The assumption  et  = 0  for t < 1 isYt ' µ for t < 1.

asymptotically innocent: it does not affect the consistency or asymptotic normality of the parameter

estimates. The least squares problem involved is:
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min
2

j
n

t'1
et(2)2 ,

subject to

et(2) ' j
q

j'1
$jI(t&j>0)et&j(2) % Yt&µ & j

p

j'1
"jI(t&j>0) Yt&j&µ , t ' 1,..,n,

where 2 ' (µ,"1 ,....,"p ,$1 ,....,$q)T ,

(22)

with I() the indicator function: I(true) = 1, I(false) = 0.  Under some regularity conditions, in particular

the condition that  p and q are correctly specified, and the condition that the errors et are martingale

differences:  it can be shown that the nonlinear least squares estimatorE[et*et&1 ,et&2 ,et&3 ,........] ' 0,

 is consistent and asymptotically normally distributed:2̂ ' (µ̂, "̂1 ,...., "̂p , $̂1 ,...., $̂q)T

n(2̂ & 2) 6 Np%q%1[0 ,S&1
1 S2S

&1
1 ] in distribution,

where

S1 ' lim
n64

1
nj

n

t'1
E

Met(2)

M2T

Met(2)

M2
,

S2 ' lim
n64

1
nj

n

t'1
E et(2)2

Met(2)

M2T

Met(2)

M2
.

(23)

Moreover, these two matrices can be consistently estimated by

Ŝ1 ' /0000
1
nj

n

t'1

Met(2)

M2T

Met(2)

M2
2'2̂

, Ŝ2 ' /0000
1
nj

n

t'1
et(2)2 Met(2)

M2T

Met(2)

M2
2'2̂

, (24)

respectively.

Once we have estimated the parameters , we can compute the ‘s recursively, as"i , $j (j

follows. Observe from (18)  that 

et ' ut & j
4

j'0
(jut&1&j . (25)
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If we set in (25)   then ut ' &1 for t ' &1, u t ' 0 for t … &1,

ej ' 0 for j < &1
e
&1 ' u

&1 ' &1
e0 ' u0 & (0u

&1 ' (0

e1 ' u1 & (0u0 & (1u
&1 ' (1

e2 ' u2 & (0u2 & (1u0 &(2u
&1' (2

.....................
et ' (t , t $ 0 .

(26)

But it follows from (17)  that  also

et ' j
q

j'1
$ jet&j % ut & j

p

j'1
"jut&j . (27)

Thus  if we set in (27),   for j < -1, then  = -1 ut ' &1 for t ' &1, u t ' 0 for t … &1, ej ' 0 e
&1

and  for t = 0,1,2,..... Therefore, the ‘s can be solved recursively, on the basis of theet ' (t (j

nonlinear least squares estimation results, by:

(̂
&1&j ' 0 for j > 0 ,

(̂
&1 ' &1 ,

(̂0 ' "̂1 & $̂1 ,

(̂j ' j
q

i'1
$̂i(̂j&i % "̂j%1 for j ' 2,....,p&1,

(̂j ' j
q

i'1
$̂i(̂j&i for j $ p.

(28)

Replacing  in (20)   the  and the other parameters by their estimates,  yields  theYt&j for j $ t by µ̂

feasible best linear one-step ahead  forecast

Ỹt%1*t ' µ̂ % j
t&1

j'0
(̂j Yt&j & µ̂ ,

and replacing in (21) and the other parameters by their estimates,  yieldsYt%h&1&j for j $ t%h&1 by µ̂
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the recursive formula for the feasible best linear h-step ahead  forecast:

Ỹt%h*t ' µ̂ %j
h&2

j'0
(̂jỸt%h&1&j*t % j

t%h&2

j'h&1
(̂j Yt%h&1&j & µ̂ . (30)

As to the choice of p and q, there are a few model selection tools on the market such as the

Akaike information criterion. However, if forecasting is the goal, then the out-of-sample forecasting

performance is a the best criterion.  Thus, select a sub-sample  and estimate theY1 ,....... ,Ym , m < n ,

parameters of the ARMA(p,q)  model using the sub-sample only. Then choose  p and  q  such that the

sum of squared out-of-sample forecast errors,

  'n&m
h'1 (Ym%h & Ỹm%h*m)2

is minimal. Once you have determined p and q, re-estimate the parameters using the whole sample

, and forecast Y1 ,....... ,Yn , Yn%h by Ỹm%h*n .


