
EXAMPLES of STOCHASTIC PROCESSES
(Measure Theory and Filtering by Aggoun and Elliott)

Example 1: Let


 = f!1; !2; :::g;

and let the time index n be �nite 0 � n � N: A stochastic process in this
setting is a two-dimensional array or matrix such that:

X=

2664
X1(!1) X1(!2) :::
X2(!1) X2(!2) :::
:::::: ::: :::

XN (!1) XN (!2) :::

3775
Each row represents a random variable and each column is a sample path

or realization of the stochastic process X: If the time index is unbounded, each
sample path is given by an in�nite sequence.

Example 2: Let N = 4 in the previous example and suppose that X is
given by the following array2664

2 3 5 7 11 3 2:3 1

�1 1 7:5
p
2 3 6 83 19

11 7 70 3 2 �5 2 21
5 3 2 1 0 1 2 3

3775
The sample space of fXng is R4 and the stochastic process can be thought

of as a mapping (in fact a random variable)

!i ! X(!i) = (X1(!i); X2(!i); X3(!i); X4(!i)) = (x
i
1; x

i
2; x

i
3; x

i
4) � xi 2 R4:

The random variable X induces a probability measure PX on the Borel
� � field B(R4);

PX(B) � P [! : X(!) 2 B] = P (X�1(B)):

For instance,

B1 = fx 2 R4 : 3 � x1 � 5; 2 � x2 � 7g

contains a single trajectory (column 6 in the table) so that PX(B) = P (!6):

B2 = fx 2 R4 : max1�n�4 xn � 7g
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contains three trajectories (column 2, 4,and 6 in the table) so that PX(B) =
P (!2; !4; !6):
Exercise 1: In economics you will only be observing a time series, for

instance column 3. Assuming that the process is i:i:d try to obtain the proba-
bilities of B1 and B2: Later on, these standard assumptions will be substituted
by Ergodocity and Stationarity.

Example 3: Let 
 = f!1; !2; :::g and P a probability measure on (
;F).
Suppose the time index set is the set of positive integers. A real valued stochastic
process X in this setting is a two-dimensional in�nite array such that:

X=

2664
X1(!1) X1(!2) :::
X2(!1) X2(!2) :::
::: ::: :::
::: ::: :::

3775
Here the sample space is

R1 = f(x1; x2; :::) 2 R�R� :::g:

Here R1 denotes the space consisting of all in�nite sequences (x1; x2; :::) of
real numbers. InR1 and n-dimensional rectangle is a set of the form (sometimes
called cylinder sets)

fx 2 R1; x1 2 I1; :::; xn 2 Ing;

where I1, ..., In are �nite or in�nite intervals. Take the Borel �eld B(R1)
to be the smallest � � field of subsets of R1 containing all �nite-dimensional
rectangles.
Now think of the stochastic process X as an R1 valued random variable

!i ! X(!i) = (X1(!i); X2(!i); :::::::) = (x
i
1; x

i
2; ::::) � xi 2 R1:

The random variable X induces a probability measure PX on the � � field
B(R1): For instance, if

A = fx 2 R1 : supxn � ag 2 B(R1);

then the set A consists of all sequences with some of their entries larger than
a and PX(A) � P [! : X(!) 2 A]:
If all we observe are the values of a process X1(!); X2(!); :::::::the underlying

probability space is certainly not uniquely determined. As an example, suppose
that in one room a fair coin is being tosses independently, and calls zero or one
are being made for tails or heads respectively. In another room a well-balanced
die is being cast independently and zero or one called as the resulting face is
odd or even. There is, however, no way of discriminating between these two
experiments on the basis of the calls.
Denote X = (X1; X2; :::::::). From an observational point of view, the thing

that really interests us is not the space (
;F ,P ) but the distribution of the
values of X. If two processes, X; on (
;F ,P ) and X 0 on (
0;F 0,P 0) have the
same probability distribution,
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PX(B) � P [X(!) 2 B] = P 0[X 0(!) 2 B]; for all B 2 B(R1);

then there is no way of distinguishing between the processes by observing
them (more formally see de�nition 4 ).
The distribution of a process contains all the information which is relevant

to probality theory. All the theorems in this probabilistic introduction depend
on the distribution of the process, and hence hold for all the processes having
that distribution. Among all the processes having a given distribution P on
B(R1), there is one which has some claim to being the simplest.

De�nition 1 1. For any given distribution P de�ne the random variables
X1; X2; :::::::; on (R1; B(R1); P ) by

Xn(x1; x2; :::) = xn:

This process is called the coordinate representation process and has the same
distribution as the original process.
This representation will be used when we discuss stationarity, ergodicity, etc.

Now we complicate things a bit more. LetXt be a continuous time stochastic
process. That is, the time index belongs to some interval of the real line, say,
t 2 [0;1): If we are interested in the behavior of Xt during an interval of
time [t0 � t � t1] it is necessary to consider simultaneously an uncountable
family of Xt0s {Xt; t0 � t � t1g: This results in a technical problem because
of the uncountability of the index parameter t . Recall that � � fields are,
by de�nition, closed under countable operations only and that statements like
fXt � x; t0 � t � t1g =

T
t0�t�t1

fXt � xg are not events!!! However, for most

practical situations this di¢ culty is bypassed by replacing uncontable index
sets by countable dense subsets without losing any signi�cant information. In
general, these arguments are based on the separability of a continuous time
stochastic process. This is possible, for example, if the stochastic process X is
almost surely continuous (see next de�nition).
Playing with stochastic processes: LetX = fXt : t � 0g and Y = fYt : t � 0g

be two stochastic processes de�ned on the same probability space (
;F ; P ).
Because of the presence of ! the functions Xt(!) and Yt(!)can be compared in
di¤erent ways:

De�nition 2 2. X and Y are called indistinguishable if

P (f! : Xt(!) = Yt(!); t � 0g) = 1:

De�nition 3 3. Y is a modi�cation of X if for every t � 0; we have

P (f! : Xt(!) = Yt(!)g) = 1:

De�nition 4 4. X and Y have the same law or probability distribution i¤
all their �nite dimensional probability distributions coincide, that is, i¤ for
any sequence of times 0 � t1 � :::: � tn the joint probability distributions of
(Xt1 ; :::; Xtn) and (Yt1 ; :::; Ytn) coincide.
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Note that the �rst property is much stronger than the other two. The null
sets in the second and thirs property may depend on t .

Recall that there are di¤erent de�nitions of limit for sequences of random
variables. To each de�nition corresponds a type of continuity of real valued time
index process. For instance:

De�nition 5 5. fXtg is continuous in probability if for every t and " > 0;

limh!0P (jXt+h �Xtj > ") = 0:
....almost sure, in Lp; etc.............

However, none of the above notions is strong enough to di¤erentiate, for in-
stance, between a process for which almost all the sample paths are continuous
for every t , and a process for which almost all sample paths have a countable
number of discontinuities, when the two processes have the same �nite dimen-
sional distributions. A much stronger criterion for continuity is sample paths
continuity that requires continuity for all ts simultaneously!!!!!!!!!!! In other
words for almost all ! the function X(:)t(!) is continuous in the usual sense.
Unfortunately, the de�nition of a stochastic process in terms of its �nite dimen-
sional distributions does not help here since we are faced with whole intervals
containing uncountable numbers of ts: Fortunately for most useful processes in
applications, continuous versions (sample paths continuous) or right-continuous
versions, can be constructed.
If a stochastic process with index set [0;1) is continuous its sample space

can be identi�ed with C[0;1), the space of all real valued continuous functions,
with a corresponding metric �.
Let B(C) the smallest � � field containing the open sets of the topology

induced by � on C[0;1); the borel � � field: Then same � � field B(C) is
generated by the cylinder sets of C[0;1) which have the form

fx 2 C[0;1) : xt1 2 I1; xt2 2 I2; ..., xtn 2 Ing;

where each Ii is an interval of the form (ai; bi]. In other words, a cylinder
set is a set of functions with restrictions put on a �nite number of coordinates
(is the set of functions that, at times t1; :::; tn get through the windows I1; I2;
..., In and at other times have arbitrary values.
An example of a Borel set from B(C) is

A = fx : supxt � a; t � 0g:

Note that the set given by A depends on the behavior of functions on an
uncountable set of points and would not be in the � � field B(C) if C[0;1)
were replaced by the much larger space R[0; 1): In this latter space every Borel
set is determined by restrictions imposed on the functions x , on an at most
countable set of points t1; :::; tn:
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