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Preface

This book began as a series of lectures given by the second author at the In-
ternational Monetary Fund as part of the Internal Economics Training program
conducted by the Institute for Capacity Development. They were delivered dur-
ing 2011-2015 and were gradually adapted to describe the methods available for
the analysis of quantitative macroeconomic systems with the Structural Vector
Autoregression approach. A choice had to be made about the computer package
that would be used to perform the quantitative work and EViews was eventually
selected because of its popularity among IMF staff and central bankers more
generally. Although the methodology developed in this book extends to other
packages such as Stata, it was decided to illustrate the methods with EViews
9.5.

The above was the preface to the book Ouliaris et al. (2016) (henceforth
OPR). Many of the restrictions we needed to impose to estimate structural
shocks could not be handled directly in EViews 9.5. We proposed workaround
methods that enabled one to impose the identifying information upon the shocks
in an indirect way. A key idea we used was that for exactly identified SVARs,
i.e. an SVAR in which the number of moment restrictions for estimation equals
the number of parameters, the Maximum Likelihood estimator (MLE) is iden-
tical to an instrumental variable (IV) estimator. This was advantageous since
the MLE requires non-linear optimization techniques, while the IV estimator
uses linear Two Stage Least Squares (2SLS). The IV approach allowed us to es-
timate complex SVAR structures using EViews 9.5. Gareth Thomas and Glenn
Sueyoshi at IHS Global Inc kindly helped us understand some of the functions
of the EViews package. They also added new options to EViews 9.5 that were
important for implementing and illustrating the methods described in OPR.

The orientation of OPR was to take some classic studies from the literature
and show how one could re-do them in EViews 9.5 using the IV approach. We
covered a range of ways of identifying the shocks when variables were stationary
or non-stationary or both. These methods involved both parametric and sign
restrictions upon either the impulse responses or the structural equations.

EViews 10 has many new features that deal with VARs and SVARs. For
VARs it is now possible to exclude some lagged variables from particular equa-
tions using lagged matrices L1, L2, ... etc. For SVARs the specification of
the A, B matrices used to define the model in EViews 9.5 is now augmented
by two extra matrices S and F, which are used to impose short-and long-run
restrictions on the model. Hence in this updated manuscript we first present
how to estimate SVARs if one only has EViews 9.5 and then we re-do the same
exercises using EViews 10. As we will see it is generally much easier to work
with EViews 10, although thinking about the problem from an instrumental
variables perspective can often be very valuable.

There are still some issues that can arise in EViews 10. In particular, there
may be convergence problems with the MLE, and the computation of standard
errors for impulse responses is sometimes problematic. We provide an EViews
add-in that may be able to deal with convergence problems by first estimating



the system using the instrumental approach and using the resulting parameter
estimates to initialize the new SVAR estimator. The standard error problem,
which arises when there are long-run restrictions, is left to the EViews team to
resolve, as it involves modification of the base code.

Because the book developed out of a set of lectures we would wish to thank
the many IMF staff and country officials who participated in the courses and
whose reactions were important in allowing us to decide on what should be
emphasised and what might be treated more lightly. The courses were excep-
tionally well organized by Luz Minaya and Maria (Didi) Jones. Versions of
the course were also given at the Bank of England and the Reserve Bank of
Australia.

Finally, on a personal level Adrian would like to dedicate this book to Janet
who had to endure the many hours of its construction and execution.
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Chapter 1

An Overview of
Macro-Econometric System
Modeling

Capturing macro-economic data involves formulating a system that describes
the joint behavior of a number of aggregate variables. Early work in econo-
metrics tended to focus upon either the modeling of a single variable or the
small set of variables such as the price and quantity of some commodity which
would describe a market. Although there was much theoretical work available
about the inter-relationships between aggregates such as output, money and
prices, Tinbergen (1936, 1939) seems to have been the first to think about cap-
turing these quantitatively through the specification of a system of equations,
followed by the estimation of their parameters. A modeling methodology then
developed which centered upon a set of reduced form equations for summariz-
ing the data and a set of structural form equations for interpreting the data.
Variables were classified as whether they were endogenous (determined within
the macro-economic system) or exogenous (roughly, determined outside of the
system). The reduced form equations related the endogenous to the exogenous
variables, while the structural equations aimed to capture the relationships that
the endogenous variables bore to one another as well as to some of the exoge-
nous variables. Often structural equations were thought of as describing the
type of decision rules that were familiar from economic theory, e.g. consumers
demanded a certain quantity of aggregate output based on the aggregate price
level as well as how liquid they were, with the latter being measured by real
money holdings.

The development of the concepts of reduced-form and structural equations
led to the question of the relationship between them. To be more concrete about
this, think of the endogenous variables z1t and z2t as being the money stock and
the interest rate respectively, and let x1t and x2t be exogenous variables. Then
we might write down two structural equations describing the demand and supply
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of money as

z1t = a0
12z2t + γ0

11x1t + γ0
12x2t + u1t (1.1)

z2t = a0
21z1t + γ0

22x2t + γ0
21x1t + u2t, (1.2)

with the errors ujt treated as random variables. For a long time in econometrics
these errors were assumed to have a zero expectation, to be normally distributed
with a co variance matrix ΩS , and for ujt to have no correlation with past ukt.
The reduced form of this system would have the form

z1t = π11x1t + π12x2t + e1t (1.3)

z2t = π21x1t + π22x2t + e2t, (1.4)

where e1t = δ11u1t + δ12u2t, and the δ coefficients are weighted averages of
the structural parameters a0

ij , γ
0
ij . The coefficients πij are also functions of

the structural coefficients a0
ij , γ

0
ij and et would have zero mean and be normally

distributed with co variance matrix ΩR. Again there was no correlation between
et and past values. Therefore, because the parameters of any structural form
such as (1.1) - (1.2) were reflected in the reduced form parameters, it was natural
to ask whether one could recover unique values of the former from the latter
(the πij). This was the structural identification problem.

The reduced form contained all the information that was in the data and
described it through the parameters πij . Consequently, it was clear that this
created an upper limit to the number of parameters that could be estimated
(identified) in the structural form. In the example above there are seven pa-
rameters in the reduced form - four πij and three in ΩR - so the nine in (1.1)
- (1.2) cannot be identified. The conclusion was that the structural equations
needed to be simplified. One way to perform this simplification was to exclude
enough of the endogenous or exogenous variables from each of the equations.
This lead to rank and order conditions which described the number and type of
variables that needed to be excluded.

Now owing to the exogenous variables present in (1.3) - (1.4) the parameters
of the reduced form could be estimated via regression. Hence, it was not neces-
sary to know what the structural relations were in order to summarize the data.
This then raised a second problem: there could be many structural forms which
would be compatible with a given reduced form, i.e. it might not be possible to
find a unique structural model. As an example of this suppose we looked at two
possibilities. First set γ0

11 = 0, γ0
22 = 0, i.e. exclude x1t from (1.1) and x2t from

(1.2). Then consider the alternative γ0
12 = 0, γ0

21 = 0. In both cases there are the
same number of structural parameters as in the reduced form. Consequently,
there is no way to choose between these two models because πij and ΩR can
be found regardless of which is the correct structural model. These models are
said to be observationally equivalent and the fact that there is a range of models
could be termed the issue of model identification. The structural identification
solution only took a given structural form and then asked about determining
its parameters uniquely from the reduced form. It did not ask if there was more
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than one structure that was compatible with the same reduced form. Model
identification was generally not dealt with in any great detail and structural
identification became the most studied issue. Preston (1978) is one of the few
to make this distinction.

Although the study of identification proceeded in a formal way it was es-
sentially driven by what was termed the “regression problem”. This arose since
running a regression like (1.1) would give inappropriate answers since the regres-
sion assumption was that z2t was uncorrelated with u1t, and (1.4) showed that
this was generally not true. In order to obtain good estimates of the structural
parameters it was necessary to “replace” the right hand side (RHS) endogenous
variables in (1.1) and (1.2) with a measured quantity that could be used in
regression, and these were termed instruments. Further analysis showed that
an instrument had to be correlated with the endogenous variable it was instru-
menting and uncorrelated with the error term of the regression being analyzed.
Exogenous variables were potential instruments as they were assumed uncor-
related with the errors. Therefore the question that needed to be settled was
whether they were related to the variable they instrumented, i.e. whether the
relevant πij were non-zero? Of course one couldn’t replace z2t in (1.1) with
either x1t or x2t, as these variables were already in the regression and there
would be collinearity. One needed some exclusion restrictions associated with
the exogenous variables such as γ0

12 = 0, and then z2t might be “replaced” by
x2t. Reasoning such as this led to conclusions in respect to identification that
coincided with the order condition.1 The rank condition revolved around fur-
ther ensuring that in reality there was a relation between a variable like z2t and
x2t, i.e. π22 6= 0.

Tinbergen and others realized that the relations between the variables needed
to be made dynamic, as the responses of the endogenous variables to changes
in the exogenous variables did not occur instantaneously, but slowly over time.
This had two consequences. One was that lagged values such as zjt−1 might be
expected to appear in (1.1) and (1.2), and these became known as predetermined
variables. In many formulations of structural equations it might be expected
that zjt−1 would appear in the j′th equation but not others, so that seemed to
provide a “free good”, in the sense of leading to many instruments that could
be excluded from the structural equations. Accordingly, it might be expected
that identification would always hold. It also led to the idea of constructing
dynamic multipliers which described the responses of the endogenous variables
as time elapsed after some stimulus.

The recognition of lags in responses also led to the idea that one might
think of variables as being determined sequentially rather that simultaneously
i.e. a0

12 = 0. Nevertheless it was recognized that a sequential structure did not
fully solve the regression problem. If a0

12 = 0 it did lead to (1.1) being estimable
by regression, but (1.2) was not, as z1t was still correlated with u2t owing to
the fact that the errors u1t and u2t were correlated. Wold (1949 and 1951)

1Namely that the number of excluded exogenous variables is greater or equal to the number
of included endogenous variables.
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seems to have been the first person to propose that the u1t and u2t be made
uncorrelated. When allied with a0

12 = 0 this assumption defined what he termed
a “recursive system”. In such systems regression could be used to estimate both
(1.1) and (1.2). Despite Wold’s strong advocacy it has to be said that recursive
systems did not catch on. The reason was probably due to the fact that the data
available for estimation at the time was largely measured at a yearly frequency,
and so it was hard to believe in a recursive structure. It was not until quarterly
and monthly data began to proliferate that recursive systems became popular,
with Sims (1980) forcefully re-introducing the idea.

Initially macro-econometric models were quite small. Although Tinbergen’s
(1936) model had 24 equations the representative of the next generation treated
in textbooks - the Klein- Goldberger model - had just 15. In the public policy
sphere however, macro-economic models became very large, possibly because of
developments in computer software and hardware. A query often raised when
these models were used was whether a variable could be regarded as being
determined outside of the system, e.g. the money stock was often taken as
exogenous, but the fact that central banks found it difficult to set the level of
money suggested that it was not reasonable to treat it as exogenous. Even items
such as tax rates were often varied in response to macro-economic outcomes and
so could not be regarded as being completely exogenous.

These qualms led to some questioning of the way in which the macro model-
ing exemplified by the very large scale models of the 1960s and 1970s proceeded.
Some of these might be traced back to Tinbergen’s early work, where he pro-
posed structural equations that involved expectations, and then replaced the
expectations with a combination of a few variables. The question is why one
would just use a few variables? Surely, when forming expectations of variables,
one would use all relevant variables. This concern became particularly striking
when rational expectation ideas started to emerge, as the prescription there
was for expectations to be a combination of all lagged variables entering into
a model, with none of them being excluded, although it might be that the
weights on some variables could be quite small, leading to them being effec-
tively excluded. One implication of this was that, if the weights needed to form
expectations were unknown, it was doubtful if one could expect that the models
would be identified, as no variables could be excluded from the structural equa-
tions. Therefore structural identification needed to be achieved by some other
method, and there the notion of a recursive system became important.

The history just cited led to the principles of retaining lags of all variables
in each structural equation but excluding some endogenous variables through
the assumption of a recursive system. Formally there was no longer any distinc-
tion between endogenous and exogenous variables. To summarize the data all
variables were taken to depend on the lags of all variables. Such a system had
been studied by Quenouille (1957) and became known as a Vector Autoregres-
sion (VAR). As data was summarized by a reduced form, the VAR became that
and its corresponding structural form was the Structural Vector Autoregression
(SVAR).

After Sims (1980) SVARs became a very popular method of macroeconomic
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data analysis. Part of the appeal was their focus upon dynamic responses. The
dynamic multipliers that were a feature of the older macro-econometric mod-
els were now re-named impulse responses, and the exogenous variables became
the uncorrelated shocks in the SVAR. Because impulse responses were becom-
ing very popular in theoretical macroeconomic work this seemed to provide a
nice unification of theory and practice. Shocks rather than errors became the
dominant perspective.

This monograph begins where the history above terminates. Chapter 2 be-
gins by describing how to summarize the data from a VAR perspective and how
to estimate this multivariate model. Many questions arise from matching this
model structure to data, which can be loosely referred to as specification issues,
e.g. choosing the order of the VAR, what variables should enter into it, should
one restrict it in any way, and how might it need to be augmented by terms
describing secular or specific events? Chapter 3 then turns to the usage of a
VAR. Impulse response functions are introduced and forecasting is given some
attention. Construction of these sometimes points to the need for the basic
VAR structure outlined in Chapter 1 to be extended. Examples that fall into
this category would be non-linear structures such as Threshold VARs, latent
variables and time varying VARs. Each of these is given a short treatment in
Chapter 3. To the extent to which the topics cannot be implemented in EViews
9.5 they are given a rather cursory treatment and reference is just made to
where computer software might be found to implement them.

Chapter 4 starts the examination of structural VARs (SVARs). Basically,
one begins with a set of uncorrelated shocks, since this is a key feature of modern
structural models, and then asks how “names” can be given to the shocks. A
variety of parametric restrictions are imposed to achieve this objective. Many
issues are discussed in this context, including how to deal with stocks and flows,
exogeneity of some variables, and the incorporation of “big data” features in
terms of factors. Applications are given from the literature and a link is made
with another major approach to macroeconometric modeling, namely that of
Dynamic Stochastic General Equilibrium (DSGE) models.

In Chapter 5 the restriction that variables are stationary - which was used in
Chapters 2 to 4 - is retained, but now parametric restrictions are replaced by sign
restrictions as a way of differentiating between shocks. Two methods are given
for implementing sign restrictions and computed by using both a known model
of demand and supply and the small empirical macro model that was featured
in earlier chapters. A range of problems that can arise with sign restrictions are
detailed. In some cases a solution exists, in others the issue remains.

Chapter 6 moves on to the case where there are variables that are non-
stationary, explicitly I(1), in the data set. This means that there are now
permanent shocks in the system. However there can also be transitory shocks,
particularly when I(0) variables are present. The combination of I(1) and I(0)
variables also modifies the analysis, as it is now necessary to decide whether the
structural shocks in the equation describing the I(0) variable is permanent or
transitory. Examples are given of how to deal with the possibility that they are
permanent both in the context of parametric and sign restrictions.
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Lastly, Chapter 7 takes up many of the same issues dealt with in the preced-
ing chapter but with cointegration present between the I(1) variables. Now the
summative model can no longer be a VAR but must be a Vector Error Correction
Model (VECM) and there is a corresponding structural VECM (SVECM). To
deal with the modeling issues it is useful to transform the information contained
in the SVECM into an SVAR which involves variables that are changes in the
I(1) variables and the error-correction terms. Cointegration then implies some
restrictions upon this SVAR, and these deliver instruments for the estimation
of the equations. Two examples are taken from the literature to show how the
methods work.
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Chapter 2

Vector Autoregressions:
Basic Structure

2.1 Basic Structure

Models used in macroeconomics serve two purposes. One is to be summative, i.e.
to summarize the data in some coherent way. The other is to be interpretative,
i.e. to provide a way to structure and interpret the data. In the early history of
times series it was noticed that the outcome of a series at time t depended upon
its past outcomes, i.e. the series was dependent on the past. It was therefore
proposed that a simple model to capture this dependence would be the linear
autoregression (AR) of order p

zt = b1zt−1 + ...+ bpzt−p + et,

where et was some shock (or what was then described as an “error”) with a
zero mean, variance σ2 and which was not predictable from the past of zt, i.e.
all the dependence in zt came from the lagged values of zt. Consequently, it
was natural that, when dealing with more than one series, this idea would be
generalized by allowing for a system of autoregressions. One of the first to deal
with this was Quenouille (1957) who investigated the Vector Autoregression of
order p (VAR(p)):

zt = B1zt−1 + ..+Bpzt−p + et, (2.1)

where now zt and et are n×1 vectors and Bj are n×n matrices. Equation (2.1)
specifies that any series depends on the past history of all the n series through
their lagged values. When p = 2 there is a VAR(2) process of the form

zt = B1zt−1 +B2zt−2 + et.

Letting n = 2 and expanding this out delivers the structure
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)
,

where the superscript indicates the lag number and the subscripts refer to the
equation and variable numbers. The assumptions made about the shocks et
allow for them to be correlated:

E(e1t) = 0, E(e2t) = 0

var(e2
1t) = σ11, var(e

2
2t) = σ22

cov(e1te2t) = σ12.

We will often work with either a V AR(1) or a V AR(2) in order to illustrate
ideas, as nothing much is gained in terms of understanding by looking at higher
values of p.

2.1.1 Maximum Likelihood Estimation of Basic VARs

The equations in (2.1) are often estimated using the Maximum Likelihood
method. To find the likelihood it is necessary to derive the joint density of
the variables z1, ..., zT . This will be termed f(z1, ..., zT ; θ), showing its depen-
dence on some parameters θ. Letting Zt−1 contain e1, ..., et−1, the joint density
can then be expressed as

f(z1, ..., zT ; θ) = f0(Zp; θ)

T∏
t=p+1

f(zt|Zt−1; θ),

where f0(Zp) is the unconditional density of z1... zp and f(zt|Zt−1; θ) is the
density of zt conditional on the past Zt−1. Therefore, the log likelihood will be

L(θ) = ln(f(z1, ..., zT ; θ)) = ln(f0(Zp; θ)) +

T∑
t=p+1

ln(f(zt|Zt−1; θ)).

Because the second term increases with the sample size it might be expected to
dominate the first, and so one normally sees it treated as an approximation to the
log likelihood. Finally to give this a specific form some distributional assumption
is needed for et. Making the density of et conditional upon Zt−1 be multivariate
normal N(0,ΩR) means that f(zt|Zt−1; θ) = N(B1zt−1 + ..+Bpzt−p,ΩR), and
so the approximate log likelihood will be

L(θ) = cnst− T − p
2

ln |ΩR|−

1

2

T∑
t=p+1

(zt −B1zt−1 − ..−Bpzt−p)′Ω−1
R (zt −B1zt−1 − ..−Bpzt−p),
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where cnst is a constant term that does not depend on θ.
Provided there are no restrictions upon Bj or ΩR, each equation has exactly

the same set of regressors, meaning that the approximate MLE estimates can
be found by applying OLS to each equation in turn.1 This makes the estimation
of the basic VAR quite simple. If there are some restrictions then OLS would
still provide an estimator but it would no longer be efficient. In that case one
needs to maximize L to get the efficient estimator. We note that because the p
initial conditions in ln(f0(Zp; θ)) have been ignored, the first p observations in
the sample are discarded when OLS is used.

2.1.2 A Small Macro Model Example

An example we will use a number of times in this monograph involves a small
macro model that has three variables - a GDP gap yt (log GDP after linear
detrending), inflation in the GDP deflator (πt), and the Federal Funds rate (it).
Data on these variables was taken from Cho and Moreno (2006) and runs from
1981/1-2000/1. An EViews workfile chomoreno.wf1 contains this data and in
it the variables are given the names gap, infl and ff. A VAR(2) fitted to this
data would have the form

yt = b111yt−1 + b112πt−1 + b113it−1 + b211yt−2+

b212πt−2 + b213it−2 + e1t (2.2)

πt = b121yt−1 + b122πt−1 + b123it−1 + b221yt−2+

b222πt−2 + b223it−2 + e2t (2.3)

it = b131yt−1 + b132πt−1 + b133it−1 + b231yt−2+

b232πt−2 + b233it−2 + e3t (2.4)

The following screen shots outline the basic steps in EViews required to fit a
VAR(2) to the Cho and Moreno data set. In this and following explanations of
EViews procedures, bold means the command is available from the menu tab
and is to be selected and clicked on using a pointer. Thus the first procedure
involves opening the data set and then clicking on the sequence of commands:
File → Open → EViews Workfile (Ctrl+O). The screen shot in Figure
2.1 below shows the resulting drop down menu.

Now locate the EViews data file chomoreno.wf1 and click on it to open it
in EViews. The result is shown in Figure 2.2. To fit the VAR(2) as in (2.2)
- (2.4) issue the commands Quick →Estimate VAR and fill in the boxes as
described in Figure 2.3. Note that a second order VAR requires one to state
the range of lags that are to be fitted, i.e. 1 2 is entered into the lag intervals
box. For a VAR(1) this would be stated as 1 1. Clicking the “OK” button then
produces the following results in Figure 2.4

1This also shows that weaker conditions than normality of et can be assumed.
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Figure 2.1: Opening A Workfile in EViews 9.5

Figure 2.2: Chomoreno Data Set in EViews 9.5

24



Figure 2.3: Specification of the Small Macro Model (VAR) in EViews 9.5

EViews also has a command line interface to estimate VAR models that is es-
pecially useful for replicating operations. After ensuring that the chomoreno.wf1
file is open it is necessary to set the sample period for estimation. Since all the
data is being used in this example, this can be easily done with the following
EViews smpl command:

smpl @all
After that a VAR object called chormoreno can be created with the com-

mand
var chomoreno.ls 1 2 gap infl ff
In this case, estimation will be carried out using Ordinary Least Squares

(OLS) (i.e., the ls command in EViews). The remaining items on the command
(“1 2”) refer to the order of the VAR (in this case 2) and the variables entering
the VAR (i.e., gap infl and ff). Lastly, the contents of the chomoreno object
(namely the estimation results) can be displayed using the show command:

show chomoreno

Typically, these commands will be placed in a program file (Figure 2.5) that
can be executed by clicking on the Run tab button.

2.2 Specification of VARs

There are many issues that arise with VARs involving either some characteristics
of the basic VAR outlined above or which represent extensions of it. The first
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Figure 2.4: Results from Fitting a VAR(2) to the Small Macro Model Data Set
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Figure 2.5: EViews Program to Replicate the Small Macro Model Results

two to be considered involve making a choice of

1. The order of the VAR.

2. The choice of variables to be included in the VAR, i.e. zt.

In most instances a good deal of attention is paid to the first of these and little
to the second, but it will be argued in Chapter 3 that the latter is at least as
important. In fact, there is an interdependence between these two choices which
has to be recognized.

2.2.1 Choosing p

There are basically three methods that have been employed to determine what
p should be

1. By using some theoretical model.

2. By using a rule of thumb.

3. By using statistical criteria that trade off fit against the number of pa-
rameters fitted.

2.2.1.1 Theoretical models

Consider a small New Keynesian (NK) model for the determination of inflation
(πt), output (yt) and the interest rate it in (2.5) - (2.7). This was the model
that Cho and Moreno fitted.

yt = αyyyt−1 + βyyEt(yt+1) + γyiit + uyt (2.5)

πt = απππt−1 + βππEt(πt+1) + γπyyt + upt (2.6)

it = αiiit−1 + γiyyt + βiπEt(πt+1) + uit. (2.7)

In (2.5) - (2.7) if errors uyt, upt and uit are assumed to jointly follow a VAR(1)
process then the solution for yt, πt and it will be a VAR(2). Indeed, it is the
case that virtually all Dynamic Stochastic General Equilibrium (DSGE) models
(of which the NK model is a representative) that have been constructed imply
that the model variables jointly follow a VAR(2) - an exception being the model
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in Berg et al. (2006) which has a fourth order lag in the inflation equation. It
is possible that the parameter values are such that the VAR(2) collapses to a
VAR(1), but fairly rare. One instance where it does is when the errors have no
serial correlation in them (and this was Cho and Moreno’s assumption about
them). Hence, if one has a DSGE model of an economy in mind, one would
know what the potential set of variables to appear in a VAR would be, as well
as the likely order of it. Generally, if data is quarterly a VAR(2) would probably
suffice.

2.2.1.2 Rules of Thumb

Initially in practice one used to see people choosing p = 4 when working with
quarterly data and p = 6 with monthly data. Provided n is small these are
probably upper limits to the likely order. This is a consequence of the number
of parameters that need to be estimated in each equation of the VAR - this being
at least np (intercepts and other variables add to this count).Accordingly, a large
p can rapidly become an issue unless there is a large sample size. It is probably
unwise to fit more than T/3 parameters in each equation. Even when there is
no relation between zt and its lags the R2 from applying OLS to each equation
will be around the ratio of the number of parameters to the sample size. Indeed,
in the limit when np = T, it is unity, regardless of the relationship between zt
and its lags. So the effective constraint is something like np < T

3 i.e. 3np < T.
With quarterly data we would often have no more than 100 observations, so
putting p = 4 would mean that n cannot be chosen to be greater than 7.

2.2.1.3 Statistical Criteria

One might seek to choose p by seeing how well the data is fitted by the VAR(p)
versus a VAR(q), where p 6= q. The problem is that one can get an exact fit by
setting either p or q to T/n (T being the sample size). For this reason one wants
to devise criteria that trade off fit and the number of parameters. There are a
variety of such criteria and three are given in EViews - the Akaike Information
Criterion (AIC), the Schwartz Bayesian Information Criterion (SC) and the
Hannan-Quinn (HQ) Criterion. Using the log likelihood (L) as a measure of fit
these criteria have the forms (where K is the number of parameters estimated),

AIC : −2(
L

T
) + 2

K

T

SC : −2(
L

T
) +

ln(T )K

T

HQ : −2(
L

T
) + 2

ln(ln(T ))K

T
.

If these criteria were applied to whether one should add extra regressors
to a regression model, the rules would retain the regressors if the F statistic
exceeded (T − K − 1)(e2/T − 1) (AIC) or (T − K − 1)(e(lnT )/T − 1) (SC).

Because (e2/T−1)
(e(lnT/T )−1)

< 1 this implies that AIC prefers larger models to SC.
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Consequently, we tend to prefer SC, as it seems unwise to estimate a large
number of parameters with limited data. Notice that, because of the negative
sign on the L term, we are trying to minimize each of the criteria.

To compute these in EViews for a range of values of p, after estimation of the
VAR for a given order, click on View→Lag Structure→Lag Length
Criteria. EViews then asks the user for “lags to include” which is designed
so as to prescribe an upper limit for p. EViews then tests VAR orders up to
that maximum order. The output using p = 4 is shown in Figure 2.6

In this screen the asterisk shows the minimum value for each criterion. Ac-
cordingly, for the small macro model the output from both HQ and AIC would
point to a VAR(3), whereas SC flags a VAR(1). As said previously our pref-
erence is to select the most parsimonious model and that would be a VAR(1).
However, as seen later with this data set, one might want to check if the VAR(1)
could be augmented in some way. Owing to serial correlation in the VAR errors,
it might be that some extra lags need to be added on to some of the equations,
even if not all of them.

2.2.2 Choice of Variables

There are two ways that this has been done

1. By institutional knowledge.

2. From theoretical models.

2.2.2.1 Institutional Knowledge

Often people in institutions doing macroeconomic modeling develop intuition
over what variables are needed to adequately model the system. Early macro
modelers argued that some monetary stock variable such as M1 would need to
be added to the three variables in the small macro model discussed earlier to
capture interactions in a closed economy. For a small open economy, it would be
hard not to have the real exchange rate and foreign output in the list of variables
appearing in the VAR. It also needs to be recognized that, in an open economy,
there are independent measures of demand and supply, with the current account
reflecting any discrepancy between them. Thus, as well as including a variable
such as GDP in the VAR, it can be useful to add in a variable like Gross National
Expenditure (GNE), with the latter playing the role of the “absorption” variable
that appears in theoretical models of open economies.

2.2.2.2 Theoretical models

Just as happened with the selection of p, theoretical models can suggest what
variables might appear in the VAR. Thus, from the New Keynesian perspective,
one would choose yt, πt and it. One difficulty that often arises however is that
such theoretical models often incorporate variables that are not easily measured,
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e.g. any DSGE model with a production side generally has in it the (unobserved)
level of technology, and so this would appear among the zt. Since one needs
to be able to measure variables to put them in standard VAR packages it is
tempting to just select a sub-set of the model variables. But this can have
consequences, and we will look at these later in Chapter 3.

2.2.3 Restricted VAR’s

One reason to be careful when choosing a high value of p is that it might either
be a reflection of an n that is too small or that the wrong variables have been
chosen. A further complicating factor is that it also may be that the higher
lags belong in some of the VAR equations and not others, i.e. some of the
elements of the bj are zero. We will refer to this as a restricted VAR. Such
exclusion restrictions can be for theoretical reasons. For example take the NK
model in (2.5) - (2.7) with αyy = 0, αππ = 0 (not an uncommon choice for those
estimating this model). This restriction arises from the fact that, if there is no
serial correlation in the shocks of the NK model, then the solution is a VAR(1)
with the coefficients on yt−1 and πt−1 being zero in all equations.

2.2.3.1 Setting Some Lag Coefficients to Zero

Statistical evidence might also show that some of the coefficients in Bj should be
set to zero. To investigate that possibility one needs to examine the individual
equations. Looking at these in the context of the equations in the three-variable
VAR(2) fitted to the Cho-Moreno data, we find that the t ratios for yt−2 and
it−2 in the yt equation are -2.53 and 1.98 respectively, while in the other two
equations second lags of variables are insignificant. Now, as seen earlier, a
VAR(1) would have been selected with the SC criterion, while the results just
mentioned suggest that such a VAR might need to be extended in order to
have second lags of variables in some but not all of the equations. Such VARs
could be termed restricted and essentially constitute an unbalanced (in the lag
variables entering into equations) VAR structure. In relation to restricted VARs
the EViews manual comments that using the option Make System in the Procs
menu means it would be possible to account for the restrictions on the system
in estimation. But, if you follow this route, you are moved out of the VAR
object into the SYSTEM object, and so none of the VAR options re computing
impulse responses etc. are immediately available. Nevertheless it is possible to
handle restricted VARs and to compute impulse responses using a somewhat
cumbersome procedure and the addition of a special program written in the
EViews language. We will look at this in the next sub-section.

It is not entirely clear what the use of restricted VARs is. One instance
may be if the VAR is to be used for forecasting, since the large number of
parameters in VARs makes for rather imprecise forecasts, and retaining only
those variables that have a significant role is likely to be important. However,
the Bayesian approach to this which generates BVARs that give low rather than
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zero weight to such regressors seems to have much better forecasting properties.2

EViews can test for the exclusion of all the lagged values of a single variable
from a VAR. To do this, after estimation use View→ Lag Structure→ Lag
Exclusion Tests. Unfortunately, this is simply a test. If one wants to impose
the restriction that a specific lag is absent then it is necessary to move to the
SYSTEM object, and so it will be necessary to later ask how one proceeds in
such a case. It should be noted that there is a literature which suggests that
unbalanced VARs could be selected with algorithms that automate the choices.
The best-known of these is PC-Gets - see Hendry and Krolzig (2005) - which
has been applied to produce parsimonious VAR structures by deleting lags in
variables if they fail to meet some statistical criteria. Heinlin and Krolzig (2011)
give an application of this methodology to find a VAR to be used for examining
over-shooting in exchange rates.

2.2.3.2 Imposing Exogeneity- the VARX Model

It is often said that all variables are treated as endogenous in a VAR, although
this is not strictly correct. When performing macroeconomic analysis there are
clearly cases where variables are best thought of as strictly exogenous, and that
should determine how the VAR is formulated. Perhaps the clearest example
of this would be in the context of a small open economy, where the foreign
variables would be expected to affect the domestic ones but not conversely, i.e.
the foreign variables would be determined by their own lag values and not those
of domestic variables. This clearly imposes zero restrictions upon the Bj in a
VAR. Such a structure leads to the VARX model (the X meaning it is a VAR
with exogenous variables), where one (or more) variables are treated as being
exogenous relative to another set of variables.

To be more concrete about this consider a data set for Brazil called brazil.wf1,
which has quarterly macroeconomic data spanning 1999:2-2008:4 (the era
covering the introduction of an inflation target).3 Here yt is an output gap, nt
is an absorption gap, πt (called infl t in the data set) is an inflation rate
adjusted for the Brazilian central bank’s target inflation, it(called int t in the
data set) is an interest rate adjusted in the same way, rert is a real exchange
rate, ystar is a foreign output gap and rust is a real foreign short-term
interest rate. The data set was used in Catao and Pagan (2011). The SVAR is
in terms of yt, πt, it, and rert, with ystart and rust being treated as
exogenous. Because the sample size is small we use a VAR(1).

To see what the resulting VARX system looks like consider the domestic
output gap equation. It has the form

2We will deal with BVARs in the next chapter.
3We will use 1999:2 to mean the second quarter of 1999. Later with monthly data 1999:2

will mean the third month.
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Figure 2.7: Specification of a VARX Model for the Brazilian Macro Data Set

yt = a1
11yt−1 + a1

12nt−1 + a1
13πt−1 + a1

14it−1 + a1
15rert−1+ (2.8)

γ0
11y
∗
t + γ0

12rust + e1t,

where γ0
ij shows the contemporaneous impact of the j′th exogenous variable

upon the i′th endogenous variable. The screen shot in Figure 2.7 shows how
this is implemented using the Brazilian data in brazil.wf1

It may be necessary to construct data on lags of some of the exogenous
variables, e.g. it might be that y∗t−1 should be in the VARX equations along with
y∗t and, in that case, one would need to enter ystar, ystar(-1) in the “exogenous
variables” box when defining the model. Notice that the exogenous variable
has to appear in every equation for the endogenous variables. Using standard
pull-down menus one cannot have them in one equation but not another, so we
need to describe how this constraint can be relaxed as it is the basis for handling
any restricted VARs.

Suppose that we want the foreign interest rate rust to only appear in the real
exchange rate equation. Running the VAR in Figure 2.7 above we will get the
results in Figure 2.8. Subsequently, choosing the Proc→Make System→
Order by Variable will push the resulting VAR specification to the EViews
system estimator (Figure 2.9).
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Figure 2.10: System Representation of the Brazilian VAR with Exogeneity Re-
strictions

Now this system needs to be edited so as to produce a VAR that has rus
absent from all equations except that for rer. This means we need to
re-number the coefficients to be estimated. The resulting system is shown in
Figure 2.10.

Then choosing Estimate → Ordinary Least Squares will give the results
in Figure 2.11.4

These estimates now need to be mapped into the VAR matrices B1 and F in

the system zt = B1zt−1+Fξt, where ξt =

[
et
z∗t

]
, z∗t are the exogenous variables

(omitting deterministic ones like dummy variables, trends and constants) and F
is a matrix. The impulse responses computed directly from the system will be
to one unit changes in et and z∗t , but these can be made one standard deviation
changes by adjusting the elements in F appropriately. Thus, in our example,
where there are five shocks et and two exogenous variables y∗t and rust, for the
first equation the (1, 6) element in F would be C(7). However if a change equal
to one standard deviation of y∗t was desired it would be necessary to set it to
C(7) ∗ std(y∗t ). The program restvar.prg shows how C is mapped into B1 and F
and how impulse responses are then computed.

Our final comment on the VARX model is that exogenous variables are
effectively being classified in that way because there is no equation for them
in the VAR. An example of this would be Iacoviello (2005) who has a VAR in
four variables - a GDP gap, rate of change of the GDP deflator, detrended real

4One could also choose Full Information Maximum Likelihood. Because the foreign
interest rate is excluded from some of the VAR equations OLS and FIML will no longer be
the same. FIML is a more efficient estimator but OLS is consistent.
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Figure 2.11: Ordinary Least Squares Estimates of the Restricted VARX Model
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house prices and the Federal Funds rate. He then adds a variable - the log of the
Commodity Research Bureau (CRB) commodity spot price index - on to the
system. It might be argued that this would be endogenous for the US economy,
but the analysis he performs is conditional upon commodity prices, so it is the
VARX model that is relevant.

2.2.4 Augmented VARs

2.2.4.1 Trends and Dummy Variables

In VAR analysis the concern is to capture the joint behavior of a set of vari-
ables. Sometimes there can be specific events that cause movements in some
of the variables but not others. Examples would be effects due to demographic
features, running events like the Olympic Games, wars, and the introduction
of new tax rates or special levies. Although these events can be thought of as
exogenous it might be difficult to construct a specific series for them, leading to
their being handled by the introduction of trend and dummy variables.

One problem is how they should be introduced into VARs. Including them
as exogenous variables in the VAR specification means that they will appear
in every equation of the VAR, and often this is not sensible. A good example
of this is the Iacoviello (2005) study mentioned above who added to his four-
variable VAR system not only commodity prices but also a time trend and a
dummy variable that shifted the intercept from 1979Q4. The addition of the
time trend looks odd given that both GDP and house prices have already been
Band-Pass filtered, as this filter removes a linear trend. The major effect of
adding the trend term to the VAR is upon the actual Federal Funds rate, as it is
highly significant in that equation but no others. Consequently, one is effectively
working with a ’detrended’ Federal Funds rate and this seems questionable. Such
an action certainly needs to be defended. This illustration raises the issue that
it is important to give a rationale for the form of any variables entered into a
VAR system, and one needs to recognize that the introduction of any form of
exogenous variables can change the nature of the endogenous variables. Again,
this illustrates the need for software that allows exogenous variables to affect
only some of the VAR equations.

More generally, one might have changes in the joint relationship between
series that need to be accounted for. These changes can be one of two types.
First, it is possible that the parameters characterizing the unconditional den-
sities of zt (the unconditional moments) change. These changes could last for
short or long periods and we will refer to them as breaks. The most important
parameters to exhibit breaks would be the intercepts in the VAR equations, as
that causes a break in the mean. Nevertheless, sometimes shifts in the variances
of the errors occur for one of more variables, e.g. for GDP growth during the 20
or so years of the Great Moderation, and for interest rates during the Volcker
experiment from 1979-1982. A second type of variation is what we will describe
as shifts and these will be taken to occur when the parameters of the conditional
densities change.
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Figure 2.12: Screen Shot of the Options for Testing Breaks in the Coefficients
of the VAR

Looking first at breaks the problem is to locate where they happen. Once
found we can generally handle them with dummy variables. Sometimes institu-
tional events will tell us where to position the dummy variables, e.g. work-
ing with South African macro-economic data there were clear breaks post-
Apartheid. In other cases one might ask whether the data can shed light on
where the breaks occur. Some tests along these lines are available after a regres-
sion has been run. To access these click on the commands View→Stability
Diagnostics and they will appear as in Figure 2.12. Of the tests that are made
available the Chow break point test is good if one has some idea of where the
breaks occur. If there is no hypothesis on this then one could look at either the
Quandt-Andrews or the Bai-Perron Multiple break point test. The main disad-
vantage of the latter two is that the statistics are based on asymptotic theory,
so that one needs a reasonable sample size. Moreover, the break points need to
be away from the beginning and end of the sample since, for a given break point
of T ∗, one compares the estimated regression using data from 1...T ∗ with that
for T ∗ + 1...T. Both tests do insist that the user only search for breaks within
the interior of the sample, i.e. T ∗ cannot be too close to the start of the sample.

Applying these tests to (say) the gap equation in the VAR, it is found that the
last two tests suggest that a break happened around 1984Q4. This is probably
too close to the beginning of the sample to decide that there was a break, as
it would mean that one of the regressions fitted to test that the break point is
there would only be using sixteen observations to fit seven parameters.

Sometimes it can pay to examine the recursive estimates of the regression
parameters. In this case there seems to be a possibility of some mild drift. The
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infl equation shows no evidence of changes, but that for the Federal Funds rate
does show some evidence, although again it is around 1985Q1. In general the
evidence of any parameter change doesn’t seem strong enough for any dummy
variables to be added to the small macro VAR.

Lastly it can be useful to investigate breaks using programs that are not
EViews. Hendry et al. (2008) have argued for the addition of many dummy
variables (termed impulse indicators), It, which take the values 1 at t and zero
otherwise. They use a strategy whereby many of these are added to the VAR
equations and then the equations are simplified using the algorithm in Automet-
rics. Often however this “impulse indicator saturation followed by simplifica-
tion” approach leads to a lot of dummy variables for which there is no obvious
rationale. It may be that they either reflect variations in the unconditional mo-
ments of the data or it may be that they are accounting for variations in the
data that are not captured with the past history of the variables. In the latter
instance they could be acting so as to make the shocks “better behaved”, i.e.
closer to being normally distributed. It is unclear whether one should just omit
them and allow the shocks to be non-normal.

Shifts in the conditional densities are sometimes interpreted as coming from
the fact that the densities depend on a set of recurrent events, e.g. it may be
argued that the VAR coefficients differ either between recession and expansion
periods. Another possibility is for the defining event to involve some threshold in
an observable variable. Because these events recur with a certain probability it is
generally the case that the unconditional densities of the zt would have constant
moments, i.e. there would be no breaks. A recurrent event like recessions would
require augmentation of the VAR equations with terms involving an indicator
that is unity during recessions and is zero otherwise (these can also be interacted
with the lags). As we will see later one has to be careful when augmenting VARs
with indicator variables that are constructed from endogenous variables in the
VAR. Because recurrent events essentially induce non-linear structure into the
VAR we will discuss them later under that heading.

2.2.4.2 With Factors

Often many variables are available to an analyst which are expected to influence
the macro economy. Thus financial factors and confidence might be important to
decisions. Because there is rarely a single measure of these there is a tendency
to utilize many approximate measures, particularly involving data surveying
the attitudes of financial officers, households or business men. There are far
too many of these measures to put them all into a VAR, and so some prior
aggregation needs to be performed. For a small system involving macroeconomic
variables such as the unemployment rate, industrial production and employment
growth, Sargent and Sims (1977) found that two dynamic factors could explain
80% or more of the variance of these variables. Bernanke et al. (2005) extended
this approach.

In the Bernanke et al. variant one begins by assuming that there are m
common factors Ft present in a set of N variables Xt. Then Xt has a factor
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structure and the factors are taken to follow a VAR. This VAR may include
some observable variables yt, i.e. the system is

Xt = ΛFt + vt (2.9)

Ft = B1
11Ft−1 +B1

12yt−1 + ε1t (2.10)

yt = B1
21Ft−1 +B1

22yt−1 + ε2t. (2.11)

Clearly if Ft was available a VAR could be fitted to the data on Ft and yt.
Bernanke et al. proposed that one use the m principal components of Xt (PCt)
in place of Ft. Bai and Ng (2006) show that PCt converges to Ft as N → ∞.
Generally N has to rise at a slower rate than the sample size T. Moreover, Bai
and Ng show that the standard errors of the estimated coefficients of Λ and Bij
are not asymptotically affected by the fact that PCt can be thought of as a
generated regressor. This approach has become known as a Factor Augmented
VAR (FAVAR).

EViews can compute the principal components of a set of data Xt and the
commands to do this are now discussed. First, the data set used by Bernanke
is bbedata.wf1 and it needs to be opened. There are 120 variables in this data
set, 119 in Xt and a single one (the Federal Funds rate) in yt. They then
standardized all the data, i.e. mean corrected each of the series, followed by a
scaling of those variables by their standard deviations. The resulting series are
given names like sd ip, which is standardized growth in industrial production.
Standardization is done using the standard.prg file and this can be
implemented using the RUN command. The standardized series are then
grouped into x series f3 to represent the transformed Xt, and there is also one
series sd fyff to represent yt. Figure 2.13 shows some of the standardized
variables.

Now click Proc→ Make Principal Components. The screen in Figure 2.14
appears and names must be given to the scores (principal components) and
the loading matrix (Λ in (2.9)).

We compute three principal components from the total set of 119 variables
(excluding the Federal Funds Rate which is yt). It should be noted that a series
such as the standardized growth in industrial production can be represented
as a function of the three components. To do so we use the loadings for this
variable giving ipt = .2126F s1t − .009F s2t + .1151F s3t. Of course there are other
factors (principal components) than the three computed but they are orthogonal
to these three.

2.3 Vector Autoregressions - Handling Restricted
VARs in EViews 10

Above we discussed restricting some of the VAR coefficients to specific values,
including zero. There the solution was to use the Make System object and
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Figure 2.13: Standardized Variables from the Bernanke et al. (2005) Data Set
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Figure 2.14: Extracting Three Principal Components from the Bernanke et al.
(2005) Data Set

constrain the appropriate coefficients in Bj to the desired values. EViews 10
provides a way of doing this directly. To show this we return to the problem
of imposing exogeneity upon the foreign sector of a Brazilian VAR, i.e. the
domestic variables were not allowed to have any effect on the foreign sector via
lags.

To recap, there are seven variables in the VAR - yt,nt,inflt,intt, rert, ystart
and rust,with the last 2 being exogenous. One thing we will do here that is
different is to simply impose the constraint that none of the lagged domestic
variables has an impact on foreign variables, i.e. we will not treat the current
value of ystart and rust as exogenous using EViews commands. We will provide
another example below to show how to treat such variables.

The screen shot in Figure 7.12 shows how this model is implemented using
Quick →Estimate VAR. To repeat the notation for a V AR(p), it has the
form zt = B1zt−1...+ Bpzt−p.+ et. Now click on the "VAR Restrictions" tab
shown in Figure 2.15 to get the screen shown in Figure 2.16. Here it requires
you to control what B1 looks like by via the L1 matrix. Since the matrix B1 is
7×7 owing to 7 variables being in the VAR, we need to look at 7 of the columns
and rows. The screen only shows 6 columns in this case but the arrow at the
bottom of the box allows one to see the seventh one. If the VAR had been of
order p = 2 then there would also have been a L2 component available under
Lags. The asterisk indicates which lag matrix is currently being worked on.

Now we need to put zeros in the first two rows of the L1 matrix since these
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Figure 2.15: VAR Specification: Estimation Dialog Box

Figure 2.16: Imposing Restrictions on a Descriptive VAR
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correspond to the foreign sector and we want the domestic variables to have no
effect upon it. Hence we replace NA with zeros in the third to 7’th columns of
the first two rows. Initially all elements are shown as NA.5

A second example concerns exogenous variables.6 In EViews 9.5 once a vari-
able was designated as exogenous it was included in every equation. However,
as OPR noted, we might not want some of these to appear in certain equations,
e.g. Iacoviello (2005) who added to his four-variable VAR system not only com-
modity prices but also a shift dummy variable from 1979Q4 and a time trend.
The addition of the time trend to the Federal Funds rate equation seems an
odd thing to do. Hence we take the small macro model of OPR and allow a
deterministic trend in the inflation and output equations only. This uses the
data set chomoreno.wf1 from Cho and Moreno (2006). The three variables in
the VAR are gap, infl, and ff. We indicate in the VAR description that there
are two exogenous variables - the constant c and a deterministic trend @trend
(this is the command for that). Hence we want to delete the latter from the
third equation for ff.

The screen for this problem is shown in Figure 2.17. We select the @trend
term and then place a zero in the last (i.e., third) position of the vector shown
in the box and leaving the other NA terms intact. This means that the trend
term is to appear in the first two equations and that we want it excluded from
the third.

EViews 10 is very flexible when handling lags and exogenous variables in
VARs. Moreover, once the VAR is specified the restrictions are preserved for
any subsequent SVAR work.

2.4 Conclusion

Chapter 2 has set out our basic summative model - the VAR. For this to be
used data has to be stationary and so care needs to be taken when selecting the
variables to enter the VAR as well as determining its maximum lag length. Of
course it may be necessary to work with VARs that are restricted in some way,
e.g. by having different maximum lags of variables in each equation. Handling
restrictions like this can be done by moving out of the VAR object in EViews
to the SYSTEM object, but it needs to be done with care. We will return to
this strategy in later chapters. For the moment the presumption should be that
unless there are very good reasons to impose restrictions, the VAR should be
kept in its most general form so as to capture the underlying dynamics.

5These constraints can also be implemented using the EViews programming language. See
e10 example 1.prg.

6The code to replicate this example is in e10 example 2.prg.
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Figure 2.17: Omitting Exogenous Variables Using Equation Specific Restrictions
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Chapter 3

Using and Generalizing a
VAR

3.1 Introduction

There are many uses in the literature once a VAR for a set of variables and a
given order has been fitted to data. One of these has been testing for Granger
Causality and that is covered in the next section. After that attention is turned
to using a VAR for forecasting in Section 3. Here a central problem becomes
the number of parameters being fitted, and it has become customary to use
Bayesian VARs that utilize Bayesian ideas to effectively constrain the values
one might have for the Bj . Section 4 deals with that. Section 5 looks at the
computation of impulse responses to the errors of the fitted VAR and how one
is to describe the uncertainty in those values. After dealing with the use of
VARs we turn to how one is to account for a variety of issues involving latent
variables, non-linearities, and allowing for shifts in the conditional densities.

3.2 Testing Granger Causality

VARs have a number of uses. Often they are applied to testing for Granger
Causality, i.e. whether one variable is useful for predicting another. Technically
the question being posed is whether the past history (lags) of a variable y2t

influences y1t. If it does then y2t is said to cause y1t. Mostly this is implemented
as a bivariate test and involves regressing y1t on lags of y1t and y2t followed
by a test of whether the latter are zero. If this hypothesis is accepted there
is no Granger causality. One could also introduce a third variable y3t and ask
whether the lags in y2t and y3t help explain y1t, and that involves testing if the
lag coefficients of both y2t and y3t are jointly zero. Granger Causality tests can
therefore be implemented in EViews after fitting a VAR by clicking on the com-
mands View→ Lag Structure→ Granger Causality/Block Exogeneity
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Tests. If there were three variables in the VAR (as above) the tests are given
for deleting lags of y2t and y3t both separately and jointly. Clearly one is testing
whether some of the elements in Bj are zero. Accordingly, if it is accepted that
these parameters are zero, there would be a restricted VAR, and it was pointed
out in the last chapter that EViews does not handle restricted VARs very well,
at least when using its pull down menus.

To return to a theme of the last chapter suppose that y1t were foreign vari-
ables and y2t were domestic variables. Then the exogeneity of foreign variables
for a small open economy could be thought of as foreign variables Granger caus-
ing the domestic variables, but not conversely. It does not seem very sensible to
test for this foreign factor exogeneity if the economy is genuinely small, as the
combination of limited data and the testing of a large number of parameters will
most likely lead to rejection of the hypothesis that some of them are zero. Thus,
for the Brazilian data of Chapter 2, if we test that the domestic variables have a
zero effect on the foreign output gap the F test has a p value of .06. Given these
qualms it is unclear what one learns from the many Granger Causality studies
that have been performed. As Leamer (1984) pointed out many years ago what
is being tested is whether one variable precedes another. As he says “Christmas
cards precede Christmas but they don’t cause Christmas”. Of course Granger
had a very specific definition of causality in mind, namely that one variable
could improve the forecasts of another if it was used, and so his method of
testing made sense in such a context.

3.3 Forecasting using a VAR

One of the most important uses of a VAR is producing forecasts. Assuming
that the VAR fitted to the data is of order p, viz:

zt = B1zt−1 + ...+Bpzt−p + et, et ∼ N(0, σ2)

a one-period-ahead forecast would be the expectation that the value z will take
on in t+1, given the information set available at t:, namelyEt{zt+1|Ωt} = B1zt+
... + Bpzt+1−p , with E{et+1} = 0. Out-of-sample forecasts are easily obtained
via forward iteration. In the case of a VAR(1): zt = B1zt−1 + et, the optimal h
periods ahead forecast would be

Et+h−1{zt+h} = B1zt+h−1 = Bh1 zt

using the law of iterated expectations.
In practice, however, what is usually done is a “pseudo out-of-sample” or

“rolling one-period-ahead” forecast in which the estimated VAR coefficients are
updated each period to account for the most recently released data.1 Assuming
a data set of length T , one estimates the VAR model using data up to T1 < T,
then generates a one-period-ahead forecast and actual forecasting error for the
current period, T1 +1. The estimation sample is then increased one observation

1See Marcellino, Stock, and Watson (2004).
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to T1 +1 and a new one-period-ahead, this time for T1 +2, forecast is calculated
using the new VAR estimates. The process is repeated until all the available
data points are used to calculate a forecast error sequence from T1 + 1 to T .

3.3.1 Forecast Evaluation

Forecasting performance is normally assessed using a user specified loss function,
which is usually a non negative function of the forecast errors: (ẑt+h − zt+h).2

Most commonly, researchers select the model that either minimizes the mean
squared forecast error MSFE = 1

T−T1

∑h
i (ẑt+i − zt+i)

2 or the root mean

squared error (RMSE)
√

1
T−T1

∑h
i (ẑt+i − zt+i)2. The iterated multi-step-ahead

forecasts obtained with a VAR are frequently compared with the ones generated
from univariate AR(p) models and/or the random walk (constant) forecast for
each individual variable of interest.

In practice, several statistics exist to determine whether the MSFEs of two
models are different, e.g., the F-statistic, F =

∑h
i (ẑt+i − zt+i)

2/
∑h
i (ẑt+i −

zt+i)
2. However, the forecast errors must be normally distributed, serially un-

correlated, and contemporaneously uncorrelated with each for this expression
to have an F distribution. Other statistics try to relax one or several of these
assumptions, e.g., the Granger-Newbold and the Diebold-Mariano statistics.

3.3.2 Conditional Forecasts

Conditional forecasts are often calculated using VARs. To do so, one fixes a
future trajectory of at least one of the variables in the VAR, thereby treating
these variables as exogenous for forecasting purposes. For instance, researchers
commonly assume paths for the interest rate, the price of oil and fiscal spending,
among with other policy or exogenous variables, when producing a baseline
forecast.

There are in fact several strategies available for implement conditional fore-
casts. For instance, Banbura, et al. (2015) propose the computation of the
conditional forecast using the recursive period-by-period forecast technique of
the Kalman filter while Waggoner and Zha (1999) use a Gibbs sampling algo-
rithm to sample the VAR coefficients and thereby provide a distribution for the
conditional forecasts.

3.3.3 Forecasting Using EViews

Unconditional VAR forecasts in EViews can be produced in two ways. The first
approach relies on using the Forecast tab that is available once the reduced
form VAR is estimated (Figure 3.1). The starting and ending date of the forecast
is controlled by the sample period in the forecast dialog box, which is shown
in the lower right-hand corner of Figure 3.1. EViews can calculate either static
forecasts (i.e., forecasts based on actual data for the lagged variables) or dynamic

2A huge literature has developed around forecast evaluation. See West (2006).
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Figure 3.1: Forecasting a Reduced Form VAR using EViews: Direct Approach

forecasts. Dynamic forecasts use forecasted values for the lagged variables rather
than actuals (assuming they are available) during the forecast horizon.

Figure 3.1 shows how to generate a two-period-ahead dynamic forecast be-
ginning with the last date of the estimation period (2000Q1), thus permitting a
forecast evaluation against actual data for 2000Q1. Pressing the OK button of
this dialog box produces the output shown in Figure 3.2. Note that the forecasts
are saved in the workfile using the same variables as in the VAR, but with (in
this case) an F suffix (i.e., GAP F, INFL F, and FF F) that can be controlled
by the user.

The other approach to generating forecasts involves using the model sim-
ulator available in EViews. It is a far more flexible forecasting tool than the
Forecast tab, allowing one to generate forecasts under alternative scenarios.
In particular forecasts conditional upon an assumed path for one or more of
the endogenous variables. The first step in using the model simulator is to
create a model representation of the estimated VAR using the Proc→Make
Model menu command (see Figure 3.3). Unconditional forecasts (e.g., for the
small macro model) are produced by clicking on the Solve tab, which yields the
baseline forecast of the model. The forecasts are stored in the active workfile
using the suffix “ 0”. The corresponding variable names are GAP 0, INFL 0,
and FF 0. Forecasts with alternative scenarios, particularly for models with
exogenous variables, can be generated by defining a new scenario and specifying
the time path of the control (typically exogenous) variables under it.

It is also possible to exclude (and control) the time path of endogenous vari-
able in an alternative scenario, which yields a conditional forecast. Calculating
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Figure 3.2: EViews Output: Forecast Tab

Figure 3.3: Creating a VAR model using EViews
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Figure 3.4: VAR Model Object: Chomoreno

Figure 3.5: Generating a VAR Forecast Using the VAR Model Object
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Figure 3.6: Federal Funds Rate (FF) Under the Alternative Scenario (Scenario
1)

Figure 3.7: Conditional Forecasting Using the EViews Model Simulator: Editing
the Alternative Scenario
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Figure 3.8: Conditional Forecasting Using the EViews Model Simulator: Over-
riding a Variable

Figure 3.9: Simulating the Chomoreno model Under An Alternative Scenario
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Figure 3.10: Conditional Forecasts for GAP and INFL using the Chomoreno
VAR

a conditional forecast using the EViews model simulator must be done using
an alternative scenario. The first step is to define the values of the condition-
ing variable during the forecast horizon. Assuming we are working with the
Chomoreno model under “Scenario 1”, and it is desired wish to condition upon
the Federal Funds Rate (FF), the previous step amounts to setting the values
of “FF 1” during the forecast horizon. For the purpose of illustration, we as-
sume that the de-meaned Federal Funds Rate remains at -1.0000 during the
forecast horizon 2000Q1-2001Q1 (see Figure 3.6). The next step is to exclude
FF from the model simulation (thereby forcing FF to be an exogenous vari-
able for simulation purposes), and then override its values during the forecast
horizon. To do so in the EViews model simulator, click on the Solve tab and
then Edit Scenario Options for Scenario 1 . This yields the dialog box
shown in Figure 3.7. Click on the Exclude tab and insert “FF”. To override
the values of FF during the forecast horizon with those specified in FF 1, click
on the Overrides tab, and then insert “FF” as shown in Figure 3.8. Lastly,
solving the model under scenario 1 (Figure 3.7) produces conditional forecasts
for the output gap and inflation that reflect the assumed values of FF during
the forecast horizon. The resulting forecasts under the baseline (unconditional
forecast) and alternative (conditional) forecast for GAP and INFL are shown in
Figure 3.10.3

3.4 Bayesian VARs

VARs often involve estimating a large number of coefficients compared to the
available number of observations, resulting in imprecisely estimated coefficients
(the “over-fitting” problem). Whilst this may not be too important for the
estimation of impulse responses it can result in extremely bad forecasts. Parsi-
monious models tend to be better at forecasting. For this reason one might wish
to restrict the number of parameters being estimated in some way. One way is
to omit lagged values of variables in some equations, i.e. not to keep order p
lags in every equation of the VAR. A literature has emerged on good ways of

3See the program files forecast.prg and forecast rolling.prg for complete examples of how
to implement the above using the EViews command line language.
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Figure 3.11: Estimating a Bayesian VAR using the EViews VAR Object

determining the lag structure in individual equations that is often referred to
as “best sub-set VARs”. This is not available in EViews. Instead the simplifi-
cation used in EViews involves applying Bayesian methods that impose useful
prior distributions upon the complete set of VAR coefficients so as to achieve
parsimony. Hence, it is possible to adopt a Bayesian VAR (BVAR) by utilizing
the VAR menu, as the screen shot in Figure 3.11 shows.

The reason that BVARs may be effective in forecasting is that the priors
relating to the VAR coefficients involve far fewer parameters than the original
set in the VAR(p) and they also impose some quantitative constraints that rule
out certain parts of the parameter space. The priors need not be correct. As
has been often demonstrated, bad models (in terms of their economic rationale)
can win forecasting competitions. However, to be successful the priors should
impose some structure upon the VAR which reflects the nature of the data.
Often this is done very loosely. Thus, the very first method used for producing
BVARs was that of Litterman (1986). It had been noted for many years that
time series in macroeconomics and finance tended to be very persistent. Hence,
looking at a VAR with n = 2 and p = 1, the first equation in the system would
be z1t = b111z1t−1 + b112z2t−1 + e1t so that persistence would mean b111 would be
close to unity. In contrast b12 was likely to be zero. Hence Litterman used this
in formulating a prior on the VAR coefficients. This prior is now incorporated
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into EViews and can be invoked by clicking on the prior type tab shown in
Figure 3.11. Because some other priors are also available it is necessary to begin
with some general discussion relating to Bayesian methods and BVARs.

Consider a standard regression model with unknown coefficients β and an
error variance-covariance matrix Σe, i.e.

zt = x′tβ + et,

where xt includes the lags of zt, any exogenous variables in the system, and

et ∼ nid N(0,Σe).

Given a prior distribution for β conditional on Σe - p(β|Σe) - Bayes’ theorem is
used to combine the likelihood function of the data with the prior distribution
of the parameters to yield the posterior distribution of β, viz:

p(β|Σe, Z)
posterior

=

Likelihood︷ ︸︸ ︷
L(Z|β,Σe)

Prior︷ ︸︸ ︷
p(β|Σe)

p(Z)
, (Bayes theorem)

where p(Z) =
∫
p(z|β)p(β)dβ is a normalizing constant. It follows that the

posterior distribution is proportional to the likelihood function times the prior
distribution:

p(β|Σe, Z)
posterior

∝
Likelihood︷ ︸︸ ︷
L(Z|β,Σe)

Prior︷ ︸︸ ︷
p(β|Σe).

Now to prepare forecasts we would need an estimate of β. One estimate
would be the mode of the posterior forβ , and this can be found by maximizing

C(β) = ln{L(Z|β,Σe)}+ ln(p(β|Σe). (3.1)

There are other possible estimates forβ, e.g. the mean of the posterior. In the
event that the posterior is normal then the mode and mean will correspond but
they can be different in other cases. If one is happy with using the mode than
it is only necessary to maximize C(β) rather than finding a complete posterior
density.

Although Bayesian methods today can find posteriors for a number of dif-
ferent types of priors by simulation methods, when BVARs were first proposed
it was more common to select priors in such a way as to obtain a closed form
solution for the posterior distribution. This led to what were termed natural
conjugate priors, i.e. priors which in combination with the likelihood would
produce a tractable posterior, generally having the same density as the prior.
In most instances the prior was made normal and the posterior was as well.
For instance, if the prior for β in the regression model above is assumed to be
normally distributed

p(β) ∼ N(b, V ),
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then the posterior will also be normal. In particular, the mode and mean es-
timate of β would be a matrix weighted average of the OLS estimates and the
researcher’s priors:

b = [(V −1 + Σ−1
e ⊗ (X ′X)]−1[(V −1b+ (Σ−1

e ⊗X ′)y].

It is clear from this formula that BVARs will tend to shrink the estimated
coefficients of the VAR model towards the prior mean and away from the OLS
estimates, and it is this which can give the prediction gains.

A variety of Bayesian priors have been developed specifically for VARs, and
we now review two of the most popular priors used in applied research. Note
from the formula for b above that it depends on Σe. One needs to produce some
estimate of Σe and this might be done either using OLS type information or by
producing a Bayesian estimate of Σe. In the latter case we would need a prior
for it. We will review the two priors used in EViews that relate specifically to
VARs - the Minnesota prior and the Normal-Wishart prior. In chapter 4 we will
look at other alternatives based on Sims and Zha (1998) that focus on SVARs.

3.4.1 The Minnesota prior

It is worth starting with the EViews screen that shows the initial set-up for
BVARs. This is given in Figure 3.12 and, as we have said previously, one of the
choices of prior is that referred to as Litterman/ Minnesota. This prior for β is
normal conditional upon Σe. Hence some assumption is needed about the nature
of Σe and how it is to be estimated, and this accounts for the three choices in
the box of Figure 3.12. These involve selecting one of the following: (a) Use
estimates of the residual variances from fitting AR(1) models to each series (b);
Assume that Σe is replaced by an estimate, Σ̂e, in which the diagonal elements
σ2
i correspond to the OLS estimated VAR error variances; and (c) Estimate the

complete Σe implied by the VAR (the df argument controls whether the initial
residual covariance is to be corrected for the available degrees of freedom). One
reason for not using (c) in early studies was that the estimated matrix might
be singular, since there may not have been enough observations when n and p
were large.

Once a decision has been made about how Σe is to be handled one can then
proceed to describe to EViews what the prior for β is. This is done in the screen
shot in Figure 3.13 by reference to a set of hyper-parameters. These are the
standard options, although it would also be possible for the user to specify b
and V −1directly. For the automatic options the vector of prior means b are
all the same, being given by the value of the parameter µ1. In most instances
we would want µ1 = 1 or something close to unity in order to capture the
persistence in economic time series. However, this would not be true if the data
zt was say GDP growth. Then we would want the prior mean of lagged growth
to be either zero or a small number. In Figure 3.13 the parameter Lambda1
(i.e., λ1) controls the overall tightness of the prior for β, and should be close to
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Figure 3.12: Bayesian VAR Estimation in EViews: “Prior type” Dialog Box

zero if there is more certainty about the prior. We set Lambda1 to 0.1, implying
a relatively strong prior.4 Lambda2 (λ2) controls the importance of the lagged
variables of the j’th variable in the i’th equation (i 6= j) of the VAR (these are
termed cross-variable weights in Figure 3.13). λ2 must lie between 0 and 1.
When Lambda2 is small, the cross-lag variables in the model play a smaller role
in each equation. Lastly, Lambda3 (i.e., λ3) determines the lag decay rate via
lλ3 where l is the lag index. We set this parameter to 1 (unity) for no decay.
Note that since this hyper-parameter also appears in the denominator of the
expression for the prior variances of the coefficients of the cross-lag variables(
λ1λ2σi
lλ3σj

)2

, then the diagonal element for the second lag will be
(
λ1λ2σi

2σj

)2

, and

so on for higher order lags (if any).
The Minnesota prior is specifically designed to center the distribution of β

so that each variable behaves as a random walk (see Del Negro and Schorfheide
(2010)). The prior was chosen because random walks are usually thought to be
good predictors of macroeconomic time series.

For illustrative purposes, consider the following bi-variate VAR:

4Set Lambda1 to 10 or higher for a non-informative (more uncertain) prior. In this case,
the estimated parameters will be close to the unrestricted VAR coefficients.
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Figure 3.13: Bayesian VAR Estimation in EViews: “Prior specification” Dialog
Box

(
z1t

z2t

)
=

(
β1

11 β1
12

β1
21 β1

22

)(
z1t−1

z2t−1

)
+

(
β2

11 β2
12

β2
21 β2

22

)(
z1t−2

z2t−2

)
+

(
e1t

e2t

)
. (3.2)

We also assume that the covariance matrix of the population errors is diagonal,
i.e. option 2 in Figure 3.12.

Σe =

(
σ2

1 0
0 σ2

2

)
.

The Minnesota prior assumes that the prior means of β1
11 and β1

22 are unity
and all other coefficients have a mean of zero. The prior for the variance-
covariance matrix of the coefficients can be represented as:(

λ1

lλ3

)2

for (i = j) (3.3)

(
λ1λ2σi
lλ3σj

)2

for (i 6= j), (3.4)

where σ2
i is the i-th diagonal element of Σe.

It is evident that the hyper parameters in the covariance matrix, (λ1, λ2, λ3)
influence the estimated coefficients as follows:
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1. λ1 controls the prior standard deviation of β1
11 and β1

22. These parameters
correspond to the first lag of the first variable z1t in the first equation
and the first lag of the second variable z2t in the second equation. In
the general case of n variables, the smaller λ1 is the more the first-lag
coefficients β1

i i = 1, ..., n will shrink toward unity, while the remaining
lag coefficients will shrink more towards zero.

2. λ2 controls the variance of the coefficients of variables that are different
from the dependent variable of the ith equation. Those coefficients move
closer to zero as λ2 declines.

3. λ3 influences the estimated coefficients on lags beyond the first. As λ3

increases, the coefficients on higher order lags shrink toward zero.

Note that the ratio (σi/σj) in (3.4) is included to account for differences in the
units of measurement of the variables.

The posterior of the Minnesota prior has a closed form solution and Koop
and Korobilis (2010) highlight that a key advantage of it is that the posterior
is in fact a Normal distribution. Several variants of this Minnesota prior have
been used in applied research, including one that uses a non-diagonal error co-
variance matrix, different ways of introducing the lag decay, and a different way
of introducing the priors through dummy variables (see Theil and Goldberger
(1961) and Del Negro and Schorfheide (2010) for specific examples). We will
look at the latter later in this section.

3.4.1.1 Implementing the Minnesota prior in EViews

We now demonstrate how to estimate a VAR (BVAR) in EViews using the
Minnesota prior. The small macro model of chapter 2 is estimated using the
available data to 1997Q1, following which out-of-sample forecasts are generated
for 1998Q1 - 2000Q1. The BVAR can be estimated using the standard EViews
VAR object (see Figure 3.11). Given the persistence in the series, we will assume
that gap and ff are I(1) while infl is I(0). After choosing the BVAR option it
is necessary to specify the sample period, the desired number of lags, and the
variables in the system (in this case, the differences in gap and ff - dgap and dff-
as well as the level of inflation infl). Following these data transformations both
the prior and the values of the associated hyper-parameters need to be selected
by clicking on the “Prior Type” (Figure 3.12) and then the “Prior Specification”
(Figure 3.13) tabs respectively.5 Coefficient estimates for the VAR and BVAR
are shown in Figure 3.14. Compared to the standard OLS estimates, the most
discernible difference is that the BVAR estimates for the first own lag of each
variable are significantly smaller (as expected, given the setting of Mu1 = 0).
We will see the impact this has on the model’s forecasting accuracy below.

5The corresponding command to estimate the BVAR in an EViews program is:
var chobvar.bvar(prior=lit, initcov=diag,df,mu1=0,L1=0.1,L2=0.99,L3=1) 1 2

d(gap) infl d(ff) @ c
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While the Minnesota prior is still actively used because of its success as
a forecasting tool, it ignores any uncertainty associated with the variance-
covariance matrix Σe. This assumption is relaxed by use of a Normal-Wishart
prior system, which we now review and demonstrate.

3.4.2 Normal-Wishart prior

Rather than just replacing Σe by some estimate from the data it might be
desired to estimate it with Bayesian methods. A natural conjugate prior for the
covariance matrix Σe- p(Σ

−1
e ) - is the Wishart distribution and, with the prior

for β being normal, this yields a posterior for β that is a product of a Normal
and a Wishart distribution. The prior for β depends on β, V while that for Σe
depends on two parameters ν, S . V depends on a hyper-parameter λ1just as
it did with the Minnesota prior. EViews sets ν to equal the degrees of freedom
and S to the identity matrix, so that only two parameters need to be set by
the user. Basically the two parameters are set in much the same way as for the
Minnesota prior. Because there are now less hyper-parameters involved in the
prior β some restrictions will be implied, specifically that the prior covariance of
coefficients of different equations are proportional.6 For instance, in the VAR(2)
example above, any reduction in the prior variance of β1

11 results in a reduction
of the variance of β1

21 as well.

3.4.2.1 Implementing the Normal-Wishart prior in EViews

As in the previous example, Bayesian estimation with a Normal–Wishart prior
can be carried out in EViews using the standard VAR object and setting the
prior type to “Normal-Wishart” (see Figure 3.15). 7.

The next step is to set the values of the hyper-parameters, which are similiar
to those for the Minnesota prior (see Figure 3.16), but which influence the pa-
rameter estimates differently. The Mu1 parameter governs the prior concerning
the properties of the time-series process. It should be set to zero (or very small)
when the modeler believes that the series in the VAR are stationary, and unity if
the series in the VAR are thought to be better modeled with a unit root process.
Because we have differenced the two series that seem close to having unit root
characteristics - gap and ff - we set µ1 = 0. The remaining hyper-parameter that
EViews supports for the Normal-Wishart prior is Lambda1, the overall tightness
parameter. A large value for Lambda1 implies greater certainty about the prior
for β, which is exactly the opposite of how the Lambda1 parameter works in the
case of the Minnesota prior.

The parameter estimates for β corresponding to these settings of the hyper
parameter are presented in Figure 3.17. Again, relative to the OLS parameter

6See Gonzalez 2016.
7The corresponding command line code is
var chobvar1.bvar(prior=nw, df, mu1=0.01, L1=10) 1 2 d(gap) infl d(ff) @ c
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Figure 3.15: Selecting the Normal-Wishart Prior in EViews

Figure 3.16: Specifying the Hyper-Parameters for the Normal-Wishart Prior
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estimates, the own lag coefficients have shrunk, but not as much as in the case
of the Minnesota prior.

3.4.3 Additional priors using dummy observations or pseudo
data

The use of dummy observations as a way of introducing a priori knowledge
about regression coefficients dates back to Theil and Goldberger (1960). They
write the a priori information as pseudo data and then estimate an augmented
regression including this data. Although it does not seem to have had great use
with VARs after the initial work by Litterman, it does appear in connection
with the priors of Sims and Zha (1998) that will be discussed in Chapter 4, and
so it is convenient to discuss the method in the VAR context.

Suppose that the researcher believes that the single coefficient β in the re-
gression z = Xβ + e should be 0.6, with a standard deviation of 0.2. This prior
information can be introduced via the pseudo data r = Rβ + v, where uncer-
tainty about β is captured by v ∼ N(0,Φ). In terms of the information given

earlier the pseudo-data would be written as

r︷︸︸︷
(0.6) =

R︷︸︸︷
(1)

β︷︸︸︷
(β) + v and Φ = .04,

and added on as an additional observation in the data set. Thus the augmented
“observations” would be(

z
r

)
=

(
X
R

)
β +

(
e
v

)
.

Estimation by OLS then yields the posterior for βof β|z ∼ N(β, Vβ) , where

β = ((X ′Σ−1
e X) + (R′Φ−1R))−1(X ′Σ−1

e z + (R′Φ−1r))

V = s2((X ′Σ−1X) + (R′Φ−1R))−1

Now this idea of augmenting the data set with pseudo-data capturing the
prior information can be used in many ways. Two important uses of it have been
to account for what are described in EViews as “sum of coefficients dummies”
and “initial observation dummies”

3.4.3.1 Sum of Coefficients Dummy Prior

Suppose we had a VAR(2) in two variables. Then the first equation would be

z1t = b111z1t−1 + b211z1t−2 + b112z2t−1 + b212z2t−2 + e1t. (3.5)

Now it might not make sense to impose the Minnesota prior that puts the prior
mean of b111 to unity. Instead we might want to impose b111+ b211 as having a
prior of unity. To capture this we would define the pseudo-data as

µ5s1 = µ5s1b
1
11 + µ5s1b

2
11 + v1,
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Figure 3.17: Bayesian VAR Estimates using a Normal-Wishart Prior
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where s1 is some quantity that reflects the units of y1 e.g. a mean or standard de-
viation of y1 over some sub-sample. Hence r = µ5s1andR = [ µ5s1 µ5s1 0 0 ].
Using the pseudo-data then implies that

1 = b111 + b211 + (µ5s1)−1v1,

and we see that the sum of coefficients restriction will hold as µ5 →infinity.

3.4.3.2 The Initial Observations Dummy Prior

Consider an SVAR(1) with 2 variables. It has the form

zt = B1zt−1 + et, (3.6)

and can be written as

z1t = b111z1t−1 + b112z2t−1 + e1t (3.7)

z2t = b121z1t−1 + b122z2t−1 + e2t. (3.8)

Then
∆z1t = (b111 − 1)z1t−1 + b112z2t−1 + e1t (3.9)

∆z2t = b121z1t−1 + (b122 − 1)z2t−1 + e2t, (3.10)

which has the form
∆zt = Dzt−1 + et. (3.11)

Now suppose we define the two pieces of pseudo-data for the SVAR(1) as

[µ6y1µ6y2] = [µ6y1µ6y2]

[
b111 b112

b121 b122

]
+

[
v1 v1

]
. (3.12)

It will imply that

(1− b111) =
y2

y1

b121 +
ν1

µ6y1

and

(1− b122) =
y1

y2

b112 +
ν2

µ6y2

.

Now, as µ6→∞, we see that these constraints become

(1− b111) =
y2

y1

b121

and

(1− b122) =
y1

y2

b112. (3.13)

Eliminating the ratios of y1 and y2 we find that (1− b111)((1− b122)− b112b
1
21 = 0,

i.e. the matrix D is singular. Hence it can be written as γδ′, where δ′ can be
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Table 3.1: Forecasting Performance of the Small Macro Model using Bayesian
Estimation Methods, 1998:1-2000:1

Prior Variable RMSE MAE

Standard VAR
infl 0.8427 0.8208
Gap 0.6029 0.4844

Minnesota
infl 1.2719 1.2209
Gap 1.3475 1.0856

Normal-Wishart
infl 0.8439 0.8218
Gap 0.6033 0.4848

expressed in terms of any cointegrating vector between z1t and z2t. Thus the use
of the pseudo-data, along with allowing µ6→∞, implies cointegration between
the two variables.

Instead of implementing a cointegration constraint EViews imposes a co-
trending constraint. Here the model has the form

∆z1t = (b111 − 1)z1t−1 + b112z2t−1 + c1 + e1t (3.14)

∆z2t = b121z1t−1 + (b122 − 1)z2t−1 + c2 + e2t. (3.15)

Imposing a prior on D of zero means that c1and c2 will be the determinis-
tic trends in each series. For there to be a common one c1 = c2. To im-
pose this restriction with dummy variables we will need R to have the row[
µ6y1 µ6y2 µ6

]
and r will be

[
µ6y1 µ6y2

]
, as β will now involve the

constant term c1 = c2 = c. In this instance µ6→∞ implies co-trending between
the two variables but not cointegration. To impose the latter would require an
extra constraint reflecting the fact that the cointegrating and co-trending vec-
tors need not be the same.

3.4.4 Forecasting with Bayesian VARs

Lastly, notwithstanding the fact that the small macro model has a relatively
small number of estimated parameters, we used the VAR and the two BVAR
models estimated above to perform an out-of-sample forcasting experiment for
the 1998Q1-2000q1 period (9 quarters), focusing on inflation (infl) and the
output gap (gap). The results are given in Table 3.1. The results suggest little
if any gain from using Bayesian methods. Also, the poor performance of the
Minnesota prior relative to the unrestricted VAR suggests that the we have
imposed a poor prior on the model.

3.5 Computing Impulse Responses

It is rarely the case that one is interested in the Bj . For this reason Sims (1980)
suggested that one change the focus to how the shock ekt would impact upon
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zjt, i.e. to ask what is the response of zj,t+M to a shock ekt? Accordingly, it is

the partial derivative
∂zj,t+M
∂ekt

that is of interest. These partial derivatives were
called impulse responses since they showed the response of the variable zj M
periods ahead from t to a temporary one unit change in ekt, i.e. the latter was
raised by one unit at t but then set back to its normal value for t+ 1, ..., t+M .
If variables (xt) are exogenous then

∂zj,t+M
∂xkt

were called dynamic multipliers, so

impulse responses
∂zj,t+M
∂ekt

are the equivalent concept once one views the ekt as
the exogenous variables. EViews produces these but not dynamic multipliers.

To examine the computation of response functions more carefully, and to flag
many issues considered later, take a single variable following an AR(1) process:

z1t = b11z1t−1 + e1t

= b11(b11z1t−2 + e1t−1) + e1t

= e1t + b11e1t−1 + b211z1t−2

= e1t + b11e1t−1 + b211e1t−2 + b311e1t−3 + ...

∴ z1t+M = e1t+M + ...+ bM11e1t + ...

and, provided |b11| < 1 (stationarity holds), the term involving the initial e1t

will disappear as M → ∞, as it has weight bM11 . From this it is clear that the
impulse responses are 1 (M = 0), b11(M = 1), ....bj11(M = j)...

To get a generalization of the simple treatment above to systems, the impulse
responses Dl can be regarded as the weights attached to et in a Moving Average
(MA) representation for zt. Hence, when zt is an n× 1 vector, the MA will be

zt = D0et +D1et−1 +D2et−2 + .....

Using the lag operator Lkzt = zt−k the VAR can be written as

B(L)zt = (In −B1L− ...−BpLp)zt = et,

where In is the identity matrix of dimension n. Therefore zt = B−1(L)et, making
D(L) = B−1(L) and B(L)D(L) = In. So, if zt follows a VAR(1), B(L) =
In −B1L and therefore

(I −B1L)(D0 +D1L+D2L
2 + ...) = D0 + (D1 −B1D0)L+ (D2 −B1D1)L2 + ..

= In.

Grouping and equating powers of L on the LHS and RHS gives

D0 = I

D1 = B1D0 = B1

D2 = B1D1 = B2
1

.

.
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Figure 3.18: Generating Impulse Responses in EViews

Note that, since B1 is a matrix, the (i, j)′th element of DM will be the impulse
responses of zjt+M to ekt, i.e. the j’th variable to the k′th shock, rather than
just zjt+M to ejt as was the situation in the one variable case.

In general, for a VAR(p) the impulse response function, designated Dl =
∂zt+l
∂et

, can be found by recursively solving

Dl = B1Dl−1 + ...+BpDl−p,

with the initial conditions for l = 0, ..., p having to be determined. In all cases
D0 = In provides initial values. When p = 1, application of the recursive equa-
tion gives D0 = In;D1 = B1;D2 = B1D1 = B2

1 ... When p = 2 the recursions
yield D0 = I,D1 = B1D0, D2 = B1D1 +B2D0 etc.

To get impulse responses for the small macro model estimate the VAR(2)
and then click on the commands View → Impulse Response . The screen in
Figure 3.18 will appear. It is clear from it that some decisions need to be made.
First, it is necessary to say what shocks the impulses in Figure 3.18 are to and
then which variable responses are to be summarized. Because impulse responses
show the response of zt+M to impulses in et, M (the horizon) needs to be set.
The default below is for 10 periods. Lastly there are questions whether users
want the results for impulses presented in terms of graphs or via a table. The
question relating to standard errors will be returned to shortly.

For the moment we will click on the Impulse Definition tab, bringing up
Figure 3.19

If the first option is chosen then the impulse responses computed above are
for one unit increases in the shocks coming from the fitted VAR. Choosing the
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Figure 3.19: Types of Impulse Shocks in EViews

Table option from Figure 3.18 and only asking for the impact of the shocks upon
the output gap produces Table 3.19. For later reference we note that the two
period ahead responses of the output gap to the three VAR errors are 1.205556,
-0.109696 and 0.222451.

Often however responses are computed to one standard deviation shocks,
i.e. the magnitude of the change in the j′th shock would be std(εjt). The
reason for this adjustment is that one unit may not be regarded as a shock of
“typical” magnitude. If it is desired to have one standard deviation shocks then
the second option in Figure 3.19 would be selected. The last of the options is
User Specified and this enables the investigator to set a number of shocks
to specified magnitudes. The EViews manual has a good description of how to
implement this option.

3.6 Standard Errors for Impulse Responses

Take the univariate AR(1) model again with impulse responses Dl = bl11. The

estimated responses will be D̂l = b̂l11, where b̂11 is the estimated AR(1) co-
efficient. The problem in attaching standard errors to D̂l is clear from this
expression. Even if std(b̂11) was known, D̂l is formed from it in a non-linear
way. There are two solutions to this. One is called “asymptotic” and utilizes
what is known as the delta method. This says that, if ψ̂ = g(θ̂), where g is some

function (e.g., θ = b11 and g(θ̂) = b̂l11), then asymptotically the var(ψ̂) can be
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Figure 3.20: Impulse Responses of the Output Gap, Inflation and the Interest
Rate to a Unit Change in the VAR Output Gap Equation Errors
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approximated with

(
∂g

∂θ
|θ=θ̂)var(θ̂)(

∂g

∂θ
|θ=θ̂),

where ∂g
∂θ |θ=θ̂ means that the derivative is evaluated by setting θ = θ̂. In the

simple case being discussed this will be

(
∂g

∂b11
|b11=b̂11

)var(b̂11)(
∂g

∂b11
|b11=b̂11

),

and therefore var(D̂l) = (lb̂l−1
11 )2var(b̂11). There are matrix versions of this.

An alternative is to find the variance by bootstrap methods. These are more
accurate than the asymptotic one if the normality assumption for b̂11 is incorrect.
In this method it is assumed that the true value of b11 is b̂11 and then numbers
are simulated from the AR(1). S simulations, s = 1, .., S, are performed. Each

set of simulated data can be used to estimate the AR(1) and get an estimate b̃
(s)
11 .

In turn that produces an implied impulse response D̃
(s)
l . The mean and variance

of D̂l are then taken to be the first two sample moments of the D̃
(s)
l , s = 1, .., S.

There are two types of bootstrap. The parametric bootstrap assumes a particular
density function for the shocks, say N(0, σ2

1), and then uses a random number

generator to get ẽ
(s)
1t , where σ2

1 is replaced by σ̂2
1 which is found from the data.

The regular bootstrap uses the actual data residuals êit as random numbers,

re-sampling from these with a uniform random number generator to get ẽ
(s)
1t .

EViews gives the asymptotic (called Analytic in the screen shot above) and a
simulation method (called Monte Carlo in the screen shot). Note that if the
Monte Carlo option is chosen it is necessary to set the number of replications,
i.e. S.

The Monte Carlo method in EViews is not the bootstrap method outlined
above. In terms of the AR(1) it basically simulates different values of b11 by

assuming that they come from a normal density with mean b̂11 and var(b̂11) that

equals what was found from the data. Thus, for every new value of b11, b̃
(s)
11 , that

is generated, it is possible to compute impulses D̃
(s)
l and thereby get standard

errors in the same way as was done with the bootstrap. Because the density of
b̂11 is assumed to be normal the standard errors for impulse responses found in
this way will only differ from the asymptotic results because the δ method uses
a linear approximation to the g(θ) function. In most instances the differences
between the two standard errors given by EViews will not be large.

Basically, the problems with standard errors for impulse responses come
when b̂11 is not normally distributed in a finite sample. One case where this
would be true is if b11 is close to unity, since the density function of b̂11 is then
closer to the Dickey-Fuller density. There have been proposals to improve on
the computation in this case, e.g. Kilian (1998) suggested the bootstrap plus
bootstrap method, but none of these alternatives is in EViews. Therefore, it is
always important to check how close to unity the roots of the VAR are. This
can be done in EViews after estimation of a VAR by clicking on View→ Lag
Structure→ AR Roots. The information presented converts the estimated
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VAR to a companion form and then looks at the eigenvalues of the companion
matrix. To see what this means take a VAR(2) in zt. Then the companion form

expresses the VAR(2) as a VAR(1) in the variables wt =

[
zt
zt−1

]
and it has

the form

wt =

[
zt
zt−1

]
=

[
B1 B2

In 0

]
wt−1 +

[
et
0

]
.

The eigenvalues being examined then are those of the matrix

[
B1 B2

In 0

]
.

For the US macro data the eigenvalues are less than 0.9 so that all methods
of getting standard errors should work quite well. In fact the asymptotic and
Monte Carlo methods give quite similar results for the small macro model.

3.7 Issues when Using the VAR as a Summative
Model

We might distinguish three of these.

1. When there are missing variables from the VAR.

2. When there are latent (unobserved) variables not accounted for in the
VAR.

3. When the relations are not linear. This can arise in a number of ways,
e.g. in the presence of threshold effects or if there are categorical (dummy)
variables in the VAR arising from latent or recurrent states.

3.7.1 Missing Variables

Theoretical models often have variables in them that are either not measured or
it is felt that they are measured too imprecisely to be used in estimation, e.g. the
capital stock of the macro economy. To this point the VAR has been described
solely in terms of measured variables, so one needs to ask how the presence of
missing or latent variables affects the nature of the VAR. In particular, what
happens if the number of measured variables is less than the number in either
a model that is being entertained or which one feels is needed to describe the
macro economy?

To see what the effect of having missing variables is we take a simple example
in which there should be two variables in the system being analyzed, z1t and
z2t, but observations on only one of these, z1t, is available. It will be assumed
that the system in both variables is described by the restricted VAR(1) format

z1t = b111z1t−1 + b112z2t−1 + e1t

z2t = b122z2t−1 + e2t.
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Because only observations on z1t are available it is necessary to see what the
data generating process (DGP) of z1t is.

Writing the equation for z2t as (1−b122L)z2t = e2t, where L is the lag operator
that lags zt, i.e. Lkzt = zt−k, we have z2t−1 = (1− b122L)−1e2t−1, and so

z1t = b111z1t−1 + b112(1− b122L)−1e2t−1 + e1t.

Hence

(1− b122L)z1t = b111(1− b122L)z1t−1 + b112e2t−1 + (1− b122L)e1t.

It follows that

z1t = (b111 + b122)z1t−1 − b111b
1
22z1t−2 + b112e2t−1 + e1t − b122e1t−1 (3.16)

Equation (3.16) is an Autoregressive Moving Average (ARMA(2,1)) process. So
the reduction in variables has changed the appropriate summative model for z1t

to an ARMA form from a VAR. This is a general result first noted by Wallis
(1977) and Zellner and Palm (1974), i.e. if the complete set of variables has
a VAR(p) for their DGP, then the DGP of the reduced set of variables will
be a Vector Autoregressive Moving Average (VARMA) process. Of course a
VARMA process can generally be thought of as a VAR(∞), and this leads to
the possibility of findings that a high p is required may simply be reflecting
the fact that not enough variables are present to capture the workings of the
system. If this is so, then the solution is to change n and not p.

Variable reduction does not always result in a VARMA process. Suppose for
example that z2t = 3z1t, i.e. the relation between the original and reduced set
of variables is governed by an identity. Then

z1t = (b111 + 3b112)z1t−1 + e1t

which is still an AR(1). But, if the relation is z2t = 3z1t + φz2t−1 (like with
capital stock accumulation), we would have

z1t = b111z1t−1 + b112

3z1t−1

(1− φL)
+ e1t

=⇒ z1t = (φ1 + b111 + 3b112)z1t−1 − φb111z1t−2 + e1t − φe1t−1

which leads to an ARMA(2,1) process. The problem would also arise if z2t =
3z1t + ηt, where ηt is random, except that now the process for z1t would be
ARMA(1,1). So one needs to be careful in working with a reduced number of
variables, and it is likely that it would be better to include the omitted variables
in a VAR even if they are poorly measured. If this is impossible some proxy
should be added to the VAR, e.g. investment should be present in it if the
capital stock is omitted.

The effect can be quite large. Kapetanios et al. (2007) constructed a 26
endogenous variable model that was meant to emulate the Bank of England
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Quarterly model (BEQM) current around 2002-2008 (the smaller model had
about half the number of variables of BEQM). Five impulse responses were con-
structed (corresponding to foreign demand, total domestic factor productivity,
government expenditure, inflation and the sovereign risk premium) and then
data on five variables were generated. These were standard variables in many
open economy VARs - a GDP gap, inflation, a real interest rate, the real ex-
change rate and foreign demand. VARs were then fitted to the simulated data.
Obviously there is a major reduction in the number of variables and it had a
great impact on the ability to get the correct impulse responses. Indeed, it was
found that a VAR(50) and some 30000 observations were needed to accurately
estimate all impulse responses. It was found that the VAR orders determined by
criteria such as AIC and SC were typically quite small (between four and seven)
and led to major biases in the estimators of the impulse responses. Others have
found similar results. A recent general discussion of the issues can be found in
Pagan and Robinson (2016).

The implications of the discussion above would be that

• A small number of variables in a VAR probably means a high p is needed.

• If one finds a high p in a given VAR exercise this suggests that may be
necessary to expand the number of variables rather than looking for a
greater lag length.

In general it is important to think carefully about n, and good VAR modeling
demands more than just the selection of p. Moreover, thought needs to be given
to the nature of the variables included in the VAR, as well as to their number.
As the simple analysis above showed, problems might be expected when stocks
are omitted from the set of variables in the VAR. Indeed, this necessitated
a much larger order VAR than is typically used in empirical exercises, where
samples are relatively small. The neglect of stocks in most VAR work (generally
the variables are just flows) is a potential problem that needs to be addressed.
Pagan and Robinson (2016) suggest that this is particularly so with VARs for
small open economies featuring external assets. Apart from the implication that
there may be a need for higher order VARs, the absence of stocks can lead to
another problem that has been identified with VARs, viz. that of non-invertible
VARMAs. In this instance the data requires a VARMA process that can not
be captured by a VAR of any order. A simple example that shows this is the
following, taken from Catao and Pagan (2011).

Suppose there is a desire to stabilize the level of debt relative to some target
with a variable such as the primary deficit being manipulated to achieve that.
If x̃t is the primary deficit and d̃t is the stock of debt defined as a gap relative
to its desired equilibrium value, debt will accumulate as

∆d̃t = x̃t,

where we assume a zero real rate of interest for simplicity. In order to stabilize
the debt we would have the primary deficit responding to debt levels and some
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activity variable ỹt, such as an output gap

x̃t = ad̃t−1 + cỹt−1 + et, a < 0. (3.17)

It will be assumed that ỹt is stationary with zero mean. Then

∆d̃t = ad̃t−1 + cỹt−1 + et, (3.18)

and the debt gap converges to zero since ỹt is a stationary process.
Now suppose we attempted to use a VAR which did not include d̃t, i.e. it

only consisted of x̃t and ỹt, as is common with many fiscal VARs and open
economy studies. To see the effect of this it is necessary to solve for d̃t first and
then substitute that variable out of the system. From (3.18)

d̃t = (1− (1 + a)L)−1[cỹt−1 + et],

so that the fiscal rule (3.17) can be expressed as

x̃t = a(1− (1 + a)L)−1[cỹt−2 + et−1] + cỹt−1 + et. (3.19)

Expanding (3.19) produces

x̃t = (1 + a)x̃t−1 + acỹt−2 + aet−1 + cỹt−1 + et − (1 + a)(cỹt−2 + et−1)

= (1 + a)x̃t−1 + c∆ỹt−1 + ∆et.

The error term ∆et is a non-invertible MA(1), meaning that there is no VAR
representation for x̃t, ỹt (there will be another equation for ỹt in the system but
it may or may not involve the level of debt). Thus in this case compression of
the set of variables results in a VARMA process but, importantly, one in which
the MA term is not invertible. One of the first examples of a non-invertible
process is given in Lippi and Reichlin (1994). It was an example of what has
been described as non-fundamentalness and was first commented on by Hansen
and Sargent (1991). There are many theoretical issues like this that we don’t
cover in the book and a good review of this topic is in Alessi et al. (2008). It
might be observed that in the simple example we just presented the number
of shocks is either less than or equal to the number of observables, so it is not
true that the problem comes from having excess shocks (as was true of the first
example we did where z2t was omitted from the VAR when it should have been
present).

3.7.2 Latent Variables

It often makes sense to account for unobserved variables more directly than just
by increasing the order of the VAR. When it is believed that latent variables
are present this is best handled using the state space form (SSF)

z∗t = B1z
∗
t−1 + et,
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where z∗t are all the variables in the system but only some of them, zt, are
observed. We relate the observed variables to the total set z∗t through the
mapping

zt = Gz∗t .

In most instances G will be a known selection matrix.
Because the likelihood is formulated in terms of zt it is necessary to indicate

how this is to be computed. Now the two equations describing z∗t and zt con-
stitute a SSF, with the first equation being the state dynamics and the second
equation being the observation equation. Then the likelihood depends on the
conditional densities f(zt|Zt−1), Zt−1 = {zt−1, zt−2, .., z1). When the shocks et
are normal, f(zt|Zt−1) is a normal density and so only E(zt|Zt−1), var(zt|Zt−1)
need to be computed. The Kalman filter gives these via a recursive calculation.
Consequently it is possible to set up a likelihood based on observables. So if one
has latent variables in a VAR, the Kalman filter is a natural choice. EViews
does perform Kalman Filtering and SSF estimation but, because it requires one
to exit the VAR object, it is not possible to easily compute impulse responses
etc. using pull-down menus.

3.7.3 Non-Linearities

3.7.3.1 Threshold VARs

The simplest non-linearity that has been proposed is the Vector STAR (VSTAR)
model which has the form

zt = B1zt−1 + F1zt−1G(st, γ, c) + et

,where st is an observed threshold variable and c is the threshold value, i.e.
st > c shifts the transition function G(·) relative to what it was when st ≤ c.
In the STAR case G has the form

G(st, γ, c) = (1 + exp(−γ(st − c)))−1, γ > 0.

The nature of st varies but it is often a lagged value of zt. One can have a higher
order VAR than the VAR(1) above and st can be a vector.

Clearly the model is a non-linear VAR and, in the standard case where the
same variables appear in every equation, it just involves performing non-linear
rather than linear regression. There are some identification issues regarding
γ and c, e.g. if γ = 0 then one cannot estimate c, but this is true for many
non-linear regressions. One can think of this as a way of allowing for breaks in
the parameters (for shifts in the density of zt conditional upon zt−1 and st) not
via dummy variables, but rather through a separate variable st. One difficulty
which can arise occurs when st is a variable that is not included in the linear
part of the model. In such a case if st actually did have a linear influence on
zt then it is very likely that G(st) will seem to be significant, even when there
is no non-linearity present. Hence at a minimum st should appear in the linear
structure, which may mean treating it as an exogenous variable if it is not part
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of zt. Recent applications (Hansen, 2011) of this model have been concerned
with the impact of uncertainty upon the macro-economic system, leading to st
being some volatility index such as the VIX.

There is no VSTAR option in EViews but it is available as an Add-On. This
requires that one have R installed, since the code to perform the estimation is
written in R.

3.7.3.2 Markov Switching process

The simplest Markov Switching (MS) model is

zt = δ0z
∗
t + δ1(1− z∗t ) + σεt, (3.20)

where z∗t is a latent binary Markov process which is characterized by the transi-
tion probabilities pij = Pr(z∗t = j|z∗t−1 = i). Here z∗t takes values of 0 and 1 and
p10 is the probability of going from a state of 0 in t− 1 to 1 in t. It is possible
to show that the MS structure implies that z∗t is an AR(1) of the form

z∗t = φ1 + φ2z
∗
t−1 + vt (3.21)

var(vt) = g(z∗t ) (3.22)

The equations (3.20) and (3.21) look like those for an SSF but are different
because var(vt) depends on the latent state z∗t−1 - in the SSF any time vary-
ing variance for vt has to depend on observable variables. This feature implies
that the density f(zt|Zt−1) is no longer normal, but it can still be computed
recursively because it depends on only a finite number of states for z∗t . A con-
sequence of the non-normality in the density is that E(zt|Zt−1) is no longer a
linear function of Zt−1 and so one ends up with a non-linearity in the VAR.
Note that what is being modeled here is a shift in the parameters of the con-
ditional density. The unconditional density parameters are constant, i.e. there
are no breaks in the series. The mean, variance etc. of zt are always the same.

One extension of the model above is to allow for more than a single variable
in zt. Krolzig and Toro (2004) treated European business cycle phases in this
way, fitting a VAR(1) to GDP growth in six European countries from 1970Q3-
1995Q4, and allowing for a three state MS process for the intercepts, i.e. z∗t
took three rather than two values. Algorithms exist to estimate such MS-VAR
models (the original one being written by Krolzig) in Ox, Gauss and Matlab.
These find f(zt|Zt−1) and thereby the likelihood. EViews 9.5 can estimate
basic MS models, but not MS-VARs. When Krolzig and Toro estimated the
MS-VAR model on the countries individually there was little evidence of a 3-
state process, but it became much clearer when zt included GDP growth from all
six countries. There are a large number of parameters being estimated in their
case - the VAR(1) in six series alone requires 36, while the MS(3) process makes
for 12 (connected with µ0 and µ1) plus the 9 from the transition probabilities.
In fact the number is greater, as the covariance matrix of the VAR shocks in
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the Krolzig and Toro application also shifts according to the states, making it
a challenging estimation problem.

In the multivariate case and a single latent state z∗t the equivalent of (3.20)
would be

zjt = δ0jz
∗
t + δ1j(1− z∗t ) + σεjt, (3.23)

and so

z̄t =
1

n

n∑
j=1

zjt =
1

n

n∑
j=1

δ1j + (
1

n

n∑
j=1

(δ0j − δ1j))z∗t +
σ

n

n∑
j=1

εjt.

Then, as n → ∞, z∗t would become a linear combination of the means z̄t and
it might be used to replace z∗t in (3.23). Of course it is unlikely that most MS-
VARs would have n being very large. It would also generally be the case that,
if (3.23) was a VAR, then the solution for z∗t would involve not only z̄t but all
the lagged values zjt−1, and these could not be captured by z̄t−1.

Quite a lot of applications have been made with the MS-VAR model in re-
cent times. One difficulty with the literature is that it mostly works with small
VARs and that raises the issue of whether they are incorrectly specified. It may
be that the latent variable introduced into the VAR by the MS structure is just
capturing the misspecification of the linear part. There is also an identification
problem with MS models (the “labeling” problem). As Smith and Summers
(2004, p2) say “These models are globally unidentified, since a re-labeling of
the unobserved states and state dependent parameters results in an unchanged
likelihood function”. The labeling issue has been discussed a good deal in statis-
tics - see Stephens (2000) - and a number of proposals have been made to deal
with it, e.g. Frühwirth-Schnatter (2001), but few of these seem to have been
applied to empirical work with MS models in economics.

3.7.3.3 Time Varying VARs

We mentioned earlier that there is an issue of breaks in the moments of the
unconditional densities for variables in the VAR and there can also be shifts
in the conditional variance. In terms of a scalar AR(1) zt = bzt−1 + σεt the

variance of zt is σ2

1−b , and it might be that both σ2 and b shift in such a way that
the variance is constant, and hence the unconditional moments do not have a
break. What changes in this example is the parameters of the conditional density
f(zt|zt−1). There is an emerging literature in which all the coefficients of the
VAR are allowed to change according to a unit root process. Thus, if we form θ
as a vector that represents the parameters that are in the matrix A1, then the
specification is

θt = θt−1 + νt.

The covariance matrix of vt is either fixed or allowed to evolve as a stochastic
volatility process. It is hard to give much of a sensible interpretation to the idea
that θ evolves as a unit root process, but it makes more sense as a pragmatic

80



device to get some feel for whether the VAR is stable enough to be useful for
analysis. If one thinks of a simple model like z1t = btz1t−1+e1t with bt = bt−1+νt
then, as the variance of νt becomes larger, the coefficient bt wanders further from
its initial value b0. Basically the estimate for bt will depend more on current
data the larger is the variance of vt, i.e. one would down- weight older data
when forming an estimate of ”b”. The stochastic volatility assumption for the
variance of νt has a similar role, down-weighting “outliers” that could have
too great an influence on the estimate of A1. These algorithms are not yet
implemented in EViews. Some Matlab routines are available. Mostly they use
Bayesian techniques to estimate θt, although work for models like this suggests
that one can estimate them with particle filter extensions of the Kalman filter. A
recent contribution that seems to overcome the problem of θt being unbounded
is Giratis et al. (2014) who write the model as z1t = bt−1z1t−1 + e1t and allow
bt to evolve as bt = b φt

max0≤k≤t |φk| (b ∈ (0, 1)), where φt = φ0 +
∑t
j=1 vt. This

enables them to handle shifts via kernel based smoothing methods.

3.7.3.4 Categorical Variables for Recurrent States

Categorical variables St are sometimes added into VARs to represent recurrent
states. These are generally constructed from some observed variable. For exam-
ple we might have St = 1(∆yt > 0), where 1(·) is the indicator function taking
the value unity if the event in brackets is true, and zero if it is false. Here ∆yt
might be an observed growth rate. The non-linearity comes from the indicator
function. Adding indicators of recurrent events, St, into VARs can raise com-
plex issues. Many of these stem from the fact that the St are constructed from
some variable like yt and this will influence their nature. In particular they
show a non-linear dependence on the past and possibly the future.

To see this non-linear dependence take the business cycle indicators con-
structed by the NBER. Because the NBER insist that recessions must last two
quarters the St will evolve as a Markov Chain of at least second order. To see
this take data on the NBER St over 1959/1 to 1995/2 (St equals one for an
expansion and zero for a contraction) and fit a second order Markov chain to
St yielding8

St =
0.4

(3.8)
+

0.6St−1

(5.6)
− 0.4St−2

(−3.8)
+

0.35St−1St−2

(3.1)
+ ηt. (3.24)

The non-linear term that comes with a second order Markov Chain (St−1St−2)
is clearly important.

There are further difficulties in using St in a VAR as it may depend on
future values of zt. This occurs since in order to define the value of St it is
necessary to know at what point in time peaks and troughs in activity occur.
When St are NBER business cycle states then for a peak to occur at t it is
necessary that ∆zt+1 and ∆2zt+2 both be negative - see Harding and Pagan

8Newey-West HAC t-ratios in brackets using a window-width of four periods.
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(2002). Consequently St−1 depends on ∆zt+1 and ∆2zt+2 and therefore cannot
be treated as predetermined, meaning that a regression of zt against St−1 would
yield inconsistent estimators of any VAR coefficients. There is a recent literature
that replaces St with a continuous variable Φ(∆yt−1,∆2yt−1), where Φ is a
function that lies between zero and one. Φt is now predetermined but it is
clear that it will lag behind the point in time that the NBER-defined recessions
and expansions start. Because of these complications with St one cannot use
existing ways of estimating VARs that are available in EViews. Harding and
Pagan (2011) contain a detailed discussion of the problems that arise.
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Chapter 4

Structural Vector
Autoregressions with I(0)
Processes

4.1 Introduction

The errors in a VAR will generally be correlated. For this reason it is hard to
know how to use an impulse response function, as these are meant to measure
the change in a shock ceteris paribus. If the shocks are correlated however, one
can’t hold other shocks constant when a shock occurs. In the next section two
methods are outlined that combine the VAR errors together so as to produce a
set of uncorrelated shocks for which impulse responses can be computed – these
are named according to the mathematical method employed to obtain the uncor-
related shocks. In the following section Generalized Impulse Responses (GIR)
are discussed. This method does not re-define the shocks as above but instead
computes impulse responses to the VAR errors which make some allowance for
the fact that they are correlated. In the remainder of the chapter the strat-
egy of finding uncorrelated shocks is resumed. However attention switches to
providing economic justifications for the processes that lead to shocks that are
uncorrelated.

4.2 Mathematical Approaches to Finding Un-
correlated Shocks

For convenience we will begin by working with a VAR(1)

zt = B1zt−1 + et,

where E(et) = 0 and cov(et) = ΩR. Consider combining the errors et together
with a non-singular matrix P so as to produce a set of uncorrelated shocks vt,
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i.e. et = Pvt and the νit are uncorrelated with each other. Thus

zt = B1zt−1 + Pvt,

and the response of zt to vt will be P. Accordingly, the problem is to find a
P matrix such that νt is uncorrelated, i.e. cov(νt) = F, where F is a diagonal
matrix. There are two approaches to finding such a P :

1. The singular value decomposition (SVD) of the matrix ΩR is ΩR = UFU ′,
where U ′U = I, UU ′ = I and F is a diagonal matrix. Therefore setting
P = U will work, as cov(et) = ΩR = PFP ′. Consequently, contempora-
neous impulse responses to the shocks νt would be P.

2. The Cholesky decomposition is ΩR = A′A where A is a triangular matrix.
Hence setting P = A′, F = I also works, although in this case the variances
of the νt are unity. But if one prefers the variances of shocks not to be
unity, this can be accounted for by allowing the diagonal elements of A to
capture the standard deviations. The contemporaneous impulse responses
to unit shocks will be given by A′.

Because the orthogonal shocks will be different when using these different meth-
ods, so to will be the impulse responses. But there is no way of choosing between
the two approaches as they both replicate ΩR.

To perform a Cholesky decomposition in EViews take the small macro model
with the variables gap, infl, ff. Following the instructions to Figure 2.4 click on
Impulse→ Impulse definition →Cholesky - dof adjusted . This produces
the impulse responses for those shocks. When computing the Cholesky decom-
position in EViews note that one has to describe the order that the variables
enter into the VAR. In this case they are ordered as entered, namely gap, infl,
ff.

This brings up a key difference between the Cholesky and SVD approaches.
When P is formed from the SVD it orders the (orthogonal) variates from most
variation to the least. This ranking does not change if the ordering of the original
variables in the VAR is changed, i.e. if the variables were entered into EViews
as ff, gap, infl rather than gap, infl, ff. Clearly, the Cholesky decomposition
results will change but not those for the SVD.

4.3 Generalized Impulse Responses

A different approach is not to construct new shocks νt but to investigate the
impact on the variables zjt of changes in ejt. Because the errors are correlated
it needs to be recognized that the impact of any change in an error cannot be
found directly, but has to allow for the fact that changes made to ejt will also
mean changes in ekt. Consequently, the final impact of a change in ejt on zlt
needs to take this into account. To see how this is done is a simple context take
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the two-variable VAR

z1t = b111z1t−1 + b112z2t−1 + e1t

z2t = b121z1t−1 + b122z2t−1 + e2t,

where ΩR =

[
ω11 ω12

ω21 ω22

]
. Now consider increasing e1t by one standard devi-

ation
√
ω11. What is the effect on z2? To answer that we look at the MA form

for the VAR, which will be z2t = e2t + D1
21e1t−1 + D1

22e2t−1 + ..... Now, if it is
assumed that et follows a bivariate normal, then e2t = ω21

ω11
e1t + η2t, where η2t

is uncorrelated with e1t, i.e. η2t remains unchanged as e1t is varied. From this,
the effect on z2t of a change in e1tof magnitude

√
ω11 will be ω21

ω11

√
ω11. Basically

this is equal to E(z2t|e1t =
√
ω11)− E(z2t|e1t = 0).

Continuing along these same lines, but for longer horizon impulse responses,
look at z2t+1. Then there will be a direct effect due to e1t changing and an
indirect effect due to the change in e1t affecting e2t. Hence the total effect of a
change in e1t of

√
ω11 on z2t+1 will be D1

21

√
ω11 + D1

22
ω21

ω11

√
ω11. This method

was originally due to Evans and Wells (1983, 1986) but has been popularized
under the title of generalized impulse responses (GIRs) by Pesaran and Shin
(1998).

It should be noted that computation of a generalized impulse response func-
tion for ejt can be done by placing zjt first in the ordering of variables, and
then calculating the impulse response using the Cholesky decomposition. This
shows that the ordering of variables does not matter when computing GIRs, as
each variable zjt takes its turn at the top of the order to define a shock, after
which the Cholesky decomposition gives the impulse responses to this shock. It
is necessary to order the variables n times to get all the GIRs.

What is the use of these GRIs ? First, there are no names for the shocks being
applied. One is just combining the VAR errors, so the only names they have
are the first, second, etc. equation shocks, and that does not seem particularly
attractive. Second, each of the shocks comes from a different recursive model,
not a single model.

It has been argued that GIRs are useful for studying the persistence of shocks
(“persistence profiles”). But persistence just depends on the eigenvalues of B1,
and these are easy to find from EViews pull-down menus, as explained in the
previous chapter. Consequently, it is hard to see the value in doing a GI analysis.

4.4 Structural VAR’s and Uncorrelated Shocks:
Representation and Estimation

4.4.1 Representation

The more standard approach is to note that the correlations between shocks
arise due to contemporaneous correlations between variables and so, instead of
having a variable depending only upon past values of other variables, one needs
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to look at systems where each variable can also depend on the contemporaneous
values of other variables. Then, because one has (hopefully) captured the con-
temporaneous effects, the errors in the structural equations can now be taken
to be uncorrelated.

Creating this new system will result in it having a different function. It now
performs an interpretative task. In more familiar terms it consists of structural
(simultaneous) equations rather than a reduced form like the VAR. Because
structural equations originally derived from the idea that they reflected decisions
by agents this approach can be said to have economic content.

To be more specific, the resulting structural VAR (SVAR) system of order
p will be:

A0zt = A1zt−1 + ...+Apzt−p + εt,

where now the shocks εt are taken to be uncorrelated, i.e. E(εt) = 0, cov(εt) =
ΩS and ΩS is a diagonal matrix. The elements in the matrices will follow the
same conventions as previously for the lagged ones, i.e. the (i, k)th elements in
the jth lag matrix will be {ajik}. It is necessary to look more carefully at A0. It
will be defined as

A0 =


a0

11 −a0
12 . .

−a0
21 a0

22 −a0
23 .

.

.

 ,
where the signs on a0

ij are chosen so as to enable each of the equations to be
written in regression form.

To explore this more carefully take the following “market model” (which
could be the demand and supply for money in terms of interest rates)

qt − a0
12pt = a1

11qt−1 + a1
12pt−1 + ε1t (4.1)

pt − a0
21qt = a1

21qt−1 + a1
22pt−1 + ε2t (4.2)

var(ε1t) = σ2
1 , var(ε2t) = σ2

2 , cov(ε1tε2t) = 0,

where qt is quantity and pt is price.
This reduces to a VAR of the form

qt = b111qt−1 + b112pt−1 + e1t

pt = b121qt−1 + b122pt−1 + e2t.

Now the model (4.1) - (4.2) implies that A0=

[
1 −a0

12

−a0
21 1

]
and it is said

to be in normalized form, i.e. every equation has a “dependent variable” and
every shock εit has a variance of σ2

i . In contrast the unnormalized form would
be

a0
11qt − a0

12pt = a1
11qt−1 + a1

12pt−1 + η1t

a0
22pt − a0

21qt = a1
21qt−1 + a1

22pt−1 + η2t

var(η1t) = 1, var(η2t) = 1, cov(η1tη2t) = 0.
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In this latter form A0 is left free and it can be assumed that the variances of
the ηit are unity, since a0

ii is effectively accounting for them. By our definitions
we would have εjt = σjηjt, where σj is the standard deviation of εjt. Because
εjt is just a re-scaled version of ηjt the properties of one representation apply
to the other.

More generally a SVAR could be written as A0zt = A1zt−1 + Bηt, with
var(ηit) set to unity and with A0 and B being chosen to capture the contem-
poraneous interactions among the zt, along with the standard deviations of the
shocks. This is actually the way EViews represents an SVAR, and the represen-
tation makes it possible to shift between whether the system is normalized or
unnormalized depending on how one specifies A = A0 and B. In EViews what
we call ηt is labeled as ut. Throughout the monograph whenever we want shocks
that have a unit variance we will use ηt to mean this.

4.4.2 Estimation

Now as readers are probably aware there is an identification problem with si-
multaneous equations, namely it is not possible to estimate all the coefficients
in A0, A1, ..., Ap without some restrictions. However, compared to the standard
simultaneous equations set-up described in Chapter 1, there is now an extra set
of constraints in that the shocks εt are uncorrelated.

The summative model is meant to contain all the information present in
the data in a compact form. In order to illustrate the issues in moving to an
SVAR(1) let us assume that a VAR(1)

zt = B1zt−1 + et

is the summative model. Putting n = 2[3] (the square brackets [·] will show the
n = 3 case) will help fix the ideas.1 Then the summative (VAR) model has n2

(= 4[9]) elements in B1 and n(n+1)
2 (= 3[6]) elements in the covariance matrix of

et (symmetry means there are not n2 values). The SVAR(1) coefficients have to

be estimated somehow from these n2 + n(n+1)
2 (=7[15]) pieces of information.

Turning to the SVAR there are n2 − n (=2[6]) elements in A0 (after normaliza-
tion), n (=2[3]) variances of the shocks, and n2 (=4[9]) unknowns in A1, giving
a total of 2n2(= 8[18]) parameters to estimate.

Hence the number of parameters to be estimated in the SVAR exceeds that
in the VAR. Consequently, it is not possible to recover all the coefficients in

the SVAR(1) from the VAR(1). An extra 2n2 − n2 + n(n+1)
2 = n(n−1)

2 (= 1[3])
restrictions are needed on A0 and/or A1. Finding such restrictions is a challenge
and will be the subject of the remainder of this chapter and later ones. For now
it is useful to assume that they have been found and to ask how the resulting
SVAR would be estimated and how impulse responses would be formed after
the estimation.

1n = 3 is of interest since the small macro model worked with in Chapter 2 had three
variables.
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4.4.2.1 Maximum Likelihood Estimation

The approximate log likelihood for an SVAR(p) is2

L(θ) = cnst+
T − p+ 1

2
{ln |A0|2 + ln |Ω−1

S |}

−1

2

T∑
t=p+1

(A0zt −A1zt−1 − ..−Apzt−p)′Ω−1
S (A0zt −A1zt−1 − ..−Apzt−p).

The term involving A0 clearly involves parameters that need to be estimated.
However, before EViews 8 it was not possible for a user to write a program that
would maximize this likelihood, since a determinant like |A0| could not depend
on unknown parameters. EViews 8 introduced the optimize() command that
removed this constraint.

The standard FIML estimator in EViews might have been considered as a
potential estimator, but until EViews 9.5 it was not possible to constrain the
structure of the structural error covariance matrix to be diagonal. The option
to do this was introduced in EViews 9.5, and in what follows we make use
of both optimize() and the enhanced FIML estimator to estimate the SVAR
models considered. The most common assumption across the models is that the
covariance matrix of structural equation shocks is diagonal.

4.4.2.2 Instrumental Variable (IV) Estimation

Often we will focus upon the estimation of SVAR systems using instrumental
variables (IV) rather than MLE. There are some conceptual advantages to doing
so, which will become apparent in later chapters that consider complex cases.
Therefore it is worth briefly mentioning this procedure and some complications
that can emerge when using it. To this end consider the single equation

yt = wtθ + vt,

where wt is a stochastic random variable such that E(wtvt) 6= 0. Then applica-
tion of OLS would give biased estimates of θ. However, if it is possible to find
an instrument for wt, xt, such that E(xtvt) = 0, the IV estimator of θ would
then be defined as

θ̂ =

∑T
t=1 xtyt∑T
t=1 wtxt

.

Rather loosely we can say that θ̂ will be a consistent estimator of θ provided
that

1. The instrument is correlated with wt (the relevance condition).

2Remember that the exact log likelihood requires the unconditional density of z1,...,zp as
well. Throughout the rest of the book we will ignore the distinction and simply refer to the
approximate log likelihood as the log likelihood and the estimator maximizing it as the MLE.
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2. It is uncorrelated with vt (the validity condition).

Instruments are said to be weak if the correlation of wt with xt is low. It is
hard to be precise about this in an empirical context but, in the case of a single
instrument, a correlation that is less than 0.1 would probably be considered as
weak. If there is more than one instrument available, i.e. xt is a vector, and we
want to know if x1t is a weak instrument, then empirical researchers often look
at the F test that the coefficient of x1t in the regression of wt on xt is zero. A
value of less than 10 would be the equivalent indicator to the correlation above.
When there are weak instruments θ̂ is generally not normally distributed, even
in large samples, and often has a finite sample bias. These facts mean that
it is hard to do inferences about the value of θ. As we go along, a number of
examples where weak instruments can arise in SVARs will be encountered.

One method that is often suggested as allowing inferences that are robust
to weak instruments is that of the Anderson-Rubin (1949) test. Suppose we
write the equation above in matrix form as y = Wθ + v with the IV estimator
being θ̂ = (X ′W )−1X ′y. Then if we wish to test that θ=θ∗ we could do this by
testing if E{X ′(y−Wθ∗)}=0 using {X ′(y−Wθ∗)}. This is a standard method
of moments test and the variance of this is well defined, giving a test statistic
that will be asymptotically χ2. Now

X ′(y −Wθ∗) = X ′(y −Wθ̂ +W (θ̂ − θ∗)),

and this equals X ′W (θ̂ − θ∗) because X ′(y −Wθ̂) = 0 by the definition of the

IV estimator. We can see from this that the distribution of (θ̂ − θ∗) can be
badly behaved whenever X ′W is a random variable with mean close to zero (as
happens with weak instruments). Thus the advantage of the AR test is that

it avoids working with θ̂. In practice θ∗ is varied and confidence intervals are
found. EViews does not provide the AR test although code could be written for
it.

Now suppose that the SVAR equations were estimated via instrumental vari-
ables rather than MLE. If the SVAR was exactly identified (which mostly they
are) then the MLE and the IV estimators are identical. This was proved in the
context of the simultaneous equations literature by Durbin (1954) and Hausman
(1975). Consequently the choice of which method is to be used in the exactly
identified case must reside in computational and pedagogical considerations.
One advantage of the IV approach is that it can point out cases where weak
instruments arise. Although these must equally affect the MLE it is often not
so obvious.

89



4.5 Impulse Responses for an SVAR: Their Con-
struction and Use

4.5.1 Construction

The impulse responses to VAR shocks were found from the MA form zt =
D(L)et. Impulse responses to structural shocks follow by using the relation
between the VAR and SVAR shocks of et = A−1

0 ηt, where the use of ηt rather
than εt points to an un-normalized form, i.e. the standard deviations of the
shocks are absorbed into the diagonal elements of A0. The MA representation
for a VAR was given in Chapter 3 as zt = D(L)et, leading to zt = D(L)A−1

0 ηt =
C(L)ηt as the MA form for the SVAR. Thus C(L) = D(L)A−1

0 . From Chapter
3 the Dj are generated recursively as

D0 = In

D1 = B1D0

D2 = B1D1 +B2D0

.

.

Dj = B1Dj−1 +B2Dj−2 + ...+BpDj−p.

Accordingly, equating terms in L from C(L) = D(L)A−1
0 means that

C0 = A−1
0 (4.3)

C1 = D1A
−1
0 = B1D0A

−1
0 = B1C0 (4.4)

C2 = D2A
−1
0 = (B1D1 +B2D0)A−1

0 = B1C1 +B2C0

.

.

Cj = DjA
−1
0 = (B1Dj−1 + ...+BpDj−p)A

−1
0 . (4.5)

From this it is clear that, when j ≥ p, Cj can be generated recursively using
(4.5) as

Cj = B1Cj−1 + ...+BpCj−p,

with the initial conditions C0, .., Cp−1 being found from (4.3), (4.4) etc.
Because the Dj can be computed by knowing just the VAR coefficients

B1...Bp, they do not depend in any way upon the structure of the model. Hence,
once a structure is proposed that determines C0, all the Cj can be found, em-
phasizing that the key issue for structural impulse responses is how C0 is to be
estimated.

4.5.2 Variance and Variable Decompositions

Because the shocks εt (or ηt) have been found, questions naturally arise about
the importance of one shock versus others in explaining zt. Two methods of
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using the impulse responses to answer such questions have emerged. One of
these decomposes the variances of the forecast errors for zjt+h using information
at time t into the percentage explained by each of the shocks. The other gives
a dissection of the variables zjt at time t according to current shocks (and their
past history).

Suppose that some information is available at time t and it is desired to
predict zt+2 using a VAR(2). Then

zt+2 = B1zt+1 +B2zt + et+2

= B1(B1zt +B2zt−1 + et+1) +B2zt + et+2

= (B2
1 +B2)zt +B1B2zt−1 +B1et+1 + et+2.

Since zt, zt−1 are known at time t the 2-step prediction error using information
at that time will be B1et+1 + et+2. Because C1C

−1
0 = B1 and C0 = A−1

0 from
(4.3) the prediction errors can be re-expressed as

B1et+1 + et+2 = C1A0et+1 + et+2

= C1A0A
−1
0 ηt+1 +A−1

0 ηt+2

= C1ηt+1 + C0ηt+2.

It therefore follows that the variance of the two-step ahead prediction errors is

V2 = var(C0ηt+2) + 2cov(C0ηt+2, C1ηt+1) + var(C1ηt+1)

= C0C
′

0 + C1C
′

1,

since cov(ηt) = I2. Taking n = 2 and partitioning the matrices as

C0 =

[
c011 c012

c021 c022

]
, C1 =

[
c111 c112

c121 c122

]
,

the variance of the two-step prediction error for the first variable will be

∆ = (c011)2 + (c012)2 + (c111)2 + (c112)2.

Hence the first shock contributes (c011)2+(c111)2 to the variance of the predic-
tion error of z1t, meaning that the fraction of the 2-step forecast variance ac-

counted for by it will be
(c011)2+(c111)2

∆ . The Forecast Error Variance Decompo-
sition (FEVD) gives these ratios for forecasts made at t into the future but
expressed as percentages

This information is available from EViews. After fitting an SVAR and us-
ing the Cholesky option when Impulse is chosen, one then selects View →
Variance Decomposition, filling in the window that is presented. Using the
ordering of the variables as gap, infl, ff the percentage of the variance of the
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ten periods ahead forecast error for inflation explained by the first orthogonal
shock in the system is 15.92%, by the second one 75.85%, and the last shock
explains 8.24%.

Exactly why we are interested in looking at what shocks explain the forecast
variance is unclear (except of course in a forecasting context). It is sometimes
argued that this decomposition provides information about business cycle causes
but, as pointed out in Pagan and Robinson (2014), its connection with business
cycles is very weak.

The fundamental relation used to get the variance decomposition was

zt+2 = (B2
1 +B2)zt +B1B2zt−1 + C1ηt+1 + C0ηt+2.

for A different viewpoint regarding the influence of shocks is therefore available
by observing that, after starting with some initial values for zt (t ≥ p), zt can be
expressed as a function of the standardized shocks {ηt−j}tj=0 weighted by the
impulse responses. This is a useful decomposition since it shows what shocks are
driving the variables zt over time. This variable decomposition is only available
in EViews 10, although for earlier versions a historical decomposition (hdecomp)
add-in (user-program) is available for download from www.eviews.com.

4.6 Restrictions on a SVAR

Finding enough restrictions on the SVAR so that it is identified is a challenge.
Essentially it involves telling a story about how the macro economy works by
stating conditions that enable the differentiation of the shocks. In this section
three types of restrictions are used.

1. Making the system recursive.

2. Imposing parametric restrictions on the A0 matrix.

3. Imposing parametric restrictions on the impulse responses to the shocks
εt.

In the next chapter the restrictions are expanded to using sign restrictions on
the impulse responses to the shocks εt to differentiate between them. Lastly,
Chapters 6 and 7 look at using the long-run responses that variables have to
shocks as a way of discriminating between them.

4.6.1 Recursive Systems

The simplest solution to identification is to make the system recursive. As
mentioned in Chapter 1 this assumes that A0 is (typically) lower triangular
and the structural shocks are uncorrelated. It was originally proposed by Wold
(1951) as a method of identifying the parameters of structural equations. Wold’s
suggestion reduces the number of unknown parameters to exactly the number
estimated in the summative model. The combination of triangularity and un-
correlated shocks means that a numerical method for estimating a recursive
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system is the Cholesky decomposition, and so this gives an economic interpre-
tation of what the latter does. Basically it is a story about a given endogenous
variable being determined by those “higher up” in the system but not those
“lower down”.

It is recommended that this solution be considered first and then ask if
there is something unreasonable about it. If there is, then ask how the system
should be modified? Because of its connection with the Cholesky decomposition
it is the case that a recursive system will have an ordering of variables, but
now theoretical or institutional ideas should guide the ordering choice. In this
monograph the ordering is z1t, z2t, z3t etc., i.e. A0 is lower triangular, but
sometimes you will see researchers make A0 upper triangular, and then the
ordering is from the bottom rather than the top.

As a simple example take the market model, where a recursive system could
be

qt = a1
11qt−1 + a1

12pt−1 + εS,t (4.6)

pt − a0
21qt = a1

21qt−1 + a1
22pt−1 + εD,t. (4.7)

The idea behind this system is that quantity supplied does not depend con-
temporaneously on price, and that could be justified by institutional features. It
seems reasonable to assume that the demand and supply shocks are uncorrelated
since the specification of the system allows prices and quantities to be correlated.
Of course if there was some common variable that affected both quantity and
price, such as weather, unless it is included in each curve the structural errors in
both equations would incorporate this common effect, and so the structural er-
rors could not be assumed to be uncorrelated. This underscores the importance
of making n large enough.

As mentioned in Chapter 1 it seems clear that the applicability of recur-
sive systems will depend on the length of the observation period. If all one
has is yearly data then it is much harder to come up with a plausible recursive
system. In contrast, with daily data it is very likely that systems will be recur-
sive. An alternative to the recursive system in (4.6) - (4.7) would be that price
is determined (ordered) before quantity. The two systems are observationally
equivalent since they replicate the estimated VAR and cannot be separated by
any test using the data. Some other criterion is needed to favor one over the
other. This might be based on institutional knowledge, e.g. that the quantity
of fish might be fixed in a market and, if storage is difficult, price has to clear
the market.

Each of the systems above solves the structural identification problem, re-
ducing the number of parameters to be estimated to seven, namely:

(a0
21, a

k
ij , var(εS), var(εD)).

MLE can be used to estimate the system, and in this case OLS is exactly identi-
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cal to MLE.3 To see this observe that (4.6) can clearly be estimated by OLS, and
this is also true of (4.7), since E(qtεDt) = E(a1

11qt−1εDt+a
1
12pt−1εDt+εS,tεDt) =

0 due to the structural shocks being uncorrelated. An alternative way to esti-
mate (4.7) that will be used later is to take the residual from the first equation
and use it as an instrument for qt in the second equation. All of these approaches
are identical for a recursive model that is exactly identified. If there were less
(more) parameters in {A0, A1, cov(εt)} compared to {B1, cov(et))} then there
will be over-(under-)identification, and the estimators can differ. If there is not
exact identification then the estimated shocks may not be uncorrelated and so
techniques such as variance and variable decompositions that require this would
not apply.

4.6.1.1 A Recursive SVAR with the US Macro Data

We will now return to the three-variable US macro model of the previous chap-
ters. For simplicity of exposition it will be assumed to have the recursive
SVAR(1) form. Later it will be implemented as an SVAR(2).

yt = a1
11yt−1 + a1

12πt−1 + a1
13it−1 + ε1t (4.8)

πt = a0
21yt + a1

21yt−1 + a1
22πt−1 + a1

23it−1 + ε2t (4.9)

it = a0
31yt + a0

32πt + a1
31yt−1 + a1

32πt−1 + a1
33it−1 + ε3t. (4.10)

Equations (4.8)-(4.10) provide a recursive story about “inertial responses” since
they are is based on

1. Interest rates having no effect on the output gap for one period

2. There is no direct effect of current interest rates upon inflation.

3. There is an interest rate rule in which the monetary authority responds
to the current output gap and inflation.

The shocks in this system are given the names of demand (ε1t), supply/costs
(ε2t) and monetary/ interest rate (ε3t). Effectively, the story reflects institu-
tional knowledge about rigidities and caution in the use of monetary policy.

4.6.1.2 Estimating the Recursive Small Macro Model with EViews
9.5

The data used is that of Chapter 2. We will estimate the SVAR in (4.8) - (4.10)
using EViews 9.5 but with 2 lags. The simplest way to fit a recursive model
is to just utilize a Cholesky decomposition after the VAR has been estimated.
Estimation and the derivation of impulse responses from a Cholesky decompo-
sition was described in Section 4.2, so these will be the impulse responses for
the recursive system in (4.8) - (4.10). Figure 4.1 graphs these.

3Because |A0| = 1 in recursive (normalized) systems it is easily seen that MLE and OLS
are identical.
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There are other ways of estimating the SVAR that will be used extensively
in what follows. It is useful therefore to illustrate these in the context of the
recursive model above. As mentioned earlier EViews writes the SVAR system
as

Azt = lags+Bηt, (4.11)

where A = A0, “lags” is A1zt−1 + ... + Apzt−p. In this form A can be thought
of as being used to set up restrictions from behavioral relations (structural
equations) and B will be employed for setting up restrictions connected with
impulse responses. Assuming there are no restrictions on Aj , j = 1, ..., p, it is
only necessary to specify the A and B matrices. That leads us to write (4.11) as
Aet = But, where ut = ηt are shocks with unit variance (compared to εt which
have non-unit variances).

The logic of this representation can be seen from an SVAR(1) written in
EViews form as Azt = A1zt−1 + Bηt. Substituting the VAR for zt into this
expression the LHS of it can be written as A(B1zt−1 + et). After grouping of
terms this becomes Aet = (A1 − AB1)zt−1 + Bηt. Since B1 = A−1

0 A1 we have
AB1 = A0B1 = A1, leaving Aet = Bηt = But in EViews notation. Accordingly,
either the matrices A,B or the equations Aet = But need to be provided to
EViews, and these two approaches will now be described.

First, return to the screen shot after a VAR(2) has been estimated and select
Proc→Estimate Structural Factorization . Then the screen in Figure 4.2
appears and either matrix or text must be selected. The first of these is used
to describe A,B while the second yields Aet = But. Dealing with the second of
these, a first step is to decide on a normalization. Working with the normalized
system in (4.8) - (4.10) and εjt = σjηjt = σjujt, A and B would be

A =

 1 0 0
−a0

21 1 0
−a0

31 −a0
32 1

 , B =

 σ1 0 0
0 σ2 0
0 0 σ3

 .
Since we are to write out equations for Aet = But, and then get EViews to

perform an MLE of the unknown parameters θ in (Aj , B), we need to map the
a0
ij etc. into θ. In EViews the vector θ is described by C and so the mapping

might be as follows:

A =

 1 0 0
C(2) 1 0
C(4) C(5) 1

 , B =

 C(1) 0 0
0 C(3) 0
0 0 C(6)

 .
Using this characterization the screen shot in Figure 4.2 then shows how
Aet = But is written.

Having set up the system to be estimated press OK. MLE is then performed
and the screen in Figure 4.3 comes up, showing the estimated coefficients in C,
the log likelihood and what the estimated A and B matrices look like. To
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Figure 4.2: Writing Ae(t) = Bu(t) in EViews

get impulse responses click on Impulse→ Impulse Definition→Structural
Factorization. These are then the same as those found with the Cholesky
decomposition.

Now in the second method Text is chosen rather than Matrix and this is
used to describe A and B directly to EViews. To do so return to the top of
the EViews page and create blank matrices using Object → New Object →
Matrix-Vector Coef . Select OK to this, set the number of rows and columns
(3 in the small macro model example), and then select OK. The screen will then
appear as in Figure 4.4.

Edit the spreadsheet on the screen using Edit+/- so it looks like Figure
4.5 (Here “NA” means that there is an unknown value of the coefficient in the
matrix that has to be estimated). Then click on Name and call it A.

After doing this repeat the same steps as above to create a B that looks like
C1 C2 C3

R1 NA 0 0
R2 0 NA 0
R3 0 0 NA


As discussed earlier the impulse responses can be used to see which shocks

account for the variables at various forecast horizons. To find this information
after the impulse responses are computed select View → Variance Decom-
position, filling in the window that is then presented.
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Figure 4.3: MLE Estimation of A and B matrices for the Small Structural Model
Using EViews
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Figure 4.4: Example of a Matrix Object in EViews

Figure 4.5: Example an A Matrix for the Recursive Small Macro Model
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Figure 4.6: Creating a System Object Called chomor sys Using EViews

Using the recursive SVAR(2) fitted to the Cho-Moreno data earlier, the
fraction of the variance of inflation ten periods ahead explained by the demand
shock is 15.92, by cost shocks is 75.85, and by monetary shocks is 8.24. This
is the same result as in Section 4.2 but now the shocks have been given some
names.

An alternative approach to estimating the recursive model is estimate Equa-
tions 4.8 - 4.10 directly using the System object in EViews. To so, invoke Object
→ New Object ... and complete the resulting dialog box as shown in Figure
4.6. Clicking OK will create a system object called “chomor sys” in the work-
file. Assuming a base SVAR model with 2 lags, the system object needs to be
populated with the EViews code shown in Figure 4.7

The placeholders for the contemporaneous coefficients (a0
21, a0

31 and a0
32) are

C(22), C(23) and C(24). The next step is to click on the Estimate tab and
then select Full Information Maximum Likelihood for the estimator using
a (restricted) diagonal covariance matrix (see Figure 4.8).

The results are shown in Figure 4.9, and match those from the standard

SVAR routine in EViews.4 The resulting A and B matrices are

 1 0 0
−C(22) 1 0
−C(23) −C(24) 1

 =

4The standard errors are calculated using the “observed hessian” option of the FIML
estimator.
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Figure 4.7: Specification of the Small Macro Model in an EViews SYSTEM
Object

Figure 4.8: System Estimation Using Full Information Maximum Likelihood
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 1 0 0
0.261117 1 0
−0.494210 −0.025836 1

 and

0.56363 0 0
0 0.68947 0
0 0 0.61882

 respectively.

Since the model is exactly identified, the implied impulse responses can be
computed using the summative VAR as shown in chomoreno fiml.prg (Figure
4.10) using a user specified shock matrix of A−1B.5 The resulting impulse
response functions are shown in Figure 4.11 and are identical to those obtained
using the standard VAR routine in EViews (see Figure 4.1).

4.6.1.3 Estimating the Recursive Small Macro Model with EViews
10

Consider the small macro model used in OPR written as a recursive struc-
ture. The variables in it were gap infl ff. After estimating a VAR(2) we select
Proc→Estimate Structural Factorization and the screen in Figure 4.12
appears. Now one can either write the text form of the SVAR, as was done in
the previous sub-section, or edit the A and B matrices shown in Figure 4.12.6

One clicks on A in the Pattern Matrices box to make A show in the box on
the screen and then repeat this operation to get B, thereby enabling them to
be edited sequentially. There are also various choices in the Restriction Preset
combo box, one of which is “Recursive Factorization”. The resulting A matrix

is shown in Figure 4.12. The matrix B =

 NA 0 0
0 NA 0
0 0 NA

 would be used

in this case (i.e., a diagonal matrix).

Unlike in EViews 9.5 the default impulse response definition is now for the
structural factorization that has just been used–not a Cholesky decomposition.
Of course, since Cholesky is a way of estimating recursive systems, in this case
they produce the same results. This will not be the case when the system is not
recursive.

4.6.1.4 Impulse Response Anomalies (Puzzles)

The impulse responses to the interest rate shock in Figure 4.1 show that the
responses of inflation and output to an interest rate rise are positive rather than
negative as we might have expected. Thus this example is a useful vehicle for
making the point that recursive systems often produce “puzzles” such as

1. The price puzzle in which monetary policy shocks have a positive effect
on inflation.

5The EViews command is chomoreno.impulse(10,m,imp=user,se=a,fname=shocks),
where “shocks” (a matrix object in the workfile) = A−1B. Doing this shows how it is possible
to move from the SYSTEM module back to the SVAR module in order to compute impulse
responses.

6See e10 example 3.prg to replicate this example using EViews code.
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Figure 4.9: FIML Estimates for the Small Macro Model: Diagonal Covariance
Matrix
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Figure 4.10: EViews Program chomoreno fiml.prg to Calculate Impulse Re-
sponse Functions
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Figure 4.12: Structural VAR Estimation: Recursive Factorization
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2. The exchange rate puzzle in which a monetary shock that raises interest
rates depreciates rather than appreciates a currency.

To eliminate such puzzles it is generally necessary to re-specify the SVAR in
some way. When variables are stationary there are four approaches to this:

1. Additional variables are added to the system, i.e. there are more shocks.
Thus, one variable that is missing from the above system is the stock
of money, as there is an implicit money supply equation (interest rate
rule) but not a money demand equation. Accordingly, one might add
money into the system, which raises the question of what asset demand
function would be used, i.e. is it the demand for M1,M2, Non-Borrowed
Reserves (NBR) or perhaps a Divisia index of money? All of these have
been proposed at various times in the literature. There are also other
factors that influence policy settings and inflation that might be needed
in the system, e.g. oil prices or, more generally, commodity prices. Early
studies by Sims (1980) and others did these things, particularly as a way
of solving the price puzzle. More recently it has been argued that the
addition of factors to the equations can eliminate some puzzles and this
will be considered later in the chapter.

2. Re-defining the variables. Giordani (2004) pointed out that it made little
sense to use the level of output in an SVAR as the interest rate rule would
be expected to depend upon an output gap rather than the output level. If
the level of output was used, and there is a structural equation linking it
to an interest rate, then the growth of output over time would imply larger
interest rate movements, unless the coefficient on output in this equation
declined. Using the log of output does reduce this effect but does not
eliminate it. Moving to an output gap does mean that the coefficient is
more likely to be constant and seems closer to what is known about the
actual set-up for interest rate decisions, since all theoretical models and
institutional studies would suggest that an interest rate rule would involve
an output gap and not a level of output. When Giordani used the CBO
measure of the U.S. output gap in the SVAR, rather than the level of
output, he reduced the price puzzle a great deal. In VARs that have the
level of variables such as the log of GDP the addition of a time trend to
the exogenous variables means that an approximation to the output gap
is being used, where the gap is defined relative to a time trend. But, as we
have observed in Chapter 2, adding in the trend to the VAR means that
all variables will be “detrended” and it is not clear that this is a sensible
outcome. In these instances we would prefer to have a time trend in only
the structural equation for the log of GDP and not in the other equations.
Because the EViews 9.5 VAR object cannot make a variable exogenous in
some equations but not others, programs have to be developed to handle
cases where exogenous variables appear in just a sub-set of the structural
equations. Another example of this which will be explored later is where
there are “external” instruments.
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3. Different specifications, e.g. either a non-recursive system or restrictions
on the impact of shocks. Kim and Roubini (2000) proposed solving the
exchange rate puzzle by allowing a contemporaneous effect of the exchange
rate upon the interest rate, i.e. the model was no longer recursive. An
extra restriction upon A needs to be found to offset this.

4. Introducing latent variables so that there are now more shocks than ob-
served variables. The reason for this is that working with a standard SVAR
means that the number of shocks equals the number of observed variables,
while with latent variables there may be more shocks than observables. If
the latent variable is not placed in the system then the impulse responses
from the observables-SVAR will be combinations of those for the larger
number of shocks, and this may cause difficulties in identifying the shocks
of interest. We will not deal specifically with this here but Bache and
Leitmo (2008) and Castelnuovo and Surico (2010) present cases where this
is the source of the price puzzle. The former have an extra shock to the
inflation target while, in the latter, it results from some indeterminacy in
the system, i.e. there are “sunspot” shocks.

4.6.2 Imposing Restrictions on the Impact of Shocks

4.6.2.1 A Zero Contemporaneous Restriction using EViews 9.5

In order to understand some later approaches it is instructive to look at how
it is possible to impose the assumption that the contemporaneous impact of a
shock upon a variable is zero. For this purpose we will use the small macro
model. The relation between the VAR and SVAR (structural) shocks in this
three-variable case is given by

et = A−1
0 Bηt = Āηt

=

 ā11 ā12 0
0 ā22 0
ā31 ā32 ā33

 ηt.
Now it should be clear that imposing a restriction that āij = 0 in EViews
means that eit does not depend on ηjt. One way of doing this in EViews is by
setting A0 = I so that A = I and then imposing specific restrictions on the
reduced-form SVAR. Consequently contemporaneous restrictions such as

1. Monetary policy shocks (η3t) have a zero contemporaneous effect on out-
put (represented by e1t) and inflation (e2t), and

2. The demand shock (η1t) has a zero contemporaneous effect on inflation,

imply that

e1t = ā11η1t + ā12η2t (4.12)

e2t = ā22η2t = ε2t (4.13)

e3t = ā31η1t + ā32η2t + ā33η3t. (4.14)
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There are six unknown parameters in this new model and therefore it is ex-
actly identified. It also has exactly the same likelihood as the recursive model
fitted earlier to the macro data (and thus is observationally equivalent). There-
fore it is not possible to choose between the recursive model and this new one
based on fit to the data. Other criteria would be needed to justify selecting one
of them.

We illustrate the imposition of the zero restrictions. In terms of the EViews

program (4.12) - (4.14) imply that A =

 1 0 0
0 1 0
0 0 1

, B =

 ∗ ∗ 0
0 ∗ 0
∗ ∗ ∗

 , and

so the EViews instructions are the same as previously, except that the Text
after Estimate −→Structural Factorization is now

@e1=c (1)∗@u1+c (2)∗@u2
@e2=c (3)∗@u2
@e3=c (4)∗@u1+c (5)∗@u2+c (6)∗@u3

Estimating this model using the SVAR routine yields the output shown in
Figure 4.13. Figure 4.14 shows the impulse responses to an interest rate shock
from these restrictions. They are very similar to those in Figure 4.1 and, despite
the changed restrictions, continue to show price and output puzzles.

A second way of handling impulse response restrictions is to ask what the
nature of the SVAR is when they are imposed. Suppose we now think about
what the zero impulse response restrictions would imply for a general SVAR.
Because zjt = ejt+lags it follows from (4.13) that z2t = lags+ε2t. But ε2t is the
structural equation error for z2t so this would imply that this is the structural
equation as well, i.e. a0

21 = 0, a0
23 = 0 meaning that the structural system would

look like

z1t = a0
12z2t + a0

13z3t + lags+ ε1t (4.15)

z2t = lags+ ε2t (4.16)

z3t = a0
31z1t + a0

32z2t + lags+ ε3t. (4.17)

Accordingly, instruments are needed for the variables in the first and third
equations. Starting with the third equation, two instruments are needed that
are uncorrelated with ε3t. Looking at (4.12) it is apparent that e1t does not
depend on ε3t (as ε3t is a multiple of η3t) and, from (4.13), this is also true of
e2t. So e1t and e2t can act as instruments for z1t and z2t in (4.17). Because e1t

and e2t are not known it is necessary to use the VAR residuals ê1t and ê2t as
the instruments. Of course (4.15) can be estimated by OLS since there are no
RHS endogenous variables.

In terms of EViews commands it is first necessary to generate the residuals
from the VAR equations for z1t and z2t. While these residuals can be obtained
from the VAR output they can also be found by the commands Quick →
Estimate Equation and then choosing LS - Least Squares (NLS and
ARMA). The specification box needs to be filled in with

gap gap(−1) gap(−2) infl(−1) infl(−2) ff(−1) ff(−2)
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Figure 4.13: SVAR Output for the Restricted Small Macro Model
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Figure 4.14: Interest Rate Responses from the Small Macro Model Assuming
Monetary and Demand Shocks Have Zero Effects
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Clicking on OK then gives the parameter estimates. To construct the residuals
ê1t from this regression and save them in the workfile, click on Proc→Make
Residual Series and then OK after giving the residuals a name of “res1 ”.
Repeating this process, but with the dependent variable being infl , will give
the residuals ê2t = ε̂2t (the VAR and structural errors are the same as there are
no RHS endogenous variables in this equation). Note that these residuals are
automatically saved in a series called “eps2 ” by the program shown in Figure
4.15.

As detailed above, ê1t and ε̂2t will be the instruments for z1t and z2t in the
third (interest rate) equation. This can be done from the screen presented at
the end of the OLS estimates. Choose Estimate from the options available and
then fill in the specification as

ff gap infl gap(−1) gap(−2) infl(−1) infl(−2) ff(−1) ff(−2)

Instead of selecting the LS option, choose TSLS - Two-Stage Least
Squares (TSNLS and ARMA), whereupon it will ask for Instrument List
to be filled in. Insert

res1 eps2 gap(−1) gap(−2) infl(−1) infl(−1) ff(−1) ff(−1).

After the IV estimates are obtained the command Proc→Make Residual
Series can be used to create a series object containing the residuals from this
equation. Suppose this series is called “eps3 ”. The procedure is then repeated
for the first equation, with the model defined as

gap infl ff gap(−1) gap(−2) infl(−1) infl(−2) ff(−1) ff(−2),

and the instruments being

eps2 eps3 gap(−1) gap(−2) infl(−1) infl(−2) ff(−1) ff(−2).

The resulting parameter estimates are A0 =

 1 .1669 0
0 1 0

−.494 −.0258 1

 and

B =

 .5788 0 0
0 .7404 0
0 0 .6596

 , where the diagonal elements of B are the es-

timated standard deviations of the errors of the equations. The IV parameter
estimates are identical to those reported in Figure 4.13 from the SVAR routine.7

Lastly, instead of using the pull-down menus above to get the instrumental vari-
able results we can build an EViews program that will do this. The code, which
is saved in chomoreno restrict.prg, is shown in Figure 4.15.

An interesting feature of the IV approach in this case is that it automatically
imposes an implicit constraint of a0

13 = 0 on the structural VAR. This constraint
ensures that e1t (the VAR residual of the first equation) is not affected by η3t.

7The estimates in Figure 4.13 are actually A−1
0 B.
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After incorporating the lagged variables as instruments, z3t will be instrumented
by z3t − lags = ε3t, which by assumption does not affect z1t. Another way of

seeing that a0
13 = 0 is to invert A−1

0 =

 ∗ ∗ 0
0 ∗ 0
∗ ∗ ∗

 symbolically. Doing so

reveals that A0 will have the same structure as A−1
0 in terms of the position of

the zero elements. It is also clear that the equations could be re-arranged into
a recursive structure. Hence a0

13 = 0.
An important point to remember from this application is that if the l′th

shock has a zero contemporaneous effect on the k′th variable it means that the
k′th equation VAR residuals can be used as instruments in estimating the l′th
structural equation (“the VAR instrument principle”). We will utilize this result
many times in the material that follows.

The VAR instrument principle may also be used in the SYSTEM estimator
by re-specifying the model so that it incorporates the VAR residuals explicitly
along with the binding constraint that a0

13 = 0, viz:

z1t = a0
12(z2t − lags) + lags+ ε1t (4.18)

z2t = lags+ ε2t (4.19)

z3t = a0
31(z1t − lags) + a0

32(z2t − lags) + lags+ ε3t. (4.20)

The necessary EViews code is given in Figure 4.16, with C(22), C(23) and
C(24) corresponding to the contemporaneous parameter estimates a0

12, a
0
31 and

a0
32. Estimating the system object (ch sys iv rest) using ordinary least squares

yields the output shown in Figure 4.17. The estimates for a0
12, a

0
31 and a0

32

match those obtained using the instrumental variable approach.
Lastly, one may also estimate the restricted system directly using FIML and

the diagonal covariance matrix option. The required system object code (see
ch sys iv rest in the workfile) is shown in Figure 4.18 and the results, which
match the IV estimates, are shown in Figure 4.19

4.6.2.2 Zero Contemporaneous Restrictions in EViews 10

Using the example of the previous sub-section we impose the restrictions de-
scribed there using EViews 10 and the S matrix which describes the contempora-

neous impulse responses to unit shocks. This will be S =

 NA NA 0
0 NA 0
NA NA NA

 .
If there are no restrictions then S will just have NA elements, which is the de-
fault. We note that if (say), S(2, 1) = 0 then, since S =A−1

0 , this implies an
indirect restriction upon the elements of A0. In this example, notice there are
no direct restrictions upon A0 = A - except for normalization, i.e. each equation

113



F
ig

u
re

4.
15

:
ch

o
m

o
re

n
o

re
st

ri
ct

.p
rg

to
P

er
fo

rm
IV

o
n

th
e

R
es

tr
ic

te
d

M
o
d

el
a
n

d
C

a
lc

u
la

te
Im

p
u

ls
e

R
es

p
o
n

se
s

114



Figure 4.16: EViews System Specification For Equations 4.18 - 4.20

has a dependent variable specified. Hence

A =

 1 NA NA
NA 1 NA
NA NA 1

 , B =

 NA 0 0
0 NA 0
0 0 NA

 , S =

 NA NA 0
0 NA 0
NA NA NA


and B will have the standard deviations of the shocks on its diagonal. To see
what the indirect restrictions on A would be S = A−1

0 implies A0S = I and so

A =

 1 −a0
12 −a0

13

−a0
21 1 −a0

23

−a0
31 −a0

32 1

 NA s12 0
0 NA 0
s31 s32 NA

 =

 1 0 0
0 1 0
0 0 1

 .
Multiplying the first and second rows of A by the third column of S and the
second row of A by the first column of S we get

(1× 0)− (a0
12 × 0)− (a0

13 ×NA) = 0⇒ a0
13 = 0

(−a0
21 × 0) + (1× 0)− (a0

23 ×NA) = 0⇒ a0
23 = 0

(−a0
21 ×NA) + (1× 0)− (a0

23 × s31) = 0⇒ a0
21 = 0.

Therefore we don’t need to impose these restrictions directly upon A. EViews
10 will do so when S is described.

Now return to the VAR screen in Figure 4 and first select Clear all. Then
from the Restriction Preset combo box choose Custom, fill out the A,B and
S matrices as above, and click OK.

The estimated A matrix is A =

 1 .16689 0
0 1 0

−.49429 −.0258 1

 , where the zero

elements are less than 10−8. This agrees with the results in the previous sub-
section. 8

8See e10 example 4.prg to replicate this example using EViews code.
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Figure 4.17: Non-linear Least Squares Estimates of Equations 4.18 - 4.20
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Figure 4.18: EViews System Specification For Equations 4.15 - 4.17 Assuming
a13 = 0.

4.6.2.3 A Two Periods Ahead Zero Restriction

We want to impose a restriction on the impulse responses of a variable to a shock
at some lag length other than zero. The method is that used in McKibbin et
al. (1998). It uses the result from (4.5) that Cj = DjC0. Because Dj are
just impulse responses from the VAR they can be found without reference to
a structure. So, if the SVAR is set up as Azt = lags + Bηt, where ηt have
unit variances (the ηt are then EViews’ ut), putting A = I shows that B = C0.
Hence in terms of the A,B structure Cj = DjB.

Now suppose it is desired to impose that the first variable response to the
third shock is zero at the second horizon. This will mean that

[C2]13 = [D2B]13 = 0,

where [F ]ij refers to the i, j’th element of a matrix F. Consequently

c213 =
[
d2

11 d2
12 d2

13

]  b13

b23

b33

 = 0

is the restriction to be imposed. Clearly this implies b13d
2
11+b23d

2
12+b33d

2
13 = 0.

Because d2
ij are known from the estimated VAR this provides a linear restriction

on the elements of B, which is easy to apply in EViews by using the text form
of restrictions.9

We use the Cho and Moreno data set, fit a VAR(2) with the variables
gap, infl, ff, and recover D (as was done in Chapter 3). Figure 3.20 gave
the responses of the output gap to the VAR residuals for two periods ahead and
these provide d2

ij . These were d2
11 = 1.205556; d2

12 = −.109696; d2
13 = .222415

giving the restriction 1.205556b13 − .109696b23 + .222415b33 = 0. This can then
be used to substitute out b33.

9In EViews 10 this would require us to impose d211S(1, 3)+d212S(2, 3)+d213S(3,3)=0, which
can be done using the text option.
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Figure 4.19: FIML Estimates of Equations 4.15 - 4.17 Assuming a13 = 0.
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Figure 4.20: Impulse Responses of the Output Gap to Supply, Demand and
Monetary Shocks

Now three restrictions on B are needed to estimate any SVAR with three
variables. This gives us one. So we need two more. Because we don’t want
b13, b23 and b33 all to be zero (we could put one to zero if we wanted) it makes
sense to set b12 = 0, b21 = 0. Then the text form of the code to estimate
the structure corresponding to the model that incorporates the second period
restriction will be

@e1=C(1)∗@u1+C(2)∗@u3
@e2=C(3)∗@u2+C(4)∗@u3
@e3=C(5)∗@u1+C(6)∗@u2− (1 .0/0 .222415)∗ (1 .205556∗C(2)−0.109696∗C( 4 ) )∗@u3

and the estimated impulse responses in Figure 4.20 confirm that this approach
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imposes the required restriction (see Shock3, period 3).10

We can use the same approach to impose restrictions on the cumulative sum
of impulses,

∑P
j=1 Cj , since

∑P
j=1 Cj = (

∑P
j=1Dj)B. If P = 9 and

∑P
j=1 c

j
13 =

0, then the accumulated values of Dj up to the P ′th lag can be found from the
VAR impulse responses.

For the example that has just been done these will be

P∑
j=1

dj11 = 8.756985,

P∑
j=1

dj12 = −1.176505,

P∑
j=1

dj13 = .480120,

and then the third text command would now be

@e3=C(5)∗@u1+C(6)∗@u2− (1 .0/0 .480120)∗ (8 .756985∗C(2)−1.176505∗C( 4 ) )∗@u3

forcing the accumulated impulse
∑P
j=1 c

j
13 to be zero.

4.6.3 Imposing Restrictions on Parameters - The Blanchard-
Perotti Fiscal Policy Model

Blanchard and Perotti (2002) are interested in finding out what the impact of
spending and taxes are on GDP. They have three variables z1t = log of real
per-capita taxes, z2t = log of real per-capita expenditures and z3t = log of real
per-capita GDP. The SVAR model has the form (see Blanchard and Perotti,
2004, p 1333)

z1t = a1z3t + a′2ε2t + lags+ ε1t

z2t = b1z3t + b′2ε1t + lags+ ε2t (4.21)

z3t = δ1z1t + δ2z2t + lags+ ε3t

Accordingly, in the EViews representation, the A and B matrices have the
form

A =

 1 0 −a1

0 1 −b1
−δ1 −δ2 1

 , B =

 ∗ a′2 0
b′2 ∗ 0
0 0 ∗

 .
A value of 2.08 is given to a1 by noting that it is the elasticity of taxes with
respect to (w.r.t.) GDP. That quantity can be decomposed as the product
of the elasticity w.r.t. the tax base and the elasticity of the tax base w.r.t.
GDP. These elasticities are computed for a range of taxes and then aggregated
to produce a value for a1. The parameter b1 is set to zero since they say “We

10“Period 3” corresponds to the response two periods ahead as EViews refers to the con-
temporaneous (zero-period ahead) as “1”.
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could not identify any automatic feedback from economic activity to government
purchases...” (p 1334).

Because n = 3 only six parameters in A and B can be estimated. However,
after fixing a1 to 2.08 and b1 to zero, seven unknown parameters remain. This
means that one of a′2 or b′2 needs to be prescribed. Looking at the coefficients
in B we see that the (2,1) element (b′2) is the response of expenditure to a
structural shock in taxes within the quarter, while the (1,2) element (a′2) is how
taxes respond to expenditures. Blanchard and Perotti sequentially set either a′2
or b′2 to zero, estimating the other one. We will perform estimation with b′2 = 0.

In terms of structural equations consider what we have when b
′

2 = 011

z1t = 2.08z3t + a′2ε2t + lags+ σ1η1t (4.22)

z2t = lags+ σ2η2t = lags+ ε2t (4.23)

z3t = δ1z1t + δ2z2t + lags+ σ3η3t (4.24)

Now, because vt= z1t − 2.08z3t does not depend on η3t, Blanchard and
Perotti used it as an instrument for z1t in (4.24) while z2t could be used as an
instrument for itself. This gave them estimates of δ1 and δ2 and yielded an
estimate of the shock ε3t. To estimate the remaining parameters of the system
one could estimate a

′

2 by regressing vt on lagged values and ε̂2t. This is what
we will refer to as their IV strategy.

A complication now arises in their work since they added extra regressors to
the equations as control variables. These involved dummies for the temporary
tax rebate of 1975:2, a quadratic polynomial in time, and an allowance for
seasonal variation in the lag coefficients. To do the latter it is necessary to
construct multiplicative variables such as z1t−j × Skt (k = 1, .., 4). Blanchard
and Perotti add all these variables to the third equation to get the IV estimates
but, when they come to estimating the remaining coefficients in the SVAR,
they only add the tax cut dummy, seasonal intercept shifts, and the quadratic
polynomials, thereby preventing the impulse responses from varying with the
seasons. The regressors “vec *” in the “Exogenous variables” text box in Figure
4.21represent the last mentioned variables (and because the extended set of
variables effectively incorporate an intercept, the constant needs to be removed
from the equations as well as from the instrument set).

Because of the treatment of these extended regressors, there will be a differ-
ence between Blanchard and Perotti’s IV and the MLE estimates of δ1 and δ2.
To find the latter first fix a1 and b

′

2 yielding

A =

 1 0 −2.08
0 1 0
∗ ∗ 1

 , B =

 ∗ ∗ 0
0 ∗ 0
0 0 ∗

 .
11a2 = a′2σ1.
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Figure 4.21: Instrumental Variable Estimation of the Blanchard-Perotti Model
using EViews

Figure 4.22: Structural VAR Estimation of the Blanchard-Perotti Model using
EViews
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Using the workfile bp.wf1 the screens in Figures 4.21 and 4.22 show how this
model is estimated. The resulting MLE estimates of A and B are:12

A =

 1 0 −2.08
0 1 0

.1343 −.2879 1

 , B =

 .2499 −.0022 0
0 .0098 0
0 0 .0096

 .
4.6.4 Incorporating Stocks and Flows Plus Identities into

an SVAR - A US Fiscal-Debt Model

4.6.4.1 The Cherif and Hasanov (2012) Model

As well as re-specification in an attempt to eliminate puzzles it also needs to
be recognized that SVARs may need to introduce extra items that are routinely
present in macro models. Foremost among these are identities. Thus, if an
inflation rate πt = ∆log(Pt) appears in an SVAR, to get the impact on the
price level it is necessary to use the identity log(Pt) = log(Pt−1) + πt. If only
πt (and not log(Pt)) enters the SVAR then the impulse responses for log(Pt)
can be found by accumulating those for inflation. However there is recent work
that argues for the deviation of the price level from its target path to appear
in the interest rate rule, i.e. a term like (log(Pt) − π̄t) should be present, as
well as inflation and an output gap. In such a SVAR both πt and log(Pt) are
present among the variables, and the identity linking log(Pt) and πt will need to
be imposed. For a number of reasons this can’t be done in a standard way using
the SVAR routine in EViews, since it assumes that there are the same number of
shocks as observed variables. However, when there is an identity in the system,
the shock for that equation is zero. One can substitute out a variable that is
defined by a static identity. As we saw earlier the system remains a VAR in
the smaller number of variables. If however the identity is dynamic then the
situation is more complex, and we provide a workaround in what follows.

Dynamic identities come up fairly frequently: an example would be when
stock variables such as household assets are introduced into SVARs, since there
will be an identity linking these assets, the interest rate, income and consump-
tion. Also fiscal rules often involve the level of debt relative to some target
value.

To see the issues arising when allowing for stock variables in the context
of a SVAR we look at a study by Cherif and Hasanov (2012). Cherif and
Hasanov work with a SVAR involving four variables - the primary deficit to
GDP ratio (pbt) (public sector borrowing requirement), real GDP growth (∆yt),
the inflation rate of the GDP deflator (πt) and the nominal average interest rate
on debt (it). There is also a debt to GDP ratio dt with dt−1 and dt−2 being
taken to be “exogenous” regressors in all the structural equations.

12The IV estimates of δ1 and δ2 would be -0.134 and 0.236 and, as expected, will differ from
the MLE. It should be noted that one cannot add on all the regressors as exogenous variables
in the SVAR with a pull-down menu as there is an upper limit to the number.
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The SVAR is essentially recursive, except that in the first equation for pbt
the responses of pbt to dyt, πt and it are set to .1, .07 and 0 respectively. The
arguments for these values follow from the type of argument used by Blanchard
and Perotti. This leaves us with the following (A,B) matrices

A =


1 .1 .07 0
∗ 1 0 0
∗ ∗ 1 0
∗ ∗ ∗ 1

 , B =


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 .
Now to compute impulse responses to tax and spending shocks an allowance

is needed for the fact that these will change the future path of dt via a secondary
impact on pbt owing to its dependence on dt−1 and dt−2. One can treat dt−1

and dt−2 as pre-determined for estimation purposes, but not when computing
impulse responses for periods after the contemporaneous impact. To handle this
Cherif and Hasanov add the identity

dt =
1 + it

(1 + πt)(1 + ∆yt)
dt−1 + pbt

to the system and then solve for impulse responses from the augmented system.
Because of the non-linearity, the impulses will depend on the values of pbt, it etc.
and the computations are therefore non-standard for EViews. Consequently we
keep it within the relatively simple linear structure of EViews by replacing the
debt equation with a log-linearized version.13

To derive this version let Dt be nominal debt, Yt be real GDP, Pt be the
price level and PBt be the nominal primary deficit. Then the nominal debt
identity is

Dt = (1 + it)Dt−1 + PBt.

Dividing this by PtYt produces

Dt

PtYt
= (1 + it)

Dt−1

PtYt
+
PtBt
PtYt

Now the debt to GDP ratio (dt) is Dt
PtYt

, while the primary deficit to GDP
ratio will be pbt. Hence the debt equation is

dt = (1 + it)
Dt−1

Pt−1Yt−1

Pt−1Yt−1

PtYt
+
PBt
PtYt

= (1 + it)dt−1
Pt−1Yt−1

PtYt
+ pbt

= (1 + it)(1−∆pt)(1−∆yt)dt−1 + pbt.

This equation can be log-linearized by writing dt = d∗ed̂t , where d∗ is the
steady-state value and d̂t is the log deviation of dt from that. Thus

13If one wanted to use this identity it would be necessary to recast the SVAR augmented
with the identity as an EView’s SYSTEM object, as described in Chapter 3.
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d∗ed̂t = (1 + it)(1−∆pt)(1−∆yt)d
∗ed̂t−1 + pbt

ed̂t = (1 + it)(1−∆pt)(1−∆yt)e
d̂t−1 +

pbt
d∗
.

Now, using ed̂t ' (1 + d̂t),

1 + d̂t = (1 + d̂t−1)(1 + it)(1−∆pt)(1−∆yt) +
pbt
d∗
.

Neglecting cross-product terms this becomes

d̂t = d̂t−1 + it −∆pt −∆yt +
pbt
d∗
. (4.25)

Since the identity does not affect estimation it can be done in a standard
way in EViews using the A and B given above.

The problem comes in computing the responses of variables to shocks. A
first problem is that if we add dt to the SVAR then one cannot have dt−1 and
dt−2 treated as exogenous since dt−1 will necessarily be introduced into a SVAR
simply through assigning some lag order to it. So we need to drop them from
the exogenous variable set. A second issue is that there would be nothing to
ensure that the debt accumulates according to the debt identity, i.e. if we form
d̂t from the data it would rarely equal the observed data dt − d∗ owing to the
linear approximation. A third issue is the problem that the identity does not
have a shock attached to it. To get around the last two difficulties we construct
a series d̃t as d̂t+nrnd*.00001, where the last term adds a small random number
on to d̂t.

4.6.4.2 Estimation with EViews 9.5

To understand how this works suppose that a SVAR(1) was fitted with the series
pb, dy, dp, in, d̃t. This setup doesn’t fully capture Cherif and Hasanov since it
only adds d̂t−1 on to the equations and not d̂t−2, but it is useful to start with
the SVAR(1). Then this new system will have (A,B) as14

A =


1 .1 .07 0 0
∗ 1 0 0 0
∗ ∗ 1 0 0
∗ ∗ ∗ 1 0

−(1/d∗) 1 1 −1 1

 , B =


∗ 0 0 0 0
0 ∗ 0 0 0
0 0 ∗ 0 0
0 0 0 ∗ 0
0 0 0 0 ∗

 .
Fitting the SVAR(1) will mean that the last equation involves a regression of
φt = dhat− (pbt/d

∗)− int + ∆pt + ∆yt on d̃t−1, pbt−1, int−1,∆pt−1 and ∆yt−1.

The estimated equation coefficients using d̃t and d̂t are the same to four decimal

14This SVAR can be estimated with EViews using workfile debt.wf1.
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places so the debt accumulation identity effectively holds. The error introduced
by using d̃t is very small. Hence the impulse responses of shocks on to the debt
level can now be computed directly using the SVAR routine in EViews.

Now suppose that we want to capture the second lag of debt in the struc-
tural equations. This can be done by fitting an SVAR(2) with the same A
and B above. Then the last equation would involve the regression of φt on
{d̃t−1, pbt−1, int−1,∆pt−1, ∆yt−1} and {d̃t−2, pbt−2, int−2,∆pt−2, ∆yt−2}. Us-
ing the data we find

φt = .52d̃t−1 + .48d̃t−2 + .72pbt−1 − .48∆pt−1 − .48∆yt−1 + .48it−1

= .52d̃t−1 + .48d̃t−2 + .48(
pbt−1

d∗
−∆yt−1 −∆pt−1 + it−1)

= d̃t−1 − .48∆d̃t−1 + .48∆d̃t−1

= d̃t−1

=⇒ d̃t = d̃t−1 + (pbt/d
∗) + int −∆pt −∆yt

as required. Fitting the SVAR(2) in the five variables produces the impulse
responses for debt ratio shown in Figure 4.23.15 It should be noted that there
can be some problems with starting values and to change these one needs to
use the sequence of commands after fitting the VAR(2) : Proc→Estimate
Structural Factorization−→Optimization Control → Starting values:
Draw from Standard Normal . It is clear from the impulse response functions
that it takes a long time for the debt to GDP ratio to stabilize after a shock.16

It is worth examining a comment by Cherif and Hasanov (2012, p 7) that
“Similarly to Favero and Giavazzi (2007), we find that it is the change in debt
that affects VAR dynamics as the coefficients on lagged debt are similar in
absolute values but are of the opposite signs”. If this were correct the evolution
of debt would need to be described by

d̂t = d̂t−1 + φi1∆d̂t−1 − φ∆p
1 ∆d̂t−1 − φ∆y

1 ∆d̂t−1 + φpb1 d̂t−1 + ...,

i.e. the equation would be linear in ∆d̂t, and so there would be no steady-state
debt-to-GDP ratio. It seems however that Cherif and Hasanov did not put the
change in the debt into each of the SVAR equations, leaving the parameters
attached to the levels variables d̂t−1 and d̂t−2 unconstrained. Nevertheless, the
parameters on these are such that they are very close to being equal and opposite
and it is that which causes the very slow convergence.

15See also the code in cherif hasanov.prg.
16If one wanted to allow for two lags in debt and only a single one in the other variables

then one cannot use the SVAR option. It is necessary then to use the SYSTEM object to
set up a system that can then be estimated. An example is given in the next application.
Alternatively one can estimate the system by doing IV on each of the structural equations,
and this is done in debtsvar1iv.prg. It is then necessary to compute impulse responses and
this is done in cherhas.prg.

126



F
ig

u
re

4.
23

:
Im

p
u

ls
e

R
es

p
on

se
s

fo
r

th
e

S
V

A
R

(2
)

M
o
d

el
In

co
rp

o
ra

ti
n

g
th

e
D

eb
t

Id
en

ti
ty

127



4.6.4.3 Estimation with EViews 10

Now a SVAR(2) is used, which means that d̂t−1 and d̂t−2 would appear in every
equation. This was also true of the first four equations in Cherif and Hasanov
where debt was treated as exogenous. However it is clear from (4.25) that d̂t−2

should be excluded from the fifth equation and the coefficient on d̂t−1 in it
should be unity. To impose these restrictions we use that fact that Bj = A−1

0 Aj
so that A0Bj = Aj . Since A1(5, 5) = 1 we have the restriction

− 1

d∗
b115 + b125 + b135 − b145 + b155 = 1

while A2(5, 5) = 0 gives

− 1

d∗
b215 + b225 + b235 − b245 + b255 = 0.

There are other restrictions coming from the fact that it,∆pt,∆yt and pbt are
not lagged in the identity. These are Aj(5, k) = 0, j = 1, 2; .. k = 1, .., 4. To give
an example, A1(5, 2) = 0 will imply

− 1

d∗
b112 + b122 + b132 − b142 + b152 = 0.

Hence these produce restrictions on the VAR coefficients that need to be imposed
before the SVAR is estimated.17

This is a far simpler method of allowing for identities than that used in OPR.

4.6.5 Treating Exogenous Variables in an SVAR - the SVARX
Model

4.6.5.1 Estimation with EViews 9.5

Consider a 3 variable SVAR(1) where xt is exogenous and z1t, z2t are endoge-
nous. The exogeneity can be handled in two ways. One way involves including
xt, xt−1 as variables in each structural equation. In this case the first equation
will be

z1t = a0
12z2t + γ0

1xt + γ1
1xt−1 + a1

11z1t−1

+ a1
12z2t−1 + ε1t,

and equations like this constitute an SVARX system. EViews can handle this
by using the exogeneity option when describing the VAR specification.

There are however some specifications for exogenous variables that cannot
be handled with the exogeneity option. One of these arises if it is undesirable to
have xt enter into every structural equation. Another would be if one wanted to
compute either the dynamic multipliers with respect to xt or to shocks into xt,

17See e10 example 5.prg, which relies on e10 debt.wk1.
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where the shock is defined by some SVAR. Lastly, in the case of a small open
economy, where the zt would be domestic variables and xt foreign variables,
then we would want to ensure that no lagged values of the zt impact upon the
xt. This rules out the possibility of fitting an SVAR in zt and xt with standard
EViews software.

It would be possible to suppress the dependence of zt on xt by inserting
zeroes into the specification of the A0 matrix but there is no simple way of
setting the similar elements in Aj (j > 1) to zero. Because of this zt−j would
affect xt. Of course it may be that the coefficients in A1 etc. are small but, with
a large number to be estimated, it seems more sensible to constrain them to be
zero. To deal with these cases one needs to create a SYSTEM object, just as
was done with the restricted Brazilian VAR in Chapter 2.

To illustrate the method we examine impulse responses for a Brazilian SVAR
when the EViews exogeneity option is used, and then describe how to compute
either dynamic multipliers or impulse responses to shocks for the exogenous
variables. Because Brazil is taken to be a small open economy we do not
want domestic variables to impact upon the foreign variables. The workfile
is brazil.wf1. The SVAR is formulated in terms of five domestic variables nt
(GNE), yt (GDP), infl (inflation), int (interest rate) and rer (real exchange
rate). The presence of both nt and yt is because Brazil is an open economy and
so the first of these captures aggregate demand while the second is supply. As
mentioned in Chapter 2 these variables are measured as a deviation from perma-
nent components. The exogenous variables are taken to be two world variables -
ystart(external output) and rust (an external interest rate). A VAR(1) is fitted
owing to the short data set. Figure 4.24 shows the required EViews commands.
The exogenous variables have been entered in this way so as to get a system
representation that can be modified relatively easily.

Once this VAR is run, invoking the commands from the EViews pull-down
menus of Proc → Make System → Order by Variable produces equivalent
model code that can be edited to insert structural equations for ystar and rus
that do not allow for any feedback between the domestic and foreign sectors.
We set these up as in Figure (4.25).

The reason for the structure chosen is that by setting the coefficients C(53)−
C(57) equal to zero, the responses of the domestic variables to the foreign vari-
ables will be dynamic multipliers, whereas, if all (i.e., 57) of the original coef-
ficients are estimated then non-zero impulse responses can be found for shocks
to the foreign variables. Note that there is now no influence of the domestic
variables on the foreign ones.

This system can be estimated by OLS. Then the estimated coefficients
C(·) can be mapped into A0 and A1 using brazsvarbig.prg. This program
also produces impulse responses (and dynamic multipliers if the coefficients
C(53)− C(57) are not estimated).

Figure 4.26 shows the impulse responses to the SVAR using the exogeneity
specification. The real exchange rate is measured so that a rise represents an
appreciation. We note that the effect of interest rates upon demand (nt) is
substantial but that on supply (yt) is small (as it should be). A demand shock
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Figure 4.24: The Brazilian SVAR(1) Model with the Foreign Variables Treated
as Exogenous

Figure 4.25: The Brazilian SVAR(1) Model Absent Lagged Feedback Between
the Foreign and Domestic Sectors
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raises inflation, while a positive shock to supply (the y shock) reduces it (Figure
4.27). The exchange rate appreciates in response to an interest rate shock
and also to a foreign output shock, given the positive parameter estimates for
YSTAR on RER in the VAR. (Figure 4.28). An appreciation leads to a rise in
demand and this can reflect the lower prices for commodities. There is a negative
response by domestic output to a real exchange rate appreciation (Figure 4.29).

We can also compare the impulse responses that would be found if we treated
all the seven variables (both domestic and foreign) as endogenous and fitted a
recursive SVAR(1) using EViews with that in which there are no lagged values
of the domestic variables impacting on the foreign sector, i.e. the model is that
in the SYSTEM object BRAZBIGSVAR. Because the shocks for the foreign
variables will be different with each specification (there are more regressors in
the y∗t equation when lagged feedback is allowed) we set the standard deviation
of the shock to that under the feedback solution. Then the impulse responses
of the real exchange rate to a foreign output shock for each of the systems are
in Figure (4.30). There is clearly not a great deal of difference between the
responses at short horizons.

4.6.5.2 Estimation with EViews 10

We want to estimate the SVAR for Brazil of the previous sub-section with
EViews 10. In Chapter 2 we indicated how to set up a VAR to ensure that
the lagged values of variables are excluded from the foreign equations. Now a
recursive structure needs to be applied to the corresponding SVAR to exclude
the contemporaneous effects. The SVAR is formulated in terms of five domestic
variables nt (GNE), yt (GDP), infl (inflation), int (interest rate) and rer (real
exchange rate), which can be found in the workfile e10 brazil.wf1. The exoge-
nous foreign variables are taken to be two world variables - ystart (external
output) and rust (an external interest rate). A VAR(1) is fitted owing to the
short data set. The variables are arranged as ystar rus n y infl int rer .

The recursive structure implies that
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Figure 4.26: Response of Demand (N) and Income (Y) to Interest Rates for the
Brazilian SVAR With Foreign Variables Exogenous
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Figure 4.27: Response of Inflation (INFL) to Demand (N) and Output Shocks
(Y) for the Brazilian SVAR With Foreign Variables Exogenous
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Figure 4.28: Response of the Real Exchange Rate (RER) to an Interest Rate
(INT) Shock for the Brazilian SVAR With Foreign Variables Exogenous
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Figure 4.29: Response of Demand (N) and Output (Y) to the Real Exchange
Rate (RER) for the Brazilian SVAR With Foreign Variables Exogenous
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Figure 4.30: Response of Real Exchange Rate (RER) to a Foreign Output Shock
(YSTAR) in the Brazilian SVAR Models

A =



1 0 0 0 0 0 0
NA 1 0 0 0 0 0
NA NA 1 0 0 0 0
NA NA NA 1 0 0 0
NA NA NA NA 1 0 0
NA NA NA NA NA 1 0
NA NA NA NA NA NA 1


,

B =



NA 0 0 0 0 0 0
0 NA 0 0 0 0 0
0 0 NA 0 0 0 0
0 0 0 NA 0 0 0
0 0 0 0 NA 0 0
0 0 0 0 0 NA 0
0 0 0 0 0 0 NA


Under the assumptions being used about exogeneity of the foreign sector the
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VAR(1) lagged coefficient matrix has the form

B1 =



NA NA 0 0 0 0 0
NA NA 0 0 0 0 0
NA NA NA NA NA NA NA
NA NA NA NA NA NA NA
NA NA NA NA NA NA NA
NA NA NA NA NA NA NA
NA NA NA NA NA NA NA


Now rather than choosing to fill in the L1 matrix to specify B1, the VAR restric-
tions can be imposed by selecting “Text” and inserting the following commands
in the adjacent text box:

@L1(1 ,3)=0
@L1(1 ,4)=0
@L1(1 ,5)=0
@L1(1 ,6)=0
@L1(1 ,7)=0
@L1(2 ,3)=0
@L1(2 ,4)=0
@L1(2 ,5)=0
@L1(2 ,6)=0
@L1(2 ,7)=0

We can do the same for the A and B matrices. However, it is tedious to
write these out. Instead we exploit the recursive structure and capture it in
the following two commands which need to be inserted in the text box after
Proc→Estimate Structural Factorization is selected:

@UNITLOWER(A)
@DIAG(B)

The first command says A has units down the diagonal and zeros above - the
lower part of A will be estimated. The DIAG(B) command says B is diagonal.
As one can see from above this is required structure for A and B in this example.

If one wants to write an EViews program then the following code (see also
e10 example 6.prg) would do that:

’ Requires e 1 0 b r a z i l . wf1
var b r a z i l s v a r . l s 1 1 ys ta r rus n y i n f l i n t r e r
b r a z i l s v a r . r e s u l t s
b r a z i l s v a r . l s 1 1 ys ta r rus n y i n f l i n t r e r
@ r e s t r i c t @l1 (1 ,3)=0 , @l1 (1 ,4)=0 , @l1 (1 ,5)=0 ,
@l1 (1 ,6)=0 , @l1 (1 ,7)=0 , @l1 (2 ,3)=0 ,
@l1 (2 ,4)=0 , @l1 (2 ,5)=0 , @l1 (2 ,6)=0 , @l1 (2 ,7)=0
b r a z i l s v a r . c l e a r t e x t ( svar )
b r a z i l s v a r . append ( svar ) @UNITLOWER(A)
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b r a z i l s v a r . append ( svar ) @DIAG(B)
b r a z i l s v a r . svar

4.6.6 Restrictions on Parameters and Partial Exogeneity:
External Instruments

A literature has emerged where it is possible to estimate the SVAR by using
“external instruments”. These variables function like instruments in that they
are uncorrelated with some of the structural shocks and therefore exogenous to
the corresponding structural equations. However, they are correlated with other
structural shocks, i.e. there is only partial exogeneity. Applications have been
made by Olea et al. (2013) and Mertens and Ravn (2012). In the latter the
external instrument is a set of “narrative” fiscal shocks constructed by Romer
and Romer (2010), while Olea et al. use a variable constructed by Kilian (2008)
on the oil supply shortfall. To use these instruments effectively it needs to be
ensured that they do not appear in the structural equations whose shocks they
are uncorrelated with. If they did appear moment conditions would be “used
up” in estimating the coefficients of such variables in each structural equation
in the model. Hence there must be some parameter restrictions in the system
of equations of the larger system that incorporates the instruments.

To see an application of the methodology and how it might be implemented
in EViews we follow Mertens and Ravn (2012) and return to the Blanchard and
Perotti model. In its general form it is

z1t = a1z3t + a′2ε2t + lags+ ε1t

z2t = b1z3t + b′2ε1t + lags+ ε2t (4.26)

z3t = δ1z1t + δ2z2t + lags+ ε3t

Now they set b1 = 0 which seems unexceptional. Because this system could
not be estimated they reduced the number of unknown parameters to six by
first fixing a1 to 2.08, thereafter setting either a′2 or b′2 to zero, leaving only one
of them to be estimated. Mertens and Ravn propose estimating the remaining
eight parameters of the system by using external instruments (or what they
refer to as a proxy). Given that there is such an instrument, mt, it is assumed
that E(mtε1t) 6= 0, E(mtε2t) = 0 and E(mtε3t) = 0.

To see how this might be handled in EViews, we augment the SVAR used
by Blanchard and Perotti with an equation for mt. Then the SVAR system
becomes

z1t = a1z3t + a′2ε2t + lags+ ε1t (4.27)

z2t = b′2ε1t + lags+ ε2t (4.28)

z3t = δ1z1t + δ2z2t + lags+ ε3t (4.29)

mt = lags+ ρε1t + εmt, (4.30)
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where E(εmtεjt) = 0, j = 1, ..., 3.
This structure incorporates the restrictions pertaining to the external in-

strument mt given above. Then (4.27) - (4.30) is a standard SVAR with ten
restrictions coming from the fact that all shocks are uncorrelated. Two of these
are needed to estimate ρ and the standard deviation of εmt, while the remain-
ing eight are used to estimate the parameters a1, a

′
2 etc. The model is therefore

exactly identified. To estimate it using EViews we use the (A,B) technology
for Azt=Bηt+lags, with these matrices being defined by

A =


1 0 −a1 0
0 1 0 0
−δ1 −δ2 1 0

0 0 0 1

 , B =


σ1 a′2σ2 0 0
b′2σ1 σ2 0 0

0 0 σ3 0
ρ 0 0 σm

 .
We note that in the applications by Mertens and Ravn (2012) and Olea et al.
(2013) there do not seem to be any lags in the equation for mt. If one wants to
impose such a specification then it would be necessary to impose zero restrictions
upon the Aj (i.e., lag) matrices using the SYSTEM object in the same way as
described in the preceding sub-section.

4.6.7 Factor Augmented SVARs

Often many variables may be available to a researcher which are expected to in-
fluence macro-economic outcomes. Thus financial factors and confidence might
be important to household decisions. Because there is rarely a single measure
of these factors, there is a tendency to utilize many approximate measures, par-
ticularly involving data surveying the attitudes of financial officers, households
or businesses. There are far too many of these measures to put them all into a
SVAR, so some aggregation is necessary. For a small system involving macroe-
conomic variables such as the unemployment rate, industrial production and
employment growth, Sargent and Sims (1977) found that two dynamic factors
could explain 80 percent or more of the variance of those variables. One of the
factors was primarily associated with real variables and the other with inflation.
Bernanke et al. (2005) extended this approach and they proposed augmenting
a SVAR with a small number of factors.

We considered the Bernanke et al. (2005) Factor Augmented VAR model in
Chapter 2. There are two difficulties in implementing a factor oriented approach.
One is how to measure the factors and the other is how to enter these into a
SVAR, particularly in deciding on how to estimate the contemporaneous part of
the SVAR. In Chapter 2 following Bernanke et al. three factors were extracted
from a set of 119 series Xt. These factors were the principal components and
will be referred to as F̂t (in Chapter 2 these were called pc1 x, pc2 x etc.). One
variable not in Xt was Rt (the Federal Funds Rate). We might think about
forming a SVAR with F̂t and Rt present to capture the effects of monetary
shocks upon the factors F̂t. However, because Rt would react to F̂t, and there
is no reason to think that interest rates won’t contemporaneously react to some
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of the variables in Xt from which the principal components are computed, then
a recursive SVAR model with F̂t and Rt would be inappropriate. So one needs
to impose some other identification assumption upon the SVAR to enable it to
be estimated.

The system Bernanke et al. have in mind consists of

Xt = ΛFt + ΛrRt + et (4.31)

Ft = Φ11Ft−1 + Φ12Rt−1 + ε1t (4.32)

Rt = Φ21Ft−1 + Φ22Rt−1 +BFt + ε2t, (4.33)

where Xt is an N × 1 vector of “informational variables”, Ft is a K × 1 vector
of factors and Rt is a nominal interest rate. N is much greater than K. (4.31) is
their equation (2), while (4.32)− (4.33) correspond to their equation (1), except
it is written as a SVAR rather than a VAR. The SVAR structure comes from
their examples, in which the factor Ft enters contemporaneously into the central
bank’s decision rule for interest rates along with the statement (p 401) that “all
the factors entering (1) respond with a lag to changes in the monetary policy
instrument”. We will focus on the empirical part of the paper where there is
a single observable factor - the interest rate - although they also suggest that
Rt might be replaced by a vector Yt of observables. In their application Xt

in (4.31) is a large data set of 119 variables, where Rt is excluded from Xt.
18

This data set consists of “fast moving” and “slow moving” variables, where
the difference is that the 70 slow moving variables Xs

t in Xt do not depend

contemporaneously on Rt. The fast moving variables will be Xf
t and they do

have a contemporaneous dependence.
Given the factor structure, the key identification assumption is Bernanke et

al.’s suggestion that the slow moving variables depend contemporaneously on
the factors but not the interest rate, i.e.

Xs
t = GFt + vt.

Now suppose that K principal components (PCs) are extracted from the
Ns elements in Xs

t . Then Bai and Ng (2006, 2013) show that the asymptotic
relation between the principal components (PCst ) and the K factors will be
Ft = (H × PCst ) + ξt, where ξt is Op(

1√
Ns

). Provided Ns → ∞ such that
√
Ns

T → 0 the principal components asymptotically span the space of the factors.
Bai and Ng (2013) consider what would be needed for H to be the identity
matrix, and state some conditions that would need to be enforced in forming
the principal components, but these methods are unlikely to have been used in
the FAVAR applications. Therefore replacing Ft by Ft = HPCst in (4.32) and
(4.33) will give A1

11 = H−1Φ11H etc. and

PCst = A1
11PC

s
t−1 +A1

12Rt−1 +H−1ε1t (4.34)

Rt = A1
21PC

s
t−1 +A1

22Rt−1 +A0
21PC

s
t + ε2t (4.35)

18Here we follow the Matlab program that Boivin supplied to reproduce their results.
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This is an SVAR in Rt and PCst except that, unlike a regular SVAR, the shocks
in the PCst equations are contemporaneously correlated.19 The presence of an
unknown H in H−1εt will mean that it is not possible to calculate impulse
responses with respect to the shocks ε1t. It is also not possible to estimate H
from the covariance matrix of H−1ε1t, because the former has K2 elements and
the latter has K × (K + 1)/2 elements. Nevertheless, once the SVAR in PCst
and Rt is estimated, the impulse responses to the monetary shock ε2t can be
found.

To determine the impact upon members of Xf
t and Xs

t it is necessary to
express these in terms of the SVAR variables. Thus, using the mapping between
factors and principal components,

Xs
t = GH(PCst ) + vt

and the regression of Xs
t on PCst consistently estimates GH, because Ft is

assumed uncorrelated with vt. Consequently, the impulse responses of Xs
t to

the monetary shocks can be computed. In general

Xt = (ΛH)PCst + ΛrRt + et, (4.36)

and the same process gives the weights ΛH and Λr.
Now, the K principal components of X (PCxt ) can be written as

PCxt = w′Xt,

where w′ are the matrix of weights found from the PC analysis. Then, using
(4.36),

PCxt = w′[(ΛH)PCst + ΛrRt + et]

= (w′ΛH)PCst + w′ΛrRt + w′et

= G1PC
s
t +G2Rt + w′et, (4.37)

and a regression of PCxt against PCst and Rt consistently estimates w′ΛH and
w′Λr. Adding this to the system of SVAR equations results in the complete
system to find impulse responses.

The above analysis describes a SVAR that can be used to find impulse re-
sponses of variables in Xt to interest rate shocks. However, this is not the system
that Bernanke et al. work with. Rather they first regress PCxt against PCst and
Rt to estimate G1 and G2 in (4.37), and then use F̃t = PCxt −G2Rt in a block
recursive SVAR ordered as (F̃t, Rt). Can one recover such a SVAR from the one
involving PCst and Rt? The answer is in the negative. To see why look at the
definition of F̃t = PCxt − G2Rt. From (4.37) that means F̃t = G1PC

s
t + w′et.

19Because the same regressors appear in all the equations in (4.34) the OLS estimator of
the parameters of those equations is efficient. But the non-diagonal covariance matrix for the
errors coming from H−1ε1t means that this would need to be allowed for when getting the
standard errors of H−1Φ11H and H−1Φ12H.
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Hence, assuming that the number of principal components PCst is not larger
than PCxt , it follows that PCst = Φ1F̃t + Φ2et. Substituting this into (4.34)
and (4.35) shows that the two equations will have et entering into the error
terms of both equations, i.e. F̃t will be correlated with the error term for the
Rt equation.20 Consequently, if one regresses Rt on F̃t−1, Rt−1 and F̃t one will
get inconsistent estimators for the parameters of the Rt equation, and therefore
the same will be true of the impulse responses.21 Hence the method Bernanke
et al. use to account for simultaneity does not deliver consistent estimators of
the impulse responses of interest. One needs to use the SVAR formulated with
the slow-moving variables and then recover the impulse responses to Xt (say
industrial production ipt) from (4.36).

In practice some further adjustments are also required to compute the im-
pulse responses of interest. First, since variables like ipt have been standardized,
it is necessary to multiply by the standard deviation of ipt to get back to the
responses of the original industrial production variable. Second, a variable such
as industrial production enters into Xt in growth form (specifically log differ-
ence form). Therefore, to get the impact on the levels of industrial production,
it is necessary to accumulate the impulse responses. Lastly, it is necessary to
form the exponential of these in order to arrive at the responses of the level of
industrial production.

Figure 4.27 presents some impulse responses for a range of variables to a
shock in the Federal Funds Rate. This example is taken from Bernanke et al.
The two impulses presented in each graph are for the FAVAR based on just the
slow moving variables and also the results from the “purging” method used by
Bernanke et al. The size of the shock is the same as used by those authors.
The variables presented are LEHCC (Average Hourly Earnings of Construction
Workers), CMCDQ (Real Personal Consumption Expenditures), PUNEW (the
CPI, all items), EXRJAN (Yen/ Dollar Exchange Rate), IP (Industrial Produc-
tion Index) and HSFR (Total Housing Starts). For all variables except housing
starts the impulses are accumulated, since those variables were measured as the
change in the logarithms. Consequently, the responses measure the impact of
interest rate shocks upon the level of the CPI, industrial production etc. As
Fisher et al. (2016) point out this specification means that the level of indus-
trial production and consumption will be permanently affected by a one period
interest rate shock, and this is apparent from the graphs. There are differ-
ences between the two sets of responses, notably for industrial production, the
exchange rate and the CPI. The inconsistent estimates found from using the
Bernanke et al. approach are much larger than those found using the SVAR in
slow moving variables.22

20It is also the case that et−1 enters into both error terms and so the system will not be a
SVAR but a SVARMA process.

21Boivin and Giannoni (2009) suggest an iterated version of this strategy but it also fails
to consistently estimate the parameters of the SVAR being used.

22The EViews code for estimating the original FAVAR model by Bernanke et al. can
be found in the sub-directory “BBE” in the “EViews Content” folder. See the files named
bbe f1.prg and bbe f2.prg. The program bbe f1 alt.prg implements the alternative approach
described in this section.
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Figure 4.31: Comparison of Impulse Responses to Interest Rate Shocks from
OPR and Bernanke et al.
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Quite a few applications of FAVAR models exist. Eickmeier and Hofmann
(2013) use a (FAVAR) estimated to analyze the US monetary transmission via
private sector balance sheets, credit risk spreads, and asset markets, and to
study the “imbalances” observed prior to the global financial crisis - high house
price inflation, strong private debt growth and low credit risk spreads. Lombardi
et al. (2010) using a set of non-energy commodity price series extract two factors
and place these in a VAR together with selected macroeconomic variables.

4.6.8 Global SVARs (SGVARs)

One example of a VARX system is the Global VAR (GVAR). In this there is
a typical VAR equation for the i′th country which expresses zit (say the log of
GDP for the i’th equation) as a function of a global variable z∗it

zit = Aizt−1 + δiz
∗
it + εit.

Here z∗it =
∑n
j=1,j 6=i ωijzjt is a “world” variable from the perspective of the i’th

country, ωij are trade or financial flow weights. This means that the value of
zit for the i′th country does not appear in z∗it. GVARS mostly use generalized
impulse responses and so are not really SVARs, but recently some SGVARs
have been proposed. We look briefly at this literature as one has to be careful
using it, and that has not been true of some applications.

The example we will work with is a SGVAR with 3 countries where, for
simplicity, lags will be ignored. This will yield the three equations

z1t = δ1z
∗
1t + ε1t = δ1(ω12z2t + ω13z3t) + ε1t

z2t = δ2z
∗
2t + ε2t = δ2(ω21z1t + ω23z3t) + ε2t (4.38)

z3t = ε3t,

where εjt are structural shocks and the third country is the “numeraire” in the
sense that it has no corresponding z∗3t. This is an SVARX due to z∗it being in
the equations and being treated as exogenous.

Can we estimate the first country equation with OLS? To answer this we
need to look at the correlation between z∗1t and ε1t, which is found from

E(z∗1tε1t) = E(ω12z2tε1t + ω13z3tε1t)

= E(ω12z2tε1t)

= ω12δ2ω21E(z1tε1t).

Clearly OLS is not consistent unless either ω12 = 0, ω21 = 0 (unlikely) or
δ2 = 0 (unlikely as well since it would mean that for the second country there
are no foreign influences). It would be different if (4.38) had the form

z2t = δ21ω21z1t + δ23ω23z3t + ε2t,

that is if δ21 6= δ23. Then δ21 = 0 might be imposed and the system would be
a recursive one with ordering (z3t, z2t, z1t). But the SGVAR imposes δ21 = δ23
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and, although this is parsimonious, it makes exogeneity of z∗1t in the z1t equation
implausible.

A number of applications have suggested that one can consistently estimate
the parameters in the equations of this SGVARX. However, what is being esti-
mated is not the first structural equation but a conditional equation describing
E(z1t|z∗1t) viz.

E(z1t|z∗1t) = δ1z
∗
1t + E(ε1t|z∗1t).

Under joint normality of the shocks E(ε1t|z∗1t) = ρz∗1t, where ρ is proportional to
corr(ε1t, z

∗
1t), and this is not zero unless δ2 = 0. Hence the conditional equation

is

E(z1t|z∗1t) = (δ1 + ρ)z∗1t,

and so what is being consistently estimated is (δ1 +ρ) rather than δ1, which was
the coefficient of the basic SGVARX model. For some purposes, e.g. forecasting,
it may be irrelevant that what is being estimated is δ1 + ρ rather than δ1, but
this not true for impulse responses.

EViews does not enable researchers to easily estimate GVAR models. There
is software using MATLAB that is available at

http : //www − cfap.jbs.cam.ac.uk/research/gvartoolbox/download.html

4.6.9 DSGE Models and the Origins of SVARs

Theoretical models like DSGE have structural equations such as

z1t = φz1t−1 + ψEtz1t+1 + ρz2t + v1t. (4.39)

The system they are part of generally reduces to a VAR(1) in the variables
provided there is no serial correlation in the structural shocks. If shocks are
first order serially correlated then the VAR for the system has a maximum
order of two. The question then is what does this imply about SVARs?

Suppose there is a 3 variable structural system containing the equation above
and there is a VAR(1) solution to it. Then this implies

z1t = b111z1t−1 + b112z2t−1 + b113z3t−1 + e1t

and

Etz1t+1 = b111z1t + b112z2t + b113z3t. (4.40)

Eliminating expectations in (4.39) using (4.40) it becomes

z1t = φz1t−1 + ψ(b111z1t + b112z2t + b113z3t) + ρz2t + v1t

which can be written as

(1− ψb111)z1t = φz1t−1 + (ψb112 + ρ)z2t + ψb113z3t + v1t
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Gathering terms we get

z1t = a1
11z1t−1 + a0

12z2t + a0
13z3t + ε1t (4.41)

a1
11 =

φ

(1− ψb111)
, a0

12 =
(ψb112 + ρ)

(1− ψb111)

a0
13 =

ψb113

(1− ψb111)
, εt =

v1t

(1− ψb111)

This equation is a structural equation in an SVAR. There are three parameters in
this SVAR equation and three parameters in the original DSGE equation. Hence
the SVAR equation is just a re-parameterization of the DSGE one. Note the
difference to a standard SVAR - z2t−1, z3t−1 are excluded from the SVAR. Thus
DSGE models certainly employ exclusion restrictions in estimation in order to
get identification. In practice other restrictions are also used by DSGE models
to get identification and these arise from the fact that there are a smaller number
of unknown parameters in the DSGE model than the implied SVAR model, i.e.
the parameters b1ij may be functions of less than three parameters. Hence there
are restrictions upon the SVAR parameters in (4.41). These are often referred to
as cross-equation restrictions since the fundamental set of parameters appear in
other equations as well. Pagan and Robinson (2016) have an extended discussion
of the relationship between DSGE and SVAR models.

4.7 Standard Errors for Structural Impulse Re-
sponses.

Because Ĉj = D̂jĈ0 the impulse responses are now combinations of those found
with the VAR. We discussed how to find standard errors for Dj in Chapter 3,
but it is now apparent that there is a complication when evaluating those of
Ĉj . This comes from the fact that it is a product of “two” random variables Ĉ0

and D̂j . Normally asymptotic standard errors for such products are found by

using the delta method, but that assumes both Ĉ0 and D̂j can be regarded as
normally distributed in large samples. It may be a reasonable assumption for
D̂j but it is far less likely to be true for Ĉ0, and we now examine why this might
be so.

To see the argument in its simplest form consider a two-variable structural
system consisting of a money demand function and an interest rate rule. As it
is C0 which is of interest it will be assumed that there are no lagged values in
the equations and that income effects are set to zero (if income is introduced
one would need a three-variable system). Then the normalized system is

mt = a0
12it + ε1t (4.42)

it = a0
21mt + ε2t. (4.43)

In matrix form this becomes[
1 −a0

12

−a0
21 1

] [
mt

it

]
=

[
ε1t

ε2t

]
,
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and the contemporaneous impulse responses will be

C0 = A−1
0 =

[
1 −a0

12

−a0
21 1

]−1

=

 1
1−a012a021

a012
1−a012a021

a021
1−a012a021

1
1−a012a021

 .
Notice the estimated impulse responses are functions of the estimators of the

structural coefficients a0
12 and a0

21. Consequently, two things could go wrong.
One is that â0

12 and â0
21 may be non-normal (in finite samples). As emphasized

before these are effectively estimated by instrumental variables and we know
that, if the instruments are weak, then these distributions can be far from
normal, even in quite large sample sizes. If the system is recursive then that
should not be an issue, as the instruments are the variables themselves, but in
other instances one cannot be so confident. The other problem comes from the
fact that the contemporaneous impulse responses C0 involves ratios of random
variables. Whilst products of random variables can generally be handled quite
well with the δ-method, this is not so true when ratios are involved. Figure
4.32, taken from Pagan and Robertson (1998), shows an example of this using
the money supply and demand model in Gordon and Leeper (1994), which is
a more sophisticated version of the two equation system discussed above. It is
clear that normality does not hold for the estimators of the coefficients a0

ij and
this goes over to affect the impact of a money supply shock upon the interest

rate (η =
a021

1−a012a021
).

One needs to be cautious with the “confidence intervals” for SVARs coming
out of packages such as EViews if it is felt that weak instruments are present. It
is known that the Anderson-Rubin test is a good way to test hypotheses in the
presence of weak instruments and MacKinnon and Davidson (2010) argue that a
“wild bootstrap” can produce better outcomes than the Anderson-Rubin statis-
tic. We should also caution that bootstrap methods are not a complete solution
here as they are not guaranteed to perform well when instruments are weak.
However they would be better than using the asymptotic theory. In general the
bootstrap is better than asymptotics if the issue is a “divisor” problem rather

than a weak instrument problem, i.e. if it is the distribution of
â012

1−â012â021
rather

than that of â0
ij which causes the problems. There are more general methods to

handle weak instruments, but these relate to testing hypotheses about a0
ij and

not to functions like impulse responses.

4.8 Other Estimation Methods for SVARs

4.8.1 Bayesian

If the SVAR is exactly identified then the forecasts made with a SVAR would
be identical to that from the underlying VAR, i.e. it is only an estimate of B1

that is important for the forecast and not A0 and A1. In this context all that
an SVAR provides is an interpretation of the forecast in terms of the shocks
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Figure 4.32: Simulated Density Functions from the Parameter Estimators of the
Money Demand and Supply Model of Leeper and Gordon

identified with the SVAR. Now this changes if some priors can be placed upon
A0 and A1so that a BSVAR can be estimated. 23 So we need to consider firstly
how one would derive a posterior for these parameters given some priors and,
secondly, what sort of priors might be used. Sims and Zha (1998) noted there
was a difficulty in that priors such as the Minnesota mentioned in Section 3.4
were generally about B1. Because this is equal to A−1

0 A1 there now needs to be a
joint prior about the two matrices. They wrote p(A0,A1) = p(A1|A0)p(A0) and
prescribed priors for p(A1|A0) and p(A0). In particular p(A1|A0) was given the
Minnesota form meaning that parameters λ0,λ1, and λ3 need to be prescribed.
There is no λ2 because the SVAR model means that a distinction between the
prior variances on own lags versus others is not very meaningful. Because the
covariance matrix of the VAR errors et is A−1

0 (A−1
0 )′ the residual variance prior

essentially relates to A0. In EViews work this can either be Wishart or an
uninformative (i.e., flat) prior. Restrictions on the type of stationarity and co-
trending behavior are implemented with the dummy variable priors described
in Section 3.4. With these choices of priors one could find posterior densities
for A1|A0 that were normal.

Table 4.1 shows the forecasting performance for the small macro model using
the Sims-Zha prior. This should be compared to Table 3.1 in Section 3.4.4.
There is a slight improvement in the forecasts for inflation over those with the
VAR when using the Sims-Zha Normal-Wishart priors.

It is worth noting that there is a tendency today to perform Bayesian es-

23More generally it will be A0 and A1,...,Ap but for simplicity we just use a SVAR(1).
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Table 4.1: Forecasting Performance of the Small Macro Model using Bayesian
Estimation Methods, 1998:1-2000:1

Prior (µ5 = µ6 = 0) Variable RMSE MAE

Sims/Zha Normal-Wishart
Infl .803 .777
Gap 1.162 .973

Sims/Zha Normal-Flat
infl 1.272 1.221
Gap 1.333 1.082

timation in a different way than above, so as to allow more flexibility in the
choice of prior. Letting the log likelihood for a SVAR model be L(θ), where θ
are the parameters to be estimated, then the posterior density is the product of
the joint density f(z1,.., zT |θ) of the data with the prior p(θ). Hence the log of
the posterior density is C(θ) = L(θ) + log p(θ). Maximizing C(θ) with respect

to θ will give estimates of θ̂ that are the mode of the posterior. Asymptotically
the posterior density will be normal so we might assume that the density of θ̂

for any given sample is N(θmode, (
∂2C
∂θ2 )−1). In fact this is normally taken to be

the proposal density and the actual posterior density of θ̂ is simulated. EViews
does not perform Bayesian estimation for arbitrary likelihood functions L(θ).
However, using the optimize() routine in EViews applied to C(θ) would mean
that one might obtain the mode and then use the normal density approxima-
tion. The addition of log p(θ) to the log likelihood will often mean that it will
be easier to maximize C(θ) than to maximize L(θ), owing to the fact that the
prior is a smooth function of θ.

4.8.2 Using Higher Order Moment Information

Only the first two moments have been used to determine the VAR parameters.
If the data was normally distributed with constant variance then there would
be no further information in the summative model that could be exploited to
identify the structure. But, if there is non-normality or changing variances,
then the summative model capturing such features provides extra information
to identify the parameters. There have been a number of proposals along these
lines, e.g. Rigobon (2003) and Lanne and Lutkepohl (2008).

Rigobon used information about breaks in the unconditional variance. From
the connection between VAR and SVAR shocks we have

et = A−1
0 Bηt = Āηt,

ηt ∼ n.i.d(0, In)

cov(et) = Ω = ĀĀ′,

and to this point the last relation has been used to determine Ā after some
restrictions (like triangularity) are imposed on A0.
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Now suppose that there is knowledge that a break in the unconditional
variance occurs at a time R. This means

(i) for t = 1, ..., R, ηt ∼ n.i.d(0, In), cov(et) = Ω1

(ii) for t = R+ 1, .., T, ηt ∼ n.i.d(0, D), D diagonal, cov(et) = Ω2,
resulting in

Ω1 = ĀĀ′

Ω2 = ĀDĀ′.

There are n2 parameters in Ā, and n in D. To estimate these there are
n(n+1)

2 + n(n+1)
2 elements in Σ1 and Σ2 (i.e., two covariance matrices) from

the summative model. Hence all the elements in Ā can be estimated and no
restrictions need to be placed on the structure of Ā. This enables one to test
the validity of the recursive model since that places restrictions upon Ā.

The idea is a clever one, but clearly the timing of the break in cov(et) needs
to be known, and there must be no shifts in A0 for it to work. It is not entirely
clear why we would see one rather than the other. To implement this estimator,
one performs a simultaneous diagonalization on Σ1 and Σ2, and this can be
done with a generalized singular value decomposition rather than applying the
standard one that corresponds to the Cholesky decomposition.

In the example above, there was a break in the unconditional volatility at
a known time, i.e. the location of the two regimes is known. But one could
also work with a model where data selected the regimes and there was actu-
ally no break in the unconditional volatility. An example would be a Markov
Switching model with regime dependent volatility. One determines where each
regime holds, and then the regime specific variances Ω1 and Ω2 are estimated
by averaging the squared residuals over the observations for which each regime
applies. This idea is used in Herwartz and Lutkepohl (2011). They set up a
model where A0 and the transition probabilities of the MS model are estimated
jointly. They report that “The likelihood function is highly non-linear...The
objective function has several local optima”, and that a very good numerical
algorithm was needed to get to the global maximum. This is a feature of many
Markov Switching models.

Just as in the breaks-in-variance case, there may be other ways to find the
extra equations which will allow the determination of more elements of Ā than
a recursive model permits. For example, these extra equations might come from
either GARCH structures or non-normality in the errors.

4.8.3 Imposing Independence on the Shocks

One might return to where we started and observe that an alternative to the
structural shocks εjt being uncorrelated is to assume that they are independent
of each other. Gourieroux and Monfort (2014) argued that when the SVAR
shocks εt are linearly related to the VAR shocks, i.e. εt=Het, and are indepen-
dently but not normally distributed, then H will be unique, i.e. there is only one
linear combination H that will be compatible with the structural shocks being
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uncorrelated and independent, even though there are many that make them just
uncorrelated. Intuitively, this is because independence requires that εkit and εklt
be uncorrelated for all k,l=1,...,∞ (after mean corrections) and so this would
rule out many models, i.e. many choices of H. For any given H we can compute
εt and then test for whether the structural shocks are independent, rejecting any
H for which this does not hold. This of course requires a test for independence
and, in practice, that is not unique. The power of tests for independence can
be very weak and the method fails if εt normal. So one might ask whether we
would expect that data is normally distributed. With real data normality may
be acceptable but financial data generally show a lack of independence (as seen
with the prevalence of GARCH errors) so the idea of utilizing independence is
appealing.

The idea has been built on in different directions. Lanne et al. (2015) also
show that the assumption of independent shocks (with at most one marginal
distribution being Gaussian) allows a unique recovery of H. Their applied work
features some financial data and they assume that εt are formed from mixtures
of Student t densities. This enables them to estimate H by MLE. Of course
there may be other densities that could be used and so just selecting a single
one could result in a specification error, but presumably this can be can be
tested for. Herwartz and Plodt (2016) assume instead that one would choose
the model (H) which produces the least degree of dependence. This is done by
setting up some statistical test of independence and then choosing the model
that has the greatest p-value for the statistic, since this would imply that the
probability of rejecting the null hypothesis of independence is lowest.

These are useful ideas. There is an argument that independence is what is
needed if we are to indulge in experiments in which one shock is varied and
the others remain constant. Moreover, in cases where financial series such as
interest rates and exchange rates are present in SVARs, exploiting the higher
order moments may allow us to avoid assumptions such as H being triangular,
i.e. assuming the SVAR to be recursive. Such data is likely to exhibit non-
normality and it is implausible to assume that financial series such as these
are contemporaneously unrelated. The biggest issue would seem to be the use
of higher order moment information. To model complex densities generally
requires large sample sizes and this is rarely the situation in macroeconomics.
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Chapter 5

SVARs with I(0) Variables
and Sign Restrictions

5.1 Introduction

So far we have discussed methods of estimating the parameters of SVAR systems
that impose parametric restrictions either directly upon the structure itself or
upon the impulse responses. In the past decade a new method has seen increas-
ing use - that of imposing sign restrictions upon impulse responses, with early
studies being Faust (1998), Canova and De Nicoló (2002), and Uhlig (2005). Ta-
ble 5.1, taken from Fry and Pagan (2011), gives a partial summary of the studies
that have been done with the method. Our aim is to explain the methodology
and then evaluate what it can and cannot do. To accomplish the former task
Section 5.2 looks at two models that have been used for illustrative purposes in
earlier chapters - the market model and the small macro model. Sign restric-
tions are stated which would be plausible for the types of shocks embedded in
the models. Section 5.3 then looks at two methodologies for finding a set of im-
pulse responses that would be compatible with the sign restrictions, and applies
these methods to the two simple models used in Section 5.2. Section 5.4 then
explores the pros and cons of using sign restrictions, with particular emphasis
on some of the difficulties in using sign restrictions to find specific shocks in
SVARs. Section 5.5 discusses what happens if there is block exogeneity in the
SVAR system and Section 5.6 sets out how standard errors are computed for
impulse responses distinguished by sign restrictions.

We will argue that there are four problems that need to be resolved in using
the methodology.

1. Sign restrictions solve the structural identification problem but not the
model identification problem.

2. The lack of a unique model raises questions of which one you choose, and
existing methods may not choose a model that is even close to the correct
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one. Moreover, many of the schemes for selecting a representative model
depend on the way in which the set of models is generated and this may
influence the choice.

3. By themselves sign restrictions fail to identify the magnitude of the shocks,
but it is possible to correct for this by providing a suitable model structure,
specifically by providing a normalization of the structural equations.

4. There is a multiple shocks problem in that always needs to be addressed.

Although we will refer to the “signs” of IRFs, this is misleading. Any restrictions
involving something that can be computed from the structural model, e.g. signs
of parameters and covariances, quantitative constraints on these same quantities
etc. can all be handled with the same methodology. All that is needed is the
ability to be able to compute the quantity numerically.

5.2 The Simple Structural Models Again and
Their Sign Restrictions

Again we will use the two simple models to illustrate the arguments. One of
these is the market model, which will be written in SVAR(1) form as

qt = −βpt + φqqqt−1 + φqppt−1 + εDt

qt = αpt + φpqqt−1 + φpppt−1 + εSt

where qt is quantity, pt is price, εDt ∼ i.i.d(0, σ2
D) is a demand shock, εSt ∼

i.i.d(0, σ2
S) is a supply shock and cov(εDt, εSt) = 0. We think of a supply shock

as being a positive cost shock.
The VAR associated with this model is

qt = bqqqt−1 + bqppt−1 + e1t

pt = bpqqt−1 + bpppt−1 + e2t.

Now we would probably expect that the signs of the contemporaneous responses
of quantity and prices to positive demand and cost shocks would be those of
Table 5.2.

One has to be a careful in applying the restrictions. Take the market model.

Then the sign restrictions

[
− −
− +

]
would still be viewed as demand and sup-

ply shocks but now they are negative rather than positive. So if we came
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Table 5.1: Summary of Empirical VAR Studies Employing Sign Restrictions

Fluctuations Peersman (2005) STNI
Rüffer et al. (2007) STNI
Sanchez (2007) STNF

Ex Rate An (2006) STOI
Farrant/Peersman (2006) STNF
Lewis (2007) STNF
Bjørnland/Halvorsen (2008) MTNI
Scholl/Uhlig (2008) STNI

Fiscal Policy Mountford/Uhlig (2005, 2008) STNI
Dungey/Fry (2009) MPTNI

Housing Jarociński/Smets (2008) MTNI
Vargas-Silva (2008) STOI

Monetary Policy Faust (1998) STOI
Canova/De Nicoló (2002) STOF
Mountford (2005) STNI
Uhlig (2005) STOI
Rafiq/Mallick (2008) STOI
Scholl/Uhlig (2008) STNI

Technology Francis/Owyang/Theodorou (2003) MPTOI
Francis/Owyang/Roush (2005) MPTOF
Dedola/Neri (2006) SPTOF
Chari/Kehoe/McGrattan (2008) MPTNF
Peersman/Straub (2009) STNF

Various Hau and Rey (2004) STNF
Eickmeier/Hofmann/Worms (2009) STNI
Fujita(2009) STOI

Restriction Type: S = Sign only, M = Mixed

Shock Types: P = Permanent, T = Transitory

Number of Shocks: O = One only, N = Numerous

Restriction Source: F = Formal, I = Informal

Table 5.2: Sign Restrictions for Market Model (Positive Demand/Cost Shocks)

Variable\Shock Demand Cost
pt + +
qt + -
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Table 5.3: Sign Restrictions for Macro Model Shocks

Variable\Shock Demand Cost-Push Interest Rate
yt + - -
πt + + -
it + + +

across that pattern these would still show demand and supply shocks. Obvi-

ously

[
+ −
+ +

]
and

[
− +
− −

]
would also be acceptable. As the number of

shocks grows there will be many possible combinations, so it gets rather messy
to check all these. For this reason it would seem sensible to keep the number of
shocks identified by sign restrictions to a small number.

The small macro model involves an output gap (yt), inflation (πt) and a
policy interest rate (it) and its SVAR form is

yt = x′t−1γy + βyiit + βyππt + εyt

πt = x′t−1γπ + βπiit + βπyyt + επt

it = x′t−1γi + βiyyt + βiππt + εit,

with a VAR for x′t = ( yt πt it ) of

yt = x′t−1αy + e1t

πt = x′t−1απ + e2t

it = x′t−1αi + e3t.

In turn we might expect the sign restrictions of Table 5.3 to hold for positive
shocks.

5.3 How Do we Use Sign Restriction Informa-
tion?

There are two methods for utilizing sign restriction information to find impulse
responses to shocks. Both work with a set of uncorrelated shocks. In the first
step of both methods impulse responses for uncorrelated shocks εt are generated.
Then, in the second step, these are judged by whether they have the expected
signs of impulses. Those that pass this test are retained. The process is repeated
many times, after which there will be many sets of impulse responses that satisfy
the signs, and these will generally need to be summarized in some way.

Our first method will find many sets of impulse responses by re-combining an
initial set of responses, and we will designate this approach as SRR, where the R
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stands for re-combination. In the second method the sets of impulse responses
are found by varying the A0 matrix, recognizing that not all of its parameters
are estimable from the data. What will vary and produce a large set of impulse
responses are the non-estimable coefficients in A0. The estimable parameters
are estimated in such a way as to produce uncorrelated shocks. Because of the
emphasis upon the A0 coefficients of the SVAR we designate this method as
SRC, where C stands for coefficients.

5.3.1 The SRR Method

The key to the SSR method is the selection of a set of base shocks ηt that are
uncorrelated and which have zero mean and unit variance. One way of getting
these is to use the estimated structural shocks from assuming that the system
is recursive (this may be totally wrong but all we are trying to do is to get a set
of basis shocks that are uncorrelated). In that case

Arecur0 zt = A1zt−1 + εRt ,

where Arecur0 is a triangular matrix with unity on the diagonals (the equations
are normalized) and the εRt are the recursive system structural shocks. Then,

the estimated standard deviations of εRt can be used to produce ε̄Rjt =
εRjt

std(εRjt)
,

and the ε̄Rjt will have unit variances. Consequently if ηt is set equal to ε̄Rt , it can

be thought of as i.i.d.(0, In).1

Once ηt is found there is an MA structure that determines the impulse
responses. Thus, for the recursive model

zt = Crecur(L)εRt

= CR(L)ε̄Rt = CR(L)ηt,

showing that the impulse responses to the shocks ηt are different to the original
set. Given this feature the methodology of SRR involves forming new shocks by
combining those from the base shocks in such a way that the new shocks remain
uncorrelated, i.e. η∗t = Qηt, where the n × n matrix Q is required to have the
property

Q′Q = In, QQ
′ = In. (5.1)

It is crucial to observe that the new shocks η∗t need not come from a recursive
system even if ηt does. Note that one example of a Q would be the new shocks
found by re-ordering the variables in a recursive system.

1This is not the only way of getting ηt. Suppose we have a VAR(1) in pt, qt and the
covariance matrix of the errors in the VAR, et, is Ω. Applying a singular value decom-
position to Ω would produce P ′ΩP = D, where D is a diagonal matrix. Consequently
D−1/2P ′ΩPD−1/2 = I and ηt = D−1/2Pet would have the desired properties. It is easy
to find P,D in Matlab and Gauss since F = D−1/2P ′ is found from the Cholesky Decompo-
sition of Ω. Hence, for any summative model for which one can get et, one could apply the
Cholesky decomposition to its covariance matrix and thereby create a set of base shocks ηt.
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Why do we have the two restrictions upon Q? The second is used to ensure
that the new shocks are also uncorrelated since

var(η∗t ) = Qvar(ηt)Q
′ = QQ′ = In.

To see the role of the first observe that

zt = CR(L)ηt

= CR(L)Q′Qηt

= C∗(L)η∗t ,

Therefore, after re-combination we have produced a new set of impulse responses
C∗j , but now to shocks η∗t .

There are a number of ways to find a Q with the required properties. Two
popular methods derive from Givens rotations and Householder transforms. We
stress now that Q is not unique and this gives rise to what we will term the
model identification issue. Any given Q produces a new set of shocks and hence
a new model. The models are observationally equivalent since var(zt) is the
same. To see this put B1 = 0 and then var(zt) = C0C

′

0 = C0QQ
′C0 = C∗0C

∗′
0 .

The process doesn’t end with this first η∗t . It is repeated to produce many
impulse responses by varying Q. Each time these impulses are formed they are
tested for whether they obey the maintained sign restrictions. Thus, this leads
to the following modus operandi for SVARs found from sign restrictions.

1. Start with a set of uncorrelated shocks ηt that have In as their covariance
matrix.

2. Generate a new set of shocks η∗t = Qηt using a Q with the properties
Q′Q = QQ′ = In.

3. Compute the IRF’s for this set of shocks.

4. If they have the correct signs retain them, otherwise discard them.

5. Draw another Q.

5.3.1.1 Finding the Orthogonal Matrices

As mentioned above the matrices Q can be found in a number of ways. A useful
choice for expository purposes is that of the Givens matrix.

Givens Matrices A Givens matrix has a particular structure involving cosine
and sign terms. When there are two variables (n = 2) it has the form

Q =

[
cosλ − sinλ
sinλ cosλ

]
, 0 ≤ λ ≤ π
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Using cos2 λ+ sin2 λ = 1 it is easy to see that Q′Q = I2, as required. So, if we

put λ = π
10 = .314, this gives Q =

[
.951 −.309
.309 .951

]
, and the new shocks η∗t will

be formed from the base ones in the following way:

η∗1t = .951η1t − .309η2t

η∗1t = .309η1t + .951η2t.

Consequently, many different Q matrices and impulse responses will be gen-
erated by using a range of values for λ. Since λ lies between 0 and π we could
just set up a grid of values. An alternative is to use a random number generator
drawing λ (say) from a uniform density over 0 to π.

Let the m’th draw give λ(m),m = 1, ...,M. Once a λ(m) is available then

Q(m) can be computed and there will be M models with IRFs C
(m)
j . Of course,

although all these models are distinguished by different numerical values for λ,
they are observationally equivalent, in that they produce an exact fit to the
variance of the data on zt.

2 Only those Q(m) producing shocks that agree with
the maintained sign restrictions would be retained.

In the context of a 3 variable VAR (as in the small macro model) a 3 × 3
Givens matrix Q12 has the form

Q12 =

 cosλ − sinλ 0
sinλ cosλ 0

0 0 1

 ,
i.e. the matrix is the identity matrix in which the block consisting of the first
and second columns and rows has been replaced by cosine and sine terms and
λ lies between 0 and π.3

Q12 is called a Givens rotation. Then Q′12Q12 = I3 using the fact that
cos2 λ+sin2 λ = 1. There are three possible Givens rotations for a three-variable
system - the others being Q13 and Q23. Each of the Qij depends on a separate
parameter λk (k = 1, .., 3). In practice most users of the approach have adopted
the multiple of the basic set of Givens matrices as Q. For example, in the
three-variable case we would use

QG(λ) = Q12(λ1)×Q13(λ2)×Q23(λ3).

It’s clear that QG is orthogonal and so shocks formed as η∗t = QGηt will be
uncorrelated. Because the matrix QG above depends upon three different λk
one could draw each λk from a U(0,π) density function.

2This statement assumes a zero mean for zt.
3In general Qij is formed by taking an n × n identity matrix and setting Qii

ij = cosλ,

Qij
ij = − sinλ, Qji

ij = sinλ,Qjj
ij = cosλ, where the superscripts refer to the row and column

of Qij .
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Householder Transformations A suitable Q matrix can also be found using
Householder transforms. In the three-variable case one generates a 3×3 matrix
W from a three dimensional multivariate normal with zero mean and covariance
matrix I3. Then the QR decomposition is applied to W .

The QR decomposition is available in MATLAB, GAUSS, Stata and de-
composes W as W = QRR, where QR is unitary and R is triangular, so that
QR can be used as a Q. The method is computationally efficient relative to
Givens for large n and is numerically easy to perform. It was first proposed by
Rubio-Ramı́rez et al. (2006).

5.3.2 The SRC method

Because the shocks are connected to a SVAR, and we know from Chapter 4

that only n(n−1)
2 elements of A0 can be estimated (when A0 has unity on the

diagonals), after using the restriction that the shocks are uncorrelated there

will be n(n−1)
2 non-estimable parameters in A0. These need to be fixed to some

values if estimation is to proceed. The idea behind the SRC approach of Ouliaris
and Pagan (2016) is to choose some values for the non-estimable parameters in
A0 and to then estimate the remainder with a method which ensures that the
shocks are uncorrelated.

Because there is no unique way to set values for the non-estimable param-
eters, there will be many impulse responses coming from changing these pa-
rameter values, i.e. it performs the same task as varying the Q values in SRR.
So the key to the methodology resides in generating many values for the non-
estimable parameters, and these will be taken to depend upon some quantities
designated as θ. Broadly we will find values for the non-estimable parameters
by generating candidate values for θ from a random number generator. The
context may determine exactly how that would be done. Once again the models
found with different values of θ are observationally equivalent as the SVAR is
exactly identified.

5.3.3 The SRC and SRR Methods Applied to a Market
Model

Because the sign restrictions relate to contemporaneous responses it is useful to
omit any dynamics from the simple market model. Thus it will have the form

qt = αpt + ε1t (5.2)

qt = −βpt + ε2t, (5.3)

where qt is quantity, pt is price, and the shocks εjt are n.i.d.(0, σ2
j ) and un-

correlated with one another. The first curve might be a supply curve and the
second a demand curve (implying that both α and β are positive). Because lags
are omitted from (5.2) and (5.3) this is a structural system but not an SVAR.
Nevertheless, it is useful to abstract from lags, and this can be done without
loss of generality. Based on this model we could form

159



σ−1
S qt = (α/σS)pt + η1t (5.4)

σ−1
D qt = −(β/σD)pt + η2t, (5.5)

where ηjt are n.i.d(0, 1). The model can be represented as

aqt = bpt + η1t (5.6)

cqt = dpt + η2t. (5.7)

A unit shock to the εjt is then equivalent to one standard deviation shocks in
supply (eS,t = σSη1t = ε1t) and demand (eD,t = σDη2t = ε2t). The correspond-

ing impulse responses to these shocks will be

[
a −b
c −d

]−1

.

5.3.3.1 The SRR Method Applied to the Market Model

In the standard sign restrictions methodology (SRR) one way to initiate the
process is to start with a recursive model. For the market model this could be

qt = s1η1t (5.8)

pt = φqt + s2η2t. (5.9)

Data is that on qt and pt and the ηjt are n.i.d(0, 1), with sj being the standard
deviations of the errors for the two equations.

The first stage of SRR is then implemented by applying some weighting
matrix Q to the initial shocks η1t and η2t so as to produce new shocks η∗1t
and η∗2t, i.e. η∗t = Qηt. As mentioned above Q is chosen in such a way as
to ensure that QQ′ = Q′Q = I, which means that the new shocks are also
uncorrelated with unit variances. One matrix to do this is the Givens matrix

Q =

[
cosλ − sinλ
sinλ cosλ

]
, where λ are values drawn from the range (0, π). After

adopting this the new shocks η∗t = Qηt will be

cosλη1t − sinλη2t = η∗1t

sinλη1t + cosλη2t = η∗2t.

Using the expressions for η1t and η2t in (5.8) - (5.9) we would have

(cos(λ)/s1)qt − (sin(λ)/s2)(pt − φqt) = η∗1t

(sin(λ)/s1)qt + (cos(λ)/s2)(pt − φqt) = η∗2t,

which, after re-arrangement, is

[(cos(λ)/s1) + sin(λ)(φ/s2)]qt − (sin(λ)/s2)pt = η∗1t (5.10)

[(sin(λ)/s1)− cos(λ)(φ/s2)]qt + (cos(λ)/s2)pt = η∗2t. (5.11)
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Now this has the same form as (5.6) - (5.7) when

a = (cos(λ)/s1) + sin(λ)(φ/s2) b = (sin(λ)/s2)
c = (sin(λ)/s1)− cos(λ)(θ/s2) d = −(cos(λ)/s2)

εjt = η∗jt

(5.12)

The latter can hold since both sets of random variables are uncorrelated and
n.i.d.

Now the impulse responses for η∗t are produced by re-combining those for ηt
with the matrix Q, and this is generally how the strategy employed in SRR is
described.

An alternative view would be that the SRR method generates many impulse
responses by expressing the A0 coefficients of the SVAR model in terms of λ, and
then varying λ over the region (0, π). Once the impulse responses are found sign
restrictions are applied to decide which are to be retained. So we are generating
many impulse responses by making the market model parameters A0 depend
upon λ and the data (through φ, s1 and s2).

5.3.3.2 The SRC Method Applied to the Market Model

Rather than expressing the model parameters in terms of λ, consider the pos-
sibility of going back to (5.2) and making the coefficient α (taken to be the
non-estimable one) a function of θ, where θ varies over a suitable range. Given
a value for θ this will fix α. The estimable coefficients then need to be found
from the data in such a way as to produce uncorrelated shocks.

After setting θ to some value θ∗ estimation can be done using the following
method.

1. Form residuals ε̂∗1t = qt − α(θ∗)pt.

2. Estimate σ1 with σ̂∗1 , the standard deviation of these residuals.

3. Using ε̂∗1t as an instrument for pt estimate β by Instrumental Variables

(IV) to get β̂∗.

4. Using β̂∗ form the residuals ε̂∗2t = qt + β̂∗pt. The standard deviation of
these, σ̂∗2 , will estimate the standard deviation of the second shock. By the
nature of the estimation procedure the shocks ε̂∗1t and ε̂∗2t are orthogonal.

Using earlier results, the contemporaneous impulse responses to one standard

deviation shocks will be

[
1 −α(θ∗)

1 β̂∗

]−1 [
σ̂∗1 0
0 σ̂∗2

]
. Accordingly, just as

happened with λ in the SRR approach, we can vary θ and thereby generate many
impulse responses. These are directly comparable with the impulse responses
generated by SRR, except that they all depend upon θ and the data (via the
IV estimation) rather than λ and the data.

Because the technique consists of finding a range of impulse responses by
varying the coefficient α (through varying θ) it is the SRC method mentioned
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earlier. Of course the IV method here just provides a simple explanation of how
SRC works. Once α(θ∗) is formed one could just apply MLE to the system since
IV and MLE are identical in this exactly identified system. Sometimes there
can be convergence issues with MLE and a number of different starting values
are needed, and, if this happens, the IV estimates should be used as the starting
values since the MLE must equal them.

5.3.3.3 Comparing the SRR and SRC Methodologies

It is worth looking closer at these two methods. A number of points emerge:
(i) θ will normally be chosen so as to get a range of variation in α that

is (-∞,∞). This can be done by drawing θ from a uniform (-1,1) density and
then setting α = θ

1−abs(θ) .
4 By comparison, in SRR λ is drawn from a uniform

density over (0, π), because of the presence of λ in the harmonic terms. In both
approaches one has to decide upon the number of trial values of θ and λ to use,
i.e. how many sets of impulse responses are to be computed. We note that
there may be cases where it is possible to bound the values of the non-estimable
parameters, e.g. restrict θ so that it is less than (say) fifty, and this would then
have implications for how θ is generated (or possibly one would simply discard
models for which the non-estimable parameters lay outside the bounds).

(ii) In a SVAR with n variables and no parametric restrictions the number of
λj to be generated in the SRR method equals n(n−1)/2. Thus, for n = 3, three
λ′js are needed. This is also true of the number of θj used in SRC. So problems
arising from the dimensions of the system are the same for both methods. It
should be noted however that, when parametric restrictions are also applied
along with sign restrictions, the number of θj may be much smaller, and this
will be shown later. Such an outcome should be apparent because parametric
restrictions increase the number of estimable parameters in A0 and, since θj
relates to the non-estimable parameters, a smaller number of θj need to be
generated.

5.3.4 Comparing SRC and SRR With a Simulated Market
Model

To look more closely at these two methods we simulate data from the following
market model5

qt = 3pt +
√

2ε2t (5.13)

qt = −pt + ε1t

The true impulse responses for price and quantity (with the demand shock

first and supply second) are

[
.75 .3536
.25 −.3536

]
. Five hundred values for θ and λ

4In Ouliaris and Pagan (2016) other ways of generating θ are considered. It seemed that
this procedure produced the best coverage of the parameter space for α.

5Notice that we have made ε1t the demand equation shock compared to ε2t in (5.3).
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were generated from a uniform random number generator–over (0,π) for λ and
(-1,1) for θ–and the impulse responses based on the θ and λ were compared to
the sign restrictions in Table 5.2. SRR generates impulses that are compatible
with the sign restrictions 87.8% of the time and for SRC it is 85.4%. This is a
high percentage but, since the model is correct, this is what would be expected.
Inspecting these we find that among the 500 impulse responses the closest fit to
the true impulse responses for each method was6

SRC =

[
.7369 .3427
.2484 −.3605

]
, SRR =

[
.7648 .3529
.2472 −.3563

]
.

It is clear that among the 500 sets of responses for each method there is at
least one that gives a good match to the true impulse responses. Changing the
parameter values for the market model did not change this conclusion.

There was however some sensitivity to sample size. In the simulation above
1000 observations were used. When it is reduced to 100 observations the equiv-
alent results are

SRC =

[
.7421 .3615
.1702 −.3923

]
, SRR =

[
.7828 .4119
.1780 .− .3806

]
.

It seemed that SRC tended to produce a slightly better fit to the true impulse
responses, although they both provide a reasonable match.

5.3.5 Comparing SRC and SRR With a Small Macro Model
and Transitory Shocks

We will now look at the two methods in the context of the three-variable small
macro model.7 This was also used in Fry and Pagan (2011). The variables in
the system consist of three variables y1t, y2t and y3t, where y1t is an output
gap, y2t is quarterly inflation, and y3t is a nominal interest rate. All variables
are assumed to be I(0) and there are three transitory shocks - labeled demand,
costs and an interest rate. The expected signs of the contemporaneous impulse
responses are given in Table 5.3.

The model fitted is the SVAR(1)8

y1t = a0
12y2t + a0

13y3t + a1
12y2t−1 + a1

13y3t−1 + a1
11y1t−1 + ε1t (5.14)

y2t = a0
21y1t + a0

23y3t + a1
22y2t−1 + a1

23y3t−1 + a1
21y1t−1 + ε2t (5.15)

y3t = a0
31y1t + a0

32y2t + a1
32y2t−1 + a1

33y3t−1 + a1
31y1t−1 + ε2t. (5.16)

The SRR method begins by setting a0
12 = 0, a0

13 = 0 and a0
23 = 0 to produce

a recursive model, and then recombines the impulse responses found from this

6We just use a simple Euclidean norm to define the closest match to the true values. The
impulse responses are to a one standard deviation shock.

7The code for replicating the results in this section can be found in the folder “SIGN” in
the files called src.prg and srr.prg.

8For illustration we assume a SVAR of order one, but in the empirical work it is of order
two.
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model using the QG matrix that depends upon λ1, λ2 and λ3. In contrast,
the SRC method proceeds by first fixing a0

12 and a0
13 to some values and then

computing residuals ε̂1t. After this (5.15) is estimated by fixing a0
23 to some

value and using ε̂1t as an instrument for y1t. Lastly the residuals from both
(5.14) and (5.15), ε̂1t and ε̂2t, are used as instruments for y1t and y2t when
estimating (5.16).9

Once all shocks have been found impulse responses can be computed. Of
course three parameters have been treated as non-estimable and so they need to
be generated. This is done by defining a0

12 = θ1
(1−abs(θ1)) , a

0
13 = θ2

(1−abs(θ2)) , a
0
23 =

θ3
(1−abs(θ3)) , and then getting realizations of θ1, θ2 and θ3 from a uniform random

generator. Note that three different random variables θj are needed and these
correspond to the three λj in the Givens matrices. As for the market model the
methods are computationally equivalent.

Unlike the market model it is not easy to find impulse responses that satisfy
the sign restrictions. For both methods only around 5% of the impulse responses
are retained. 1000 of these were plotted for SRR in Figure 1 of Fry and Pagan.
Therefore, Figure 5.1 below gives the same number of impulse responses from
the SRC method (here the positive cost shocks mean a negative productivity
shock and, because, Fry and Pagan used a positive productivity shock in their
figure, an allowance needs to be made for that when effecting a comparison). It
seems as if SRC produces a broader range of impulse responses than SRR, e.g.
the maximal contemporaneous effect of demand on output with SRC is more
than twice what it is for SRR (we note that all impulse responses in the ranges
for both SRC and SRR are valid in that they have the correct signs and they
are all observationally equivalent).10

It is clear that there is a large spread of values, i.e. many impulse responses
can be found that preserve the sign information and which fit the data equally.
The spread here is across models and has nothing to do with the variation in
data. Hence it is invalid to refer to this range as a “confidence interval” as is
often done in the literature. Of course in practice we don’t know A1,Ω and so
these need to be estimated, and that will make for a confidence interval. We
return to that issue in a later section. Such dependence on the data provides
some possible extra variation in the spread for impulse responses, but it doesn’t
help to conflate this with the variation in them across observationally equivalent
models.

9Of course since the SVAR is exactly identified this IV procedure is just FIML. The reason
for explaining it in terms of IV is that such an approach will be clearer when we come to
permanent shocks. Nevertheless, given that programs like EViews and Stata estimate the
SVARs by FIML it will generally be easier to just set aij to generated values and then
perform FIML.

10This points to the fact that the impulses found with SRC and SRR may not span the
same space. Thinking of this in the context of the market model it is clear that we could
find an α (for SRC) that would exactly reproduce the same α as coming from SRR. But
the estimate of β found by both methods would then differ, and that would lead to different
impulse responses. These two sets of impulse responses will be connected by a non-singular
transformation but it will vary from trial to trial. If it did not vary then the impulse responses
would span the same space.
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It is worth observing that both SRC and SRR have a potential problem in
generating the widest possible range of impulse responses. For SRR this arises
in two ways. Firstly, in the selection of the initial set of impulse responses.
As mentioned earlier, this has been done by either the Cholesky or singular
value decompositions. The Cholesky decomposition requires an ordering of the
variables, so there will be different initial impulse responses depending on which
ordering one uses. Of course the SVD just adds another set. For any given Q
then we would get a different set of impulse responses depending on which choice
of factorization is used to initiate the process. Secondly, there is Q itself. The
Givens and simulation based method provide a Q with the requisite properties,
but there may well be others. If so, then one might expect different impulse
responses when those Q matrices are applied to the same initial model. This
problem shows up with SRC as well. Now it is in terms of the parameters
that are taken to be unidentified and which need to be generated. To be more
concrete, consider the fact that in our example with the small macro model a0

12,
a0

13 and a0
23 were the generated parameters. Instead, one might have chosen a0

31,
a0

32 and a0
21. If so, estimation would have started with (5.16) rather than (5.14).

For both methods this is a potential problem but perhaps not a real one
(provided the number of trials is large). It may well be that the range of impulse
responses generated is much the same, regardless of either the initial choice of
impulse responses or the unidentified parameters. What might happen is that
some choices require more trials than others in order to produce a relatively
complete set of impulse responses. Fundamentally, the issue arises because both
SRR and SRC focus on first producing a set of impulse responses to uncorrelated
shocks, after which they can be checked to see if they satisfy sign restriction
information. However, neither guarantees that this set is exhaustive.

5.4 What Can and Can’t Sign Restrictions Do
for You?

5.4.1 Sign Restrictions Will Not Give You a Single Model
- The Multiple Models Problem

How do we deal with the fact that there are many models that satisfy the sign
restrictions? If there is a narrow spread we would be presumably happy to
choose a single one. In practice people mostly report the median and some
“percentiles” like 5% and 95%. One of the problems with the median can be
understood in a model with two shocks and where we look at the first variable.
Choose the medians of the impulse responses of that variable to the two shocks

and designate them by C
(k1)
11 = med{C(k)

11 } and C
(k2)
12 = med{C(k)

12 }, where k1

is the model that has the median of the C11 impulses and k2 is the median
for those of C12. In general k1 doesn’t equal k2 so these median values are
impulse responses from different models. It is hard to make sense of that. It is
like using an impulse response for a money shock from a monetary model and
one for a technology shock from an RBC model. Moreover if they come from
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different models they are no longer uncorrelated as that requires that they be
constructed with a common Q. The whole point of SVAR work is to ensure that
shocks remain uncorrelated. In the event that they are correlated, techniques
such as variance decompositions cannot be applied.

Another problem with the median comes from the fact that the set of impulse
responses being summarized depends upon how they were generated, i.e. how θ
and λ are chosen. In its simplest form the problem can be seen in the application
of SRC to the market model. Here the parameter estimate β̂ depends on α(θ),

and so the density of β̂ (across models) must depend on the density of θ. Con-
sequently, the median value of impulse responses which come from combining
α and β̂ vary according to the density chosen for θ. So one needs to recognize
that, whilst there is a single median for a given set of impulse responses, this
depends on how θ and λ are chosen.

This issue has been pointed out by Baumeister and Hamilton (2015) in their
critique of Bayesian methods for summarizing the range of impulse responses.
What one makes of this depends a good deal on whether one wants to summarize
the generated impulse responses with a single measure or whether one is simply
interested in the range of outcomes, since that will not be affected by the choice
of method for generating θ and λ (although one does need to simulate many of
these for that to be true). If we designate the maximum and minimum values

of β̂ by β̂max and β̂min then it seems that a reasonable way to summarize the

outcomes in a single number would be to use the average of β̂max and β̂min.
Provided we have generated many models this should be less sensitive to how
α is generated than the median or other percentiles would be.

Of course the average may not be associated with a single model. We could
instead use something like the median target (MT) method proposed by Fry and
Pagan (2007) to choose a single model. The MT method finds the model that
has the nearest impulse responses to the median responses. It is worth finding
this model since if its responses differ substantially from the median responses
one can infer that the presented impulse responses and summary statistics are
problematic (i.e., are associated with correlated shocks).

The MT method and medians are sometimes close. An example comes from
using sign restrictions for demand and supply functions with the Blanchard
and Quah (1989) data. For the small macro model however they can be quite
different - see Figure 5.2.

Some other methods have been proposed to narrow the range.

1. Uhlig (2005) proposed a criterion that expressed a preference for the
largest (in absolute terms) impulses. In this connection he says “ it might
therefore be desirable to pick the one, which generates a more decisive
response of the variables, for which sign restrictions are imposed: this is
what the penalty-function approach does.” (p 414). It is unclear why it
is a good idea to select an extreme value from the range.

2. Some investigators use sign restrictions on more than just contempo-
raneous impulse responses. This can also narrow the range of models
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quite sharply, as seen in the 1000 impulse responses from the small macro
model. In many cases, however, this approach may not add much because
Cj = DjC0 and, since Dj is fixed from the VAR and does not depend on
the structure, whenever D0 > 0, any C0 > 0 automatically ensures that
Cj > 0.

3. One might reject many of the generated impulse responses as implausible
using some additional criteria. Kilian and Murphy (2012, p 1168) refer to
these as “...additional economically motivated inequality restrictions” - in
their case the magnitude of the estimated oil supply elasticity on impact.

This problem of model identification is not unique to sign restrictions. In re-
cursive systems there are many possible “orderings” of variables and so many
possible models, all of which fit the data equally well. Mostly this is dealt with
via a comment like “we tried other orderings with similar results”, which would
seem to imply a narrow range of responses.

To make this point more concrete take a recursive market model. Then it
needs to be decided whether we would order pt or qt first. When you think
about this you can see that the ordering is really a statement about how the
market operates. In one case quantity is predetermined and price adjusts. In
the other, price is predetermined and quantity adjusts. It may be that there is
institutional information about the relative likelihood of each of these, i.e. there
is extra information other than sign restrictions. This example suggests that
what is needed in any sign restriction application is supplementary information,
perhaps of the sort that Kilian and Murphy use. It is therefore relevant to
observe that, if we insisted on independence and a lack of correlation between
the shocks, it might be possible to come up with a single model and so to avoid
the issue of how one is to summarize the range of impulse responses altogether.

5.4.2 Sign Restrictions and the Size of Shocks?

The SRR process always starts with unit variance shocks that are uncorrelated.
Suppose one started with vit = εit

σi
, where εit are the true shocks and σi are the

true standard deviations. Then the base shocks would be ηit = vit. If these gave
impulses satisfying the sign restrictions a rise of one unit in ηit would mean a
rise in εit of σi, i.e. the impulse responses identified by sign restrictions are for
one standard deviation changes in the true shocks. The problem then is that
we don’t know what σi is unless σi = 1.11

In terms of the market model the problem is that εDt ∼ i.i.d(0, σ2
D), εSt ∼

i.i.d(0, σ2
S) and, by setting η1t = σ−1

S εSt, η2t = σ−1
D εDt, the demand and supply

equations have been converted to a structural system that has shocks with a
unit variance. What we really want are impulse responses to the demand and

11In a recursive system a one standard deviation to a shock can be found by looking at the
response of the variable that is the dependent variable of the equation the shock is attached
to. But this is not true in non-recursive systems and sign restrictions generate many non-
recursive systems. Only if the correct model is recursive would we be able to infer the standard
deviation from the response of a model variable.
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supply shocks and not to the ηit. The latter have the same signs as those for
εDt and εSt but, because sign information is invariant to the “magnitude” of
shocks, one does not directly recover the standard deviation of the shocks of
interest.

Much of the literature seems to treat the impulse responses as if they were
responses to a one unit shock, and this is clearly incorrect. How then is it that
the standard deviations can be estimated either when parametric restrictions
or the SRC method are applied? The answer lies in the normalization used
in those methods. Once this is provided the implied structural equations in
the SRR method can be recovered, along with the standard deviations of their
shocks. To illustrate, take the market model used to simulate data and write it
in the form

qt = −pt + η1t (5.17)

pt =
1

3
qt −

√
2

3
η2t =

1

3
qt − .4714η2t.

Taking the C0 from SRR that was closest to the true value of the impulse

responses for the market model, namely C0=

[
.7648 .3529
.2472 −.3563

]
, gives

C−1
0 =

[
.9905 .9810
.6872 −2.1262

]
. Thereafter, utilizing A0 =C−1

0 , and imposing a

normalization one gets the implied relations of

qt = −(
.9905

.9810
)pt +

1

.9905
η1t (5.18)

pt = (
.6876

2.1262
)qt −

1

2.1262
ε2t = .32qt − .4703η2t.

From these equations the standard deviations of the shocks would be 1.01 and
.4703, compared to the true ones of 1 and .4714. Of course many impulse
responses are produced by SRR and so there will be many values for σi.

It is worth emphasizing that this is also true for SRC, since that method
estimates σi as part of the estimable parameter set. Just as impulse responses

need to be summarized in some way, this will equally be true of the σ
(m)
i found

for the m′th model. There is not just one single standard deviation unless a
particular value for m is chosen by some criterion.

Does the problem just outlined matter? In some cases the answer is no.
The shape of the true impulse responses does not depend on σi. There are
also exercises that do not require the standard deviation of the shocks since
zt = C(L)εt = C(L)σσ−1εt = C∗(L)η∗t , e.g. forecast variance and variable
decompositions. Nevertheless, in many cases policy questions do depend on
knowing the standard deviation of the shocks, e.g. to answer questions like
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what is the effect of a 100 basis point shock in interest rates? Another problem
arising from not knowing the standard deviation of the true shocks is when
a comparison is made (say) of fiscal policy impulses across different countries
(or time), since any differences in magnitudes of the impulse responses may
be simply due to different standard deviations in the shocks for the countries
(time).

5.4.3 Where Do the True Impulse Responses Lie in the
Range of Generated Models?

Often sign restrictions are found from some DSGE model. The methodology to
do this is to compute impulses from that model for a big range of the model
parameters and then use the impulse response functions whose signs are robust
to the parameter values. Turning this around, one might ask whether you would
recover the true impulse responses if data were simulated from the DSGE model
and then the impulse responses were found with a sign restricted SVAR? In
general all one can say is that the true impulse responses will lie in the M
models that are generated from SRR or SRC (provided of course that M is
large enough). But where in the range do they lie? There is nothing which says
that they will lie at the median, as that is not “most probable” in any sense.
It is just a description of the range of generated impulses. In Fry and Pagan
(2011) a macro model was simulated and the true impulses were found to lie
at percentiles like 12.5 and .4, not at the median (50thpercentile). So there is
no reason to think that the median has much to recommend it, except as a
description of the range of outcomes. This result was also found in Jääskelä and
Jennings (2011).

Doing this for the market model produces median responses of

SRC =

[
.4082 .3119
.5284 −.4432

]
, SRR =

[
.6234 .5665
.3429 −.2655

]
.

Neither coincides with the true values nor are they the same, which can just
be a result of λ and θ being generated differently. Indeed, while the median
response of price to a demand shock is .4082 for SRC, the true response of .75
lies at the 89th percentile, and so the median response is only around one half
of the true value. Unless one had some extra information for preferring one set
of impulse responses to another the median has no more appeal than any other
percentile. As the result above shows, the percentile at which the true impulse
responses lie can also vary with which method, SRC or SRR, is used.

5.4.4 What Do We Do About Multiple Shocks?

There is also a multiple shocks problem. Often researchers only want to identify
one shock. This means that there will be n uncorrelated shocks but n − 1 of
these are “un-named”. As such we know nothing about their impacts. Can one
do this?
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As an illustration of the problems take the market model with two shocks,
where it is assumed that the only information known about their impacts is

summarized in C0 as

[
+ ?
+ ?

]
, where ? means that no sign information is

provided. Clearly one doesn’t have enough information here to discriminate
between the shocks, as one would not know what to do if the pattern in the

generated responses was found to be

[
+ +
+ +

]
, as two demand shocks in the

same model would be implausible.
This problem is sometimes mentioned in applied work but details supplied of

what was done about it are often scanty. One suspects that the search terminates
when one set of correct sign restrictions is found. Instead the presence of two
shocks with the requisite sign restrictions should cause the model to be rejected
as it cannot have two shocks with the same sign patterns.

5.4.5 What Can Sign Restrictions do for you?

There seem to be four ways for sign restrictions to be useful.

1. They tell you about the range of possible models (impulse responses) that
are compatible with the data.

2. The number of rejections of the generated models because of a failure to
match the sign restrictions would seem to be informative. In Peersman’s
(2005) SVAR model estimated by sign restrictions more than 99.5% of
generated models were rejected. This has to make one think that the data
is largely incompatible with the sign restrictions.

3. They are good for telling you about the shapes of responses and this can
help in choosing a parametric model.

4. Sometimes we might be happy to apply parametric restrictions so as to
isolate certain shocks but are doubtful about them for isolating others.
Because sign restrictions utilize much weaker information, in such cases
it can be useful to employ the sign restrictions to capture the remaining
shocks. Thus a combination of parametric and sign restrictions could be
desirable. As will be shown in the next chapter the SRC method is well
designed to handle combinations of parametric and sign restrictions and
the SRR approach has also been extended in this way - see Arias et al.
(2018).

5.5 Sign Restrictions in Systems with Block Ex-
ogeneity

Suppose we are using a VAR with exogenous variables, e.g. in an open economy
context. Then there are two sets of variables z1t and z2t . For convenience we
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will refer to the former as foreign variables and the latter as domestic. The
original system is recursive but, importantly, no lags of z2t (domestic variables)
appear in the VAR equations for z1t (foreign variables). This means that the
MA form for the SVAR is zt = C(L)ηt and it can be partitioned as[

z1t

z2t

]
=

[
C11(L) 0
C21(L) C22(L)

] [
η1t

η2t

]
.

Applying a Q matrix to the shocks ηt produces zt = C(L)Q′Qηt = C∗(L)η∗t ,
which in partitioned form will be (writing Q′ as F )[

z1t

z2t

]
=

[
C11(L) 0
C21(L) C22(L)

] [
F11 F12

F21 F22

] [
η∗1t
η∗2t

]
=

[
C11(L)F11 C11(L)F12

C21(L)F11 + C22(L)F21 C21(L)F12 + C22(L)F22

] [
η∗1t
η∗2t

]
.

To ensure that η∗1t corresponds to foreign shocks, and that foreign variables are
not affected by domestic shocks at any lags, it is necessary to have F12 = 0.
Consequently, since F = Q′ this means that Q21 = 0. But Q′Q = In so we must
have [

F11 0
F21 F22

] [
Q11 Q12

0 Q22

]
=

[
I 0
0 I

]
,

giving F21Q11 = 0, i.e. F21 = 0. But F21 = Q12 so this means Q must have the

form

[
Q11 0

0 Q22

]
, i.e. it is necessary to separately combine the foreign and

domestic base shocks. Although we don’t have Q′11Q22 = 0 the new shocks η∗1t =
Q11η1t and η∗2t = Q22η2t remain uncorrelated, because E(Q11η1tη

′
2tQ
′
22) = 0,

owing to E(η1tη
′
2t) = 0.

5.6 Standard Errors for Sign Restricted Impulses

5.6.1 The SRR Method

Let Ĉj be the impulse responses at the j′th lag for one standard deviation shocks
from a recursive model. These imply that

zt = Ĉ0ηt + Ĉ1ηt−1 + ...,

where ηt are the standardized recursive shocks, i.e. the base shocks. Then

zt = Ĉ0Q
′Qηt + Ĉ1Q

′Qηt−1 + ...

= Ĉ0Q
′η∗t + Ĉ1Q

′η∗t−1 + ...,

and η∗t are the sign-restricted shocks. We therefore have that Ĉ∗j = ĈjQ
′ so

that vec(Ĉ∗j ) = (Q⊗ I)vec(Ĉj).
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Now assume that vec(Ĉj) is normal with mean vec(C̄j) and variance V (at
least in large samples). The mean need not be equal to the true impulse re-
sponses since the recursive model that begins the process is most likely misspec-
ified. Hence the mean of vec(Ĉ∗j ) will be (Q⊗ I)E[vec(Ĉj)] while the variance

of Ĉ∗j will be

var(vec(Ĉ∗j )) = var{vec(Ĉ∗j )− (Q⊗ I)vec(C̄j))}

= var{(Q⊗ I)(vec(Ĉj)− vec(C̄j))}
= (Q⊗ I)var(Ĉj)(Q

′ ⊗ I)

Consequently the standard errors of the impulses vary according to the model
as summarized by Q. There is also a common component which is the variance
of the standardized recursive model shocks that initiated the process. The bias
will also be different.

5.6.2 The SRC method

In the case of the SRC method the standard errors will reflect the method used
to capture the estimable parameters. It is possible to use any method that
will estimate the parameters of a structural system, e.g. FIML, IV, Bayesian
methods. The standard errors found will vary from realization to realization.
Once a model is selected, then standard errors follow immediately.

5.7 Imposing Sign and Parametric Restrictions
with EViews 10

Consider the data in e10 svaroz.wf1. It contains data on an output gap (yt),
inflation (πt), an interest rate (rt) and a real exchange rate (qt)

12. The structural
model for this data is assumed to be partially recursive, i.e. there are some
parametric restrictions on the first two equations.

yt = α1
11yt−1 + α1

12πt−1 + α1
13rt−1 + α1

14qt−1 + ε1t

πt = a0
21yt + α1

21yt−1 + α1
22πt−1 + α1

23rt−1 + α1
24qt−1 + ε2t

rt = a0
31yt + a0

32πt + a0
34qt + α1

31yt−1 + α1
32πt−1 + α1

33rt−1 + α1
34qt−1 + ε3t

qt = a0
41yt + a0

42πt + a0
43rt + α1

41yt−1 + α1
42πt−1 + α1

43rt−1 + α1
44qt−1 + ε4t

If the model was completely recursive then a0
34 = 0, i.e. the real exchange rate

would have no contemporaneous impact upon the interest rate.
As this restriction might be implausible, it could be desirable to allow a0

34

to be non-zero. This creates an identification problem, but we can find a re-
stricted range for the possible impulse responses by using sign restrictions on the

12Expressed in terms of units of foreign currency per the local currency. Hence increases in
qt represent an appreciation
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Table 5.4: Sign Restrictions for Partially Recursive Open Economy Model
Shocks on Impact

Demand (+) Cost-Push (+) Interest Rate (+) Risk Premium (+)

y + - - +
π + + - +
r + ? + -
q ? ? + +

.

contemporaneous impulse responses. An example of using such restrictions is
provided below, where the exchange rate shock, which is assumed to be positive,
is labeled a “risk premium”.

Now it is important to note that the partly recursive nature of the system
above means that two of the shocks, ε1t and ε2t, are completely determined by
parametric restrictions and will not be changed by the sign restrictions used
to separate the interest rate and risk premium shocks. That is, the estimated
parameters in the first two equations are invariant to the value of a0

34 – hence
the contemporaneous impulse response of yt to the second shock must be zero.
It therefore makes sense to first set a0

34 = 0, check that the zero period impulse
responses to the demand and supply shocks have the correct signs and reject
the model if the responses do not. If the contemporaneous responses do have
the correct signs, then only the signs of the responses to ε3t and ε4t need to be
evaluated.

The matrix of contemporaneous sign responses to positive shocks would be
as shown in Table 5.4

The SRC method of Ouliaris and Pagan (2016) was used to produce a range
of impulse responses. This involves generating a range of values for a0

34 by
some simulation method. The method used was to draw from the uniform(-1,1)

distribution and map it to (−∞,∞) using the transformation
a034

1−abs(a034)
. It is

implemented in EViews 10 in e10 opensigns.prg with the commands:13

! theta1 = @runif (−1 ,1)
a34 = ! theta1 /(1−@abs ( ! theta1 ) )
opens i gns e10 . append ( svar ) @A(3 ,4)= a34

This produces a single set of impulse responses and it would be repeated
using different values of a0

34.
Note that one needs to add code to the EViews program a check of whether

the impulse responses generated by any specific value of a0
34 have the correct

signs.14 That can be done by matching the signs of the desired elements in the

13Note that if a034 had a non-random value, e.g. −0.186, then we would replace the above
commands with the command (recall that A(i, j) = −a0ij): opensigns e10.append(svar)

@A(3,4)= 0.186
14See e10 opensigns.prg for an example of this code.
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estimated S matrix with those, for example, in Table 5.4 Of course one has to
recognize that (say) the risk premium shock could be in either of the last two
columns of the estimated S matrix, so one needs to check them both. The best
way to proceed is to first check whether any of these columns has the correct risk
premium shock signs of Table 5.4. If not then one can reject these responses. If
there is a match then one ignores that column in subsequent steps and proceeds
to see if there is a shock (i.e., a column of S) that has the required signs of the
interest rate shock.

Basically the SRC method works here by imposing the parametric assump-
tions on the SVAR and then asking how sign restrictions are to be used to
separate the remaining shocks not identified by the parametric constraints.

5.8 Summary

Sign restrictions look attractive as they are acceptable to many investigators,
but weak information gives weak results. Often the results from sign restricted
SVARs have been presented as if the results are strong. In this chapter we
have argued that this is illusory. There are many unresolved problems with
the methodology. Getting a single set of impulse response functions is a key
one. To do this one needs to impose some extra information and that will
be context and institution dependent. In general one needs to think carefully
about the modeling process, and it seems doubtful that the methodology can be
automated. Combinations of parametric and sign restrictions would seem to be
the best use of this type of restriction rather than to just use it to the exclusion
of parametric methods.
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Chapter 6

Modeling SVARs with
Permanent and Transitory
Shocks

6.1 Introduction

Previous chapters assumed that all the variables that we are working with are
covariance stationary. But there is an increasing recognition that many eco-
nomic variables cannot be described in this way, and the nature of variables can
affect both the way an SVAR analysis is performed and the type of restrictions
that can be applied. Section 2 of this chapter looks at the nature of variables,
making a distinction between variables according to whether they are integrated
of order one (i.e., I(1)) or zero (i.e., I(0)). A variable that is I(1) is said to have
a stochastic trend and so can be thought of as non-stationary, while an I(0)
variable might be taken to be stationary.

Sometimes we will use this language of stationarity, although it is not a
rigorous distinction. An I(1) variable typically has a permanent component but
an I(0) variable only has a transitory component.1 Section 2 of the chapter looks
at the nature of these variables and the two types of shocks that can be present
in SVAR systems that have some I(1) variables in them. When faced with
the distinction between permanent and transitory components one solution has
been to extract a permanent component from the I(1) variables and use what
is left, the transitory component, in place of the variables themselves. Perhaps
the most favored approach is to use Hodrick-Prescott filtered data in the SVAR.
Consequently, Section 3 explains why this is not a valid methodology. For the
remainder of this chapter the original (unfiltered) data will be used in an SVAR.

Section 4 then goes through a series of examples to show how the methods of

1An exception is an I(1) variable driven by MA(1) innovations with a negative unit root
(i.e., εt − εt−1).
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previous chapters need to be modified to deal with I(1) and I(0) variables. These
examples all deal with the situation when there is no cointegration between the
non-stationary variables.2

The key feature of this chapter is that variables can be either stationary or
non-stationary, but the SVAR needs to be set up to respect the distinction. The
applications in Section 4 start with a simple two-variable money/income model
where both variables are non-stationary, moves on to a two-variable model with
a mixture of these features developed by Blanchard and Quah (1989) and then
to a four-variable model of oil price shocks in Peersman (2005). Lastly, we return
to the small macro model. Previously its data had been adjusted so as to ensure
that all variables were stationary, but now we work with the unadjusted GDP
data and treat it as being I(1). It becomes apparent that this change makes a
big difference to the impulse responses for monetary shocks.

6.2 Variables and Shocks

Economic series yt were originally viewed as stationary around a deterministic
trend, i.e.,

y = φ+ ψt+ zt; zt = b1zt−1 + et (b1 < 1). (6.1)

Estimates of φ and ψ could be found by regressing yt on a constant and time
and residuals ẑt could be constructed. This approach accounted for the dual
facts that (i) visually it seemed clear that there were consistent upward or
downward movements in many series and (ii) the deviations from these upward
or downward movements were persistent. If yt was the log of GDP then ẑt
became known as an output gap.

The new view of time series starting in the late 1950s was that b1 = 1 (see
Quenouille, 1957). In order to contrast the two cases we will put φ = 0, ψ = 0
so that zt = yt. Then the AR(1) series yt = b1yt−1 +et has a unit root if b1 = 1,
and the series yt is said to be I(1) or integrated of order 1. This process is
non-stationary. There are series that are non-stationary but not integrated, e.g.
some of the fractionally integrated class of processes, but these will be ignored.3

Once I(1) processes emerged it was recognized that some extra concepts
were needed. One of these was to observe that a unit root process meant that
the variance of zt was infinite. A good way of seeing this is to derive the variance
of yt given that y0 = 0. This is tσ2

e , so that the variance rises consistently with
time and eventually becomes infinite. Because the variance depends on t the
I(1) series is said to have a stochastic trend, as compared to the deterministic
trend of (6.1), where the word “trend” here is being used in two different ways.
A way of differentiating them is to ask what is the probability that yt would
return to y0 as t → ∞. For (6.1) this probability goes to zero. However, when
φ = 0, ψ = 0, b1 = 1, there is a pure random walk process that always returns
to where it started, although the time between returns lengthens, owing to the

2Chapter 7 describes the adjustments needed when there is cointegration.
3See Baillie (1996) for a review of long-memory processes.
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rise in the variance. Thus much of what is seen in graphs of series exhibiting
upward and downward movements is about whether φ 6= 0, not whether there
is a unit root process.

A second addition to the concepts needed for analysis related to the nature
of the shocks. Consider the experiment of raising et by one unit at t and re-
setting it to its initial value from t + 1 onward. Its impact (in a pure random
walk) is for yt+j to rise by one for all j ≥ 0, and so the effect of this change is
permanent. If however |b1| < 1, then the series is I(0) and, performing the same
experiment, yt+j rises by bj1. This tends to zero as j → ∞ (provided |b1| < 1)
and, because it dies out, the effect is transitory. In the first case et is called a
permanent shock and, in the second, it is a transitory shock. Notice that this is
about the effect of the shock, not its nature. In both cases the shock is a non-
integrated (stationary) process. Related to these distinctions pertaining to the
effect of the shocks was that a series yt could be decomposed into a permanent
and a transitory component. If a series was I(0) then it only had a transitory
component.

We will need to extend these definitions regarding shocks to handle more
than one series. Let us assume that there are three series. Therefore there
will be three shocks and a 3 × 3 matrix C showing the long-run effects of the
three shocks upon the three variables. The long-run effects of the k′th shock
on the l′th variable will be

∑
lim j→∞

∂ylt+j
∂ekt

, so the C matrix will have variables
arranged in the rows and shocks in the columns. Suppose we begin by assuming
that all three variables are I(1) and that the matrix looks like

C =


s1 s2 s3

v1 ∗ ∗ 0
v2 ∗ ∗ 0
v3 ∗ 0 0

 ,

where * means that the effect is non-zero. Thus in this case the first shock
(s1) has a non-zero long-run effect on all the three variables in the system. The
second shock (s2) affects the first two variables in the system and the last shock
(s3) does not affect any of the variables in the long run. Thus the first two
shocks are permanent, while the last shock is transitory since it has a zero long-
run effect on all the variables. Notice that a permanent shock can have zero
long-run effects on some I(1) variables but not on all of them. The rank of the
matrix C gives the number of permanent shocks, and in this case it is clearly
two, implying that there is only one transitory shock.

Now let us suppose that instead of there being three I(1) variables we have
two I(1) variables and one I(0) variable. Let the I(0) variable be the third one
(row 3 of the assumed C matrix). In this instance suppose that the matrix C
looks like

C =


s1 s2 s3

v1 ∗ 0 0
v2 0 0 ∗
v3 0 0 0
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Because the third variable is I(0) the last row has only zero elements. Apart
from that the matrix shows that the first shock has a permanent effect on the
first variable, the second shock is transitory since it has zero long-run effects
on the I(1) variables, and the third shock has a permanent effect on the second
variable. Because the rank of this matrix is two there will be two permanent
shocks. The importance of this case is to emphasize that the nature of variables
and the nature of shocks can be quite different. We will encounter these cases
in the applications that follow.

6.3 Why Can’t We Use Transitory Components
of I(1) Variables in SVARs?

The issue investigated in this section involves filtering an I(1) series in some way
so as to extract the transitory component and then using this filtered series in
a VAR. Because there is no unique way of performing a permanent/transitory
decomposition each method adds some extra constraint to get a single division
into the components. It is useful to look at one of these - the Beveridge-Nelson
(BN) decomposition - as the lessons drawn from it are instructive.

Suppose we have n variables that are I(1) and not cointegrated. Then the
Beveridge and Nelson decomposition defined the permanent component of yt as

yBN,Pt = lim
T→∞

Et(yT ) = yt+Et

∞∑
j=1

∆yt+j ,

from which it is necessary to describe a process for ∆yt so as to compute yBN,Pt .
Suppose it is a VAR(1), ∆yt = Γ1∆yt−1 + εt. It follows that the transitory

component (yt − yBN,Pt ) would be

yBN,Tt = yt − yBN,Pt = −Et
∞∑
j=1

∆yt+j = −Γ1(In − Γ1)−1∆yt.

Extending this to ∆yt being a VAR(p) with coefficients Γ1, ...,Γp one would get

yBN,Tt = −
∑p−1
j=0 Φj∆yt−j , where Φj will be functions of Γ1,....,Γp.

This analysis points to the fact that if ∆yt follows a VAR(p) then the fil-
tered (transitory) component of yt would weight together ∆yt, ..,∆yt−p+1. Con-
sequently suppose an SVAR(2) is assumed of the form

A0∆yt = A1∆yt−1 +A2∆yt−2 + εt,

that is A(L)∆yt = εt, where A(L) = (A0 − A1L − A2L
2). So ∆yt = A(L)−1εt

and, because yBN,Tt = Φ0∆yt + Φ1∆yt−1, we have

yBN,Tt = Φ0A(L)−1εt + Φ1A(L)−1εt−1,

showing that the process for the transitory component is not a VAR, except
in the special case where yt is a scalar and ∆yt is an AR(1). In this case Φ0
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is a scalar, Φ1 = 0, and so we can write A(L)yBN,Tt = Φ0εt. For yt being of
higher dimension Φ0A(L)−1 does not commute to A(L)−1Φ0. Hence, using the
transitory component from a BN filter in a finite order VAR would be in error.

Now there are other ways of extracting a transitory component which involve
averaging the yt to eliminate a permanent component. These are filters such as
Hodrick-Prescott and the Band-Pass class. They all have the following structure

yPt =

m∑
j=0

ω±jyt±j

=

m∑
j=0

ω±jyt +

m∑
j=1

ωj∆jyt+j −
m∑
j=1

ω−j∆jyt,

where ∆kyt = yt − yt−k.4 Most filters are symmetric so that ω−j = ωj . Hence
the transitory component would be

yTt = yt − ypt = (1−
m∑
j=0

ω±j)yt −
m∑
j=1

ωj∆jyt +

m∑
j=1

ωj∆jyt+j .

It will be necessary for 1−
∑m
j=0 w±j = 0, otherwise yTt would be non-stationary

(as yt is). This requirement means that the transitory component will be

yTt =

m∑
j=1

ωj∆jyt+j −
m∑
j=1

ωj∆jyt.

The ωj then come from applying many criteria pertaining to the nature of
the permanent and transitory components. A Band-Pass filter focuses upon fre-
quencies of the spectrum. The Hodrick-Prescott filter chooses them to make the
permanent component smooth.5 So each of these provides a different weighted
average of the current, past and future growth rates.

Again, the same issue arises as with the BN filter - the process in the filtered
series would not be a VAR. But the situation is worse here since, unless m = 0,
there will always be an MA structure to the transitory component and, whenever
m > 0, the filtered data will depend on future shocks, because the HP and Band-
Pass class are two-sided filters, compared to the one-sided nature of BN. Clearly
it is very unsatisfactory to use two-sided filters like this in any regression. Doing
so will produce inconsistent estimators of coefficients.

4Note that ∆jyt = yt − yt−j = ∆yt + ∆yt−1 + ..+ ∆yt−j+1
5When λ = 1600 and the HP filter is applied to quarterly data, m = 14 gives a reasonable

approximation to the HP filtered data on the transitory component.
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6.4 SVARs with Non-Cointegrated I(1) and I(0)
Variables

6.4.1 A Two-Variable System in I(1) Variables

We assume that there are two non-cointegrated I(1) variables ζ1t and ζ2t (these
will be taken to be the logs of variables expressed in levels). Because there is no
cointegration it will be necessary to work with first differences, i.e. the SVAR
will be expressed in terms of z1t = ∆ζ1t, z2t = ∆ζ2t. For illustrative purposes
it is taken to be an SVAR(1):

A0zt = A1zt−1 + εt.

To flesh this out let ζ1t = log output and ζ2t = log money supply. Then z1t =
output growth and z2t = money supply growth. Because there are two I(1) vari-
ables and no cointegration there must be two permanent shocks in the system.
The structural impulse responses will come from zt = C(L)εt.

Now let us look at the implications for the impulse responses of the I(1)
nature of the series. By definition

ζt+M = ζt−1 +

M∑
k=0

∆ζt+k = ζt−1 +

M∑
k=0

zt+k

so
∂ζt+M
∂εt

=

M∑
k=0

∂zt+k
∂εt

=

M∑
k=0

Ck

=⇒ lim
M→∞

∂ζt+M
∂εt

=

∞∑
k=0

Ck

Because C(L) = C0 + C1L + C2L
2 + ..., a shorthand for

∑∞
k=0 Ck is C(1),

and, in line with the terminology used in the introduction, this will be termed
the matrix of “long-run responses”. It shows the effects of a shock at t on the
levels of ζt at infinity. Consequently, it can be used to define the long-run
effects of shocks. It also serves to define a transitory shock εkt as one for which
the k′th column of C(1) is all zeros. If there exists any non-zero element in the
k′th column of C(1), it means that the k′th shock is permanent. Note that a
permanent shock need not affect all I(1) variables, just one.

Now consider the case where the second shock has a zero long-run effect on
ζ1t. This can be summarized by the long-run response matrix

C(1) =

[
c11(1) 0
c12(1) c22(1)

]
, (6.2)

which sets the c12(1) element to 0. Note that with this assumption the second
shock is permanent because c22(1) 6= 0.

The form of C(1) is crucial to the chapter. The key to handling I(1) processes
is in determining what the zeros in C(1) imply regarding parametric restrictions
on the SVAR representing zjt.
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Table 6.1: Estimating the Money-Output Growth Model with Long-Run Re-
strictions using EViews

File → Open →EViews Workfile
Locate gdp m2.wf1 and open it
Object→New Object→Matrix-Vector-Coef
Choose matrix, 2 rows, 2 columns and fill in the 2x2 matrix

as

[
NA 0
NA NA

]
, naming it C1 in the workfile

Quick →Estimate VAR
Endogenous Variables s dgdp s dm2
Lag Intervals for Endogenous 1 1
Exogenous Variables c
Estimation Sample 1981q3 2000q1
Proc →Estimate Structural Factorization→Matrix
Choose matrix opting for long-run pattern and putting
C1 in as the name and then OK
Impulse→Impulse Definition →Structural Decomposition
These are the responses of dgdp to dm2. If you want levels of log gdp, log m2
choose instead Accumulated Responses at the Impulse Definition box

6.4.1.1 An EViews Application of the Two I(1) Variable Model

The two variables ζjt will be the log of GDP and the log of real M2 balances.
The restriction is that just described, namely the second shock (i.e., money) has
a zero long-run effect on output (i.e., log GDP). The SVAR is expressed in terms
of z1t = ∆ζ1t and z2t = ∆ζ2t, i.e. the growth rates in GDP and money (these
are called s dgdp, s dm2 in the data set gdp m2.wf1 ). The matrix C = C(1)
is assumed to be (6.2). Table 6.1 gives the EViews commands to estimate this
model. The resulting output and accumulated impulse response functions are
shown in Figures 6.1 and 6.2 respectively. Note that the response of output to
the second shock in Figure 6.2 is zero by construction.

Note that EViews does not provide standard errors for the impulse responses
using this approach. That can be done by using an alternative approach to
estimation originally proposed in Shapiro and Watson (1988).

6.4.1.2 An Alternative EViews Application of the Two I(1) Variable
Model

Shapiro and Watson (1988) highlight that the restrictions on C(1) imply a
specific parametric form for the SVAR that can be estimated directly, provided
the restrictions are imposed. The SVAR is A(L)zt = εt, the underlying VAR is
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Figure 6.1: SVAR Results for the Money/GDP Model: Zero Long-Run Effect
of Money on GDP
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B(L)zt = et, and the MA form for the structural errors is zt = C(L)εt. Hence

C(L) = A(L)−1 =⇒ C(L)A(L) = In

=⇒ C(1)A(1) = In

Because the two-variable SVAR(1) system is

z1t = a0
12z2t + a1

11z1t−1 + a1
12z2t−1 + ε1t (6.3)

z2t = a0
21z1t + a1

21z1t−1 + a1
22z2t−1 + ε2t, (6.4)

we have A(L) = A0 − A1L =

[
1− a1

11L −a0
12 − a1

12L
−a0

21 − a1
21L 1− a1

22L

]
. Consequently,

with C(1) defined as in (6.2), C(1)A(1) = In can be written as[
c11(1) 0
c12(1) c22(1)

] [
1− a1

11 −a0
12 − a1

12

−a0
21 − a1

21 1− a1
22

]
=

[
1 0
0 1

]
,

which means that c11(1)(−a0
12 − a1

12) = 0. Because c11(1) 6= 0 (C(1) would be
singular if it wasn’t) it follows that a0

12 + a1
12 = 0, i.e. a0

12 = −a1
12. Imposing

this restriction upon (6.3) we get

z1t = a1
11z1t−1 + a0

12∆z2t + ε1t. (6.5)

Hence long-run restrictions result in parametric restrictions between the ele-
ments in A0 and A1, implying that z2t−1 does not appear in (6.5). Thus it can
be used as an instrument for ∆z2t. Once (6.5) is estimated ε̂1t, z1t−1 and z2t−1

can be used as instruments to estimate (6.4).6

Once the point estimates for a0
12 and a0

21 (of -.291735 and .552657 respec-
tively) are found, the restricted SVAR can be defined through the A matrix used
in EViews, and the remaining coefficients in the SVAR can be estimated.7 The
accumulated impulse responses are shown in Figure 6.3. They are identical for
both approaches to estimation. However, an advantage of proceeding with the
Shapiro and Watson method is that standard errors for the impulse responses
will be supplied by EViews.

Rather than provide menu instructions as in Table 6.2, in what follows we
provide EViews command line code that produces the same output - see Fig-
ure 6.4 for an EViews program (ch6altmethod.prg) that reproduces the work
described in Table 6.1.

A different way to proceed in EViews is to create a system object using
the Proc→Make System→By Variable option that becomes available after
running a VAR using s dgdp and s dm2. The resulting system object can then

6One can apply this to a V AR(p), in which case the first equation would have as regres-
sors ∆z2t,∆z2t−1, ..,∆zt−p+1, and z2t−p would be used as the instrument for ∆z2t. The
result will be that the sum of the parameter estimates corresponding to z2t will be zero (i.e.,∑p

j=0[Aj ]12 = 0).
7The values of a012 and a021 found with the standard EViews SVAR approach (see Table

6.1) and the IV approach as described in Table 6.2 are identical.
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Table 6.2: An IV Method for Fitting the Money-Output Growth Model with
Long-Run Restrictions

File → Open →EViews Workfile
Go to directory where gdp m2.wf1 is and click on it
Quick →Estimate Equation
choose 2SLS for the instrument option - first equation
Equation Specification s dgdp s dgdp(-1) d(s dm2) c
Instrument List s dgdp(-1) s dm2(-1)
Make sure constant is in instrument list (check box)
Estimation Sample 1981q3 2000q1
Proc→ Make Residual Series → Name eps1
Estimate
Equation Specification s dm2 s dgdp s dgdp(-1) s dm2(-1) c
Instrument List s dgdp(-1) s dm2(-1) eps1
Make sure constant is in instrument list (check box)
Quick →Estimate VAR
Endogenous Variables s dgdp s dm2
Lag Intervals for Endogenous 1 1
Exogenous Variables c
Proc →Estimate Structural Factorization
@e1=-0.291735*@e2+c(1)*@u1
@e2=c(3)*@e1+c(2)*@u2
Impulse→ Impulse Definition → Structural Decomposition

187



F
ig

u
re

6.
3:

A
cc

u
m

u
la

te
d

Im
p

u
ls

e
R

es
p

on
se

s
fr

o
m

th
e

M
o
n
ey

-O
u
tp

u
t

M
o
d

el
w

it
h

Z
er

o
L

o
n

g
-R

u
n

E
ff

ec
t

o
f

M
o
n

ey
o
n

G
D

P

188



Figure 6.4: EViews Program ch6altmethod.prg to Impose a Long-Run Restric-
tion in the Money-Output Model using IV Methods

be edited so as use instrumental variables. Calling this system GDPMIV, it can
be found in the workfile gdp m2.wf1 and contains the code:

S DGDP = C(1)∗S DGDP(−1) + C(2)∗D(S DM2)
+ C(3) @ S DGDP(−1) S DM2(−1) C
S DM2 = C(4)∗S DGDP(−1) + C(5)∗S DM2(−1) +C(6)∗S DGDP
+ C(7) @ S DGDP(−1) S DM2(−1) C
S DGDP − C(1)∗S DGDP(−1) − C(2)∗D(S DM2)− C( 3 ) )

Notice that the last instrument (i.e., the estimated residuals of the first
equation) appears after the @ sign in the second equation, and references the
estimated coefficient elements (i.e., C(1), C(2) and C(3)) explicitly to ensure
that the residuals used in the second equation as instruments are equal to the
implied residuals of the first equation. Then choosing Estimate→Two Stage
Least Squares one gets the same parameter estimates as from the previous
program. Also, to get the impulse responses with the system approach, we run
the program gdpmsystem.prg shown in Figure 6.5.

As explained in Chapter 4, an equivalent approach to estimating the model
is to use MLE together with the restrictions needed to ensure that the long-
run response of z1t to a shock in z2t is zero. A key restriction here is that
the residual covariance matrix is diagonal, thereby ensuring that the model is
structural. The second restriction is that the sum of the coefficients associated
with z2t (i.e., contemporaneous and lagged) in the first equation of the structural
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Figure 6.5: EViews Program gdpmsystem.prg to Produce Impulse Response
Functions for the Money-Output Model

VAR sum to zero (see Equation 6.5).
The required EViews code to impose the adding up constraint is shown in

Figure 6.6. Notice that for the first equation the sum of the coefficients on
S DM2 and its lag (i.e., SM2 DM2(-1)) is zero. The system is exactly identified
because of this constraint.

Estimating the model with FIML and the diagonal covariance option yields
the results presented in Figure 6.7. The parameter estimates for C(2) and C(6)
match those obtained using the SVAR routine .8

6.4.2 A Two-Variable System with a Permanent and Tran-
sitory Shock - the Blanchard and Quah Model

Blanchard and Quah (BQ) (1989) dealt with a case where there were two series,
one of which was I(1) and the other I(0), and the shock in the structural
equation for the I(0) variable was transitory. To be more precise, in their case
ζ1t is I(1) and ζ2t is I(0), where ζ1t = log GNP and ζ2t = the detrended
unemployment rate (ut). They estimated a SVAR in z1t = ∆ζ1t and z2t =
ζ2t. Because of their assumptions, there must be one permanent shock and
one transitory shock. The economic rationale for this is that a demand shock
typically has a transitory effect on output, i.e. it has a zero long-run effect on

8The program gdp m2 mle.prg in the MLE sub-directory uses the optimize() routine in
EViews to estimate the model by maximizing a user-defined likelihood function. The results
are equivalent to those from the FIML estimator.
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Figure 6.6: EViews SYSTEM Object to Estimate Money/GDP Model with A
Zero Long-Run Restriction

GNP, while a supply shock has a permanent effect on GNP.
Again we have the moving average representation zt = C(L)εt. We need to

note now that because the variables in the SVAR are ∆ζ1t and ζ2t, C(1) gives
the long-run response of ζ1t to the shocks but the cumulated responses for ζ2t.
We would rarely have restrictions on the latter. Thus the restriction on C(1)
relates to the demand shock upon the level of the log of GNP and is c12(1) = 0.
Now the first equation of the SVAR(1) is

∆ζ1t = a0
12ζ2t + a1

11∆ζ1t−1 + a1
12ζ2t−1 + ε1t.

Just as in the previous application, after imposing the restriction c12(1) = 0,
this equation becomes

∆ζ1t = a0
12∆ζ2t + a1

11∆ζ1t−1 + ε1t,

and ζ2t−1 can be used as an instrument for ∆ζ2t. So this is just like the Mon-
ey/GDP case considered in the previous sub-section, and the same estimation
procedures can be used. In bqdata.wf1 the variables ∆ζ1t and ζ2t are named
dyat and ut respectively, with ∆ut being dut.

6.4.2.1 Estimating the Blanchard and Quah Model with EViews 9.5

The major difference between this and the application of the preceding sub-
section is that Blanchard and Quah use a SVAR(8) rather than a SVAR(1).
However, the method of handling a VAR(p) was discussed earlier in footnote
6. Program bq.prg in Figure 6.8 contains the required code to estimate the
SVAR(8) version, Figure 6.9 shows the parameter estimates, and Figure 6.10
the impulse responses.

Similarly, the system object code to replicate Blanhard-Quah’s application
using EViews’ FIML estimator is given in Figure 6.11. Note that the coefficient
on the unemployment rate, u, in the first (output) equation is constrained to
equal the negative of the sum of the lagged coefficients on the unemployment
rate. Estimating this system using FIML and a diagonal covariance matrix
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Figure 6.7: FIML Estimates (Diagonal Covariance Option) for the Money/GDP
Model
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Figure 6.8: EViews Program bq.prg to Estimate the Blanchard-Quah Model

yields the output shown in Figure 6.12. The sum of the parameter estimates for
the lagged coefficients, namely C(2) + C(4) + C(6) + C(8) + C(10) + C(12) +
C(14) + C(16), is 3.5474, with a standard error of 1.279038. This matches
the estimate for the contemporaneous coefficient on u using the instrumental
variable approach and the SVAR routine (see Figure 6.9)9

The two examples we have worked through show that the structural equation
with the permanent shock has the other variable in differenced form if the shock
in that equation has a zero long-run effect on the first variable. This could occur
either because the second shock is permanent with a long-run zero effect on the
first variable or it is a transitory shock. This result extends to any number of
variables. So, if there is a mixture of I(1) and I(0) variables, and the shocks
introduced by the I(0) variables are transitory, then all those variables will
appear in differenced form in the equation with the I(1) variables.

9The program bq mle.prg in the MLE sub-directory uses the optimize() routine in EViews
to implement the FIML estimator for the Blanchard-Quah model by maximizing a user defined
likelihood function.
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Figure 6.9: SVAR/IV Output for the Blanchard-Quah Model
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Figure 6.11: EViews SYSTEM Object Code to Estimate the Blanchard - Quah
Model

6.4.2.2 Estimating the Blanchard and Quah Model with EViews 10

As we have seen when permanent shocks are involved it is necessary to indicate
which shocks have that property and which of the I(1) variables are affected
directly by the permanent shocks. It is often the case that some of the permanent
shocks have an effect on one variable but not on others, i.e. there is a zero long-
run effect. The long-run response matrix identifies the permanent and transitory
shocks. In the discussion above this was the role of the C matrix. However,
EViews 10 uses an auxiliary matrix F to describe the cumulated responses of
variables in the VAR to shocks. Suppose we have a variable yt but use zt = ∆yt
in the VAR and that it is the second variable in the SVAR that has three shocks.
Then the cumulated response of zt to the third shock gives the response of yt to
this shock. Imposing the restriction that this is zero would be done in EViews
10 by setting F (2, 3) = 0.

If however the variable zt does not correspond to a change in an I(1) vari-
able, then the accumulated impulse responses do not give the long-run impulse
responses for those variables. It would be rare for us to know what the sum of
those impulse responses is likely to be and so elements of F relating to these
should be marked as NA.

When one chooses Proc→Estimate Structural Factorization in EViews
10 the matrices A,B, S and F are presented and any known values for their
elements need to be assigned. S is left at its default setting unless there are re-
strictions on the impulse response function in period 0, and likewise for F unless
there are binding long-run restrictions on the cumulated responses. Hence it is
simply a matter of describing these matrices to impose the required restrictions
using EViews 10. For the Blanchard and Quah case

A =

[
1 NA
NA 1

]
B =

[
NA 0

0 NA

]
S =

[
NA NA
NA NA

]
F =

[
NA 0
NA NA

]
where the SVAR(8) consists of dya and u. The F matrix identifies the permanent
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Figure 6.12: FIML Estimates (Diagonal Covariance Option) for the Blanchard-
Quah Model
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shock as the first one and the transitory shock as the second, since the latter has
a zero long-run effect upon GNP. The data file is e10 bqdata.wf1.10 Using the
matrices above we get the same results as reported in the previous sub-section.

6.4.2.3 Illustrating the IV and FIML Approaches in a Two Variable
Set up

The zt variables in the SVAR(2) will be z1t = ∆yt, and some other variable z2t

which is assumed to be I(0). With B =

[
b11 0
0 b22

]
the structural equations

are

z1t = a0
12z2t + a1

11z1t−1 + a1
12z2t−1 + a2

11z1t−2 + a2
12z2t−2 + b11u1t (6.6)

z2t = a0
21z1t + a1

21z1t−1 + a1
22z2t−1 + a2

21z1t−2 + a2
22z2t−2 + b22u2t (6.7)

As it stands, we have four instruments from the VAR - z1t−1, z1t−2, z2t−1

and z2t−2 - but five parameters to estimate in each equation. Hence the system
parameters (and shocks) are not all identified.

Now in EViews 10 we can impose a number of restrictions. These will
either reduce the number of parameters to be estimated in A,B or generate
instruments that can be used for estimation using the IV estimator.

1. First suppose that a0
12 = .5. ThenA =

[
1 −.5
NA 1

]
, B =

[
NA 0

0 NA

]
and the system would be:

z1t = .5z2t + a1
11z1t−1 + a1

12z2t−1 + a2
11z1t−2 + a2

12z2t−2 + b11u1t (6.8)

z2t = a0
21z1t + a1

21z1t−1 + a1
22z2t−1 + a2

21z1t−2 + a2
22z2t−2 + b22u2t (6.9)

We can fit the first equation (6.8) by OLS with z1t − .5z2t as the dependent
variable. The residual û1t can then be used as an instrument for z1t in (6.9).
The total number of instruments available from the VAR is 4. They can be
used as “own instruments” for the four variables other than z1t in (6.9). Notice
that this type of restriction reduces the number of parameters that need to be
estimated.

2. Now we are going to estimate (6.6)-(6.7) again but with the restrictions

that A =

[
1 NA
NA 1

]
, S =

[
NA 0
NA NA

]
, B =

[
NA 0

0 NA

]
. Then the

first VAR equation for z1t will be

z1t = b111z1t−1 + b112z2t−1 + b211z1t−2 + b212z2t−2 + e1t

= b111z1t−1 + b112z2t−1 + b211z1t−2 + b212z2t−2 + d11u1t + d12u2t

Now S(1, 2) = 0 means d12 = 0. Hence the VAR error e1t for this equation is
d11u1t. Since u1t and u2t are uncorrelated we see that ê1t can be used as an

10Open the VAR object called bqvar in e10 bqdata.wf1 to estimate the BQ model. The
program e10 bq.prg replicates the results for Blanchard and Quah (1989) using EViews 10
code.
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instrument for z1t in the second equation of the system, i.e. (6.7).11. It is a
generated instrument. After we estimate (6.7) then ε̂2t can be used as a
generated instrument for z2t in (6.6). Notice this restriction does not change
the number of parameters to be estimated but provides a way of producing an
instrument.

3. Now supposeA =

[
1 NA
NA 1

]
, S =

[
NA NA
NA NA

]
, B =

[
NA 0

0 NA

]
, F =[

NA 0
NA NA

]
. Then, based on this F setting, equation (6.6) becomes

z1t = a0
12∆z2t + a1

11z1t−1 − a2
12∆z2t−1 + a2

11z1t−2 + ε1t(= b11u1t) (6.10)

Now the available instruments are z1t−1, z1t−2, z2t−1, z2t−2 and so we have ex-
actly the required number. Note the number of parameters to estimate has been
reduced from five to four because of the long-run restriction. After estimating
(6.10) the estimated residuals ε̂1t may be used as a generated instrument in
(6.7). The long-run response of yt to ε2t is found by accumulating the im-
pulse responses of z1t = ∆yt to ε2t. EViews gives the estimates of the long-run
response for the I(1) variable in the estimated F matrix.

4. Lastly suppose that z1t is strongly exogenous, like a foreign variable. Then
we would have to constrain the VAR to reflect this using the L1, L2 matrices.
We also need to make the model recursive. Hence the system is:

z1t = a1
11z1t−1 + a2

11z1t−1 + b11u1t

z2t = a0
21z1t + a1

21z1t−1 + a1
22z2t−1 + a2

21z1t−2 + a2
22z2t−2 + b22u2t

We can estimate this system by applying OLS to the first equation and then
using the instruments ε̂1t, z1t−1, z1t−2, z2t−1, z2t−2 for the second. It would be
implemented in EViews 10 with

A =

[
1 0
NA 1

]
, B =

[
NA 0

0 NA

]
, S =

[
NA NA
NA NA

]
, F =

[
NA NA
NA NA

]
,

L1 =

[
NA 0
NA NA

]
, L2 =

[
NA 0
NA NA

]
6.4.2.4 An Add-in To Do MLE via Instrumental Variables

EViews estimates the unknown parameters of a SVAR using maximum likeli-
hood estimation and non-linear optimization techniques. Convergence is typi-
cally fast when the starting values for the unknown parameters are reasonable.
In practice, however, it is not easy to set reasonable starting values.

As explained above, for exactly identified SVARs the maximum likelihood
estimator (MLE) for a SVAR is identical to an instrumental variables (IV) esti-
mator. IV estimation has the advantage of requiring the use of linear two-stage

11See Pagan and Robertson (1998)
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least squares for the models we consider, thereby avoiding numerical optimiza-
tion issues. As such, it provides a natural mechanism for finding starting values
for the SVAR and FIML routines available in EViews.

Given the restrictions implied in the A,B, S and F matrices of the SVAR,
and any zero restrictions on the lagged variables of the descriptive VAR, the
“IVMLE” add-in for EViews builds and estimates the required IV regressions
required to estimate the SVAR. It then uses these IV parameter estimates to
initialize EViews’ SVAR estimator. Because the starting values are equivalent
to the final ML estimates, convergence occurs quickly and typically without any
numerical/convergence issues.

The IVMLE add-in is especially useful for procedures that depend on re-
peated invocations of the SVAR routine, e.g., bootstrap procedures to estimate
the standard errors or monte-carlo experiments. It can be installed by double-
clicking on the file ivmle.apiz. Doing so will invoke EViews automatically and
install the IVMLE add-in in the default location. Once installed the IVMLE
add-in can be invoked from the “Add-ins” menu after a VAR has been estimated
(see Figure 6.13).

A manual describing how to use the add-in and its workings can be accessed
from the “Manage Add-ins” menu. Highlight the entry for IVMLE and click on
the “Docs” button to retrieve the manual.

6.4.3 Analytical Solution for the Two-Variable Model

In the two-variable SVAR with long-run restrictions that we have been working
with it is useful to get an analytical expression for the estimated a0

12, as this
helps later to understand a number of inference issues. We will formally do the
p = 1 case. In this instance a0

12 + a1
12 = 0, i.e. [−A0 + A1]12 = 0, where [F ]ij

means the i, j’th element of F (remember thatA0 is defined as having -a0
ij (i 6= j)

elements) on the off-diagonal and 1 on the diagonal, i.e. A0 =

[
1 −a0

12

−a0
21 1

]
.

Now, because Bj = A−1
0 Aj implies A1 = A0B1,

[−A0 +A1]12 = [−A0 +A0B1]12 .

Hence the RHS is the (1, 2)’th element of the matrix(
−1 a0

12

a0
21 −1

)
+

(
1 −a0

12

−a0
21 1

)
×
(
b111 b112

b121 b122

)
.

Putting the (1,2)’th element to zero means

a0
12 + b112 − a0

12b
1
22 = 0

which implies that

a0
12 =

−b112

1− b122

=
−[B(1)]12

[B(1)]22
. (6.11)
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Figure 6.13: Invoking the IVMLE Add-in from a VAR object
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For an SV AR(p) we would get

a0
12 =

−
∑p
j=1 b

j
12

1−
∑p
j=1 b

j
22

Note that the VAR(1) equation for z2t would be

z2t = b122z2t−1 + b121z1t−1 + e2t

=⇒ ∆z2t = (b122 − 1)z2t−1 + b121z1t−1 + e2t

= −[B(1)]22z2t−1 + b121z1t−1 + e2t,

so that the correlation between ∆z2t and z2t−1 depends on [B(1)]22. When this
is close to zero, z2t−1 would be a weak instrument for ∆z2t . Consequently, the
distribution of the estimator of a0

12, â
0
12, will be affected. It is clear from (6.11)

why a small value of [B(1)]22 will have a big impact on the density of â0
12.

6.4.4 A Four-Variable Model with Permanent Shocks -
Peersman (2005)

Peersman (2005) estimates SVARs for the Euro region and the U.S. The vari-
ables in the model are the first difference of the log of oil prices (z1t = ∆lpoilt),
output growth (z2t = ∆yt), the short term nominal interest rate (z3t = st) and
consumer price inflation (z4t = ∆pt). The log level of oil prices, the log level
of output and the log of the price level are assumed to be I(1) variables. As
explained earlier these will appear in the SVAR as differences. There is no coin-
tegration between the variables. The short-term nominal interest rate is taken
to be I(0).

From this description there are at least three permanent shocks along with
one extra shock which is associated with the structural equation that is nor-
malized on the I(0) variable, st. It is necessary to decide on what the effects of
this shock are. Peersman treats it as permanent but having zero effects on some
variables. In this presentation we deal only with the U.S. data, which involves
a quarterly SVAR(3) estimated over the period 1980Q1 to 2002Q2.

There are four shocks in the model and Peersman names these as two supply
shocks - the first ε1t being an oil-price shock, the second ε2t is labeled a supply
shock, ε3t is a monetary policy shock and the fourth ε4t is a demand shock. A
combination of short-and long-run restrictions is used to separate the shocks,
with the short-run restrictions being:

1. Oil prices are weakly exogenous, i.e. there is no contemporaneous effect
of non-oil shocks (ε2t, ε3t, ε4t) upon oil prices z1t. This means that the
change in oil prices may be treated as an exogenous regressor in the output,
money and inflation equations.

2. Money shocks ε3t have no contemporaneous effect on output z2t.

The second set of restrictions are long run in nature. They are
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• A permanent demand shock ε4t that has a zero long-run effect on GDP.

• The money shock ε3 has a zero long-run effect on output but a non-zero
effect on the other I(1) variables. It is this assumption that makes it a
permanent shock since it would be transitory only if it has a zero long-run
effect on all the I(1) variables.

These assumptions imply that C(1) and the B matrix in EViews have the form

C(1) =


∗ ∗ ∗ ∗
∗ ∗ 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 , B = A−1
0 =


∗ 0 0 0
∗ ∗ 0 ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 ,
showing that there are two restrictions on C(1) and four on A0. The model is
therefore exactly identified.

The shocks are distinguished in the following way: oil and supply do not have
a zero long-run effect on output, whereas demand and money shocks do. Oil is
differentiated from supply via the exogeneity of the oil price. Money is separated
from demand by the fact that the money shock has no contemporaneous effect
on output.

Now the VAR underlying Peersman’s SVAR has the form of B(L)zt = et =
Bεt making C(1) = B−1(1)B = ΨB, so that the long-run restrictions which
Peersman imposes are c23(1) = 0 and c24(1) = 0. This implies the following
constraints on the elements of the EViews matrix B (ψij are elements of Ψ)

ψ21(1)b13 + ψ22(1)b23 + ψ23(1)b33 + ψ24(1)b43 = 0 (6.12)

ψ21(1)b14 + ψ22(1)b24 + ψ23(1)b34 + ψ24(1)b44 = 0. (6.13)

Moreover, there are the short-run constraints specified above which constrain
b12 = 0, b13 = 0, b14 = 0, b23 = 0. Peersman used (6.12) and (6.13) along with
the constraints on b to get his estimates.

6.4.4.1 The Peersman Model in EViews 9.5

An alternative approach which imposes all the restrictions is to use the Shapiro-
Watson method. We now consider each of Peersman’s equations in turn.

1. Oil-price inflation
∆lpoilt = lags+ ε1t,

where “lags” are in all variables (including st). We can therefore run OLS on
the variables to get ε̂1t.

2. Output-growth equation

∆yt = a0
21∆lpoilt + a0

23∆st + a0
24∆(∆lpt) + lags+ ε2t

Here ∆(∆lpt) reflects the assumption of a zero long-run effect of demand
shocks on output and st appears in differenced form, as money has no permanent

203



effect upon output. One can therefore use ∆lpt−1, st−1, ε̂1t as the instruments
to estimate the equation and thereby get ε̂2t.

3. Interest rate equation

st = a0
31∆lpoilt + a0

32∆yt + a0
34∆lpt + lags+ ε3t

We have ε̂1t and ε̂2t as instruments for ∆lpoilt and ∆yt, but need one for
∆lpt. Because it is assumed that monetary shocks have a zero contemporaneous
effect on output, the reduced form VAR errors e2t (those for the ∆yt equation
in the VAR) are uncorrelated with ε3t, allowing the estimated VAR residuals
ê2t to be used as the extra instrument. 12

4. Inflation equation

∆lpt = a0
41∆lpoilt + a0

42∆yt + a0
43st + lags+ ε4t

In this final equation all residuals ε̂1t, ε̂2t and ε̂3t will be the instruments to
estimate the equation.

The code to do this estimation using the IV approach is in peersman.prg,
the contents of which are shown in Figure 6.14. The results from the SVAR
routine are shown in Figure 6.15, while accumulated impulse responses for the
levels of the price of oil, the cpi and output in response to the four shocks are
given in Figures 6.16, 6.17, 6.18. These agree with what Peersman shows.

Clearly the interest rate shock has a long-run effect on the price of oil and
the price level (CPI), which might be thought undesirable. The values to which
the impulse responses converge are well away from zero and are different from
one another, so that the real price of oil changes in the long run in response
to a one-period interest rate shock. Certainly we would not expect a nominal
shock to change the relative price of oil to the CPI, and in Fisher et al. (2016)
a restriction is imposed that the monetary shock cannot affect the real oil price
in the long run. It is found that, while there are only minor price puzzles for
Peersman’s original model, this changes when monetary shocks are restricted to
have a zero long-run impact on the real oil price.

Estimating Peersman’s model directly using FIML reveals an implicit re-
striction coming from the identification assumptions, one that is automatically
enforced by the IV approach. First, with respect to the output growth equa-
tion, the sum of the corresponding lagged coefficients on st and ∆lpt need to
be equal but opposite in sign to the contemporaneous coefficients a0

23 and a0
24.

Doing so ensures that c23(1) = 0 and c24(1) = 0 and, as noted above, provides
two of the six identifying restrictions required to estimate the model. Three ad-
ditional constraints come from the oil price equation that ensure that oil prices
are exogenous to output, interest rates and inflation.

12It might be thought that a better instrument would be ê4t, which would come from the
assumption that monetary shocks had a zero contemporaneous effect on prices. This would
make more sense from a New Keynesian model perspective where the monetary effect on prices
follows after the effect on output.
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Figure 6.15: Structural VAR Estimates for Peersman (2005) Using peersman.prg
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One extra constraint is needed to achieve exact identification. This is that
money shocks, ε3t, do not have a contemporaneous effect on output, z2t, i.e.,
[B]23 = 0. It implies that the coefficient on the interest rate variable in the

inflation equation, a0
43, must be constrained to equal −a

0
23

a024
.

This requirement can be given an intuitive explanation. Starting from the
inflation equation, a shock to the interest rate increases inflation by a0

43 in the
current period. In the absence of any constraints on the output growth equation,
this would affect output growth by a0

24 ∗ a0
43 through the inflation channel (i.e.,

∆(∆lp)t). To offset this, the coefficient on the interest rate term in the output
growth equation, a0

23, must be constrained to −a0
24 ∗ a0

43. Now since a0
23 and

a0
24 are already used to constrain the long-run impact of monetary and demand

shocks respectively, the only way to enforce the last condition jointly with the

constraints on a0
23 and a0

24 is to set a0
43 = −a

0
23

a024
.13

The system object code to estimate the Peersman model is given in Figure
6.19. Estimating the model using FIML and a diagonal covariance matrix yields,
for example, C(21)=-0.329765, C(22)=-0.205430 and C(23)=0.237539, implying
a contemporaneous coefficient estimate for a0

23 of C(21) + C(22) + C(23) =
−0.297656, with a standard error of 0.142151 computed using the delta method.
Likewise, the estimate of a24 can be obtained from C(24)+C(25)+C(26). This

gives a24 = −1.898772 with a standard error of 0.830540. Lastly, note that
a023
a024

=

0.156762. All these estimates match those obtained using the instrumental
variable approach.14

This model was chosen to illustrate the point that working with I(1) variables
in difference form (which is appropriate) while having an I(0) variable in levels
in the SVAR will lead to the shock connected to the I(0) variable having a
permanent effect on the level of the I(1) variables unless steps are taken to
ensure that this does not happen. Thus if we wanted a long-run zero response
of the price level to the monetary shock then the fourth equation above would
have to have ∆st as a regressor rather than st. There seem to be many SVAR
studies with this difficulty; some of these are mentioned in Fisher et al. (2016).

13It can be shown algebraically that this condition ensures that [B]23 =
[
A−1

0

]
23

= 0.
14See also the program code in peersman mle.prg in the MLE sub-directory for an equivalent

approach that uses optimize() and a user-defined likelihood function.
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6.4.4.2 The Peersman Model in EViews 10

The assumptions underlying Peersman’s model mean that the A,B, S and F
matrices in EViews 10 have the form.

A =


1 0 0 0
NA 1 NA NA
NA NA 1 NA
NA NA NA 1

 , B =


NA 0 0 0

0 NA 0 0
0 0 NA 0
0 0 0 NA

 ,

F =


NA NA NA NA
NA NA 0 0
NA NA NA NA
NA NA NA NA

 , S =


NA NA NA NA
NA NA NA 0
NA NA NA NA
NA NA NA NA


The shocks are separated since oil and supply do not have a zero long-run effect
on output, whereas demand and money shocks do. Oil is differentiated from
supply via the exogeneity of the oil price. Money is separated from demand by
the fact that the money shock has no contemporaneous effect on output. Notice
that if the monetary shock is to be transitory it must have a zero effect upon all of

the I(1) variables and so F in this case needs to be


NA NA NA 0
NA NA 0 0
NA NA NA 0
NA NA NA NA

 .
Hence in Peersman’s model there are four permanent shocks but only three I(1)
variables.

This can create problems for the instrumental variables method. When there
is no cointegration, the IV approach works when the number of permanent
shocks equals the number of I(1) variables, but may not when there are more.
The problem shows up in there not being a zero long-run (estimated) response
of the log of GDP to the money and demand shocks (see Figure 6.16). The
estimated shock is close but not identical to zero.

To estimate the model using the given A,B, S, F matrices, we apply EViews
10 with the following “Text” restrictions (see also Figure 6.20):

@A(1 ,1)=1
@A(2 ,2)=1
@A(3 ,3)=1
@A(4 ,4)=1
@A(1 ,2)=0
@A(1 ,3)=0
@A(1 ,4)=0
@DIAG(B)
@F(2 ,3)=0
@F(2 ,4)=0
@S(2 ,4)=0
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Figure 6.20: Estimating Peersman (2005) using Text Restrictions

The estimated impulse responses from this approach obey the zero long-run
restrictions and so this approach is superior to the IV method when there are
more permanent shocks than I(1) variables.15

6.4.5 Revisiting the Small Macro Model with a Perma-
nent Supply Shock

6.4.5.1 IV Estimation with EViews 9.5

The small macro model had issues with price puzzles. It is interesting to see
what happens if it is assumed that the output gap measured by Cho and Moreno
(which took a deterministic trend out of the log of GDP) is I(1) rather than
I(0). The other two variables are still treated as being I(0).16

This will mean that one permanent supply side shock is present in the system
and we will assume that there are two transitory shocks. Then the SVAR will
consist of ∆yt (the change in the output gap), the interest rate (it) and inflation
(πt). Here yt is I(1) and both πt and it are I(0). Assuming an SVAR(2), the
specification of the system would be

15Open the VAR object called peersman e10 in the workfile e10 peersman.wf1 to replicate
this example. e10 Peersman.prg replicates the example using EViews code.

16This means that the underlying process for GDP growth is ∆yt = b+ vt where vt is I(0).
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∆yt = a0
12∆it + a0

13∆πt + a1
11∆yt−1 + a1

12∆it−1 + a1
13∆πt−1+

a2
11∆yt−2 + ε1t (6.14)

it = a0
21∆yt + a0

23πt + a1
21∆yt−1 + a1

22it−1 + a1
23πt−1+

a2
21∆yt−2 + a2

22it−2 + a2
23πt−2 + ε2t (6.15)

πt = a0
31∆yt + a0

32it + a1
31∆yt−1 + a1

33πt−1 + a1
32it−1+

a2
31∆yt−2 + a2

32it−2 + a2
33πt−2 + ε3t, (6.16)

where ∆it and ∆πt in the first equation ensure that the second and third shocks
are transitory.

Equation 6.14 can be estimated using πt−2, it−2 (as well as the lagged values)
as instruments, producing residuals ε̂1t. To estimate the interest rate equation
(6.15) we have the lagged values of the variables and ε̂1t, but this leaves us
one instrument short. In the recursive system of Chapter 4 interest rates had
a zero contemporaneous effect on output, so we impose that again. However
we do not make this system recursive. Rather we exploit the fact established
in Chapter 4 that under this assumption the residuals from the VAR equation
for ∆yt, namely ê1t, can be used as an instrument in the interest rate equation.
Therefore, we estimate that equation using ε̂1t, ê1t and the lagged values of
variables as instruments. This gives the residuals ε̂2t which can be used along
with ε̂1t to estimate the inflation equation. Chomoreno perm.prg in Figure 6.21
provides the code to do this.

The IV/SVAR results are shown in Figure 6.22 and the corresponding im-
pulse responses are presented in Figure 6.23. It is interesting to note that,
with the exception of a small rise in output in response to a positive interest
rate shock, the results are much closer to what we would have expected than
what was found with the recursive model. That model treated all the data as
I(0), showing the importance of getting a correct specification of the system
represented by the SVAR.

One may also estimate the system using FIML. The required system object
code is shown in Figure 6.24. As before, three restrictions are needed to exactly
identify the system. Two come from the long-run constraints, which are enforced
by restricting a12 (the contemporaneous coefficient for inflation) to be equal to
the negative of the sum of the lagged coefficients on inflation, namely −(C(3) +
C(4)), and a13 to be equal to −(C(5) + C(6)). The requirement that interest
rates have a zero contemporaneous effect on output implies that the coefficient

on the interest rate in the inflation equation, namely a0
32, must equal −

(
a012
a013

)
.

This condition ensures that the contemporaneous interest rate effect on output
coming from the inflation channel will be −a0

12, which will exactly offset the
contemporaneous interest rate effect on output from the (more direct) interest
rate channel itself, namely a0

12.
Estimating the system using FIML and a diagonal covariance matrix yields

the results shown in Figure 6.25. The estimates are identical to the IV/SVAR
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Figure 6.22: Structural VAR Estimates of the Small Macro Model With One
Permanent Shock and Two Transitory Shocks

216



F
ig

u
re

6.
23

:
Im

p
u

ls
e

R
es

p
on

se
s

fo
r

th
e

S
m

a
ll

M
a
cr

o
M

o
d

el
w

it
h

O
n

e
P

er
m

a
n

en
t

a
n

d
T

w
o

T
ra

n
si

to
ry

S
h

o
ck

s

217



F
ig

u
re

6.
24

:
S

Y
S

T
E

M
O

b
je

ct
C

o
d

e
to

E
st

im
a
te

th
e

S
m

a
ll

M
a
cr

o
M

o
d

el
w

it
h

O
n

e
P

er
m

a
n
en

t
a
n

d
T

w
o

T
ra

n
si

to
ry

S
h

o
ck

s

218



results presented in Figure 6.22. For example, the implied coefficient estimate
on the interest rate in the output growth equation is −(C(5)+C(6)) = 0.369652,
and that for the interest rate in the inflation equation is 0.84695.17

6.4.5.2 An Alternative Way of Estimating with EViews 9.5

In chapter 2Dj were the impulse responses from the VAR, soD(1) =
∑∞
j=0Dj is

the matrix of cumulated responses over an infinite horizon. Then using EViews
10 notation we have

F = D(1)A−1B.

This can be written it in a number of ways, e.g.

FB−1 = D(1)A−1

=⇒ BF−1 = AD(1)−1.

For the current model

A =

 1 −a0
12 −a0

13

−a0
21 1 −a0

23

−a0
31 −a0

32 1

 , D(1)−1 =

 d11(1) d12(1) d13(1)
d21(1) d22(1) d23(1)
d31(1) d32(1) d33(1)


F =

 f11 0 0
f21 f22 f23

f31 f32 f33

 , B =

 b11 0 0
0 b22 0
0 0 b33

 , S(1, 3) = 0

where dij(1) is the (i, j)′th element of D−1.
Now F−1 has as its first row

[
f11 0 0

]
so BF−1 has a first row of[

b11f
11 0 0

]
. Hence we set the (1,2) and (1,3) elements of AD(1)−1 to

zero. This gives the restrictions

d12 − a0
12d

22(1)− a0
13d

23(1) = 0 (6.17)

d13 − a0
12d

32(1)− a0
13d

33(1) = 0 (6.18)

Hence long-run restrictions are easy to impose on A.
The main problem is with the short-run restriction. Now S(1, 3) = 0 means

that
[
A−1B

]
13

= 0. This means a13b33 = 0 and so a13 = 0. Given that a13 =[
(a012a

0
23−a

0
13)

det(A)

]
this means a0

12a
0
23 − a0

13 = 0, i.e. a0
23 =

a013
a012
. This yields a value

for a0
23 since (6.17)-(6.18) solve for a0

12 and a0
13.

The problem of course is solving for the inverse of A all the time for short-run
restrictions.

An alternative way to set up the model would be to replace the first equation
with

e1t = b11η1t + b12η2t,

17See chomoremo perm mle.prg in the MLE sub-directory for an equivalent approach that
uses optimize() and a user-defined likelihood function.
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Figure 6.25: FIML Estimates (Diagonal Covariance Matrix) for Small Macro
Model with One Permanent and Two Transitory Shocks
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since this captures the fact that ε3t has a zero impact upon yt. Then the three
equations can be represented with

A =

 1 0 0
−a0

21 1 −a0
23

−a0
31 −a0

32 1

 , D(1)−1 =

 d11(1) d12(1) d13(1)
d21(1) d22(1) d23(1)
d31(1) d32(1) d33(1)


B =

 b11 b12 0
0 b22 0
0 0 b33

 , F =

 f11 0 0
f21 f22 f23

f31 f32 f33

 .
Since the S(1, 3) = 0 restriction has been captured in the first equation, we

now need to work out how to apply the long-run restrictions. For this purpose
we re-write the fundamental relation as F−1 = B−1AD(1)=1. To apply this
form we need to invert B, which is

B−1 = |B|−1

 b22b33 −b12b33 0
0 b11b33 0
0 0 b11b22

 .
Using this

B−1A = |B|−1

 b22b33 −b12b33 0
0 b11b33 0
0 0 b11b22

 1 −a0
12 −a0

13

−a0
21 1 −a0

23

−a0
31 −a0

32 1


= |B|−1

 b22b33 + a0
21b12b33 −(b22b33a

0
12 − b12b33) −(b22b33a

0
13 − a0

23b12b33)
−a0

21b11b33 b11b33 0
0 0 b11b22


Now because F−1(1, 2) = 0, F (1, 3) = 0 we compute those elements from the
(1,2) and (1,3) elements of B−1AD(1)−1. The (1, 2) element is equated to zero
to give

0 = (b22b33 + a0
21b12b33)d12(1)− (b22b33a

0
12 − b12b33)d22(1)

−(b22b33a
0
13 − a0

23b12b33)d23(1).

Since b33 cancels the restriction will be

(b22 + a0
21b12)d12(1) + (b22a

0
12 − b12)d22(1)− (b22a

0
13 + a0

23b12)d23(1) = 0.

Likewise, the (1,3) restriction will be

(b22 + a0
21b12)d13(1) + (b22a

0
12 − b12)d23(1)− (b22a

0
13 + a0

23b12)d33(1) = 0.

Imposition of restrictions like this were discussed in Section 4.6.2.3. Basically
the need to invert either A or B shows why IV is a far simpler way of imposing
a combination of short and long-run restrictions than working with the SVAR
routine in EViews 9.5.
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6.4.5.3 Estimation with EViews 10

We now use the same variables and assumptions as above. The system to be
estimated is summarized by the following four matrices:

A =

 1 NA NA
NA 1 NA
NA NA 1

 , B =

 NA 0 0
0 NA 0
0 0 NA

 ,
F =

 NA 0 0
NA NA NA
NA NA NA

 , S =

 NA NA 0
NA NA NA
NA NA NA


After the VAR(2) in dgap, infl, ff is estimated we select Proc→Estimate
Structural Factorization and then specify these matrices. However, we will
now use a different way of doing this by clicking on the “Text” button. All one
needs to provide is the elements of the matrices that are prescribed, i.e. not
with an NA entry. Accordingly, for the matrices above, the commands below
would be inserted into the “Text” box, as shown in Figure 6.26. Clicking OK
estimates the model.

@A(1 ,1)=1
@A(2 ,2)=1
@A(3 ,3)=1
@DIAG(B)
@F(1 ,2)=0
@F(1 ,3)=0
@S(1 ,3)=0

The results are identical to those found using the IV approach used in
chomorperm.prg.18

6.5 An Example Showing the Benefits of Think-
ing in Terms of Instrumental Variables

The data set data canada.wf1 has data on the change in log GDP (dgdp), an
interest rate (int) and an inflation rate (inf ) for Canada. We will assume it is
an SVAR(2). Three restrictions are needed to estimate this system. Initially
these will be

(i) The inflation equation does not have any contemporaneous effect from
dgdp and int

(ii) The aggregate demand shock (which is in the structural equation for
inflation) has a zero long-run effect on the level of gdp.

18Open the VAR object called chomorperm e10 in the workfile e10 chomoreno.wf1 to repli-
cate this example. See also e10 chomorperm.prg.
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Figure 6.26: Estimating the Small Macro Model with Permanent Shocks
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These produce the following code to impose normalization and the zero re-
strictions.

@A(1 ,1)=1
@A(2 ,2)=1
@A(3 ,3)=1
@A(3 ,1)=0
@A(3 ,2)=0
@F(1 ,3)=0
@DIAG(B)

However, when estimated, error messages such as "Convergence achieved
before restrictions on S an/or F were satisfied" or "Optimization may be unre-
liable as first or second order conditions not met". The three zero restrictions
satisfy the number but not the rank condition for identification. EViews will
say it is identified since it just counts if there are enough restrictions.

Let us think about the estimation through instrumental variables. Consider
first the inf equation. Neither.dgdp nor int appear in it and so it can be es-
timated and residuals found. Now the long-run restriction is that the demand
shock has a zero effect on gdp. This means that the residuals from the dgdp
VAR equation can be used as an instrument in the inflation equation (but no
others) because that is where the demand shock is. However we already have
enough instruments to estimate the inflation equation. What we need is an
instrument to estimate one of the other equations, i.e. dgdp or int, and these
restrictions don’t give any.

If we had instead used the following restrictions then estimation is straight-
forward, as we now have the instrument needed due to the last restriction as
the dgdp VAR equation residuals can be used in the interest rate equation.

@A(1 ,1)=1
@A(2 ,2)=1
@A(3 ,3)=1
@A(3 ,1)=0
@A(3 ,2)=0
@F(1 ,2)=0
@DIAG(B)

6.6 Problems with Measuring Uncertainty in Im-
pulse Responses

Can long-run restrictions produce estimators of the quantities of interest that
are reliable? Two issues arise in answering this question.

1. Is there a bias in estimators caused by the model specification?

2. Are any bias and inference problems owing to weak instruments?
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Faust and Leeper (1997) looked at the first question. Suppose the chosen SVAR
was of order one. Then equation (6.11) showed that in the two-variable case

a0
12 =

−b112

1− b122

=
−[B(1)]12

[B(1)]22
.

If, however, the true SVAR was of order p, then a0
12 would need to be estimated

by

a0
12 =

−
∑p
j=1 b

j
12

1−
∑p
j=1 b

j
22

=
−[B∗(1)]12

[B∗(1)]22
.

Hence, choosing a SVAR that has too low an order results in a biased estimate
of A0, including the associated impulse responses. Faust and Leeper (1997)
proposed this argument, raising the possibility that the true order might even
be infinity – it was due originally to Sims in his causality work. There have been
some suggestions about how one might improve the estimator of B(1) so as to
be robust to the true order using the fact that B(1) is related to the multivariate
spectral density of the series at frequency zero - see Christiano et al. (2006).

A second issue arises since, as observed earlier, the estimators of A0 are
essentially IV, and it is possible that one may have weak instruments, which
can cause the densities of the estimated coefficients in A0 to depart substantially
from normality in a finite sample.19 We have already seen an illustration of this
in Chapter 4. Moreover, there are good reasons for thinking that this could be a
major issue when long-run restrictions are invoked. In the canonical two-variable
case analyzed by Blanchard and Quah z2t−8 is being used as an instrument for
∆z2t, and so the correlation will be very weak when z2t is a near integrated
process. To assess the quality of this instrument we need to regress dut (∆z2t)
against {dut−j}7j=1 and ut−8. Then the F statistic that the coefficient on ut−8 is
zero is much less than 10, which suggests a weak instrument. Figure 6.27 shows
that the distributions of â0

ij and the impulse responses are non-normal, while

Figure 6.28 shows that the problem is that [B(1)]12 is very close to zero.20

Because the weak correlation arises when [B(1)]12 is close to zero it is useful
to look at the literature that examines the distribution of â0

12 in the “local to
zero” (of [B(1)]12) context. There has been some work on this - Gospodinov
et al. (2010) - but rarely on the impulse responses and outside the bivari-
ate context. A recent exception is Chevillon et al. (2015) who combine the
Anderson-Rubin (1949) test known to work well with weak instruments with a
method of adjusting for the fact that the instruments being used are close to
being non-stationary. They look at the Blanchard-Quah model, but also the IS-
LM structure estimated by Gali and discussed in the next chapter. The method
looks promising.

19Since the asymptotic standard errors for impulse responses reported in EViews assumes
normality then this means they must be treated with some caution if there are weak instru-
ments. We noted this in Chapter 4.

20Graphs show the density of â0ij in the Blanchard-Quah model. Note that the labeling uses

B0 (rather than A0) to represent the contemporaneous coefficient matrix.
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Figure 6.28: Distribution of [B(1)]12 in Blanchard and Quah Model

6.7 Sign Restrictions when there are Permanent
and Transitory Shocks

If all variables are integrated and there is no cointegration then all shocks are
permanent. In this case the SVAR is in differenced variables and the estimation
of the SVAR using sign restrictions is done in the normal way. However if I(0)
variables are present in the SVAR some shocks may be transitory, and we need
to ask how a mixture of I(1) and I(0) variables changes the two methods for
imposing sign restriction information presented in the previous chapter, i.e. the
SRR and SRC methodologies.

In the case of SRR one needs to be careful in re-combining impulse responses
when they are mixed. Suppose there are permanent basis shocks, ηPt , and
transitory ones, ηTt . Then in the standard SRR approach all ηt will be combined
together to produce new shocks η∗t . But this would involve combining both ηPt
and ηTt together and the resulting η∗t must be permanent. The only way to
ensure that some of the η∗t are transitory is if we construct them by just re-
combining the ηTt . This suggests that we form η̂P∗t = QP η

P
t , η̂

T∗
t = QT η

T
t ,

with each QP , QT coming from Givens or Householder transformations. The
problem then comes down to producing base shocks that are uncorrelated and
which have the correct number of both permanent and transitory shocks.

The alternative is to use the SRC method. This also requires that an SVAR
be set up that produces the right number of permanent and transitory shocks,
but after doing that it is simply a matter of generating any unknown coefficients.

An application follows to show how the system would be set up. This uti-
lizes the small macro model and involves a long-run parametric restriction. It
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corresponds to the model of Section 6.4.5. However, the short-run restriction
used there that monetary policy had no contemporaneous effect on output –
which served to differentiate the demand and monetary shocks – is replaced
by sign restrictions. We compare SRC and SRR in this case and find that
the methodologies produce much the same results. It will become apparent
that SRC adapts very well to the situation where there are combinations of
parametric and sign restrictions.

SRR will find some base transitory shocks in the following way. Set a0
23 = 0

and then estimate (6.15) using ε̂1t as an instrument for ∆z1t. Then ε̂1t and ε̂2t

can be used to estimate (6.16) and the shock ε̂3t follows. The impulse responses
for ε̂2t and ε̂3t are then recombined to find new transitory shocks. So it is
necessary to impose the long-run restriction and a recursive assumption to find
the initial base shocks.

Now look at the SRC methodology. This requires that the second equation
(6.15) be estimated and ε̂1t, y2t−1, y3t−1, and ∆z1t−1 are available as the instru-
ments for this purpose. But this is one fewer instrument than is needed. In
Section 6.4.5 that instrument came from the assumption that monetary policy
had no contemporaneous effect on GDP. Now that all that we have available
are sign restrictions, making it necessary to fix a0

23 and create a new dependent
variable y2t − a0

23y3t. There are now the correct number of instruments and,
once the equation is estimated, residuals ε̂2t would be available. These can be
used along with ε̂1t, y2t−1, y3t−1 and ∆z1t−1 to estimate the last equation. Thus
the SRC method replaces a0

23 with some value, and this is exactly the same
situation as occurred with the market model, i.e. once a0

23 is replaced by some
function of θ, every θ produces a new set of impulse responses. It is crucial to
note however that, as θ is varied, the long-run restriction is always enforced by
design of the SVAR, i.e. by using (6.14) as part of it. Because this paramet-
ric (long-run) restriction reduced the number of parameters to be estimated by
one, only one parameter needs to be prescribed in order to get all the impulse
responses. Sign restrictions are applied to determine which of the two transitory
shocks is demand and which is monetary policy. Because the permanent shock
does not depend in any way upon the values assigned to a0

23, it is invariant to the
changing values of this coefficient, and so it remains the same (just as the SRR
impulse responses were invariant to λ). Estimating the SVAR with a permanent
shock by the SRC technique now results in 45% of the responses satisfying all
the sign restrictions, as compared to the 5% with purely transitory shocks.
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Chapter 7

SVARs with Cointegrated
and I(0) Variables

7.1 Introduction

The previous chapter analyzed the implications for modeling when the variables
in a system were integrated and there were permanent and transitory shocks.
However, it was assumed that there was no cointegration between the variables.
Therefore the I(1) variables in the system appeared in the VAR in first-difference
form while the I(0) variables were kept in levels.

This chapter details how the analysis changes when there is cointegration
among the I(1) variables. A first difference is that the summative model is
now a Vector Error Correction Model (VECM) and the interpretative model is
a structural VECM (SVECM). These forms are laid out in the next section.
Section 3 then shows how the SVECM can be converted to a SVAR so that
the methods introduced in Chapter 6 may be applied. Section 4 works through
two examples - Gali’s (1999) paper about the impact of productivity shocks and
Gali’s (1992) IS-LM model.

Essentially the focus of this chapter is upon how the isolation of permanent
and transitory shocks needs to be performed in a SVECM. Once the method
for doing this is understood, the analysis proceeds in the same way as in the
previous chapter. Consequently, there are no new issues raised by the imposition
of sign restrictions as a way of discriminating between the shocks.

7.2 The VECM and Structural VECM Models

When variables are cointegrated the appropriate summative model will not be
the VAR but rather the Vector Error Correction Model (VECM). When there
are r < n cointegrating relations in this system the VECM is

∆ζt = αβ′ζt−1 + Φ1∆ζt−1 + et, (7.1)
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where α and β are n× r matrices (α being the loading matrix and β the coin-
tegrating vectors), ξt−1 = β′ζt−1 are the error-correction terms, and ζt are the
(generally log) levels of the I(1) variables.

Our strategy will be to transform the information contained in the VECM
into a VAR so that the tools discussed in earlier chapters can be utilized. Gali
(1992, 1999) seems to have been one of the first to do this. It is simplest to
set Φ1 = 0 since the issues relate to the contemporaneous part of the system.
Because we will be interested in a structural system it is necessary to differ-
entiate between the VECM and the SVECM. To convert one to the other we
pre-multiply (7.1) by a matrix of contemporaneous coefficients Φ0 as follows:1

V ECM : ∆ζt = αβ′ζt−1 + et

SV ECM : Φ0∆ζt = Φ0αβ
′ζt−1 + Φ0et

= α∗β′ζt−1 + εt

= α∗ξt−1 + εt

7.3 SVAR Forms of the SVECM

7.3.1 Permanent and Transitory Shocks Only

We start with the SVECM where there are r transitory shocks and n − r per-
manent shocks

SV ECM : Φ0∆ζt = α∗ξt−1 + εt. (7.2)

Consequently, there must be n− r structural equations with permanent shocks,
and we will choose these to be the first n− r equations. They have the format

Φ0
11∆ζ1t + Φ0

12∆ζ2t = α∗1ξt−1 + ε1t,

where ζ1t is (n−r)×1 and ζ2t is r×1. We now want to eliminate ∆ζ2t from the
equations with the permanent shocks. This is done by using the cointegrating
relations ξt = β′1ζ1t + β

′

2ζ2t. Inverting this equation yields

ζ2t = (β′2)−1(ξt − β′1ζ1t),

provided of course that β
′

2 is non-singular (an assumption that is commented
on later in this sub-section). This expression for ζ2t can be used to eliminate it
from the first block of n− r equations in (7.2) yielding

Φ0
11∆ζ1t + Φ0

12(β′2)−1(∆ξt − β′1∆ζ1t) = α∗1ξt−1 + ε1t.

Thereafter, defining A0
11 = Φ0

11 − Φ0
12(β′2)−1β′1 and A0

12 = Φ0
12(β′2)−1 this

becomes

1Φ0 is the equivalent of the A0 in Chapter 4, but we wish to use A0 for the later SVAR
representation.
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A0
11∆ζ1t +A0

12∆ξt = α∗1ξt−1 + ε1t. (7.3)

There is a second block of r equations in the SVECM. Substituting for ζ2t
in these leaves

A0
21∆ζ1t +A0

22∆ξt = α∗2ξt−1 + ε2t, (7.4)

which can be re-expressed as

A0
21∆ζ1t +A0

22ξt = (A0
22 + α∗2)ξt−1 + ε2t (7.5)

= A1
22ξt−1 + ε2t.

Hence the SVAR will involve the n− r variables ∆ζ1t and the r error-correction
terms ξt.

There are two points to note from the analysis above:

• The coefficients in the SVAR (Aj) are different to the SVECM (Φj).

• The shocks in the SVAR are the same as in the SVECM.

Consequently the issue is how to estimate the SVAR equations in (7.3) and
(7.5). Pagan and Pesaran (2008) point out that the knowledge that a particular
structural equation (or equations) has a permanent shock (shocks) implies that
the value of α∗ in those structural equations will be zero. This means that these
equations must have no lagged error-correction terms present in them, i.e. ξt−1

is missing from (7.3) because α∗1 = 0. This feature frees up the lagged error-
correction terms to be used as instruments when estimating the parameters of
the equations with permanent shocks. No such exclusion applies to the equations
(7.5) and here one has to find instruments from another source. In the event
that enough instruments are available to estimate (7.3) then ε̂1t would qualify.

If one wants impulse response functions it is attractive to follow the approach
of converting the SVECM to a SVAR. That is a relatively simple task to do
since the cointegrating vector can be estimated separately and that enables the
construction of the error-correction terms.2

Of course there is a question about choosing a set of n− r variables ζ1t from
ζt. Provided β′2 is non-singular any n−r variables can be chosen but, if it is not,
the variables need to be selected in such a way as to make it non-singular. As
an example, suppose there are three I(1) variables with one cointegrating vector
β′ =

(
1 −1 0

)
. Then, if we choose the n − r = 2 variables as ζ1t, ζ2t, we

find that β′2 = 0. So it would be necessary to choose either {ζ1t, ζ3t} or {ζ2t, ζ3t}
as the two variables. In these cases β′2 is either −1 or +1 and so non-singular.3

2The cointegrating vector is estimated super-consistently.
3Our thanks to Farshid Vahid for the example.
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7.3.2 Permanent, Transitory and Mixed Shocks

Suppose now that the system contains I(0) variables wt as well as I(1) variables
ζt. Then the most general SVECM would look like

Φ0∆ζt + Ψwt = α∗ξt−1 + εt

Gwt +H∆ζt = δξt−1 + ε3t,

making the first n− r equations

Φ0
11∆ζ1t + Φ0

12∆ζ2t + Ψ13wt = α∗1ξt−1 + ε1t.

Replacing ∆ζ2t using the cointegrating relation does not introduce any depen-
dence upon wt so the equivalent of (7.3) will be

A0
11∆ζ1t +A0

12∆ξt + Ψ13wt = α∗1ξt−1 + ε1t. (7.6)

In the same way wt is just added into (7.5) meaning that the SVAR will consist
of ∆ζ1t, ξt and wt.

The only change arises if we want the shocks coming from the introduction
of the I(0) variables to have transitory effects. It is clear that this will not
happen with (7.6). Following the arguments in the preceding chapter, in order
that the shock ε3t has transitory effects it is necessary to specify (7.6) as

A0
11∆ζ1t +A0

12∆ξt + Ψ13∆wt = α∗1ξt−1 + ε1t. (7.7)

Thus to estimate these equations we would use wt−1 as the instrument for ∆wt.
All the other equations in the system feature the level of wt.

Hence when the extra shocks coming from the structural equations for wt
are made to have transitory effects it is necessary to specify the system so that
∆wt enters into those structural equations that have permanent shocks. If you
want the ε3t shocks to have permanent effects on the I(1) variables then you
can leave wt in its level form in those equations. Of course you will need to find
an instrument for it when using the IV approach.

7.4 Example: Gali’s (1999) Technology Shocks
and Fluctuations Model

7.4.1 Nature of System and Restrictions Used

Gali (1999) has a five variable model consisting of labor productivity (xt), the
log of per-capita hours or employment (nt), the inflation rate (πt = ∆ log pt),
the nominal interest rate (it), and the growth rate of the money supply (∆mt).
All variables are taken to be I(1) and there are two cointegrating relations, ξ1t =
it−πt and ξ2t = ∆mt−πt. Hence it is assumed that there will be three permanent

shocks and two transitory shocks. By definition β′ =

(
0 0 −1 1 0
0 0 −1 0 1

)
and

232



the SVAR Gali uses contains ∆xt,∆nt,∆πt, ξ1t and ξ2t. To convert to this form

of SVAR from the SVECM we need β′2 =

(
1 0
0 1

)
to be non-singular, which

it is. For illustration it is assumed that the SVAR is of order 1, although it is
of higher order in Gali’s paper and in our empirical implementation.

7.4.2 Estimation of the System

It is assumed that the equation with permanent technology shocks is the first.
Given that fact it has a form like (7.3), namely

∆xt = α0
12∆nt + α0

13∆πt + α0
14∆ξ1t + α0

15∆ξ2t +

α1
12∆nt−1 + α1

13∆πt−1 + α1
11∆xt−1 + ε1t. (7.8)

To estimate (7.8) instruments for ∆nt,∆πt,∆ξ1t and ∆ξ2t are needed. Because
ξjt−1 (j = 1, 2) are excluded from the equation these will provide two of the
requisite instruments, but two more are needed. To get these Gali assumes
that there are zero long-run effects of the non-technology permanent shocks ε2t

and ε3t upon labor productivity. As seen in the previous chapter this means
that α0

12 = −α1
12 and α0

13 = −α1
13. Together these restrictions mean that (7.8)

becomes

∆xt = α0
12∆2nt + α0

13∆2πt + α0
14∆ξ1t+ (7.9)

α0
15∆ξ2t + α1

11∆xt−1 + ε1t.

Instruments to estimate this equation will be ∆nt−1,∆πt−1, ξ1t−1 and ξ2t−1.
The IV parameter estimates are

α̂0
12 = 1.1219, α̂0

13 = −0.1834, α̂0
14 = −1.1423, α̂0

15 = 0.2352.

After this equation is estimated the residuals are a measure of the technology
shock. As this is all Gali is interested in he does not estimate the remainder of
the system, i.e. he is only estimating a sub-set of shocks and so does not have
to specify the remainder of the model. So how then do we find the effects of
technology on nt etc.? Here he uses the assumption that technology shocks are
uncorrelated with the others and we now need to see how that helps. Because
the issue is a generic one we will first look at it in a general way, followed by
Gali’s case.

7.4.3 Recovering Impulse Responses to a Single Shock

The simplest way to see how to recover a sub-set of impulse responses without
specifying the whole system is to note the relation between the VAR (or VECM)
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and structural errors viz.

et = A−1
0 εt = Āεt

so et =

n∑
j=1

Ājεjt,

where Āj is the j’th column of Ā = A−1
0 . Looking at the k′th VAR equation this

will be

ekt =

n∑
j=1

ākjεjt (7.10)

= āk1ε1t + āk2ε2t + ...+ āknεnt

= āk1ε1t + νkt. (7.11)

From this all that is needed to recover the impulse responses of all variables
to the first shock would be the first column of Ā, i.e. the elements āk1. These
can be estimated by regressing the VAR (VECM) shocks êkt on ε̂1t, because
ε1t is uncorrelated with all the other shocks εjt (j 6= 1), and hence νkt. This
is where the requirement that the shocks are uncorrelated is important. With
it all impulse responses to any structural shock can be recovered provided an
estimate can be made of the requisite shock, i.e. ε1t, since the VAR residuals êt
are available without specifying any structure.

7.4.4 Estimation of the Gali Model with EViews 9.5

In fact we don’t need to run a regression to get the āk1. All that is needed is
to add (7.9) on to the VAR equations for the remaining variables in the system
so as to produce a combined SVAR/VAR structure. Now in the VAR module
there is no allowance for such a hybrid structure so we need to use the SVAR
commands modified in such a way as to allow a correlation between the errors
of the VAR equations as well as a correlation with the structural equation error.
To see how this can be done, the SVAR/VAR hybrid system for Gali’s example
looks like:

∆xt = α0
12∆2nt + α0

13∆2πt + α0
14∆ξ1t+ (7.12)

α0
15∆ξ2t + α1

11∆xt−1 + ε1t

∆nt = b121∆xt−1 + b122∆πt−1 + b123ξ1t−1 + b124ξ2t−1 + ā21ε1t + ν2t (7.13)

∆πt = b131∆xt−1 + b132∆πt−1 + b133ξ1t−1 + b134ξ2t−1 + ā31ε1t + ν3t (7.14)

ξ1t = b141∆xt−1 + b142∆πt−1 + b143ξ1t−1 + b144ξ2t−1 + ā41ε1t + ν4t (7.15)

ξ2t = b151∆xt−1 + b152∆πt−1 + b153ξ1t−1 + b154ξt−1 + ā51ε1t + ν5t, (7.16)

where νjt are combinations of ε2t, ε3t, ε4t and ε5t. These are uncorrelated with
ε1t but will generally be correlated with each other as they are in VAR equations.
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Hence, we need to allow for that in some way when estimating this augmented
system.

EViews works with the (A,B) form Aet = But, where ut are taken to be
i.i.d(0, 1) and uncorrelated with one another. So εt = But and we can define
ε1t and νjt with the following relations

ε1t = δ1u1t

ν2t = δ2u2t

ν3t = δ3u2t + δ4u3t

ν4t = δ5u2t + δ6u3t + δ7u4t

ν5t = δ8u2t + δ9u3t + δ10u4t + δ11u5t.

In this structure the shocks νjt are correlated with each other due to the presence
of common elements, but they are uncorrelated with ε1t. Hence this device also
captures the nature of the combined SVAR/VAR system.

The complete system (7.12)-(7.16) can now be written in the A/B form by
setting

A =


1 −α0

12 −α0
13 −α0

14 −α0
15

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 B =


δ1 0 0 0 0
ã21 δ2 0 0 0
ã31 δ3 δ4 0 0
ã41 δ5 δ6 δ7 0
ã51 δ8 δ9 δ10 δ11

 ,
where ã21=ā21δ1. Because α0

ij have been estimated by IV it is only necessary
to estimate B in EViews. There are fifteen unknown elements in B and fifteen
parameters are in the covariance matrix of the reduced form VAR, so it is exactly
identified.4

Galitech.prg (see Figure 7.1) contains the code to estimate the model using
the SVAR routine. Note that ∆xt = dprodh,∆nt = dhours,∆πt = dinf, ξ1t =
ec1, ξ2t = ec2. Cumulative impulse responses are given in Figure 7.2. They
match those of Gali (1999).

An alternative approach is to recognize that equations (7.12) - (7.16) can be
estimated as a system using the FIML estimator and an unrestricted covariance
matrix. To see this express the system as

∆xt = α0
12∆2nt + α0

13∆2πt + α0
14∆ξ1t+ (7.17)

α0
15∆ξ2t + α1

11∆xt−1 + ε1t

∆nt = b121∆xt−1 + b122∆πt−1 + b123ξ1t−1 + b124ξ2t−1 + ϑ2t (7.18)

∆πt = b131∆xt−1 + b132∆πt−1 + b133ξ1t−1 + b134ξ2t−1 + ϑ3t (7.19)

ξ1t = b141∆xt−1 + b142∆πt−1 + b143ξ1t−1 + b144ξ2t−1 + ϑ4t (7.20)

ξ2t = b151∆xt−1 + b152∆πt−1 + b153ξ1t−1 + b154ξt−1 + ϑ5t, (7.21)

4The four long-run restrictions mean that there are nineteen restrictions in total and so
nineteen parameters can be estimated.
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in which cov(ε1t, ϑ2t, ϑ3t, ϑ4t, ϑ5t) = BB′ and is clearly non-diagonal in general.
The system has 19 unknown parameters5 and hence is exactly identified.

The EViews SYSTEM object code required to estimate (7.17) to (7.21) using
FIML is shown in Figure 7.3. As before, the long-run assumptions concerning
the impact of money supply, money demand and aggregate demand on output
growth are enforced by ensuring that the contemporaneous coefficients for the
corresponding variables (dhours, dinf , ec1 and ec2) are equal but opposite in
sign to the sum of the corresponding lag coefficients in the system.

Estimating the model using the FIML estimator yields the results for Equa-
tion 7.17 shown in Figure 7.4. The implied FIML estimates for the contempora-
neous parameters are identical to the IV/SVAR estimates, and hence re-produce
the impulse response functions in Figure 7.2.

7.4.5 Estimation of Gali’s Model with EViews 10

The model of the previous sub-section can be represented in EViews 10 notation
as

A =


1 NA NA NA NA
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , B =


NA 0 0 0 0
NA NA 0 0 0
NA NA NA 0 0
NA NA NA NA 0
NA NA NA NA NA

 ,

F =


NA 0 0 0 0
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA


There are two transitory shocks in the error-correction equations and two per-
manent shocks having a zero long-run effect upon xt, the level of productivity.
The F matrix reflects this.

The following commands specify the matrices using EViews code. They are
entered into the “Text” box describing the model for estimation. The results are
identical to those based on the IV and FIML methods. Note that @LOWER(B)
indicates that the upper level of B is all zero, while the elements below and
including along the diagonal are to be estimated. This is consistent with the B
presented above.6

@A(1 ,1)=1
@A(2 ,2)=1
@A(3 ,3)=1
@A(4 ,4)=1
@A(5 ,5)=1

5These are the four structural parameters, α0
12, α

0
13, α

0
14 and α

0
15, and the 15 variance and

covariance terms in BB′.
6See also e10 galitech.prg, which uses the workfile called e10 galidusa.wk1.
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Figure 7.2: Accumulated Impulse Responses for Gali (1999) Featuring Technol-
ogy Shocks
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Figure 7.4: FIML Estimates for Equation (7.17) (Partial Output)
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@A(2 ,1)=0
@A(2 ,3)=0
@A(2 ,4)=0
@A(2 ,5)=0
@A(3 ,1)=0
@A(3 ,2)=0
@A(3 ,4)=0
@A(3 ,5)=0
@A(4 ,1)=0
@A(4 ,2)=0
@A(4 ,3)=0
@A(4 ,5)=0
@A(5 ,1)=0
@A(5 ,2)=0
@A(5 ,3)=0
@A(5 ,4)=0
@F(1 ,2)=0
@F(1 ,3)=0
@F(1 ,4)=0
@F(1 ,5)=0
@LOWER(B)

7.5 Example: Gali’s 1992 IS/LM Model

7.5.1 Nature of System and Restrictions Used

Gali (1992) has a model with four I(1) variables - the log of GNP at 1982 prices
(yt), the yield on three-month Treasury Bills (it), the growth in M1 (∆mt), and
the inflation rate in the CPI (∆pt). Hence ζ ′t =

[
yt it ∆mt ∆pt

]
. He

indicates that there are two cointegrating vectors among these four variables.
Therefore in this case n = 4, r = 2 and there are n − r = 2 permanent shocks
and two transitory shocks. We take the permanent shocks as being those in the
structural equations involving yt and it. Gali works with an SVAR in terms of
the variables ∆yt,∆it, ξ1t = it −∆pt, ξ2t = ∆mt −∆pt.

There are four shocks in the system which he calls (aggregate) supply (ε1t),
money supply (ε2t), money demand (ε3t) and an aggregate demand (IS) shock
(ε4t). Supply shocks can be taken to be permanent but one of the others must
also be permanent, with the remaining two being transitory. Given the fact that
Gali works with ∆it and treats it as I(1) we will take the second permanent
shock (ε2t) as relating to money supply. Then he needs some extra restrictions
to estimate the system. These are:

• Both the money and aggregate demand shocks ε3t and ε4t are transitory.

• The money supply shock has a zero long-run effect on output.
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Cast in terms of the long-run response matrix C the assumptions as stated
above imply the following structure:

C =


ε1t ε2t ε3t ε4t

yt ∗ 0 0 0
it ∗ ∗ 0 0

∆mt 0 0 0 0
∆pt 0 0 0 0


Note that this is not C(1) owing to the presence of two I(0) variables in the

SVAR. This was explained when discussing the Blanchard and Quah example
(see Section 6.4.2).

7.5.2 Estimation of the System with EViews 9.5

We begin with the first of Gali’s equations (where the normalization is on yt)

∆yt = a0
12∆it + a0

13∆ξ1t + a0
14∆ξ2t + lags+ ε1t,

where “lags” means lags of ∆yt etc. Since the first equation has a permanent
shock we know from the Pagan-Pesaran (PP) result that only differences of the
error-correction terms are in this equation, so that the lagged error-correction
terms ξ1t−1 and ξ2t−1 provide instruments for ∆ξ1t and ∆ξ2t. But one more
instrument is needed for ∆it. This is where Gali’s assumption that money supply
shocks (the shock in the ∆it equation) have a zero long-run effect on output
comes in. It implies that the coefficients of ∆it and ∆it−1 are equal and opposite
in sign so that the equation becomes

∆yt = a0
12∆2it + a0

13∆ξ1t + a0
14∆ξ2t + lags+ ε1t, (7.22)

yielding the third instrument, namely ∆it−1. This equation can then be esti-
mated and residuals ε̂1t recovered.

Now because the second equation also has a permanent shock, it follows that
it should have the form

∆it = a0
21∆yt + a0

23∆ξ1t + a0
24∆ξ2t + lags+ ε2t. (7.23)

Again the lagged error-correction terms can be used as instruments for ∆ξ1t
and ∆ξ2t. This leaves us the task of finding one instrument for ∆yt. But that
is available from the residuals ε̂1t. Hence (7.23) can be estimated using the
instruments provided by the assumption of cointegration.

Gali, however, does not estimate equation 7.23. The equation he estimates
is of the form (see Pagan and Robertson, 1998, p. 213)

∆it = γ0
21∆yt + γ0

23ξ1t + γ0
24ξ2t + lags+ ε2t. (7.24)

This differs from the correct structure (7.23) because it involves the level of
the cointegrating errors and not the changes. Because of this Gali does not
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treat the lagged error-correction terms as instruments and is therefore forced to
impose two short-run restrictions. He lists three possible short-run restrictions,
which he labels R4, R5 and R6. R4 and R5 imply no contemporaneous effects
of money supply (R4) and money demand shocks (R5) on output, implying
that the (1,2) and (1,3) elements of A−1

0 should be constrained to be zero. R6
says that contemporaneous prices don’t enter the money supply rule, meaning
γ0

23 + γ0
24 = 0.

Now the first of these, i.e. (R4) means that the VAR output growth equation
error term e1t does not involve ε2t and so the VAR residuals ê1t can be used
as an instrument in the second equation for it. R5 does not deliver any usable
instruments for this equation since it says e2t is uncorrelated with ε3t. Therefore,
given Gali’s setup, R6, i.e. γ0

23 + γ0
24 = 0 is needed to estimate the second

equation.
As emphasized above, however, if one follows through on the implications of

Gali’s I(1) and cointegrating assumptions it is not necessary to use short-run
restrictions to estimate this equation. Also, R6 in particular is not required
because under his assumptions ξ1t−1 and ξ2t−1, are instruments for ∆ξ1t and
∆ξ2t respectively and ∆yt can be instrumented by ε̂1t. Recall that there must
be two permanent shocks in the system (since the number is n − r and he has
set r = 2). Gali treats the shock of the second equation as transitory when in
fact it is not transitory. This may stem from a confusion between the stochastic
nature of the shock and its effects. The shock ε2t is an I(0) process but it has
a permanent effect upon it.

Anyway, if one follows Gali’s approach of using R6, the equation estimated
would be

∆it = γ0
21∆yt + γ0

23(ξ1t − ξ2t) + lags+ ε2t, (7.25)

where ε̂1t and ê1t are used as instruments.
Moving on to the third equation it will be

ξ1t = a0
31∆yt + a0

32∆it + a0
34ξ2t + lags+ ε3t.

Now the residuals ε̂1t and ε̂2t are available as instruments for ∆yt and ∆it but
another instrument is needed for ξ2t. Here a short-run restriction is needed. If
one follows what Gali did then the logical restriction is that money-demand
shocks (R5) have no contemporaneous effect on output. This means that the
VAR equation for ∆yt will have a shock that does not include ε3t, a result
established earlier in Chapter 4. Hence e1t can be used as an instrument in this
equation as well.

Once this equation is estimated, ε̂1t, ε̂2t and ε̂3t are available as instruments
to estimate the remaining equation in the system

ξ2t = a0
41∆yt + a0

42∆it + a0
43ξ1t + lags+ ε4t. (7.26)

Program galiqje.prg in Figure 7.5 contains the code to estimate the model
in this way. In the program a VAR(4) is estimated in line with what Gali did.
The correspondence between model variables and data is:
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∆yt = ygr,∆it = drate, ξ1t = ec1, ξ2t = ec2 and ξ1t − ξ2t = diffec.

Figure 7.6 shows the resulting parameter estimates, and Figures 7.7 and 7.8
show the responses of GNP and the interest rate (in level terms) to the four
shocks in the system. These closely follow what is in Gali (1992).

Looking at the impulse responses we see that a (negative) money supply
shock has a negative effect on the level of output at all lags but goes to zero
in the long run (as imposed). So there is no output puzzle. But we also notice
that a demand shock has a long-run effect on the level of interest rates (Figure
7.8, fourth panel), which is unsatisfactory. It arises from the fact that the
restriction that the third and fourth shocks of the system are transitory has not
been imposed. One has to impose this effect upon the interest rate equation -
it does not occur naturally.7

Estimating the model directly using FIML reveals implicit cross-equation
constraints that are imposed automatically using the IV approach. As noted
above assumptions R4 and R5 imply that the (1,2) and (1,3) elements of A−1

0

are zero. They therefore imply restrictions on the elements of A0 that need to
be accounted for using the FIML estimator available in EViews. The nature of
these restrictions can be determined by inverting A0 analytically and allowing
for Gali’s assumptions. Now these are

|A−1
0 |12 = 1

f {a
0
12 + a0

13a32 + a0
14a

0
42 + a0

13a
0
34a

0
42

+a0
14a

0
32a

0
43 − a0

12a
0
34a

0
43}

|A−1
0 |13 = 1

f {(a
0
13 + a0

14a
0
43) + [γ0

23(a0
12 + a0

13a
0
42 + a0

14a
0
42 − a0

12a
0
43)]},

(7.27)

where f is the determinant of the contemporaneous coefficient matrix

A0 =


1 −a0

12 −a0
13 −a0

14

−γ0
21 1 −γ0

23 γ0
23

−a0
31 −a0

32 1 −a0
34

−a0
41 −a0

42 −a0
43 1


in which R6 has been imposed. Note that to equate both |A−1

0 |12 and |A−1
0 |13

to zero it is sufficient to set a0
42 = −

(
a012
a014

)
and a0

43 = −
(
a013
a014

)
. Moreover, with

these restrictions, the value of γ0
23 does not affect |A−1

0 |13, since
(a0

12 + a0
13a

0
42 + a0

14a
0
42 − a0

12a
0
43) = 0. Moreover, substituting (7.26) into the

output-growth equation (7.22) gives

∆yt = (a0
12 + a0

14a
0
42)∆2it + (a0

13 + a0
14a

0
43)∆ξ1t (7.28)

+ a0
14a

0
41∆

2yt + lags+ ε1t + a0
14∆ε4t.

7There seem to be some weak instrument issues in Gali’s estimation so that the EViews
standard errors for impulse responses may not be very reliable. Pagan and Robertson (1998)
found by simulation that multi-modal densities were likely for Gali’s estimators rather than
normality.
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Figure 7.6: IV/SVAR Estimates for Gali’s (1992) IS-LM Model
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Figure 7.9: EViews SYSTEM Object Code (gali sys 1992 ) to Estimate Gali’s
(1992) IS-LM Model

Hence the output growth (∆yt) equation does not involve ε2t and ε3t with
these restrictions imposed, and aggregate demand shocks (ε4t) do not influence
output in the long run due to ε4t being differenced.

The EViews system object code to estimate Gali’s model using FIML is
given in Figure 7.9 and the final estimates for the contemporaneous parameters
are shown in Figure 7.10. They were obtained assuming a diagonal covariance
structure for the structural errors. Note that a12 = −(C(5) + C(6) + C(7) +
C(8)) = 0.65541 with a standard error of 0.3356 using the delta method. This
matches the estimate for a0

12 obtained using the IV/SVAR approach (see Figure
7.6).

Now consider what happens when, rather than R4, R5, and R6, the long-
run restrictions implied by Gali’s cointegration assumptions above are imposed.
Restriction R6 in particular is no longer necessary, and one of R4 or R5 can
be dropped. Also, money demand (ε3t) and an aggregate demand shocks (ε4t)
shocks cannot have a long-run effect on interest rates (i.e., second equation).
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Figure 7.10: FIML Estimates (Diagonal Covariance) for Gali’s (1992) IS-LM
Model
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Assuming only R5 applies, the commands to implement the IV/SVAR approach
are given in the program galiqje alt.prg (Figure 7.11) and cumulative impulse
responses are given in Figures 7.13 and 7.14.8 Notice that, as required, an
aggregate demand shock does not have a long-run effect on the nominal interest
rate under the cointegration restrictions.

7.5.3 Estimation of the System with EViews 10

Gali’s original (1992) model can be summarized by the following A,B, S, F
matrices:

A =


1 NA NA NA
NA 1 NA −A(2, 3)
NA NA 1 NA
NA NA NA 1

 , B =


NA 0 0 0

0 NA 0 0
0 0 NA 0
0 0 0 NA

 ,

F =


NA 0 0 0
NA NA NA NA
NA NA NA NA
NA NA NA NA

 , S =


NA 0 0 NA
NA NA NA NA
NA NA NA NA
NA NA NA NA

 .
A VAR(4) is fitted to ygr drate ec1 ec2. Using the “Text” option the matrices

can be constructed using the following commands:9

@A(1 ,1)=1
@A(2 ,2)=1
@A(3 ,3)=1
@A(4 ,4)=1
@A(2 ,3)+@A(2 ,4)=0
@F(1 ,2)=0
@F(1 ,3)=0
@F(1 ,4)=0
@DIAG(B)
@S(1 ,3)=0
@S(1 ,2)=0

The results are the same as in the previous sub-section. Most notable is the
estimated F matrix:

1.241509 0.000000 0.000000 0.000000
− 0.128554 −0.522786 −0.027417 0.658078
5.294284 7.180769 4.537946 −2.804896
7.898675 4.942960 6.459189 −7.263472


8The system object code for this case may be found in gali sys alt in the galiqje.wk1

workfile, pagefile GALI ALT, and an MLE implementation using optimize() can be found in
gali alt mle.prg in the MLE sub-directory. Note that for this case Gali’s model requires one
additional restriction to achieve exact identification. We follow Gali and assume that R5 holds,
namely

[
A−1

]
13

= 0. It can be shown that this requires a043 = (a013(1.0−a024a042)−a023(a012−
a014a

0
42))/(a014 − a012a024). The resulting FIML estimates match the IV/SVAR estimates.

9These commands are contained in e10 galiqje.prg.
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Figure 7.12: IV/SVAR Estimates for Gali (1992) Using Alternative Restrictions
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From this matrix we see that there are permanent effects upon the second
I(1) variable which is the level of the interest rate (i.e, rate), from the second,
third and fourth shocks. This means that there are four permanent shocks in
the model. But the cointegration assumptions that Gali made were that there
are only two.

As noted above under Gali’s assumptions the third and fourth shocks should
be transitory. If one imposes these two extra long-run restrictions, the two short-
run restrictions that he applied, i.e. that a0

23 +a0
24 = 0 (R6) and that the money

supply had a zero contemporaneous effect on output (R4), can be removed. If
we use these restrictions in place of the two that Gali used, the corresponding
A,B, S, F matrices are:

A =


1 NA NA NA
NA 1 NA NA
NA NA 1 NA
NA NA NA 1

 , B =


NA 0 0 0

0 NA 0 0
0 0 NA 0
0 0 0 NA

 ,

F =


NA 0 0 0
NA NA 0 0
NA NA NA NA
NA NA NA NA

 , S =


NA NA 0 NA
NA NA NA NA
NA NA NA NA
NA NA NA NA


To implement these restrictions use the “Text” option with the following

commands:10

@A(1 ,1)=1
@A(2 ,2)=1
@A(3 ,3)=1
@A(4 ,4)=1
@F(1 ,2)=0
@F(1 ,3)=0
@F(2 ,3)=0
@F(1 ,4)=0
@F(2 ,4)=0
@S(1 ,3)=0
@DIAG(B)

Doing so we get the same impulse responses as those using the IV approach.
The estimated F matrix is:

1.241509 0.000000 −1.30E − 10 0.000000
− 0.128554 −0.840907 0.000000 0.000000
5.294284 6.807253 4.155652 −4.051628
7.898675 8.967860 6.191455 0.394174


10See also e10 galiqje alt.prg.
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Consequently we now have two permanent and two transitory shocks. These
are the results one should get if one applied Gali’s assumption relating to coin-
tegration consistently.
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