Uncertainty is a fact of life for both individuals and organizations. Forecast-
ing is essential for planning and operation control in a variety of areas such
as production management, inventory systems, quality control, financial plan-
ning, and investment analysis. In this chapter we develop the minimum mean
square error forecasts for the stationary and nonstationary time series models
introduced in Chapters 3 and 4. These models can also be used to update fore-
casts when new information becomes available. We also discuss the implication
of the constructed time series model in terms of its eventual forecast function.

5.1 INTRODUCTION

One of the most important objectives in the analysis of a time series is to fore-
cast its future values. Even if the final purpose of time series modeling is for
the control of a system, its operation is usually based on forecasting. The term
Jorecasting is used more frequently in recent time series literature than the
term prediction. However, most forecasting results are derived from a general
theory of linear prediction developed by Kolmogorov (1939, 1941), Wiener
(1949), Kalman (1960), Yaglom (1962), and Whittle (1983), among others.
Consider the general ARIMA(p, d, g) model

#(BY1-B)'Z, = 6(B)a, (5.1.1)

where ¢(B) =(1-¢B—---—¢,BP), 8(B) =(1-6,B—~.-. -8, B), and the series
a, isa Gaussian N (0, 02) white noise process. The deterministic trend parame-
1er 8, is omitted for simplicity but no loss of generality. Equation (5.1.1) is one
of the most commonly used models in forecasting applications. We discuss the
minimum mean square error forecast of this model for both cases whend = 0
md d # 0.
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5.2 MINIMUM MEAN SQUARE ERROR FORECASTS

5.2.1 Minlmum Mean Square Error Forecasts
for ARMA Models

To derive the minimum mean square error forecasts, we first consider the case
when d = (, i.e, the stationary ARMA model

$(B)Z, = 6(B)a,. (5.2.1)

Because the modet is stationary, we can rewrite it in a moving average repre-
sentation,

Z = ¥(B)a,
=a e dua, o+ (5.2.2)
where
o~ . 8(B)
u‘;(B) = wB’ = . 2.
; B = 35 - (5.23)
and ¢y, = 1. Fort = n 4/, we have
zu+l = Z'J'jan-ﬂ—j' (524)
§=0

Suppose at time 1 = > hz : i | i

t |f‘ ¢ u_m! ' 1t we have the observations Z,, Z,, _,, Zy_2, - and wish
o forecast I-step ahead of future value Z,,; as a Yincar combination of the
observations Z,, Z, (Z, 5. ....Since Z, fort =n,n—1,n— 2, ... can ali

be written in the form of {5.2.2), we can let the minimum mean square ercor
forecast Z, (1Y of Z,,,; be

Za(l) = t‘!I'l‘.‘;'n + #'l‘ﬂan—l + 'f'r'+2“n-z +- (5.2.5)

where the yy" are to be determined. The mean square error of the forecast is

[E | oo
EZyi =2, =00 34+ 023 [y — Wﬁ]z»
j=0 i=0

which is easily s L _
hich is easily seen to be minimized when Viej = gb,ﬂ-. Hence,

ZIIU) = 'l'lan + 'j'H'lau—l + ’l‘l-}za”_z e (526)
But using (5.2.4) and the fact that
0, i >0,
E(aniflzn’ Zn*l"“)={ J‘ }
Qe JE0,

we have

By 2oy Z, gy ) = Py 4y 1@y Wy oty 4o,
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Thus, the minimum mean square crror forecast of Z, ,; is given by its condi-
tional expectation, That is,

Zn([) = E(ZIIH‘ |zr|’ Zu-—l! ) (527)

2,.(7) is usually read as the !-step ahead of the forecast of Z,, ,, at the forecast
origin n.
The forecast error is
-1

C’"(’) = Znﬂ —"Zhn(’) = Z”")'“Mf—i' (QZS)
j=0

Because E(e, (/)| Z,, t <n}) =0, the forecast is unbinsed with variance

-1
var(2, (1)) = Var(e (N) = 02 Y ¥ (5.2.9)
j=0
For a normal process, the (1 — o) 100% forecast limits are
172

-1
Z,MENg [1+D v}| o
i=

(5.2.10)

where N5, is the standard normal deviate such that P(N > ang) = .n,"?..

The forecast error (1) as shown in (5.2.8) is.a linear con.l‘bmatum (‘)f the
future random shocks entering the system after time n. Specifically, the one-
step ahead forecast error is

cn(l):Zn+1"_2n(l)=an+l' (5'2‘11)

Thus, the one-step ahead forecast errors are indcpr.:ndent. This implies that
2,,(]) :s indeed the best forecast of Z,, , ,. Otherwise, if one-step ahead forecast
errors are correlated, then one can caleulate the forecastd,, , ofa, ,y from the
available errors @, 4, _y» @, _y +.. and hence improve the forecast of Z,,, by
simply using 2,(1) +4,,, as the forecast. However, the forecast errors for
longer lead times are correfated. This is true for the forecast errors

en(!) = Zr:+f - zn(l) =4 + ’I'lanﬂ—l +---t d"—l“""‘] (5212)

and
e, iN=2Zy =2 i = gttt B (5.2.13)

«which are made at the same lead time [ but different origins n and n —j for
1. It is also true for the forecast errors for different lead times made from
rw same time origin. For example,

Covien(@), en(D} = El@y 42 + 101X 41)) = $175- (5.2.14)
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5.2.2 Minimum Mean Square Error Forecasts
for ARIMA Models

We now consider the general nounstationary ARIMA(p, d, q) model withd #
0, ie.,

$(B)(1-B)'Z, = 6(Ba,, (5.2.15)
where (B) = (1 - 4B —--. — $,B%) is a stationary AR operator and §(B) =
(1-8,B—---—8,B7)is an invertible MA operator, respectively. [tis interesting

to note that although for this process the mean and the second order moments
such as the variance and the autocovariance functions vary over time, as shown
in Chapter 4, the complete evolution of the process is completely determined
by a finite number of fixed parameters. Hence, we can view the forecast of
the process as the estimation of a function of these parameters and obtain the
minimum mean square error forecast using a Bayesian argument. [t is well
known that using this approach with respect to the mean square error crite-
rion, which corresponds to a squared loss function, when the series is known
up to time a1, the optimal forecast of Z,,, is given by its conditional expecta-
tion E(Z, ,,1Z,, Z,_y, ...). The minimum mean square error forecast for the
stationary ARMA model discussed earlier is, of course, a special case of the
forecast for the ARIMA(p, d, q) model withd = 0.

To derive the variance of the forecast for the general ARIMA model, we

rewrite the model at timet +1 in an AR representation that exists because the
model is invertible, Thus,

*(B)Z,yy =ayy, (5.2.16)
where
1 N pi = $B)1-BY
n(B) =1 ,-\;.""B’ TR (52.17)
or equivalently
oD
Zg= Z"jzm.; ta, . (5.2.18)
i=1
Following Wegman (1986}, we apply the operator
1+¢ B+ +_B!
to (5.2.18) and obtain
co [-1 =1
SN mtZisojkt Y e =0 (5.2.19)
j=0k=0 k=0
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where my, = —1 and yy = 1. [t can be easily shown that
oo f-1
L Z"j‘f'kz: H—j—k
Jmok=0 (5.2.20)
11 m wo -1
=7l t Z L”m-i"bizul—m + Z Trf—l*i—l'tj‘iZ'*ﬂ"
m=1i=0 j=ti=0
Choosing ¢ weights so that
m
Zw,,,_ﬂ»,- =0, form=1,2,..,01-1, (5.2.21)
i=0
we have
oo -1
!
Zinu= Z’Tj( )Zf-j+1 + Z‘}'j“ul—i (5.2.22)
j=1 =0
where
\ -1
m =3 m it (5.2.23)
i=0
Thus, given Z,, for ¢ <n, we have
er(,) =E(ZJ|+I I| zlr t S”)
o~ (f
=521z, .0 (5.2.24)
i=1
because E(a, ;| Z,, t <n) =0, forj > 0. The forecast error is
en(,) = Znﬂ —Zn(!)
-1
=D Vs (5.2.29)
j=0

where the ¢; weights, by (5.2.21), can be calculated recursively from the =;
weights as follows:

-1
I I IR 3 Ny B ) (5.2.26)
i=0

Note that (5.2.25) is exactly the same as (5.2.8). Hence, the results given in
(5.2.7) through (5.2.14) hold for both stationary and nonstationary ARMA
models. _ ' L

For a stationary process, lim;_, 3" -0 ¥y exists. Hence, from (5.2.10), the
eventual forecast limits approach two iwnzonmlly parallel lines as shown in

-

-y

T
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Figure 5.1(a). For a nonstationary process, lim,_ E}:; q,bjz does not exist. In

fact, }::- :; ll-f' increases and becomes unbounded as | — oo. Thus, the forecast
limits in this case become wider and wider as the forecast lead ! becomes larger
and larger, as shown in Figure 5.1(b). The practical implication of the latter
case is that the forecaster becomes less certain about the result as the forecast
lead time gets larger. For more discussion on the properties of the mean square
error forecasts, see Shaman (1983).

5.3 COMPUTATION OF FORECASTS

From the result that the minimum mean square error forecasts Z,(H of Z .,
at the forecast origin a1 is given by the conditional expectation

Z.NV=E@Zy\Zy Zyyy o),

we can easily obtain the actual forecasts by directly using the difference equa-
tion form of the model. Let

V(B)= 6(BY(1-BY = (1= ¥,B— ... - ¥, BP*).

The general ARIMA(p, d, ) model (5.2.15) can be written as the following
difference equation form:

(1~ 0B~ =¥ B*Z, = (1-6,B~ .. §,B"a,. (5.3.1)
Fort = n 4!, we have
IOV SUANIRE 3 VAR SITE D 0V AN
+au+l_elanﬂ—l""'_aqanﬂ—q' (532)
Taking the conditional expectation at time origin n, we obtain

2, =02, -0+ -+ ¥,,,2,0-p-d)

+a,)-da,(-1)-... = 6,8, ~q) (533
where
2,)=EZpj|Zys 2oy, ) 210,
Z,G)=Z,.;, i<o,
4,0)=0, iz
and

auU) =Zn+j _Znﬂ'—l(]) =a, +j|j <0

Example 5.1 To illustrate the above results, we consider the I-step ahead

forecast Z,(1) of Z,,, for the following ARIMA(], 0, 1) or ARMA(1, 1)
model:

(1-¢BYZ, — ) = (1 —8B)a,. (5.3.4)
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1. Calculate the forecast 2,,(!) as the conditional expectation from the differ-
ence equation form.
Fort = n +1, we can rewrite the above model in (5.3.4) as

Znu=p+é(Zyy_y—p)+a, —6a,,_,. (5.3.5)
Hence
Za)=p+ HZ, - ) -ba, (5.3.6a)
and

Zy=p+ 92, = 1)-p)
=p+¢"(Z,—p)—¢"0a, 1>2 (5.3.6b)
2. Calculate the forecast variance Var(Z, (1)) = o2 ):;;,: Vi

When |4| < 1, we can calculate the y weights from the moving average
representation (5.2.2) with $(B) = (1 — ¢B) and 6(B) = (1 - 6B). That is,

(1-¢BY(1+yyB + ¢,B? +...) = (1—6B). (5.3.7)
Equating the coeflicients of B/ on both sides gives
W=¢"'(s-9), 21 (53.8)

Hence, the forecast variance becomes

-1
var(Z, (1)) = o3 {1 + Z[qsf"w—e)]’} , (5.3.9)

=1

which converges to o2[1+ (¢ — 8)2/(1 - ¢)].
When ¢ = 1, which corresponds o taking the first difference, the model in
(5.3.4) becomes an IMA(1, 1) process

(1-B)Z, = (1-6Ba, (5.3.10)

where we note that (1 —B)u = 0. To calculate the ¥ weights needed for the
forecast variance, since the MA representation does not exist, we first rewrite
(5.3.10) in an AR form when time equals { +1, i.e.,

m(B)Z,y=a,,
where
(1-B)
(1-6B)

#(By=1-mB-mBt—... . =
or
(1-B)=1-(m +8)B —(ny—m0)B% ~ (1~ m,8)B> —. ..
Equating the coefficients of B/ on both sides gives
m=(1-6)-1,  j>1. {5.3.11)
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Now, applying (5.2.26) we obtain

Yy=m=(1-86),
thy = my Fmpfy = (1-0)0+ (1 —8) = (1-8),

That is, we have vy = (1-8), 1 <j <I—1. Thus, the vatiance of 2, (1), from
(5.2.9), becomes

Var(Z, (1)) = o2 [1+ (I - 1)(1-8)7], (5.3.12)

which approaches +co as! — oo.

As expected, (5.3.12) is the limiting case of (5.3.9) when ¢ — 1. Thus, when
¢ is close to 1, the choice between a stationary ARMA(1, 1) model and a non-
stationary IMA(1, 1) model has very different implications for forecasting,
This can be seen even more clearly from the limiting behavior of the I-step
ahead forecast 2, (1) in (5.3.6h). For |¢| < 1, Z,(!) approaches the mean, y,
of the process as | — co. When ¢ — 1, the first equation of (5.3.6b) implies
that 2, (1) = Z2,,(I — 1) for all {. That is, the forecast is free to wander, with no
tendency for the values to remain clustered around a fixed level.

5.4 THE ARIMA FORECAST AS A WEIGHTED AVERAGE
OF PREVIOUS OBSERVATIONS

Recall that we can always represent an invertible ARIMA model in an autore-
gressive representation. In this representation, Z, is expressed as an infinite
weighted sum of previous observations plus a random shock, i.e.,

[& o]
Zr!+f = Z?‘T}Z"”l_j +au+]0 (54.])
j=1

or equivalently

W(B)ZHH =Qats

where

©(B) = 1_-215131' = %}iﬁ. (5.4.2)
(ERTY ’

zZ, = iwjz"(: - I>1. (5.4.3)

j=t

Lt e

Lob art gl el kol

i o
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By repeated substitutions, we see that 2 (I) can be expressed as a weighted
sum of current and past observations Z,, for ¢ < n. For example,

2, ()=mZ, +mZ, 47y Z,
= Z"’jznn-j
i=1
2"(2) = 1'l'[z“n(-l) + "2Zn + wSZn—i +ee

o o0
=m Z"jzm:—j + Z"}'nznﬂ—j
i=t j=1

=] ‘,)

= &

= E:’Tj Zys1-j
i=t

where
'rr(z)—'—wn'+1r i >1
f 1% JR3Y Jzl

More generally, it can be shown by successive substitutions that

oo
t
Zr:(l) = Z‘H}( )Zn-}]—j' (5‘4‘4)
i=1
where
1-1 .
VI e G} I>1, (5.4.5)
i jHi=1 L'}
i=1
and
1|}.(l)=1rj_

Thus, many smoothing results, such as moving averages and exponential
smoothing, are special cases of ARIMA forecasting. ARIMA models provide
a very natural and optimal way to obtain the required weights for forecasting.
The user does not have to specify either the number or the form of weights
as required in the moving average method and the exponential smoothing
method. It should also be noted that the ARIMA forecasts are minimum mean
square error forecasts. This optimal property is not shared in general by the
moving average and the exponential smoothing methods.

For an invertible process, the = weights in (5.4.3) or (5.4.4) form a con-
vergent series. This implies that for a given degree of accuracy, Z (1) depends
only un a finite number of recent observations. The associated = weights pro-
vide very useful information for many important managerial decisions.
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Exnmple 5.2 For the ARMA(1, 1) model in (5.3.4) with |#] < 1, we have
from (5.4.2) withd = 0

(1-¢B)=(1=mB—mB2 - )1-68) (5.4.0)

or
(1~ ¢By=1—(m + OB = (13— m@)B> — (1 —m B -,

Equating the coeflicients or B/ on both sides gives

m=(6-0)0"", =1 (5.4.7)
Assuming that ;= 0, from (5.4.3), we have
2, =S (6-08""2,0 -)). (5.4.8)
i=1
When ! = 1, we get
e v
2,(0=(=-8)) 077, (5.4.9)
j=l

For I = 2, from (5.4.4) and (5.4.5),

=)
2,,(2) = Z‘”j-)zrl*l—j
j=1

[e )
Z[”jﬂ +mmlZ, n
i=

2

(46— 0 + (¢80 "1Z, 01

—

= ¢(¢—9)§9i“12,,+1_,-. (5.4.10

i=1

~—

7 i ; s revi etV TONS Wi . (2}
Again Z_(2) is a weighted average of the previous observations with the

weights given by W}E) = ¢(¢~6)6 " forj > 1. Note that comparing (5.4.9) and
(5.4.10), we see that

Z.(2) = 6Z,(1), (5.4.11)

+ hich as expected, agrees with (5.3.6b) with ! = 2 and ;¢ = 0.
To see the implications of these weights, let us examine (-5._14.‘)) more care-
b For |8l <1, m = 871 (¢--8)converges to 0 asj — (h This implies that the
n: - - recent observations have a greater influence on the forecast. For 8] > 1,
Al -aph the model is still stationary, its AR representation does not exist. To
~¢ b trouble, note that if |81 > 1, the = weights rapidly approach —cc or
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+00 as j increases. This implies that the more remote past observations have
a much greater influence on the forecast. When 8] = 1, the x weights become
m = (¢— 1) for § =1, and x; = (-1)/(1 + ¢) for § = —1, which have the same
absolute value for all j. This means that all past and present observations are
equally important in their effect on the forecast. Thus, 2 meaningful forecast
can be derived only from an invertible process. The models corresponding to
|f] > 1 and ]8| = 1 are both noninvertible.

5.5 UPDATING FORECASTS

Recall that when a time series Z, is available for t < n, the I-step ahead min-
imum mean square forecast error for the forecast origin n using the general
ARIMA model is obtained in (5.2.25), which, for convenience, is listed again
in the following:

-t
enll) = Znu~Z,(1) = L:wja,ﬂ._,-. (5.5.1)
j=
In particular, the one-step ahead forecast error is
en(1) = Zypy = 2,(1) = . (5.5.2)
Clearly, the result can be reversed, giving
z,-2,,)=a,. (5.5.3)
From (5.5.1), it is clear that
e (I +1)=¢, () +Pa,, (5.5.4)
where
e+ 1) =2, -2, (I+1),
and

(1) =Z,y-2,(0).

Hence, after substituting, rearranging, and using (5.5.3), we have the following
updating equation:

Zy(1)= 2y + )+ H1Z, - 2,4 (1)), (5.5.5)
or equivalently
Zpi)=2,( + D)+ $1Z, - 2, (D} (5.5.6)

The updated forecast is obtained by adding to the previous forecast a con-
stant multiple ¢, of the one-step ahead forecasterrora, ,, = Z, ,, ~2,(1). This
is certainly sensible. For example, when the value Z,, ,; becomes available and
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is found to be higher than the previous forecast, (resulting in a positive fore-
casterrord, ., = Z, —-2"(1)), we wiil naturally modify the forecast 20+1
made earlier by proportionally adding a constant multiple of this crror.

5.6 EVENTUAL FORECAST FUNCTIONS
Let the ARIMA model be
Y (B)Z, = 8(B)a,
where W(B) = #(B)(1 - B)'. Recall from Equation (5.3.3) that

2N =2, (- + 0,2, (0-2 4+ ¥, 2,0 -p-d)
+au(’) - Gl(?"(f - 1) —tr T anu([ _q)

When ! > q, Z,() becomes
2.0 =vZ,(d-2)+ -+ ¥, ,Z,(-p-d)
or
W(B)Z, (1) =0. (5.6.1)

That is, 2"(!) for I > g satisfies the homogeneous difference equation of or-
der (p +d). Let ¥(B) = 10, (1= R;BY™ with S, m; = (p +d). Then from
Theorem 2.7.1, the peneral solution is given by

N mi—1
z,h=3" (Z C.‘,-"’l") R! (5.6.2)

i=t \ j=0

for! > (q —p —d), where the C,-(j") are constants that depend on time origin n.
For a given forecast origin n, they are fixed constants for all forecast lead times
1. The constants change when the forecast origin is changed.

The solution in (5.6.2) is called the eventual forecast function because it
holds only for! > (g —p —d). When ¢ < (p +d), the eventual forecast function
actually holds for all lead times [ > 0. In general, the function js the unigue
curve that passes through the (p + d) valucs given by 2,(q), Z,q-", ...,
2.(q-p-d+1),where 2, (-j) = Z,,_; forj > 0. Forthe ARIMA(p, d, q) model
with ¢ = 0, i.e., the ARIMA{p, d, 05 model, the function passes through the
puints Z,, Z, _y, .., and Z,_ o gy

n?

Example 5.3 For the ARIMA(1, 0, 1) model given in (5.3.4),
(1—$BYZ, — 1) = (1 - 6B)a,,

vioe forecast Z,,(1) satisfies the difference equation (1- B Z, (1) —p)=0for
' 1. The eventual forecast function is given by

Z,-p=Cc¢
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or
Z,()=p+ct (5.6.3)

forl > (q—p —d) = 0 and constant Cg"). The eventual forecast function passes
through 2, (1). Asl — oo, 2, (1) approaches the mean y of the stationary pro-
cess as expected.

Example 5.4 Consider the ARIMA(], 1, 1) model,
(1-¢B8)(1-B)Z, =(1-0B)a,.

The eventual forecast function is the solution of (1 — ¢B)(1 ~ B)Z, (1) = 0 for
! > 1, and is given by

2, ()=cP+chy (5.6.4)

for{ > (g —p —d) = —1. The function passes through the first forecast Z, (1)
and the last observation Z,..

Example 5.5 Consider the ARIMA(O, 2, 1) model,
(1-B)’Z, =(1-6B)a,.

The eventual forecast function is the solution of (1 — B)2Z, (1) = 0 for I > 1,
and from (5.6.2) it is given by

Z,()=c s+ (5.6.5)

for! > (q - p —d) = —1. The function is a straight line passing through Z"(l)
and Z,,.

5.7 A NUMERICAL EXAMPLE
As a numerical example, consider the AR(1) model,
(1—¢B)Z ~p)=a,

with ¢ = .6, 1 = 9, and 02 = .1. Suppose that we have the observations Z,qy =
8.9, Zg =9, Zyq =9, 24y = 9.6, and want to forecast Z 4, Z 43, Z g5, and Z,,
with their associated 95% forecast limits. We proceed as follows:

1. The AR(1) model can be written as

zl —H= ‘ﬁ(z;_l _’-‘) +au
and the general form of the forecast equation is

Z N =p+d2,(0-1)—p)

=pn+ qﬁ’(Z, - 1), I>1. (5.7.1)
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Thus,

Z100(1) =9+ .6(8.9—-9) = 8.94,
Z160(2) = 9+ (.6)}(B.9 - 9) = 8.964,
Z100(3) = 94+ (6)(8.9-9) = 8.9784,
Z100(4) =94 (.6)4(8.9 - 9) = 8.98704.
2. To obtain the forecast limits, we obtain the ¢ weights from the relationship
(1—éBY1+ 4B+ y,B +-.)=1. (5.7.2)
That is,
=4,  j20 (5.7.3)
The 95% forecast limits for Z,,, from (5.2.10} are
8944196V.1 or  8320<Z, <9.560.

The 95% forecast limits for Z,,, are

8964+ 1.96,/1+(.6¥V.1  or  8241< 7y, < 9.687.

The 95% forecast limits for Z,y; and Z,,, can be obtained similarly. The
results are shown in Figure 5.2

3. Suppose now that the observation a4 ¢ = 101 turns out to be Z,, = 8.8.
Because yy = #' = (.6)', we can update the forecasts for Zy, 703, and Z g4
by using (5.5.5) as follows.

2101(1) = Z100(2) + 112 101 = 2 100(1)]
= 8.964 + .6(8.8—8.94) = B.88

Z101(2) = Z100(3) + #:21Z 101 = Z100(1))
: = 8.9784 + (.6)*(8.8 —8.94) = 8.928

Zin(3) = Z1gp(4) + ¥a[Zy9y — Zyge(1)]
= §.98704 + (.6)'(8.8 — 8.94) = B.9568,

The earlier forecasts for Z g5, Z,g4, and Z,5, made at £ = 100 are adjusted
downward due to the negative forecast error made for Z .

Forecasting discussed above is based on the assumption that the param-
+ters are known in the model. In practice, the parameters are, of course, un-
* «own and have to be estimated from the given observations {Z,, Z,, ..., Z,}.
t-wever, with respect to the forecasting origin ¢ = n, the estimates are known
+ nstants and hence the results remain the same under this conditional sense.
I smation of the model parameters is discussed in Chapter 7.
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Fig. 5.2 Forecasts with 95% forceast limits for an AR(1) process.

Exercises

5.1 For cach of the lollowing modcls:
O (1-¢B)Z, -p)= Ay
) (1~ ¢B—$,B°)Z, —p) = a,,
(i) (1 - ¢;B)(1-B)Z, = (1 -6, B)a,.
(@) Find the [-step ahead forecast 2,,(1) of Zy
(b) Find the variance of the [-step ahcad forecast error forf = 1, 2, and 3,

52 (n) Show that the covariance between forecast errors from different origins is
given by

-1
Covle () e, (D] =2 D wiwry  1>].

i=j
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5.4

5.6

(b) Show that the covariance between forecast errors from the same origin bt
with ditferent lead times is piven by

-1
Covle, (). el +1)}= 02 Y Wity

=l

Consider the modcel
(1-.68B)(1 - B)*Z, = (1-.75B + .38 %)a,.

() Compute and plot the correlations between the error of the forecast 2.5
and thosc of the forecasts Z,_(5) forj = 1,2, ..., 10.

(b} Computc and plot the correlations between the crror of the forccast Z,(3)
and those of Z () for ! = 1,2, ..., 10.

A sales serics was fitted by the ARIMA(2, 1, 0) modcel!
(1-1.4B + .7BY)(1- B)Z, =aq,

where 6‘2 = 58000 and the tast 5 obscrvations arc 560, 580, 640, 770, and 800.
(n) Calculate the forecasts of the next 3 ohservations.

(b) Find the 95% [orccast limits for the {orecasts in {a).

(¢) Find the eventual forecast function.

Consider the IMA(1, 1) modcl
(1-B)Z, =(1-0B)a,.

(n)} Writc down the forecast equation that generates the lorecasts,

(b) Find the 95% [orccast limits produced by this model.

(¢} Exprcss the forceasts as a weighted average of previous obscrvatjons.

(d) Discuss the conncction of this model with the simple cxponential smoothing
mcthod.

(n) Show that {5.2.23) and {5.4.5) arc cquivalent.
(b) Mlustrate the equivalenee of (5.2.23) and (5.4.5) using the model in Excr-
cisc 5.5

Consider an AR(2) mode! (1—-¢)B—¢,B2)(Z, —p) = a, . where ¢y = 1.2, 4, = — 6,

jt = 65, and o2 = 1. Suppuse we have the observations Z,g = 60.4, Z1, = 589,

Zyg = 64.7, Z19 = 70.4, and Zy, = 62.6.

(n) Forecast Zgy, Zay, Zg3, and Zg,.

(v Find the 95% forccast limits for the forccasts in (a).

{¢) Suppose that the obscrvation at ¢ = Bl turns out to be Zg, = 62.2. Find the
updated forceasts for Zys, Zys, and Zgy.
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5.9

Consider the modcl
(1-.43B)1-B)Z, =a,

and the observations Z,g = 33.4 and Z5, = 33.9.
(n) Compute the forecast Zgp(l), for! = 1,2, ..., 10, and their 90% forecast limits.
(b) What is the eventual forecast function for the forecasts made at ¢ = 507

(©) Attimer = 51, Zg; became known and equaled 34.1. Update the forecasts
obtained in (a).

Consider the ARIMA(O, 1, 1) model
(1-B)Z, =(1- .8B)a,.
(#) Find the r weights for the following AR representation:
Z,=2,_,+aq,
where Z, = 2221 7Z,_j» and show that Tom =1

M Let2,() = }:;’__‘fl x‘.(z)Z,_,-” be the two-step ahead forecasts of Z, 5 at time

t. Express ‘I'I"-(z) in terms of the weights ;.

5.10 Obtain the cventual forecast function for the following modcls:

{m (1-.6B)Z, = (1 — 8B + 3B%)a,,

(b) (1-.3B)(1-B) = 4 +a,

(© (1-128+ .68%)(Z, -65) =a,

(@) (1 - BY’Z, = (1~ 2B - 3B%)a,,

{e) (1-.6B)(1- D)7, = (1- 758 + .34B%)a,.



6 MODEL IDENTIFICATION

In time series analysis, the most crucial steps are to identify and build a mode!
based on the available data. This requires a good understanding of the pro-
cesses discussed in Chapters 3 and 4, particularly the characteristics of these
processes in terms of their ACE, p,, and PACEF, ¢, In practice, these ACF and
PACF are unknown, and for a given observed time series Z,, Z,, ..., and Z,,
they have to be estimated by the sample ACE §,, and PACF, (ﬁkk discussed in
Section 2.5. Thus, in model identification, our goal is to match patterns in the
sample ACF, j,, and sample PACF, ¢,,, with the known patterns of the ACF,
py» and PACF, ¢,,, for the ARMA models, For example, since we know that
the ACF cuts off at lag 1 for an MA(1) model, a large single significant spike
at Iag 1 for i, will indicate an MA(1) model as a possible underlying process.

After introducing systematic and useful steps for model identification, we
give illustrative examples of identifying models for a wide variety of actual time
series data. We also discuss some recently introduced identification tools such
as the inverse autocorrelation and extended sample autocorrelation functions.

6.1 STEPS FOR MODEL IDENTIFICATION

Toillustrate the model identification, we consider the general ARIMA(p, d, ¢)
mode!

(1-¢$B—---—¢,BY1-B)Y'Z =8,+(1-6,B —---—6,BNa,.  (6.1.1)
Ael identification refers to the methodology in identifying the required
U tsrmations, suchas variance stabilizing transformations and differencing
- ormations, the decision to include the deterministic parameter , when
f ‘ad the proper orders of p and q for the model. Given a time series, we

- [ollowing useful steps to identify a tentative model,

foo i b h e a1

b ax- e s 2 aaoty

Seaaiy il Rt
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Step 1. Plot the time series data and choose proper transformations.

Ir any time series analysis, the first step is to plot the data. Through careful
examination of the plot, we usually get a good idea about whether the series
contains a trend, seasonality, outliers, nonconstant variances, and other non-
normal and nonstationary phenomena. This understanding often provides a
basis for pestulating a possible data transformation.

In lime series analysis, the most commonly vsed transformations are
variance-stabilizing transformations and differencing. Since differencing may
create some negative values, we should always apply variance-stabilizing trans-
formations before taking differences. A series with nonconstant variance
often needs a logarithmic transformation. More generally, to stabilize the vari-
ance, we can apply Box—Cox's power transformation discussed in Section 4.3.2.
Since a variance-stabilizing transformation, if necessary, is often chosen before
we do any further analysis, we refer to this transformed data as the original se-
ries in the following discussion unless mentioned otherwise.

Srep 2. Compute and examine the sample ACF and the sample PACF of
the original series to further confirm a necessary depree of differencing. Some
general rules are:

1. If the sample ACF decays very slowly (the individual ACF may not be large)
and the sample PACF cuts off after lag 1, it indicates that differencing is
needed. Try taking the first differencing (1~ B)Z,. One can also use the test
proposed by Dickey and Fuller (1979). In a borderline case, differencing is
generally recommended (see Dickey, Bell, and Miller [1986)).

2. More generally, to remove nonstationarity we may need to consider a higher
order differencing (1 — BYZ, for d > 1. In most cases, d is either 0, 1, or 2.
Some authors argue that the consequences of unnecessary differencing are
much less serious than those of underdifferencing. But do beware of the
artifacts created by overdifferencing, so that unnecessary overparameteri-
zation can be avoided.

Step 3.  Compute and examine the sample ACF and PACF of the properly
transformed and differenced series to identify the orders of p and g (where we
recall that p is the highest order in the autoregressive polynomial (1-¢,B —
--—¢,8"), and q is the highest order in the moving average polynomial (1 -
#,B ~ ... — 8,B1). Usually, the needed orders of these p and g are less than or
equal to 3. Table 6.1 summarizes the important results for selecting p and q.
It is useful and interesting to note that a strong duality exists between the
AR and the MA models in terms of their ACFs and PACFs. To build a reason-
able ARIMA model, ideally, we need a minimum of n = 50 observations, and
the number of sample ACF and PACF to be calculated should be about n/4,
although occasionally for data of good quality one may be able to identify an
adequate model with a smaller sample size.
We identify the orders p and q by matching the patterns in the sample
ACF and PACF with the theoretical patterns of known models. The art of a
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Tuble 6.1 Characteristics of theoreticat ACF and PACF (or stationary

processes.
Process ACF PACF
AR(p) Tails off as exponential Cuts off after lagp
decay or damped sine wave
MA(q) Cuts off after lag q Tails off as exponcntial

decay or damped sinc wave

ARMA(p, q) Tails off alter lag (q - p) Tails off alter lag (p — q)

time series analyst's model identification is very much like the method of an
FBI agent’s criminal search. Most criminals disguise themselves to avoid being
recognized. This is also true of ACF and PACE The sampling variation and the
correlation among the sample ACF and PACF as shown in Section 2.5 often
disguise the theoretical ACF and PACF patterns. Hence, in the initial model
identification we always concentrate on the general broad features of these
sample ACF and PACF without focusing on the fine details. Model improve-
ment can be easily achieved at a later stage of diagnostic checking.

The estimated variances of both the sample ACF and PACF given in
(2.5.21) and (2.5.27) are very rough approximations. Some authors recom-
mend that a conservative threshold of 1.5 standard deviations be used in check-
ing the significance of the short-term lags of these ACF and PACF at the initial
muadel identification phase. This is especially true for a relatively short series.

Step 4. Test the deterministic trend term 8; when d > 0.

As discussed in Section 4.2, for a nonstationary model, ¢(B)(1 HB)"Z, =
8y + 6(B)a,, the parameter #, is usually omitted so that it is capable of repre-
senting series with random changes in the level, slope, or trend. However, if
there is reason to believe that the differenced series contains a deterministic
trend mean, we can test for its inclusion by comparing the sample mean W of
the differenced series W, = (1—B)?Z, with its approximate standard error S;;-.
To derive Sg, we note from Section 2.5.1 that lim nVar(W) =372

n—oo j=—oc ¥
and hence

T S 1
oot = Fcu Z p; = E.Z %= 57(1)' (6.1.2)
f=—o0

f=-—00

where 4(B) is the auvtocovariance generating function defined in (2.6.8} and
- 'Vis its value at B = 1, Thus, the variance and hence the standard error for
b model dependent. For example, for the ARIMA(1, d, 0) model, (1 -
4 =a, we have, from (2.6.9),

ol

"8 = T9By (1= eB-)
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so that
g2 e 1o 1-4
W (1-¢) n (1—¢)
Lok (144) b (1m) 613
n \1-¢ n \1-p/’
where we note that o3, = #2/(1 — ¢?). The required standard error is
g=y (L 6.1.4
S =4y (l—-fil)' ( )

Expressions of S5 for other models can be derived similarly. However, at the
model identilication phase, since the underlying model is unknown, most avail-
able software use the approximation

. n
= |01+ 26, 20y 200) (6.1.5)

where 5, is the sample variance and jy, ..., fy are the firstk signiﬁc:}nl sample
ACFs of {W,}. Under the null hypothesis g = 0 for k 2 1, Equation {6.1.5)

reduces to
Sy = NENLE {h.1.6)

Alternatively, one can include 8, initially and discard it at the final model
estimation if the preliminary estimation result is not significant. Parameter es-
timation is discussed in the next chapter.

6.2 EMPIRICAL EXAMPLES

In this section we present a variety of real-world examples to illustrate the
method of model identilication. Several mainframe computer programs such
as BMDP, MINITAB, SAS, SCA, and SPSS, and PC software such as AUTO-
BOX and RATS are available to facilitate the methods. Some programs are
available for both the mainframe and personal computers.

Example 6.1 Figure 6.1 shows Series W1, which is the daily average num-
ber of defects per truck found in the final inspection at the end of the assemnbly
fine of a truck manufacturing plant. The data consist of 45 daily observations of
consecutive business days between November 4 to January 10, as reported in
Bun (1976, p. 134). The figure suggests astationary process with constant mean
and variance. The sample ACF and sample PACF are calculated in Tablc. 6.2
and plotted in Figure 6.2. The fuct that the sample ACF decays expunenflall.y
and the sample PACF has a single spike at lag 1 indicates that the series is
likely to be generated by an AR(1) process,

(1-¢B)Z,~ ) =a,. (6.2.1)



108 Chapter 8 Model idenilflcation

3.5

3.0+

g
n
1

Number of defects
8]
o
|

1.5 4

1.0 ' : : : -
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Day

Fig. 6.1 Daily average number ol truck manulacturing defects (Series W1).

Example 6.2 Series W2 is the classic series of the Wolf yearly sunspot num-
bers between 1700 and 1984, giving a total of n = 285 observations. Scientists
believe that the sunspot numbers affect the weather of the earth and hence hu-
man activities such as agriculture, telecommunications, and others. The Wolf
sunspot numbers have been discussed extensively in time series literature, e.g.,
Yule (1927), Bartlett (1950), Whittle (1954), Brillinger and Rosenblatt {1967),
and others. This series is also known as the Wolfer sunspot numbers, named
after Woller, who was a student of Wolf's. For an interesting account of the
history of the series, see Izenman (1985). The series between 1700 and 1955 is

Thbte 6.2 Sample ACF and sample PACF for the daily average number
of truck manufacturing defects (Scrics W1).

k 1 2 3 4 5 6 7 8 9 10

Py 43 26 14 08 -09 —-07 -21 —11 05 -0
S¢E. .15 15 17 a8 19 19 19 19 19 19

Ay 43 09 00 00 -6 00 -8 07 05 .01
E15 18 15 s s 18 s 15 s 15
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A

Lol 1.03“
08 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 5 10y % 0 ] I5 I 11 — k
0.2 -0.21
-0.4 -0.41
-0.6 -0.61
08 -0.81
1.0’ -1

Fig. 6.2 Sample ACF and PACF of the daily average number of truck manufactuting
defects (Serics W1}

from Waldmeirer (1961), and the remaining observations are calculated from
the monthly sunspot numbers in Andrews and Herzberg (1985).

The plot of the data is given in Figure 6.3. It indicates that the series is
stationary in the mean. To investigate whether the series is also stationary in
the variance, we calculated the following preliminary residual sum of squares:

n
S =Y (Z,N) - i) (6.2.2)
1=1
for various values of the power transformation parameter as shown in
Table 6.3, where ji is the corresponding sample mean of the transformed se-
ries. These calculations suggest that a square root transformation be applied
to the data.

The sample ACF and sample PACF of the transformed data are computed
as shown in Table 6.4 and Figure 6.4. The sample ACF shows a damping sine-
cosine wave, and the sample PACF has relatively large spikes at lags 1, 2, and
9, supgesting that a tentative model may be an AR(2).

(1-$,B - ;B WVZ, - i) =a,, (6.2.3)
or an AR(9)
(1-¢,B~-—$B"NVZ,— ) = a,. (6.2.4)

By ignoring the values of 1, beyond lag 3, Box and Jenkins (1976) suggest that
an AR(3) model, (1— ¢, B — $,B% — $3B3)(/Z, — ) = a,, is also possible, even
though their analysis was based on the nontransformed data between 1770
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Flg. 6.3 Woll yearly sunspot numbers, 1700-1983 (Serics W2).

Toble 6.3 Rcsidual sum
of squarces in the power
transformation.

A Residual sum of squares

1.0 13.82
0.5 977
0.0 11.06
-0.5 2586
- 1.0 147.68

and 1869. Because of the large autocorrelation .65 at lag 11, many scientists
!lieve that the series contains a cycle of eleven years. We examine this series
- - carefully in later chapters.

F - e 6.3 Series W3 is a laboratory series of blowfly data taken from
ic: - an (1950). A fixed number of adult blowflies with balanced sex ratios
1+ it inside a cage and given a fixed amount of food daily. The blowfly

mi: -on was then enumerated every other day for approximately two years,

e e e e

N T I
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‘Table 6.4 Sample ACF and sample PACF for the square root transformed
sunspot numhers (Scrics W2).

k Be

1-10 K1 45 06 -25 -—-41 -.40 -21 08 40 .61
StE. L6 09 10 a0 10 11 11 A1 1 R

11-20 65 50 22 -06 -28 -37 -34 -21 -.00 20
StE. A2 14 15 15 45 A5 15 16 16 .16

2130 35 3726 05 -5 -30 -37 -32 -20 -.03
SLE. J6 16 A6 17 17 7 a1 a7 a1 7

-

k b

1-10 Bl -62 -16 -02 -05 13 24 16 28 .03
SLE. 06 6 06 W06 06 06 06 06 06 06

11-20 -0t -05 -06 09 -01 -08 -09 -1t -01 -.05
SLE. 06 06 06 06 06 06 06 06 06 .06

21-30 065 -03 -10 —-08 02 -03 .01 N5 -05 01
StE. 06 06 06 06 06 W06 06 06 06 06

A
107 1.013“
0.8 0.81
0.6 0.6
0.4 0.4
0.2 . s “ 0.2 -5 T
0 10 20 m—r_”‘ 0 10 25 30 k
-0.2 l -0.21 i
-0.4 -0.4
-0.6 -0.6
-0.38 -08
-1.0 -1.0

Fig. 6.4 Sample ACF and sample PACF for the square root transformed sunspot pum-
bers (Serics W2).
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giving a total of n = 364 observations. Brillinger, Guckenheimer, Guttorp, and
Oster (1980) firstapplied time serics analysis on the data set. Later Tong (1983)
considered the {ollowing two subseries:

Blowfly A: for Z, between 20 <t < 145,

Blowily B: for Z, between 218 <t < 299,
and argued that the series Blowity A is nonlinear. Seties W3 used in our anal-
ysis is the series Blowfly B of 82 observations as shown in Figure 6.5.

The data plot suggests that the series is stationary in the mean. However,
the power transformation analysis indicates that a square root or a loparithmic
transformation is needed as shown in Table 6.5.

The sample ACF and PACF are calculated for the square root transformed
data as shown in Table 6.6 and Figure 6.6. The sample 7, tails off exponentially
and qSkk cuts off after tag 1. Thus, the following AR(1) model is entertained:

(1-¢BYVZ, - ) = q, (6.2.5)

Example 6.4 Recall the monthly series of 300 unemployed females be-
tween ages 16 and 1%in the United States from January 1961 to December 1985
as shown in Figure 4.1. The series is labeled as Series W4, [t is clearly nonsta-
10000
BOQO -

6000

4000-

Number of blowflies

2000

4] T T T T ml

0 20 40 60 BO 100
Day

13 Blowfly data (Scrics W3).
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‘Ihble 6.5 Results of the power
transformation on blowfly data.

A Residual sum of squarcs

1.0 5531
0.5 50.09
0.0 50.38
-0.5 56.67
-1.0 71.50

tionary in the mean, suggesting differencing is needed. This is further con-
firmed by the sustained large spikes of the sample ACF shown in Table 6.7 and
Figure 6.7. The differenced serijes is now stationary and is shown in Figure 6.8.
The sample ACF and sample PACF are computed for this differenced series
in Tuble 6.8 and also plotted in Figure 6.9. The sample ACF now cuts off af-

‘Thble 6.6 Sample ACF and samplc PACF for the blowfly data (Scrics W3).

k 1 2 3 4 5 6 7 8 9 10

Py 73 49 30 20 A2 02 -01 -04 -01 -03
StE. .11 06 18 18 19 9 1% 19 19 .19

b T3} 09 -04 04 —03 —12 07T -05 .07 -.08
SLE. .11 .11 a1 a1 4ttt o a1

Fa)

10 1.03“

0.8 0.81

0.61 0.6

0.4 ‘ 0.4

32 ||I > k 22 |'|? IIIIO > k

10 ] T

02 0.2

0.4 04

0.6 -0.61

0.8 -0.8

1.0 1.0

Flg. 6.6 Sample ACF and sample PACF for the blow(ly data (Scrics W3).
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‘Tuble 6.7 Sample ACF and sample PACF of Serics W4 — the
U.S. monthly serics of unemployed females between ages 16
and 19 from January 1961 10 December 1985,

k 1 2 3 4 s 6 7 8 9 10

M 97 96 95 94 93 Y3 92 91 .50 9
SLE. 06 10 13 15 17 a8 20 .21 22 .24

b 97 37 10 08 02 08 02 02 04 00
SLtE. 06 06 06 D6 06 06 06 .06 06 .06

1.03' 1.06“
08 0.8]
0.6] 0.6
0.4 0.4
0.21 0.2 1
Y 5 T 0 H T k
-0.2 -o,ﬂ
-0.4 -0.4
-0.6 -0.6
-0.8 -0.8
-1.0° -1.0

Fig. 6.7 Samplc ACF and sample PACF of Serics W4 — the U.S. monthty series of
uncmployed females between ages 16 and 19 from January 1961 to Decomber 1985,

ter laug 1 while the sample PACF tails off. This pattern is very similar to the
ACF and PACF for MA(1) with positive 8, as shown in Figure 3.10, suggest-
ing an MA(1) model for the differenced series and hence an IMA(1, 1) model
for the original series. To test whether a deterministic trend parameter 8, is
needed, we calculate the f-ratio W/Sg = 1.0502/2.4223 = .4335, which is not
significant, Thus, our proposed model is

(1-B)Z, = (1-0,B)a,. (6.2.6)

“rample 6.5 The accidental death rate is a vital statistic for many state
! federal governments. Figure 6.10 shows Series W5, which is the yearly
*lental death rate (per 100,000 population) of Pennsylvania between 1950

i 1984 published in the 1984 Pennsylvania Vital Statistics Annual Report by

t nnsylvania State Health Data Center. The series is clearly nonstation-

e
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-100-

—150-{——— e —- [ ( T !
1961 1966 1971 1976 1981 1986
Year

Fig. 6.8 The dilfcrenced monthly serics, W, = (1 — B)Z,, of the U.S. monthly scrics
of unemployed females between ages 16 and 19 from January 1961 to December 1985
(Scries W4).

ary with a decreasing trend. This nonstationarity is also shown by the slowly
decaying ACFE in Table 6.9 and Figure 6.11. Both Figure 6.11 and the evalua-
tion of power transformations indicate no transformations other than differ-
encing are needed. The sample ACF and PACF of the differenced data shown
in Table 6.10 and Figure 6.12 suggest a white noise phenomenon. The {-ratio,
W/S;; = —.5618/.2507 = —2.24, implies that a deterministic trend term is

Tuble 6.8 Sample ACF and sample PACF of the differenced U.S. monthly
Scrics W, = (1 — B)Z,. of unemployed females between ages 16 and 19

(Scrics W4) IV = 10502, S5 = 2.4223.

k ! 2 3 4 5 6 7 8 9 10

P -41 06 -08 06 -09 07 -—-03 07 -06 —.08
StE. 06 w07 07 07 07 907 07 07 07 07

P =4l —14 14 04 11 -02 —02 05 -01 06
StE. 06 06 06 06 06 06 06 06 .06 06
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A

Lof* 1.03"
08 0.8
0.61 0.6
04 0.4
0.2 0.2
0 Frirtdlellt—s & 0 l|_]5”.110 s &
-0.2 -02
0.4 -0.4
-0.61 -06
-0.81 -0.8
-10 -1.0

Flg. 6.9 Sample ACF and sample PACF of the differenced U.S. monthly serics, WV, =
(1 - B)Z,, of unemployed females hetween the ages of 16 and 19 (Series W4).

55

N s wn
] w [=]
: ] 1

Death rate (per 100,000 population)
&
]
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T T 7 T ] T ]
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Year

Fi- ~ 10 Serics W5—The yearly Pennsylvania accidental death rate between 1950
§it 1.
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Thble 6.9 Sample ACF and sample PACF of the Pennsylvania
accidental death rate between 1950 and 1984 (Serics W5).

k 1 2 k) 4 5 6 7 B 9 10

Px 87T 73 57T 4 3¢ 2 15 08 01 -.02
StE. 7T 27 32 35 36 37 .38 38 38 38

b BT —13 —-15 03 06 —-08 -14 04 -02 03
StE. 17 17 A7 a7 A7 a7 a7 a1 A7 .17

A

100 1.03‘*
0.8 0.81
0.6 0.6
0.4 ‘ l ‘ 0.4
02 ' ‘ | 0.2
. [Le 5, N
02 -0.21
-04 0.4
0.6 -0.6
08 08
-1.0 -1.0

Fig. 6.11 Sample ACF and sample PACF of Series W5—the yearly Pennsylvania acci-
dental death ratc between 1950 and 1984,

recommended. Hence, the following random walk model with drift is enter-
tained: -

(1-B)Z, = 6, +a,. (6.2.7)

Based on the ACF and PACF of the original nondifferenced data in Table 6.9,
one may also suggest an alternative AR(1) model

(1-6B)Z,—p)=a,. (6.2.8)
However, the clear downward trend should give an estimate of ¢, closeto 1. We
investigate both models in Chapter 7 when we discuss parameter estimation.

Example 6.6 We now examine Series W6, which is the yearly U.S. tobacco
production from 1871 to 1984 published in the 1985 Agricultural Statistics by
the United States Department of Revenue and shown in Figure 4.2. The plot
indicates that the series is nonstationary both in the mean and the variance. In
fact, the standard deviation of the series is roughly proportional to the level
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Tabte 6,10 Sample ACF and sample PACF for the dilferenced serics of
the Pennsylvania accidental death rate from 1950 to 1984 (Series W5)

W = — 5618, 5 = 2507.

k 1 2 3 4 5 6 1T 8 ¢ 10
A =10 27 —04 09 02 05 —08 01 —05 —.12
SLE. .17 a7 a8 8 8 a8 a8 19 19 Y
di -0 27 01 02 05 03 -0 -02 -01 —.14

SLE. AT 47 A7 07 17 17 A7 A7 a7 A7

3 o

1.0
0.8]. 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0I5 '5 = |!n > K 0 3 1’0_, :
0.2 -0.2

0.4 .0.4

0.6 -06

08 " 08

1.0’ -1.0°

Fig. 6.12 Sample ACF and sample PACT for the differenced serics of the Pennsylvania
accidental death rate (Serics WS).

of the series. Hence, from the results of Section 4.3.2, a logarithmic trans-
formation is suggested, which is also confirmed by the A value of the power
transformation calcutated in Table 6.11. These transformed data are plotted
in Figure 6.13 and show an upward trend with a constant variance.

The very slowly decaying ACF as shown in Table 6.12 and Figure 6.14 fur-
the r supports the need for differencing. Hence, the sample ACF and PACF for
th Jerenced data, W, = (1 - B)InZ,, are calculated in Table 6.13 with their

e Figure 6.15. The ACF cuts off after lag 1, and the PACF tails off expo-
‘n . which looks very similar to Figure 3.10 with 8, > 0. It suggests that
I, 1) is a possible model. To deterniine whether o deterministic trend
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‘Thble 6.11

Result of the power

transformation on the tobacco
production data.

A Residual sum of squarcs
1.0 7.88
0.5 595
0.0 5.11
-0.5 5.55
-1.0 7.92
8,
[~
2
[H
=
o
2
(=)
o’
Q
]
LD
]
Lt
o
‘g
806 -
2
f
2
o
Z,
5t T T T T T =
1870 1890 1910 1930 1950 1970 1390

Fig. 6.13 Natural logarithms of the U.S. yearly tobacco production in miltion pounds

(Scrics W6),

term 8, is needed, we examine the {-ratio, ¢ = WISW = .0147/.0186 = .7903
which is not significant. Hence, we entertain the following IMA(1, 1) model

as our tentative model:

Year

(1-B)InZ, = (1-6,B)a,.
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‘Table 6.12  Sample ACF and sampte PACF for natural loparithms
ol the U.S. yearly tohaceo production (Scries W6).
k 1 2 3 4 5 6 7 8 9 10
iy 90 88 B4 79 78 76 75 7T .69 66
SLtE. 15 19 22 24 27 28 300 32 3y M
e 90 37 05 —11 15 14 08 11 .12 00
SLE. 09 09 09 09 09 09 .09 09 0909

A

1.04* |.0$“

0.81 0.8

0.61 0.6

0.4 04

0.2 02

0 5 w2 0 llshllm > k

0.2 -0.2

-0.4 -0.4

0.6 -0.6

-0.8 -0.8

-1.0 -1.0

A

(A

1.0 1.0
0.8 0.81
0.6 0.61
0.4 04
0.2 0.2
0 10 4 0 l ' '? I 10 > k
-0.2 -0.2
-0.4 -0.41 ‘
-0.6 -0.61
-0.8 -0.81
-1.0 -1.0

Fig. 6.15 Sample ACF and sample PACF [or the differenced natural logarithms of the

tobacco data (Series W6).

Example 6.7

Figure 6.16(a) shows Serics W7—the yearly number of lynx

Fig. 6.14 Sample ACF and sample PACF for natural loparithms of the U.S, yearly to-
hacco production (Series W6).

Tuble 6.13  Sample ACF and sample PACF for the dilTerenced serics of
natural logarithms of the U.S. yearly tobacco production (Scrics Wo).

k 1 2 3 4 s 6 7 8 9 10
A =51 11 —09 02 03 00 04 04 05 —01
SCE. 92 a2 Az a2 a2 a2 a2 a2 a2 a2
P —51 —20 —-17 —14 —13 -2 -04 06 02 —03

SLE. 09 9 09 9 .09 :()‘) A% 09 09 ..();)
W = {7, S = 0186

W

pelts sold by the Hudson’s Bay Company in Canada between 1857 and 1911 as
reported in Andrews and Herzberg (1985). The result of the power transforma-
tion in Table 6.14 indicates that a logarithmic transformation is required. The
natural logarithm of the series is stationary and is plotted in Figure 6.16(b).

The sample ACF in Table 6.15 and Figure 6,17 show a clear sine-cosine
phenomenon indicating an AR(p) model with p > 2. The three significant
PACEF strongly suggest p = 3. Thus, our entertained model is

(1-¢,B—¢,B2 —$,:B>)(InZ, —p) = a,. (6.2.10)

Acrelated series that was studied by many time series analysts is the number
of Canadian lynx trapped for the years from 1821 to 1934. References include
Campbell and Walker (1977}, Tong (1977), Priestly (1981, Section 5.5), and Lin
(1987). The series of lynx pelt sales that we analyze here is much shorter and
has received much less attention in the literature. We use this series extensively
for various illustrations in this book.
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Fig. 6.16 The Canadian lynx pelt sales data (Serics W7). (a) The yearly number of lynx
pelts sold in Canada between 1857 and 1911, (b) The natural logarithms of yearly num-
bers of fynx pelts sold in Canada beiween 1857 and 1911,

Table 6.14 Result of the power
transformation on the lynx pelt
sales.

A Residual sum of squarcs

1.0 107.1642
0.5 61.1585
0.0 51.6603
-05 68.1996
-1.0 129.2240

Table 6.15 Sample ACF and PACF for nateral logarithms of the yearly
numbcr of lynx pelts sold (Scrics W7).

(a) ACF, 5,

1-10 g3 022 -32 -6%9 76 -53 -08 35 .61 .59
SLE. A3 10 200 .21 25 .29 30 30 3 33

1-20 31 -06 41 -58 -49 -21 .16 44 54 40
SLE. 35 036 37 37T 39 40 40 41 4 43

(b) PACE, &,

1-10 73 —-68 -36 -.20 -09 —-08 13 -—-08 .06 -.07
SLE. A3 03 3 a1 a3 13 13 13 a3 13

11-20 —13 05 -19 07 -02 -04 .14 04 .10 -.09
St.E. A3 03 13 13 13 a3 13 a3 33

TR
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A

Lo* 108
0.8 0.3
0.6 0.6
0.4 04
0.21 0.21
0 o L ko 5 u?. usr|‘|:%o >k
-0.2 -0.27
-0.4 -0.41
-0.67 -0.61
-0.8 -0.8;
-1.0° -1.0°

Fig. 6.17 Sampte ACF and PACF for natural logarithms of the yearly number of lynx
pelts sold (Scries W7).

6.3 INVERSE AUTOCORRELATION FUNCTION (IACF)
Let

,(B)Z, - ;1) = 0,(B)a, (6.3.1)
be an ARMA(p, q) model where $p(B)=(1-$B—---—¢ ,BP} is a stationary
autoregressive operator, q(B) (1 6;B — ... —§_B7) is an invertible moving

average operator, and the a, is a white noise series with a zero mean and a
constant variance o2, We can rewrite Equation (6.3.1) as the moving average
representation

%(8)

Z, - ¢ o) " ¥(B)a,, (6.3.2)

where (B) = 8,(B)/¢,(B). From (2.6.9), the autocovariance generating func-
tion of this model is given by

1(B)= ) B =alu@BW(B)

k=—oo
8,(B)8,(B~")

T, W (6.1.3)
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Assume that [4(B)] > 0 for all |B] < | and let

V(D) =

x
=
5|~
I
gk
—)‘—\
=
=

SE TR (6.3.4)

Clearly, from the assumptions on ¢,(B) and 8,(B), the cncﬁicic‘nls {fy,((')} i.n
(6.3.4) form a positive definite, square summable sequence that is symmeltric
about the origin. Hence, they are proper autocovariances for a process. With
respect to the mode! given in (6.3.1), the process having A(1) as its auto-
covariance generating function is referred to as the inverse process. ll.cncc,
+U)X(B) is also referred to as the inverse autocovariance generating function of
{Z,}. Naturally, the inverse autocorrelation generating function of {Z,}, from
(2.6.10), is given by

"(B)

R

AYB) = (E). (6.3.5)
T

The kth lag inverse autocorrelation is defined as

1 7(1)
s = ,J(Lﬁ‘ (6.3.6)
Yo

which, of course, is equal to the coefticient of B or B~* in p!/}(B). As a function
of k, pf) is called the inverse autocorrelation function (IACF).

From Equations (6.3.3) and (6.3.4), it is clear that if {Z,) is an ARMA
{(p, q) process, then the inverse process will be an ARMA(q, p) process. Specif-
jcally, if {Z,} is an AR(p) process with autacorrelations tailing off, then the
inverse process will be an MA(p) process with its autocorrelations cutting off
at lag p. In other words, the inverse autocorrelation function of an AR(p) pro-
cess will cut off at lag p. Similarly, an MA{q)} process with autocorrelations
cutting off at lag g will have its inverse autocorrelations tailing off. Hence, the
inverse avtocorrelation function of a process exhibits characteristics similar 1o
the partial autocorrelation function and can be used as an identification tool
in madel identification.

For an AR(p) process, it is casily seen that the inverse antocorrelation
function is given by

—dp Bt ity
p = T4 ¢i+ -+ 2
0, k>p.

(6.3.7)
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Since one can approximate a series by an AR{p) model with a sufficiently large

p, one method to obtain a sample inverse autocorrelation ﬁg) is to replace the
AR parameters by their estimates, i.e.,

—'$k + $l$k+l +-t $p—k$p
i) = 1+ 2+ + 8
0, k>p.

The parameter estimation is discussed in Chapter 7. Under the null hypothesis
of a white noise process, the standard error of p',(:) is given by

1
S.n=1f-. 6.3.9
w - Vn (6.3.9)
Thus, one can use the limits +2/,/n to assess the significance of the sample
inverse autocorrelations.

(6.3.8)

Example 6.8 As illustrations, Table 6.16 shows sample inverse autocorre-
lations for two time series examined in Section 6.2. Table 6.16(a) is the sample
inverse autocorrelation for the daily average series of truck manufacturing de-
fects that we discussed in Example 6.1 in which we entertained an AR(1) model
for the series. Note that although the inverse autocorrelation function seems
to cut off at lag 1, it is not statistically significant at & = .05, Thble 6.16(b) is
the sample inverse autocorrelation for the natural logarithms of the Canadian
lynx pelt sales that was identified as an AR(3) model based on the three sig-
nificant PACF examined in Example 6,7. However, in terms of the IACF, the
maximum AR order will be 2, In fact, because the standard error of the sample
IACF is .14, the model implied by the IACF may be an AR(1}, which is clearly
not appropriate from the ACF in Table 6.13(a).

Itis not unusual that the values of the 1ACF are smaller than those of PACF
at lower lags in the above examples. If the underlying model is an AR(p), we

Table 6.16 Sample inverse autocorrelation functions (SIACF).

(a) The daily average number of truck manufacturing defects (Serics W1)
k 1 2

3 4 S 6 7T 8 9 10

A7 ~27 05 —03 -07 10 -1 22 01 -05 .02

StE. IS5 15 15 as A5 A5 a5 15 .15 15
(b) The natural logarithms of Canadian lynx pelt sales (Serics W7)

1 2 3 4 5 6 1 8 9 10

A —67 23 01 03 09 -11 a5 -1 07 .13

SLE. .14 .4 14 14 4 14 14 14 4 14
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know that ¢ = p}(” = O for k > p. But, Equation (6.3.7) implies that

_(ﬁp

R P S—
Pl gl + 4]

(6.3.10)

and from the discussion in the closing paragraph of Section 2.3, we have
b = b (63.11)

Hence, [¢,,| > Ipf,')l, and sampte TACF in general are smaller than sample
PACF, particularly at lower lags. In a recent study, Abraham and Ledolter
(1984) conclude that, as an identification aid, the PACF generally outperforms
the IACF. Some computer programs such as SAS and SCA provide both PACE
and IACF options for analysis.

The inverse autocorrelation function was first introduced by Cleveland
(1972) through the inverse of a spectrum and the relationship between the
spectrum and the autocorrelation function. This leads to another method to
obtain a sample inverse autocorrelation function. We return to this point in
Chapter 11.

6.4 EXTENDED SAMPLE AUTOCORRELATION
FUNCTION AND OTHER
IDENTIFICATION PROCEDURES

6.4.1 Extended Sample Autocorrelation
Function (ESACF)

From the previous empirical ciumplcs, it seems clear that, due 1o the cutting
off property of the PACF and 1ACF for AR models and the same cutting off
property of the ACF for MA models, the identification of the order p of an AR
mode! and the order g of an MA model through the sampte ACF, PACF, and
1ACF are relatively simple. However, for a mixed ARMA process, the ACE,
PACF, and [ACF all exhibit tapering off behavior, which makes the identifica-
tion of the orders p and ¢ much more difficult. One commonly used method is
based on the fact that if Z, follows an ARMA(p, q) model

(1=$,B— - —3,B7)Z, =8+ (1-0,B—--—0,BNa,, (6.4.10)

or equivalently

r q
Z, =8,+ Z¢j21_1 - Z(",‘a,,‘; +a, (6.4.1b)
i=1 i=1
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then
Y,=(1-4.8- - 4,B)Z,
14
=Z,- Z¢izl—i (6.4.2)
i=1

follows an MA(q) model
Y,=(1-6,B-..-~8,B%a, (6.4.3)

where without loss of generality we assume 8, = 0. Thus, some authors such as
Tiao and Box (1981) suggest using the sample ACF of the estimated residuals

v, =(1-¢,B----4,B)Z, (6.4.4)

from an ordinary least squares {OLS) AR fitting to identify g and hence ob-
taining the orders p and g for the ARMA(p, q) model. For example, an MA(2)
residual process from an AR(1) fitting implies a mixed ARMA(1, 2) model.
But, as we show in Section 7.4, because the OLS estimates of the AR param-
eter ¢;5 in (6.4.4) are not consistent when the underlying model is a mixed
ARMA(p, q) with g > 0, the procedure may lead to incorrect identification.

To derive consistent estimates of ¢;, suppose that n observations adjusted
for mean are available from the ARMA(p, q) processin (6.4.1a). If an AR(p)
is fitted to the data, i.e.,

P
Z, =Y 4Z_ite, t=p+l..n (64.5)

where e, represents the error term, then the OLS estimates q§}°) ofdi=1,...,
p, will be inconsistent and the estimated residuals

?
0
6"=2z,-3 40z
i=1

will not be white noise. In fact, if g > 1, the lagged values é,((i),-, i=1,....q,will

contain some information about the process Z,. This leads to the following
iterated regressions. First, we consider an AR(p) regression plus an added
term @,((1)1, ie.,

r
1 0
Z,=Y ¢z, _+ 606D 4, t=pa2,..,n (6.4.6)
i=1
where the superscript (1) refers to the first iterated regression and et" repre-
sents the corresponding error term. The OLS estimates é,?” will be consistent
if ¢ = 1. However, if g > 1, the é‘m will again be inconsistent, the estimated
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residuals c”( } are not white noise, and the lagged values {"( ) will contain some
information about Z,. We thus consider the second mr.nLd AR(p) regression

Z, = Zqﬁf?’z,_,. + AP g B p=p a3 n (647)
i=1
The OLS estimates di( Y will be consistent if ¢ = 2. Forq > 2, the 46( ) will again
be inconsistent. However, consistent estimates can be obtained by repeating
the above iteration. That is, the OLS estimates qS ) obtained from the following
gth iterated AR(p) regreﬂsmn will be consistent:

Z, = Z¢“"7, L+ Zﬂ(‘" 9D @ g =pigal,an (6.4.8)
where é,(” =Z -7, qﬁf")Z,_‘ 9 APeU 77 is the estimated residual of the
jthiterated AR({p) regression and the gf;}” and [3}” are the corresponding least
square estimates.

In practice, the true order p and q of the ARMA(p, q) model are usually
unknown and have to be estimated. However, based on the preceding con-
sideration, Tsay and Tiao (1984) suggest a general set of iterated regressions

and introduce the concept of the extended sample autocorrelation functi(m
(ESACF) to estimate the orders p and q. Specifically, form =0, 1,2,

qS(” i =1,...,m, bethe OLS estimates from thejth iterated AR(m}regression

of the ARMA process Z,. They define the mth ESACF p("') of Z, as the sample
autocorrelation functmn for the transformed series

Y0 =(1-¢9B - — 9™z, (6.4.9)

Itis useful to arrange fr("') ina two -way table as shown in Table 6.17 where

the first row corresponding to p Lwcs the standard sample ACF of Z,, the

Tubte 6.17 The ESACF Tablc.

MA
AR o e
0 1 2 3 4

- ~(0 ~(0 A(1Y {0
U RO CRFC

")2 IJ
. A1 A(1 1 ~{1
1 pil) pg ) pg ) p‘(‘ ) pg )
A2 (2 ~(2 (2 ~(2
3 Ir,(1’) f’g ) !,g ) ,( ) Pg )

(3 (¥ ~[3 «( A(3
3 "’(l) p(z) ,ng) I’g] ;1(5)
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Thble 6.18 The asymptotic

ESACF for an ARMA(1,1)
modcl.
MA
AR
01 2 3 4 ..
0 X X X X X -
1 X 0 0 0 o0 -
2 X X 0o 0 0 ..
3 XX X 0 0 -
4 X X X X o -

second row gives the first ESACF ‘“’, and so on. The rows are numbered 0,
1, ... to specify the AR order, and the columns are numbered in a similar way
fL)r the MA order.

Note that the ESACF 5 “("') is a function of n, the number of cbservations,
even though it is not exphcntly shown. In fact, it can be shown (see Tsay and
Tiao [1984]) that for an ARMA(p, q) process, we have the following conver-
gence in probability, ie, form=1,2,...,andj = 1,2, ..., we have

{m) p {0. 0<m-p<j—gq,
). —
fi X #0, otherwise.

Thus, by (6.4.10), the asymptotic ESACF table for an ARMAC(1, 1) model be-
comes the one shown in Table 6,18. The zeros can be seen to form a triangle
with the vertex at the (1, 1) position. More generally, for an ARMA(p, gq) pro-
cess, the vertex of the zero triangle in the asymptotic ESACF will be at the
(p, q) position. Hence, the ESACF can be a useful tool in model identifica-
tion, particularly for a mixed ARMA model.

Of course, in practice, we have finite samples, and the limit of p("') for 0<

(6.4.10)

m —p < j —q may not be exactly zero. However, the asymptotic variance of p("')
can be approximated using Bartlett’s formula or more crudely by (t —m —j )‘

on the hypothesis that the transformed series Y,U) of {6.4.9) is white noise. The
ESACEF table can then be constructed using indicator symbols with X referring

to values greater than or less than 42 standard deviations and 0 for values
within +2 standard deviations.

Example 6.9  Toillustrate the method, we use SCA to compute the ESACF
for the natural logarithms of Canadian lynx pelt sales discussed in Example 6.7.
Table 16.19(a) shows the ESACF and Table 16.19(b) the corresponding indica-
tor symbols for the ESACF of the series. The vertex of the triangle suggests a
mixed ARMA(2, 2) model. This is different from an AR(3} model that we en-
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Tuble 6.19 (a) The ESACF for natural logarithms of Canadian fynx
pelt sales,

7 - O
0 1 2 3 4 5 6 7 B 9

(a) The ESACF
g3 022 32 6% -6 -53 -08 33 61 59
.68 22 -328 -0 .65 51 09 31 53 57
-54 01 20 -5 7 -26 25 —-15 -405 .10
-53 06 32 09 -02 -10 15 —-16 -20 06
00 A3 37 -2 -0 09 -01 -8 -6 -.03

N FUN SR -]

(b) The ESACF with indicator symbols

Ny
@ e
Hoooo
Mo oM
SO oM X
cooxX
S o XX
coococ
c oo X
R,
(== R

tertained earlier based on the characteristic of the PACF. We further examine
the series in Chapter 7.

Example 6.10 As another example, Table 6.20 shows the ESACFE for Se-
ries C of 226 temperature readings in Box and Jenkins (1976). Because the
vertex of the zero triangle occurs at the (2, 0) position, the ESACF approach
suggests an AR(2) model for this series.

It should be noted that the OLS estimation is used in the iterated regres-
sion. Because the OLS regression estimation can always be applied to a re-
gression mode! regardless of whether a series is stationary or nonstationary,
invertible or noninvertible, Tsay and Tiao (1984) allow the roots of AR and MA
polynomials to be on or outside the unit circle in their definition of the ESACIE

Tuble 6.20 The ESACF of Scrics C in Box

and Jenkins.,
MA
AR —_—
01 2 3 4 5 6 7 8
0 X X X X X X X X X
1 X X X X X X X X X
2 0O 0 0 0 ¢ 0 0 0 O
3 X0 0 ¢ ¢ 0 0 0 0
4 X X 0 0 0 0 0 00
5 X X X 0 0 0 0 0 0
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Hence, the ESACF is computed from the original nondifferenced data. As a
result, the ARIMA(p, d, q) process is identified as the ARMA(P, q} process
with P = p + d. For example, based on the sample ACF and PACF of Series C
as given in Table 6.21, Box and Jenkins (1976} suggested an ARIMA(], 1, )
model or an ARIMA(G, 2, 0) model. However, both these ARIMA(1, 1, 0)
and ARIMA(0, 2, 0) models are identified as an ARMA(2, 0} model in terms
of the ESACE

Because the ESACF proposed by Tsay and Tiao (1984) is defined on the
original series, they argue that the use of ESACF eliminates the need for differ-
encing and provides a unified identification procedure to both stationary and
nonstationary processes. To see whether a series is nonstationary, they suggest
that for given specified values of p and g, the iterated AR estimates can be ex-
amined to see whether the AR polynomial contains a nonstationary factor with
roots on the unit circle. For example, in the above Series C in Box and Jenk-
ins {1976), the iterated AR estimates are ‘5(10) = 1.81 and qggﬂ) = — 82 Because
N B)~ (1—-B)(1—.8B), it indicates that the AR polynomial contains the fac-
tor (1 - B). However, other than a few nice exceptions, the task of identifying
nonstationarity through this approach is generally difficult. The real advantage
of the ESACF is for the identification of p and g for the mixed ARMA mod-

Table 6.21 Sample ACF and PACF of Scries C in Box and Jenkins (1976).

(1) Z,
5

k 1 2 3 4 6 7 8 9 10

M 98 94 90 B8 8 75 69 64 58 52
StE. 07 07 W07 @7 07 07 07 07 07 .07

o 98 —81 —03 -02 -.10 -07 -01 —03 04 —04
SLE. 07 07 07 07 07 07 07 07 07 07

(b) (1-B)Z,
45 6

7 B 9 10

A B0 65 53 44 38 32 26 19 14 14
SUE. 07 07 07 07 07 @1 07 07 07 07

de B0 —01 —01 06 03 —03 —01 -08 00 .10
SLE. 07 07 07 07 07 07 07 07 07 .07

(c)(1-B)’Z,
4 5 6

7 8 9 10

Py -08 —-07 -a12 -06 01 -02 065 -05 -.12 .12
StE. 07 07 07 or 07 07 07 07 07 07

S -08 —08 —14 —10 —03 —05 02 ~06 —16 .09
SLE. 07 07 07 07 907 07 07 01 07 07
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els. This advantage, 1 think, can be much better utilized if the ESACF is used
for a propetly transformed stationnry series. This is particularly true because
a tentatively identificd model will be subjected to more efficient estimation
procedures (such as the maximum likelihood estimation), which generally re-
quire stationarity.

Due to sampling variations and correlations among sample ACE, the pat-
tern in the ESACF table from most time series may not be as clear-cut as
those shown in the above examples. But from the author's experience, models
can usually be identificd without much difticulty through a joint study of ACF,
PACF, and ESACFE

Some computer programs such as AUTOBOX and SCA provide the op-
tion to compute the ESACF in the model identification phase.

6.4.2 Other ldentification Procedures

Other model identification procedures include the information criterion
(AIC) proposed by Akaike (1974); the R-and-S-array introduced by Gray,
Kelley, and Mclntire (1978); and the corner method suggested by Bepuin,
Gourieroux, and Monfort (1980). The statistical properties of the statistics
used in the R-and-S-array approach and the corner method are still largely
unknown, and the software needed for these methods is not easily available.
Interested readers are referred to their original research papers listed in the
reference section of this book. The information criterion is discussed later in
Chapter 7.

At this point, it is appropriate to say that mode! identification is both o
science and an art. One should not use one method to the exclusion of oth-
ers. Through carelul examination of the ACE, PACF, 1ACF, ESACEF, and other
properties of time series, model identification truly becomes the most inter-
esting aspect of time series analysis.

Exercises

6.1 ldcntify appropriate time serics modcls from the sample ACF below. Justily your
choice using the knowledge of the theoretical ACF for ARIMA modcls.
(M) n = 121, data = Z,
ko1 2 3 4 5 6 7 8 9% 10
fe 15 —08 .04 03 08 03 02 05 04 .11

{b) n = 250, dwta = Z,
kK 1L 2 3 4 5 6 7 8 9 10
Ao —63 36 —1T 09 —07 06 —08 .10 —11 06

) n =250, data = Z,
k 1 2 3 4 5 6 7 8 $ 10

-~ 17 0% -6 07 -1 04 07 07 09

-
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(dy n = 100, data = Z,, W, = (1 - B)Z,, W = 2.5, §2, = 20.

k 1 2 3 4 5 6 7 8 9 10
pr(k) 99 98 98 97 94 91 8% 86 .85 83
pwlk) 45 —04 12 06 —18 .16 —.07 .05 .10 .09
(e) n = 100, data = Z,, W, = (1 -B)Z,, W = 35,5% = 15
k 1 2 3 4 5 6 7T B8 9 10
pr(k) 94 93 90 89 87 8 .84 81 B0 BO
iwlk) 69 50 33 .19 .10 .08 .03 .01 01 .00
6.2 Identily proper models for the [ollowing data scts (read across):
)y -2401 574 382 —-535 -1639 -960 -1.118
=719 —1.236 A17 —493 -2.282 -1.823 645
-.179 589 1413 370 082 -.531 -1891
~961 —-865 190 -1476 -2.491 -4479 -2.809
-2.154 1532 -2.119 -3349 -1.588 740 907
1.540 557 2259 2622 Jo1 2463 2714
2089 3750 4322 3186 3192 2939 3.263
3.279 295 227 1356 1912 1.060 370
—.195 g4 1084 1237 610 2126 3.960
1317 2167 1292 .595 140 -082 -769
B70 1.551 2610 2.193 1353  -.600 - 455
203 1472 1367 1875 2082 1604 2033
31746 2954 676 1.163 1368 343 -3
1.041 1328 1325 968 1970 2296 2.89%
1918 1.569
(b) 1453 867 A1 -765 -1.317 024 -.542
—.048 —.ROS 858 563 -~198 -454 1.738
-.566 697 1060 478 140 581 -—1.572
d74 289 -270 -1002 -1605 -2984 —.122
469 —239 -1.200 -2077 421 1693 463
9% -367 1925 1.267 872 2043 1236
461 2497 2072 593 128t 1023 1.500
1.321 -1.673 050 1219 1.098 -087 -.266
—.417 457 .BBO S86 -132 1760 2.684
941 17 ~008 —180 -217 -.165 720
1332 1.029 1679 627 038 -1.412 -.095
476 1.350 AB4 1055 957 355 107
2.526 707 -1.096 57 670 477 540
1.241 704 .528 A73 1389  1.115 1.519
180 419
() 3485  5.741 5505 3991 3453 4773 4142
4598 3796 5430 3960 2541 4054 6.155
3.778 5.066 5422 3908 4302 3876 2.888
4613 4075 4054 31288 2654 1.215 3979
3452 3569 2523 1584 3998 5135 3842
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4404 3077 5432 4795 2747 5767 4988
4311 6456 6114 4785 5646 5516 6121
6.059 3196 5050 6231 6.119 4988 4885
4777 5606 6.081 5.801 5126 7.067 B.OtS
6358 5752 5700 5614 5629 5705 5.155
1204 6871 1.555  6.565  6.08] 4719 6.0
6.637 7492  6.635 7204 71221 6.694  7.493
9012 721 5622 7593 7533 6.432 6.424
8219 7668 7.534  7.232 8501 R266 K748
7.501 7.856

(d) J15 —458  —488  -—170 565 -344 -1.176
—-1.054 -82 JIW —341 —1809 -1242 667
-.99% 2812 1286 -1.084 -1505 -2556 —.144
—-1.749 -3.032 -2958 -2.827 -3392 -2431 -2757
~2.822 -3314 2738 -1979 1671 -2977 -9
718 136 879 1642 2,180  1.963 716
769 9713 334 1.309 878 062 169
677 1.851 242 828 317 —-1.042 -2.093
653 261 2020 2136 1.635 —-.141 1747
-2.047 -752 -211 -1.062 —1.565 .232 015
—-935 -338 853 B8 3069 3364 3854
41419 2,145 2291 1.753 1.058 1.048 200
1.424 590 356 476 684 -2.260  —.569
-1.014 207 H38 —664  —46%  -215  -.296
—1.561 246

6.3 Consider the yearly data of lumber production {in billions of board feet) in the
United States given below,

Year Production

1921-30 29.0 352 41.0 395 410 398 373 368 387 294
1931-40 200 135 172 188 229 276 29.0 248 288 312
1941-50 365 363 343 329 281 341 354 37.0 322 380
195160 37.2 375 367 364 374 382 329 334 372 329
1961-70 32.0 332 347 366 368 366 347 365 358 347
1971-80 37.0 377 38.6 346 326 363 394 405 4006 354
1981-82 317 300

rn) Plot the data and determine an appropriate model for the scrics.

") Find and plot the [orecasts for the next 4 years, and calculate 95% forecast
limits.

(¢} Update your forccasts when the 1983 ubservation became available and
cqualcd 34.6.

PARAMETER ESTIMATION,
/ DIAGNOSTIC CHECKING,
AND MODEL SELECTION

After identifying a tentative model, the next step is to estimate the parame-
ters in the model. With full generality, we consider the general ARMA(p, q)
model. That is, we discuss the estimation of parameters ¢ = (¢,, ¢, ..., ¢p)',
n=F(Z),0=(8, 86, .., 86,),and o} = E(a}) in the modcl

Ly =Pl gt Bl g+ L, e - by -0,
where Z, =7, — 1, Z, (¢ = 1, 2, ..., n) are n observed stationary or properly
transformed stationary time series, and {a,} are i.i.d. N(0, o) white noise.
Several widely used estimation procedures are discussed.

Once parameters have been estimated, we check on the adequacy of the
model for the series. Very often several models can adequately represent a
given series. Thus, after introducing diagnostic checking, we also present some
criteria that are commonly used for model selection in time series model
building,

7.1 THE METHOD OF MOMENTS

This method consists of substituting sample moments such as the sample mean,
Z, sample variance 4, and sample ACF j; for their theoretical counterparts
and solving the resultant equations. For example, in the AR(p) process

Zi=p 2y 4 $1 2, g 87, +ay, (7.1.1)

the mean ;i = E(Z,} is estimated by Z. To estimate ¢ , we first use the fact that
M =Gt + Gy + - + dppp_, fOr k > 110 obtain the following system
of Yule-Walker equations: '
Pr=d +dap Hdapyt ot dpp,
Pr= Pyt byt by ot B,
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4404 3077 5432 4795 2747 5767 4 988
4.311 6456 6114 4785 5646 5516 6.121
6059 3196 5050 6231 6119 4988 4885
4717 5666  6.081 5.801 5126 7.067 8015
6358 5752 5700 5614 5629 5705 5.155
7204 6871 7.555 6565 6081 4719  6.09
6.637 7492 6635 1264 7221  6.694 7.493
9012 7274 5622 7593 7533 6432 6.424
8219 7668 7534 7232 8501 R266  R748
7.501 1.856

(d) 315 458 488 -.170 565 —-344 1176
—-1.054 826 J100 341 —1.809 -1.242 667
-.999 2812 1.286 —1.084 -—1505 -2556 —.144
-1.749 -3032 -2958 -2.827 -3.392 -2431 -2.757
—-2822 3314 2738 ~-1979 1670 2977 709
718 736 879 ted42 2180 1963 J16
J69 973 334 1.309 878 062 169
677 1.851 242 B8  -317 -1.042 -2.093
653 .261 2020 2136 1635 —.141 - 1.747
2047 -752 -211 1.062 —1.565 232 015
-935 -338 853 888 3.069 3364 1854
4419 2,145 2291 1.753 1.058 1.048 200
1424 .590 356 A76 0684 2260 —.569
-1.014 207 6H38  —664 —469 215 296
—1.561 246

i

6.3 Consider the yearly data of lumber production (in billions of board feet) in the
United States given below.

Year Production

1921-30 29.0 352 410 395 410 398 373 368 387 294
1931-40 200 135 172 188 229 276 290 248 28R 312
1941-50 36.5 363 343 329 281 341 354 370 322 380
1951-60 372 375 367 364 374 382 329 334 372 329
1961-70 320 332 347 366 368 3166 347 365 358 347
1971-80 37.0 37.7 386 346 326 363 394 405 406 354
1981-82 31.7 300

(m) Plot the data and determine an appropriate model for the scries.

{b} Find and plot the forccasts for the next 4 years, and calcuiate 95% lorecast
limits,

{c) Update your [orecasts when the 1983 obscrvation became available and
cqualed 34.6.

PARAMETER ESTIMATION,
DIAGNOSTIC CHECKING,
AND MODEL SELECTION

After identifying a tentative model, the next step is to estimate the parame-
ters in the model. With full generality, we consider the general ARMA(p, q)
madel. That is, we discuss the estimation of parameters ¢ = (¢, ¢1, ..., 4,),
o= 1£(Z,), 0 = (8, 8y, ..., 6,), and o} = E(al) in the model

VAR K TS IV APE IR q‘:pZ,_‘, +a,-8a,_,— ---—an,_q
where Z, = Z, — i, Z, (t = 1, 2, ..., n) are n observed stationary or properly
transformed stationary time series, and {a,} are i.id. N(0, 2) white noise.
Several widely used estimation procedures are discussed.

Once parameters have been estimated, we check on the adequacy of the
maodel for the series. Very often several models can adequately represent a
given series. Thus, after introducing diagnostic checking, we also present some
criteria that are commonly used for model selection in time series model
building.

7.1 THE METHOD OF MOMENTS

This method consists of substitnting sample moments such as the sample mean,
Z, sample variance 44, and sample ACF g for their theoretical counterparts
and solving the resultant equations. For example, in the AR(p) process

Zi=h 2+ 62y gt 2, +ay, (7.1.1)
the mean ;. = E(Z,) is estimated by Z. To estimate ¢, we first use the fact that

P = 1Moy + $apa + 0 + Gy, fOr k > 1 to obtain the following system
of Yule-Walker equations:

M=d ottt dpp,
P=dptPrtdamt ot dyp, g
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Pp=PPpy H bapp_at dappat 4y (7.1.2)

Then, replacing p, by ji, we obtain the moment estimators q@l, :ﬁz, - rf:l, by
solving the above linear system of equations. That is,
: .. . . - -1 ra
1 1 M P Ppor Ppo Ay
#2 M 1 ﬁ] ﬁp—_‘! f"p_z I
| = . . - (7.1.3)
d’p I;p—l ﬁp—Z ﬁp»] T ﬁl 1 f‘)p
These estimators are usually called Yule-Walker estimators.
Having obtained ¢, ¢,, ..., dbp, we use the result
%w=E@ZZ)=EZ{)Z,_+ 2, ,+ -+ DpZg_pta,)]
=¢,71+¢272+---+¢’,‘yp+03 (7.1.4)
and obtain the moment estimator for 2 as
Fa = Foll = b1y —dapy = = dyy)- (7.1.5)
Example 7.1 For the AR(1) model,
(Z,—py=¢(Z,_y -y} +a,, {7.1.6)
the Yule-Walker estimator for ¢, from (7.1.3), is
’51 = py- (7.1.7)
The moment estimators for and o2 are given by
i=2 (7.1.8)
and
67 = 3o(1-hydy) (7.1.9)
respectively, where 3 is the sample variance of the Z, series.
Next, let us consider a simple MA{1) model
Z,=a,-0,a,_,. (7.1.10)
Again, s estimated by Z. For 8, we use the fact that
- =4
T Tve

I solve the above quadratic equation for 8, after replacing p, by 4,. This

< 1o
~14,f1-4
fp=—n- YV 1

7.1.11
™ ( )
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If 5, = 4.5, we have a unique solution 8, = 41, which gives a noninvertible
model. If |3,] > .5, the real valued moment estimator 8, does not exist. This is
expected, since a real valued MA(1) model always has |p;| < .5, as discussed
in Section 3.2.1. For | 5,} < .5, there exist two distinct real valued solutions and
we always choose the one that satisfies the invertibility condition. After having

obtained 4,, we calculate the moment estimator for o2 as

61=T0_ (7.1.12)

The above example of the MA(1) model shows that the moment estimators
for MA and mixed ARMA models are complicated. More generally, regard-
less of AR, MA, or ARMA models, the moment estimators are very sensitive
to rounding errors. They are usually used to provide initial estimates needed
for a more efficient nonlinear estimation to be discussed later in this chapter.
This is particularly true for the MA and mixed ARMA models. The moment
estimators are not recommended for final estimation results and should not be
used if the process is close to being nonstationary or noninvertible.

7.2 MAXIViUM LIKELIHOOD METHOD

7.2.1 Conditional Maximum Likelihood Estimation
For the gencral stationary ARMA(p, q) model
Zy=hZyg+ 2 va,—0ia,_, - ~0a,_, (7.2.1)

where Z, = Z, —jcand {a,} are i.i.d. N(0, ¢2) white noise, the joint probability
density of a = (a,, a,, ..., a,) is given by

P(al¢, 1, 8, 02) = (2ral)y " exp(— 2—3’2 > af). (7.2.2)

e =1
Rewriting (7.2.1) as
a=0a,_ + - +0a,_ A2 ~$Z, - —$,Z,_, (7.2.3)

we can write down the likelihood function of the parameters (¢, 1, 8, o2).

Llet Z = (Z,, Z,, ..., Z,) and assume the initial conditions Z, =
(Zy_py v-os Z_y Zp) and &, = (ay_g, ..., 8_y, ay)'. The conditional log-
likelihood function

InL.($, 1, 8, 02) = -glnzmg_ &%—;‘—@ (7.2.4)
a
where
S, 11, 8)=) al(d, 1, 0|2, 8., Z) (7.2.5)

=1
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is the conditional sum of squares function, The quantities of &, fi,and 0, which
maximize Equation (7.2.4), are called the conditional maximum likelihood es-
timators. Since InL (¢, p, 8, a?) involves the data only through S, (¢, 5, ),
{hese estimators are the same as the conditional least squares estimators ob-
tained from minimizing the conditional sum of squares function §,(¢, 1, 8),
which, we note, does not contain the parameter ol
There are a few alternatives for specifying the initial conditions Z, and a,.
Based on the assumptions that {Z,} is stationary and {a,) is a series of iid.
N(0, o), random variables, we can replace the unknown Z, by the sample
mean 7 and the unknown a, by its expected value of (. For the modelin (7.2.1},
we may alsoassumea, =4, | = =dy,y_ 4= Oand czl_lculute a fori > (p+1)
using (7.2.1). The conditional sum of squares function in (7.2.5) thus becomes
n
S.(é 1, 8)= ) al(¢, m 812D) (7.2.6)
1=p+1
which is also the form used by most computer programs.
After obtaining the parameter estimates ¢, ji, and 6, the estimate 61 of a?
is calculated from
6_2 - S.(¢) ﬁ; 0)
" df.
where the number of degrees of freedom d.f. equals the number of terms used
in the sum of $,(&, /, #) minus the number of parameters estimated. 1f (7.2.6)

is used to calculate the sum of squares, d.f. = (n —p) - (p +‘f +N=n—-(2p+
g + 1). For other models, the d.f. should be adjusted accordingly.

(7.2.7)

7.2.2 Unconditional Maximum Likelihood Estimation
and Backcasting Method

As seen from Chapter 5, one of the most important functions of a time series
model is to forecast the unknown future values. Naturally, one asks whether we
can buck-forecast or backcast the unknown values Z, = (Z,_p, -+ Z_y, Zo)'
anda, =(d,_g -, 8_ys a,)’ needed in the computation of the sum of squares
and likelihood functions. Indeed, this is possible since any ARMA model can
be written in either the forward form

(1-¢B—-—¢,BNZ, =(1-6,B—~8BNa, (7.2.8)
or the backward form

(V- F = =6, FNZ, = (1 =0, F — - 0,FT)e, (7.2.9)
where FIZ, = Z,,;. Because of the stationarity, (7.2.8) and (7.2.9) should ha.vc
exactly the same nutocovariance structure. This implies that {e, ]} is also a white

noise series with mean zero and variance ol. Thus, in the same way as we
use the forward form (7.2.8) to forecast the unknown future values Z,,; for
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J > 0 based on the data (Z,, Z,, ..., Z,), we can also use the backward form
(7.2.9) to backcast the unknown past values Z; and hence compute a; forj <0
based on the data {Z", Z by 2y } Therefore, for a further improvement

in estimation, Box and Jenkins (1976) suggest the following unconditional log-
likelihood function:

InL(, 11, 8, 02) = —12'1n2m§ - ﬁ%%!f-) (7.2.10)
a

where S(¢b, 11, 8) is the unconditional sum of squares function given by

n
S(¢, 11, )= Y [E(a, | &, 1, 8, Z)] (7.2.11)
1= —og
and E{a, | ¢, 1, 8, Z) is the conditional expectation of a, given ¢, g, 8, and
Z. Some of these terms have to be calculated using backcasts illustrated in
Example 7.2.

The quantities @, /i and 6 that maximize Equation (7.2.10) are called
unconditional maximum likelihood estimators. Again, since InL{#, s, 8, o)
involves the data only through S{¢, p, 8), these unconditional maximum like-
lihood estimators are equivalent to the unconditional least squares estimators
obtained by minimizing S(¢, i, ). In practice, the summation in (7.2.11) is
approximated by a finite form

S(p, pn, 8)= Z (E(a, | &, 1, 8, Z)], (7.2.12)
t=—M
where M is a sufliciently large integer such that the backcast increment |E(Z, |
&, 1y 0, Y- FE(Z,_, | , p, 8, T} is lcss than any arbitrary predetermined
small € value fort < —(M + 1). This implies that E(Z, | ¢, p, 8, Z) 2~ jt and
hence E(a, | ¢, s, 8, Z) is negligible for 1 < —(M + 1),
After obtaining the parameter estimates ¢, ji, and 8, the estimate 62 of »2
can then be catculated as
.2 _ S(&, it 0)

42 ; (7.2.13)

For efliciency, the use of backcasts for parameter estimation is important
for seasonal models (to be discussed in Chapter 8), for models that are close
to being nonstationary, and especially for series that are relatively short. Most
computer programs have implemented this option,

Example 7.2 To illustrate the backcasting method, consider the AR(1)
model that can be written in the forward form

a,=Z,-¢Z,_, (1.2.14)
or equivalently in the backward form

e, =2, —9Z 1y (7.2.15)
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where, without loss of generality, we assume that E(Z,) = 0. Consider a very
simple example with ten observations, Z = {Z,, Z,, ..., Z;), [rom the pro-
cesses that are listed in Table 7.1 under the column E{Z, | Z) fort = 1, 2, ...,
10. Suppose ¢ = .3 and we want to calculate the unconditional sum of squares

10

S(¢=23)= ) [E(a|4=23 D) (7.2.16)

1=-M

where M is chosen so that JE(Z, | ¢ = 3, Z)-E(Z,_, | ¢ = 3, Z}| <
005 for t < —(M + 1). To simplify the notations for this example we write
E(a,|¢=.3, Z)as E(a, | Z) and E(Z, | $ = .3, T) as E(Z, | 7).

To obtain E(a, | Z} we use (7.2.14) and compute

E(a,17) = E(Z, | ) - 6E(Z,_, | 2). (7.2.17)

However, the above computation of E{a, | Z) for ¢ < 1 involves the unknown
Z, values for ¢ < 0, which need to be backcasted. To achieve this, we use the
backward form in (7.2.15), i.e,,

E(Z,|7) = E(e, | Z) + $E(Z11 | 7). (7.2.18)

First, we note that in terms of the backward form, e, for ¢ < 0 are unknown

future random shocks with respect to the observations Z,, Z,_,, ..., Z,, and
Z,. Hence, :

E(e,|Z)=0, fore <. (7.2.19)

Therefore, for ¢ = .3, we have from (7.2.18)

E(Zo|Zy=E(eo | Z) + .3E(Z, | Z)

=0+(3)(-.2)=-.06

E(Z_\|Z)=E(e,|Z)+ .3E(Z,|Z)
=0+ (3¥~.06)=-.018

E(Z_31Z) =E_,|Z) + 3EZ 4| T)
={.3)(—.018) = —.0054

E(Z_3|Z) = E(e_3|12) + 3E(Z_, | 7)
= (.3)(—.0054) = —.00162.

Since |[E(Z_4 | Z)— E(Z_; | Z)| = 00378 < .005, the predetermined ¢ value,
we choose M = 2.

Now, with these backcasted values Z, for t €0, we can return to the for-
ward form in (7.2.17) to compute E(a, | Z) for ¢ = .3 fromt = -2 tot = 10
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as follows:

il

E(a_,|Z)=E(Z_,|7)-3E(Z_,12)
= —.0054 - (.3)(-.00162) = —.0049
E(a_,|Z)=E(Z_,1Z)- 3E(Z_,12)
= . 018—(.3)(-.0054) = —.0164
E(ag|Z) =E(Z,|Z) ~ 3E(Z_, 1Z)
= —.06—(.3)(—.018) = —.0546
E(a,|Z)=E(Z,|Z)- 3E(Z,|Z)
= —.2—(3)(-.06)= —.182
E(a,|Z)=E(Z,1Z)—- 3E(Z,]2)
= - 4-(3)(-2)=-34

E{a|Z)=E(Zy|2) - 3E(Z,|Z)
= 2= (3)(=1) = —17.

All the above computations can be carried out systematically as shown in Ta-
ble 7.1 and we obtain

10
S(6=.3)= ) |E(a)¢=3, Z)]* = 8232

=2

Similarly, we can obtain S(¢) for other values of ¢ and hence find its minimum.

Tuble 7.1 Calculation of ${(¢ = .3) [or (1 — ¢B)Z, = a, using
backcasting method.

t E@|Z) -3E(Z,_|2) E@Z|Z) 3EZ..2) E,|2)

-3 -.0016 —.0016 0
-2 -.0049 .0005 -.0054 —-.0054 0
-1 -.0164 .0016 -.018 ~.018 0
¢ -.0546 0054 -.06 -.06 0
1 182 018 -2
2 -4 06 -4
3 -.38 A2 -5
4 -35 A5 -.5
5 —.45 A5 -6
6 -.32 .18 -5
7 =25 A5 -4
8 .08 A2 -2
9 -4 .06 -1
10 .17 03 -.2
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It should be noted that for the AR(1} model we do not need the value E
(e, | Z) for ¢ > 1. For other models, they may be required. However, the pro-
cedure is the same. For more detailed examples, we refer readers to Box and
Jenkins (1976, p. 212).

7.2.3 Exact Likelihood Functions

Both the conditional and unconditional likelihood functions (7.2.4) and
(7.2.10) are approximations. To illustrate the derivation of the exact likelihood
function for a time series model, consider the AR(1) process

(1-¢B)Z, =4, (7.2.20)
or

Z,=¢Z,_, +a,
where Z, = (Z,—n), |¢] < 1and thea, areii.d. N (0, o). Rewriting the process
in the maving average representation, we have

Z2,=% da,_; (7.2.21)
j=0

Clearly, the Z, will be distributed as N (0, a2/(1 — ¢%)). Lowever, the Z, are
highly correlated. To derive the joint probability density {unction P(Z,, Z,,
ey Z2)0O0(Zy, Z4y ..vy Z,) and hence the likelihood function for the param-
eters, we consider

01 = Zéial—j = Z‘l’
j=0
a, =2, ¢Z,,
ay =23—<f’22-
a,=2,—¢$Z,_y (7.2.22)

Note that ¢, follows the normal distribution N (0, olf(1-¢M)) a,for2 <t <n,
follows the normal distribution N (0, ¢2), and they are all independent of each
other. Hence, the joint probability density of (e, a3, ..., @,) is

pley, dy ooy ;)
n

P N R N R 1 &, (1223
e e S D I
a a a‘

2na}

=2
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Now consider the following transformation:

Z =
22 = ¢Zl + az
23 = ¢22 +ﬂ:‘
Z,=¢Z,_,+a,. (7.2.24)
The Jacobian for the transformation, from (7.2.22), is
1 o - . . . .0
-4 1 0 . . . . 0
Jj=|0 -6 10 . . . 0]_ 1
0 0 -4 1

It follows that
P(Zl' 22‘ Ty Z?r)=P(8|1 "2' iy ﬂ")
!.... 2 112 _'2 _ ]
_ ¢ ¢»)] “"[”5(1 )

i 2mal 202

1 {n-1)2
) [Zn-r:g ] exp

Hence, for a giVCll series (Z 22 7 44
] oo b 1" y rery Z we have the i a -
likeli . inction: n) fU“OWII"Ig exact 1o

1 < .
-ﬁz(zf_"szt—l)z -

[} 1=2

(7.2.25)

n

NL(Zy s 2,16 1 02y = =3

1 n s
27+ 21001 — 62y = Mno? — 3 1)
2 ( ¢) Zlnaa —-——-.-.-_-_-2”3

where (7.2.26)

S, 1) = (2~ (1- 1)+ SUZ, - - $Z,_ - P (72.27)
1=2
is the sum of squares term that is a function of only ¢ and ;.

Th; exact closed form of the likelihood function of a general ARMA
model is complicated. Tiao and Ali (1971) derived it for an ARMA(1, 1)
model. Newbold (1974) derived it for a general ARMA(p, ) model ln,ter-
ested readers are advised also to see Ansley (1979), Nicholls and Hall -(1979),

Ljung and Box (1979}, and Hillmer and Tiao (1979 i
tional references, (1979) among others for addi-
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7.3 NONLINEAR ESTIMATION

It is clear that the maximum likelihood estimation and the least squares esti-
mation involve minimizing either the conditional sum of squares S, 1, 8)
or the unconditional sum of squares S(¢, p, 8). These are the sums of squares
of the crror terms aps. For an AR(p) process,

a, =Z|—¢Izr—l_ézzl—z_"'_quthn (7.3.1)

and g, is clearly linear in parameters. However, for a mode!l containing an
MA [actor, the a, is nonlinear in parameters. To see that, consider a simple
ARMA(I, 1) model

Z,—¢Zy_y=a,—a,_,. (7.3.2)
To caleulate a,, we note that
a, = 2: - ¢lzl—l +8a,_,
=Z, ¢+ OZ -6 Z 0, ,)
=Z,— (=02, -2, _,+ lear—z

(7.3.3)

which is clearly nonlinear in the parameters. Hence, for a general ARMA
model, a nonlinear least squares estimation procedure must be used to obtain
estimates.

The nonlinear least squares procedure involves an iterative scarch tech-
nique. Because a linear model is a special case of the nonlinear model, we
can illustrate the main ideas of the nonlinear least squares using the following
linear regression model:

Y, =E(Y, | X;5) +e¢,

=X+ X e o, Xy,

+e, {(7.3.4)

fore =1,2,...,n where e/s are i.i.d. N(0, o2} independent of all the X,;. Let
Y=(Y, Y, .., Y,), a=(0 a0y ..., o) and X be the corresponding matrix
for the independent variables Xis. From results in lincar regression analysis,
we know that the least squares estimators are given by

&=(X'X)'X'Y, (7.3.5)
which follows a multivariate normal distribution MN(a, ¥ (é&)) with

V(&)= o(X'X)". (7.3.6)

ae minimum residuoal (error) sum of squares is

n
S(@) =) (¥, =6, Xy~ dyXpy— o 6, X, (7.3.7)

i=1
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The least squares estimates in (7.3.5) can also be obtained by the following
two-step procedure discussed in Miller and Wichern (1977).

Let & = (i, iy, ..., &,) be an initial guess value of & = (o), 0y, ..., )
We can rewrite the minimum residual sum of squares in (7.3.7) as

S(a)y=Y (Y, - Xy — =i, X,

t=1
(& =&)Xy — (6, —(",,)X,,,]2 (7.3.8)
or
S(8)=S(@a)= Z(é,—a,x,l...*a,,x,p)z (7.3.9)
=1

where é,'s are estimated residuals based on the initial given values &, and § =
(& — @). Now, 5(8) in Equation (7.3.9) and S(&) in (7.3.7) are in the same
form. Hence the least squares value of § is

§=(X'X)"'X's (7.3.10)

where &= (¢4, ..., €,)'. Once the values § = (&, 6y, ..., 8,) are calculated, the
least squares estimates are given by

&d=a+é. (7.3a1)
We note that the residual & is calculated as Y, — ¥, where
Y' = (-Q‘IX” + - +(-'pr[’

represents a guess of the regression equation obtained by using the original
model and the given initinl values &fs. Moreover, it is clear from Equation
(7.3.4) that :

QE(Y,|X's
o =X

(7.3.12)
; .
fori=1,2,...,pandt = 1,2, ..., n. Hence, the X matrix used in the equation
of the least squares estimates in (7.3.5) and {7.3.10) is actually the matrix of
the partial derivatives of the regression function with respect to each of the
parameters.

Now, consider the following model (linear or nonlinear):
Y, =f(X, o) te, t=12,..,n (7.3.13)

where X, = (X, X3, ..., X,,)is a set of independent variables corresponding
to the observations, a = (a, a3, ..., ap)' is a vector of parameters, and e, is a
white noise series having zero mean and constant variance o2 independent of
X.LetY =(Y,, Y, ..., V.Y and f(a) = [[(X,, @), f(X;, a}, ..., f(X,, 2)].
From the above discussion, the least squares estimators (linear or nonlinear)
can always be calculated iteratively as follows:
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Siep 1. Given any vector of initial guess values &, compute the residual
& = {Y - ¥) and the residual sum of squares

S(@)=ee=(Y-Y)(Y-T), (7.3.14)

where ¥ = [{&) is a vector of predicted values obtained by replacing the un-
known parameters by the initial guess values. Approximate the model f (X, &)
with the first order Taylor serics expansion about the initial value . That is,

fla)=T(G)+ X .6 (7.3.15)

where 6 = (a—G)and X 4 = {Xy} is the n > p matrix of the partial derivatives
at & in the above linear approximation. That is,

t=1,2,....n,
X, = L? il . " (7.3.16)
w a=a i=L2,...p
Then we calculate
6=(X5X ) 'XLE=(5, 65 .0 8,). (7.3.17)

Note that for a linear model the X ; is fixed and equals X'; for a nonlinear
model, this X ; changes from iteration to iteration.

Step 2. Obtain the updated least square estimates

"

G=a+b (7.3.18)

and the corresponding residual sum of squares S(&). We note that & in & rep-
resents the difference or change in the parameter values, For o linear model,
Step 2 pives the linal least squares estimates. For a nonlinear model, Step 2
only leads 1o new initial values for further iterations.

In summary, for a given general ARMA(p, g} model, we can use the non-
linear least squares procedure to find the least squares estimates that minimize
the error sum of squares S, (¢, j1, 8) or S(¢, yr, 8). The nonlinear least squares
routine starts with initial guess values of the parameters. it nionitors these val-
ues in the direction of the smaller sum of squares and updates the initial guess
values. The iterations continue until some specified convergence criteria are
reached. Sume convergence criteria that have been used are the refative re-
duction in the sum of squares, the maximum change in the parameter values
less than a specified level, or the number of iterations greater than a certain
number. To achieve a proper and faster convergence, many search alporithms

¢ developed. One of the algorithms that is commonly used is due to Mar-

wmrdt (1963). 1t is a compromise between the Gauss-Newton method and the

method of steepest descent, For more discussions on nonlinear estimation, sec
Draper and Smith (1981}, among others.
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Propertics of the Parameter Estimates Let a = (¢, 51, 8), & be the estimate
of a.-and X 4 be the matrix of the partial derivatives in the final iteration of the
nonlinear least squares procedure. We know that & is distributed as a multi-

variate normal distribution MN(er, V (&)). The estimated variance-covariance
matrix V(&) of & is

V(&) =65(XaX )™
= (66‘6‘;) (7.3.]9)

22
where dgis estimated asin (7.2.7) or (7.2.13) and 6, .4, is the sample covariance
between 4; and d;. We can test the hypothesis Hg : o; = ayq using the following
¢ statistic:

- (.!.' bl ﬂm

9 aiai

with tIu; degrees of freedom equaling n — (p + g + 1) for the general ARMA
model in (7.2.1}. (More generally, the degrees of freedom equals the sam-

ple size used in estimation minus the number of parameters estimated in the
model) The estimated correlation matrix of these estimates is

R(ar) = (5,4.) (7.3.21)

where

A high carrelation among estimates indicates overparameterization, which

should be avoided as it often causes difliculties in the convergence of the non-
linear least squares.

7.4 ORDINARY LEAST SQUARES (OLS) ESTIMATION
IN TIME SERIES ANALYSIS

Regression analysis is possibly the most commonly used statistical method in
dati analysis. As a result, the ordinary least squares (OLS) estimation devel-
oped for standard regression models is perhaps also the most frequently used

estimation procedure in statistics. In this section, we discuss some problems of
OLS estimation in time series analysis,

Consider the following simple linear regression model:
Z,=¢X +e, t=1,..,n (7.4.1)
Under the following basic assumptions on the error term e,:
1. Zero mean: E(e,} =
2. Constant Variance: £(e?) =
3. Nonautocorrelation: E(e,e,) = O fore¢ # k
4. Uncorrelated with explanatory varinble X, : E(X,e,) = 0



148 Chapter 7 Parameter Estimation, Diagnostic Checking, and Modol Selactlon

it is well known that the OLS estimator

é= SmXZ, (7.4.2)
~f Xz

i=1%
is a consistent and the best linear unbiased estimator of ¢. However, it is im-
portant to note that assumption (4) is crucial for lhis. result to hold. Assump-
tion (4) automatically follows if the explanatory vanablcs. are nqnstnchusuc.
However, in a noncontrollable study, particularly when time series data are

involved, the explanatory variables are usually also random variables.

Now, consider the following time series modet:

Z,=¢Z, tep r=1,..,n (7.4.3)
The OLS estimator of ¢, based on available data, is
b= TizZiiZe (7.4.4)
" 22
=251

We would like to ask whether ¢ is still unbiased and consistent in this case when
the explanatory variable is a lagged dependent variable. The answer depends
on the stochastic nature of the error term £,. To see that, we rewrite ¢ as

Si=2ZiZy _ re2Zi1(8Z, 1 +e)

b=

a
lzlzlz-l E:':lzf—l
BRI LIEY (7.4.5)
f=2 701

and consider the following two cases:

Case 1. e, = a,. That is, the ¢, is a zero mean white noise series u-f C(?r;stan;
variance 2. In this case, conditional on the obs_er_vcd Z,, the cxpectt:q vaﬂ;n: ;)
é is ¢ and hence, & is still unbiased. Morcover, it is easy tosee that q!: 1.n ( 4. l)f
is equivalent to the first lag sample :lulocorrclmmn' Ay for the serics 7. o
|#} < 1, and hence Z, becomes an AR(1} process with an :|b5()llll€!y summable
autocorrelation function, then by Section 2.5, 4y isa cons'lstcnt estimator of py,
which is equal to ¢. Thus, # in (7.4.4) is a consistent estimator of 4.

Case 2: ¢, = (1 - 6B)a,, where the a, is a zero mean white noise series of
’ ‘ . . A
constant variance o2, and hence e, is an MA(1) process. Under this condition,
the series Z, becomes an ARMA(1, 1) process

Z,=¢Z,_ ta,—8a,_, (7.4.6)

E(Z,_ie,) = ElZ,_\(a, - 6a,_)] = —Bal. (7.4.7)

L his shows that autocorrelation in the error term not only violates assump-
tion (3) but also causes a violation of assumption (4) when the explanatory
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variables contain a lagged dependent variable. Thus, ¢ in (7.4.4) is no longer
unbiased. Even worse, ¢ is not a consistent estimator of ¢, because ¢ 5, is a
consistent estimator for p;, and for an ARMA(], 1) process, by (3.4.14),

_(6-0)(1-40)
M= TTeioag8 T *

In summary, the OLS estimator for the parameter of an explanatory vari-
able in a regression model will be inconsistent unless the error term is uncor-
related with the explanatory variable, For ARMA(p, q) models, this condition
usually does not hold except when g = 0. Estimation methods discussed in Sec-
tions 7.2 and 7.3 are more efficient and commonly used in time series analysis.

7.5 DIAGNOSTIC CHECKING

Time series model building is an iterative procedure, It starts with model iden-
tification and parameter estimation. After parameter estimation, we have to
assess mode! adequacy by checking whether the model assumptions are satis-
fied. The basic assumption is that the {a,} are white noise. That is, the a,’s are
uncorrelated random shocks with zero mean and constant variance. [For any
estimated model, the residuals 4,'s are estimates of these unobserved white
noise a,’s. Hence, model diagnostic checking is accomplished through a careful
analysis of the residual series {4, }. Because this residual series is the product
of parameter estimation, the model diagnostic checking is usually contained
in the estimation phase of a time series package.

To check whether the errors are normally distributed, one can construct a
histogram of the standardized residuals&,/#, and compare it with the standard
normal distribution using the chi-square goodness of fit test or even Tukey’s
simple five-number summary. To check whether the variance is constant, we
can examine the plot of residuals or evaluate the effect of different A values
via the Box-Cox method. To check whether the residuals are white noise, we
compute the sample ACF and PACF {or IACF) of the residuals to see whether
they do not form any pattern and are all statistically insignificant, i.e., within
two standard deviations if o = .05.

Another useful test is the portmanteau lack of fit test. This test uses all the
residual sample ACF's as a unit to check the joint null hypothesis

I’O:PI =p; = =py =0'
with the test statistic

X
Q=n(n+2)) (n—k)7'pf. (7.5.1)

k=1
This test statistic is the modified Q statistic originally proposed by Box and

Pierce (1970). Under the null hypothesis of model adequacy, Ljung and Box
(1978) and Ansley and Newbold (1979) show that the Q statistic approximately
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follows the y*(K —m) distribution where m is the number of parametcrs ¢s-
timated in the model.

BRased on the results of these residual analyses, if the entertained model
is inadequate, a new model can be easily derived. For example, assume the
entertained AR(1) model

(1- $BYZ — 1) = by (7.5.2)
produces an MA(1) residual seties instead of a white noise series, i.€.,
b, =(1-6,B)a,. (7.5.3)
Then we should re-identify an ARMA(L, 1} mudel
(1= $:B)Z, — ) = (1 - 6,B)a,, (7.5.4)

and go through the iterative stages of the model building unti! a satisfactory
model is obtained. As mentioned earlier, if the model should be indeed a mixed
model, then the OLS estimates of the AR parameters based on a misidenti-
fied model are inconsistent. Although this may sometimes cause problems, the
above procedure of using the residuals to madify models usuatly works fine.

7.6 EMPIRICAL EXAMPLES FOR SERIES W1-W7

For an illustration, we estimated the AR(3) model identified in Example 6.7 for
Series W7—the yearly numbers of lynx pelt sales—and obtained the following
result:

(1-.978 + 128 + S0B*)(InZ, — .58) =4, (1.5.5)
(.122) (.184) (.128) (.038)

and 62 = .124 where the values in the parentheses under estimate refer to the
standard errors of those estimates. They are all significant except for ¢, and
the model can be refitted with ¢, removed if necessary.

To check model adequacy Table 7.2 gives the residual ACF and PACF
and the Q statistics. The residual ACF and PACF are all smail and exhibil no
patterns. For K = 24, the Q statisticis @ = 26.7, which is not significant as
x%5(21) = 32.7, the chi-square value at the significance level a = .05 for the
degrees of freedom =K —m = 24— 3 = 21. Thus, we conclude that the AR(3)
model fitting is adequate for the data.

Similarly, we use the nonlinear estimation procedure discussed in Sec-
tion 7.3 to fit the models identified in Section 6.2 for Series W1 to W6. The
results are summarized in Table 7.3.

Diagnostic checking similar to the one for Series W7 was performed for
ach model fitted in Table 7.3. All models except the AR(2) for Series W2
are adequate. Related tables are not be shown here. Instead, we recall that
in Example 6.9, Section 6.4.1, Series W7 was alternatively identified as an
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Thble 7.2 Residual ACF and PACF for the AR(3) model.

(a) ACFjy

1-12 -8 -17 27 -00 -01 -5 .14 -09 -09 05 0 .03

StE. RL 14 15 16 11 16 16
. . . . . 16 16 .16 16 16
0. 1A a5 76 76 76 90 103 108 113 115 115 116
13-24 -25 .18 0z -.12 22 0s 04
: 02 02 22 —05 04 03 -00 .03 —.09 —
SSE. 16 17 A7 a7 18 18 A8 .18 18 .18 (1}: :}g

Q. 160 84 185 195 233 235 236 237 237 238 24..5 26.7

(®) PACF éi

1-12 -.18 .21 21 06 09 2l .10
: . . . - . -.15 .02 -.08 .
SLE. .14 .14 40 14 14 4 14 14 14 L4 }2 ?:

13-24 -20 07 -.04 07 17 02
? . . . R D4 -0D6 -06 -4 -
St.E. M40 14 14 14 14 14 14 4 14 14 ?: ?:

ARMAC(2, 1) model using the ESACF. The estimation of this model gives

(1-1.55B +.94B*)(InZ, - .58) = (1-.598
(.063) (.058) (.038)( (.IZI))a' (7.6.2)

with all parameters being significant and 62 = .116. The result was also pre-
sented in Table 7.3. The residual autocorrelations from this /\;QLMA(Zp 1)
model shown in Table 7.4 also indicate the adequacy of the model. In f‘lct
both AR(3) and ARMA(2, 1) models fit the data almost equally -.s:ell ’l‘"his:
raises the question of model selection to he discussed next. o

7.7 MODEL SELECTION CRITER!A

In time series analysis or more generally in any data analysis, there may be
s.everal adequate models that can be used to represent a given (iala set S‘uymc-
times, the bc.st choice is easy; other times the choice can be very diﬂicul.t Thus
numerous criteria for model comparison have been introduced in the Iite‘ralure:
f(?r model setection. They are different from the maodel identification methods
discussed in Chapter 6. Model identification tools such as ACF, PACF, IACF,
and ESACF are used only for identifying adequate modecls. R'csiduais fron;
all adequate models are white noise and are, in general, indistinguishable in
terms of these functions. For a given data set, when there are multiple ade-
quate m(_)dcls, the setection criterion is normally based on summary statistics
from residuals computed from a fitted model or on forecast errors ]c,alc(uhted
from thc.out-samplc forecasts. The latter is often accomplished by usin ‘ the
first portion of the series for model construction and the remaining 1§lion
as a holdout periad for forecast evaluation. In this section, we intrnduc[:sume
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Tuble 73 Summary of modcls fitted 1o Scrics W1-W7 (the Vulucs‘u‘1 :’h(:'ncs)
parcatheses under each cstimate refer wo the standard errors of thosc estimatces).

No. of ,
Scrics ol())sc(:- Fitted models a;
vations
w1 45 (1-.43B)(Z, - 1.79)=aq, 21
(134)  (076)
w2 285 (1-1.33B+.638°)(\/Z,-6.3) =4, 1.637
(.046) (046} (169) 5
(1- 113 + 428° + .10B> — 168" + .14B
(057) (088) (09) (091) (098)
+ 08B 25B" + 3B% — 35B°)(/Z,-63) =a, 1.2986
(.104) (.104) (.101) (.063) (.169)
(1—1.I7B+.4(-BZ+.ZIB’)(\/Z-»6.3)=0, 1.362
(048) (.049) (.028) (.169)
w3 g2 (1-.TBYZ,-634T)=n, 45.772
(071) (1.157)
269
wd 00 (1-B)Z, = (1 - 518, 1397.26
(05)
ws 35 (1-B)Z, =.56+aq, 2.136
- 2415
(1= 96B)(Z, —44.26) =4, A1
(051) (917
(028
1-B)InZ, =(1-.61B)a
we ts (1=Byin% (076)
2458 —58)=a 124
55 (1—.978+.12B2 + 5B )(InZ, .
v ( (122) (184) (128} (.038)
(1 - 1.55B + .94B*)(InZ, — .58) = (1 - .59B)«, 116

(063) (058) (038) (121

‘Tuble 7.4 Residual autocorretations, g, from the ARMA(Z,1) modcl.

1-8
SLE.
Q.

9-16

Q

030 -.003 —.004
_103 0% .78 057  .095

146)  (146)  (.146)
NA7) (139)  (140) (144)  (145) (14
(‘1. ! I ) 3. 3. 4. a. a. 4.

_ 0 052 .14l
064 —121 000 094 —.146 10 2 HiN
- 1asy  (148) (148) (149 (152) (153) (.
oF ('144.6) (ls. ) 3 ) 6. 7. 8. 8. 10.
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model selection criteria based on residuals, Criteria based on out-sample fore-
cast errors are discussed in the pext chapter.

1. Akaike's AIC and BIC Criteria. Assume that a statistical mode] of M
parameters is fitted to data, To assess the quatity of the model fitting, Akaike
(1973, 1974a) introduced an information criterion. The criterion has been
called ATC { Akaike’s information criterion) in the literature and is defined as

ALC(M) = -2 In[maximum likelihood] + 2M (7.7.1)

where M is the number of parameters in the model, For the ARMA model and

n eflective number of observations, recall from (7.2.10) that the log-likelihood
function is

Inf. = -—% in2nal - Z—(I,ES(qb, i, 0). (1.7.2)

Maximizing (7.7.2) with respect 10 ¢, i1, 8, and o2, we have, from (7.2.13),
Ink = _% Ing — %(1 +1n2n). (1.1.3)
Because the second tern in (7.7.3) s a constant, the AIC criterion reduces to

AICM)=nIng+2M, (1.7.4)

The optinud order of the model is chosen by the vadue of M, which is a function
of p and g, so that AVC(AT) is minimum.

Shibata (1976) has shown that the AIC eriterion tends to overestimate the
order of the astorepression. More recently, Akaike (1978, 1979) has developed

a Bayesian extension of the minimum AIC procedure, called BIC, which takes
the following form:

BIC(M)=nnd2 —(n~M)in (l - %) +Minn

+len[(g§— I)!M
ﬂ"

where 42 is the maximum likelihood estimate of 02, M is the number of pa-
rameters, and 72 is the sample variance of the series. Through a simulation
study Akaike (1978) has chtimed that the BIC is less likely to overestimate the
arder of the autoregression. For further discussion on the properties of AIC,
see Findley (1985).

2. Schwartz's SBC Criterion, Similar to Akaike's BIC, Schwartz (1978)
suggested the following Bayesian criterion of model selection, which has been
called SBC (Schwartz's Bayesian Criterion):

SBC(M) = nlné2 + Minn. (7.7.6)
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Tuble 7.5 AIC valucs for Series W7,

q 0 1 2 3 1

1421200  93.6185 700174 578203 55.3785
94 7730  69.9294 62.2191 56.4811 584985
319081 »23.7781 415118 497238 48.1051
240529  25.2286 43.7349 311166 47.2080
256708 27.4769 88.6398 60.0407 755548

BlLN=C |

Again in (7.7.6), 62 is the maximum likelihood estimate of 02, M is the number
of paramecters in the model, and n is the effective number of observations that
is equivalent to the number of residuals that can be calculated from the series.

3. Parzen's CAT Criterion. Parzen (1977) has suggested the following
model selection criterion, which he called CAT (criterion for autoregressive
transfer functions}:

1
{1+ = =1
( n)' p="

CAT(py={ | (1.1.7)
n

1 1

n.z ,.2 k]
j=1 1 r
where &7 is the unbiased estimate of o2 when an AR(j) model is fitted to the
series, and n is the number of observations. The optimal order of p is chosen
so that CAT{(p) is minimum.

We have introduced only some commonly used model selection criteria.
There are many other criteria introduced in the literature. Interested readers
are referred to Stone (1979), Hannan and Quinn (1979), ITannan {1980}, and
others.

Example 7.3 The AIC criterion has become a standard tool in time series
model fitting, and its computation is available in many time series programs.
In Table 7.5, we use the SAS/ETS software to compute AIC fur Scries W7—
Canadian lynx pelt sales. From the table, it is clear that the minimum AIC
occurs for p = 2andq = 1. Hence, based on the AlCcriterion, an ARMA(Z, 1)
model should be setected for the data. Note that a competitive AR(3) model
that we fitted earlier to the same data set gives the second smallest value of
AIC.

Exercises
7.1 Assume that 100 observations from an ARMA(], 1) modcl

Z-hZ =a, -0,

Exerclses 15%

12

7.3

7.4

1.5

1.7

7.8

gave the following estimates:62 = 10, A =.523, and 3, = .418. Find initial esti-
matcs for ¢, 0;, and a}

Assume that 100 observations from an AR(2) modcl
Z = Z, gt $Z, g +a,
gave the following sample ACF: 3, = 8, 5; = .5, and 5, = 4. Estimate ¢ and ¢,.

Given the sct of observations 2.2, 4.5, 2.5, 2.3, 1.1, 3.0, 2.1, and 1.0, calculate the

;nndi!iznnzll sum of squarcs §(8,, 0;) for the MA(2) process with 8y = —.5 and
2 = .c.

Given thf:.scl of observations 6, 2, 4, 5, 3, 4, 2, and 1, illustrate how to calculate
the conditiona] sum of squares function S{4,, ;) for thc ARMA(1, 1) modcl.

Consider the following observations from an MA(1) model with ¢ = 4:

t Z, W,=(1-B)Z,

0 59

1 62 3
z 58 -4
31 63 5
4 79 16
5 9% 1
6 B8R -2

() Calculate the conditional sum of squares (with ag = 1),

(by Calculate the unconditional sum of squares using the backcasting mt:lh(-)-d as
shown in Table 7.1.

Simulatc 100 obscrvations from an ARMA(1, 1) model,

{#) Fit thesimulated serics with an AR(1) or an MA(1) modcl. Carry out diagnos-
tic cheeking, and modify your fitted medel from the result of residual analysis

(b) Estimate the paramcters of your modified model, and compare with the tru(;
parameter values of the model.

A summary ol modcls fitted for the serics W1 to W7 is given in Table 7.3. Perform
residual analysis and model checking for cach of the fitted models.

Use AIC to find a model for each of the serics WT to W7, and compare it with the
fitted model given in Table 7.3,
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7.8 Suppose (I ~#B)7Z, = (1 — 6R)a, is a tentatively entertained model for a process.
Given

0 1 12
! 1 2 3 4 5 6 7 8 9 1
Z, -31 -8 12 6 28 -9 3 14 -25 -1l 9 14

caleulate the unconditional sum of squares for ¢ = .4 and # = 8,

7.10 Consider the AR(1) model
(1-¢B)(Z, - 1) =4,

(m) For e =0, find the maximum likelihood estimator for 4 and its associated

variance. . .
(b Find the maximum likelihood estimators for ¢ and ¢ when g # .
(¢) Discuss the relationship between the ordinary lcast square estimator and the
maximum likelihood estimator for ¢ in the ahove muodct,

SEASONAL TIME
SERIES MODELS

Because of their common occurrence in our daily activities, we devote a sep-
arate chapter to seasonal time series. After a brief introduction of some basic
concepts and conventional methods, we extend the autoregressive integrated
moving average models to represent seasonal series. Detailed »xamples are
given to illustrate the methods.

8.1 INTRODUCTION

Many business and economic time series contain a seasonal phenomenon that
repeats jtself after a regular period of time. The smallest time period for this
repelitive phenomenon is called the seasonal period. For example, the quar-
terly series of ice cream sales is high each summer, and the series repeats this
phenomenon each year, giving a seasonal period of 4. Similarly, monthly auto
sales and earnings tend to decrease during August and September every year
because of the changeover to new models, and the monthly sales of toys rise
every yeat in the month of December. The seasonal period in these later cases
is 12. Seasonal phenomena may stem from factors such as weather, which af-
fects many business and economic activities like tourism and home building;
custom events like Christmas, which is closely related to sales such as jewelry,
toys, cards, and stamps; and graduation ceremonies in the summer months,
which are directly related to the labor force status in these months.

As an illustration, Figure 8.1 shows the U S, monthly employment figures
{in thousands) for males aged between 16 and 19 years from 1971 to 1981. The
seasonal nature of the series is apparent. The numbers increase dramatically in
the summer months, with peaks occurring in the month of June when schools
are not in session, and decrease in the fall months when schools reopen. The
phenomenon repeats itself every 12 months, and thus the seasonal period is 12,

More generally, suppose the series {Z,} is seasonal with seasonal period
s. To analyze the data, it is helpful to arrange the series in a iwo-dimensional



