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Abstract. The immense literature and diversity of unit root tests can at times be
confusing even to the specialist and presents a truly daunting prospect to the
uninitiated. In consequence, much empirical work still makes use of the simplest
testing procedures because it is unclear from the literature and from recent
reviews which tests if any are superior. This paper presents a survey of unit root
theory with an emphasis on testing principles and recent developments. The
general framework adopted makes it possible to consider tests of stochastic
trends against trend stationarity and trend breaks of & general type. The main tests
are listed, and asymptotic distributions are given in a simple form that
emphasizes commonalities in the theory. Some simulation results are reported,
and an extensive list of references and all annotated bibliography are provided.
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1. Introduction

At a casual level, many observed time series seem to display nonstationary
characteristics. For economic time series nonstationary behavior is often the most
dominant characteristic. Some series grow in a secular way over long periods of
time, others appear to wander around as if they have no fixed population mean.
Growth characteristics are especially evident in time series that represent
aggregate economic behavior like gross domestic product and industrial
production. Random wandering behavior is evident in many financial time series
like interest rates and asset prices. Similar phenomena arise in data from other
social sciences like communications and political science, one example being
opinion poll data on presidential popularity. Any attempt to explain or forecast
series of this type requires that a mechanism be introduced to capture the
nonstationary elements in the series, or that the series be transformed in some way
to achieve stationarity. Yet this is often much easier to say than it is to do in a
satisfactory way. The problem is particularly delicate in the multivariate case,
where several time series may have nonstationary characteristics and the
interrelationships of these variables are the main object of study.

Before 1970, a very popular way of modeling nonstationarity was to use
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424 PHILLIPS AND X1IAO

deterministic trending functions like time polynomials to capture the secular
movements in the series. Regression methods were commonly used to extract this
trend and the residuals were then analyzed as a stationary time series. A model of
the form

n=h+y h=y'x,t=1,..,n, (1)

where y; is a stationary time series and x, is a k-vector of deterministic trends, is
known as a trend-stationary time series. The trend function A, may be more
complex than a simple time polynomial. For example, time polynomials with
sinusoidal factors and piecewise time polynomials may be used. The latter
corresponds to a class of models with structural breaks in the deterministic trend.
The outline of the theory of unit root tests that is given here will allow for these
possibilities.

A major limitation of models like (1) is that the trending mechanism is non-
stochastic. One way of introducing a stochastic element into the trend is to allow
the process y, to be generated as follows:

y=ay+u,t=1,..nwitha=1, 1,=C(L)¢, (2)
and .
W= gty gl <= c) # 0, 3
j=0 j=0

where L is the lag operator for which Ly, = y,_,. The initial condition in (2) is set
at r=0, and y; may be a constant or a random variable. In the latter case, we can
even allow for distant initial conditions (see Phillips and Lee, 1996, and Canjels
and Watson, 1997), so that yj has a comparable stochastic order to the terminal
data point y,, viz. O, (Vm). If ¢, =iid(0, o%), then u,in (2) is a linear process, and
y, has an autoregressive unit root. It is common to make the more general
assumption that ¢, is a stationary martingale difference sequence with respect to
the natural filtration (%,) with E(e?|%,_,)=0% as. The second and third
conditions of (3) ensure that u, is covariance stationary and has positive spectral
density at the origin, thereby ensuring that the unit root in y, does not cancel (as it
would if u, had a moving average unit root). The }-summability condition in (3) is
useful in validating the following expansion of the operator C(L)

CLy=CHY+CL)L-1), : 4)
where C(L) =270 GL and ¢ =27, c,. This expansion gives rise to an explicit
martingale difference decomposition of &,

u,=C(lYe,+£,_,-£, withé=C(L)e, (5)

This decomposition is sometimes called the martingale decomposition in the
probability literature (see Hall and Heyde, 1980) because the first term of (5) is a
martingale difference and the partial sums X'_, u, comespondingly have the
leading martingale term C(1) X', £,. The expansion (4) was obtained, but not
validated, in the work of Beveridge and Nelson (1981) on decomposing
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A PRIMER ON UNIT ROOTS 425

aggregated economic data into long run and short run componenis and is
significant in this context. Thus, if y; is generated by (2) then (5) reveals that

I
Vi=C) Y g+ &~ E+yo=Yi+n,

su]

where Y/ =C(1) X\, &, and 5,=6,— & +y! are the long run and short run
components of y, respectively. The decomposition (5) was justified in a simple
algebraic way using (3) by Phillips and Solo (1992), who showed how to use it to
prove strong laws, central limit theorems, functional laws, and laws of iterated
logarithms for time series. It is now commonly used in this way in the develop-
ment of an asymptotic theory for nonstationary time series.

The output of (2) can be written as the accumulated process yi=Z u+yi,
and is called a stochastic trend by virtue of the fact that it is of stochastic order
O,(+'/). The process y; is difference stationary in the sense that Ay=y, is a
stationary process where A=1-L is the differencing operator. The terminology
integrated process of order one (written as J(1)) is in common use because of the
above representation. In consequence, we call a stationary time series an /(0)
process (integrated of order zero). The assumptions given above are sufficient to
ensure that y; satisfies a functional central limit theorem (see Phillips and Solo,
1992, for a demonstration), which is an important element in the development of
the asymptotic theory of all unit root tests. As a result, n"”’y‘},,,,=>B(r), a
Brownian motion with variance w?=0*C(1)%, where [nr] signifies the integer
part of nr and re|0,1] represents some fraction of the sample data. The
parameter w® = 2xf,(0) is called the long-run variance of u,.

In contrast to stationary or trend stationary time series, models with a stochastic
trend have time dependent variances that go to infinity with time, are persistent in
the sense that shocks have permanent effects on the values of the process, and
have infinite spectrum at the origin. These properties of stochastic trends have
considerable relevance in economic applications. For instance, under the real
business cycle hypothesis, policy actions are required to bring real GNP back to
its original path due to the persistent effects of innovations. However, less policy
intervention is needed in trend stationary models because shocks only have a
transitory effect.

Testing for the presence of a stochastic trend in the model (1) is equivalent to
testing the null hypothesis that the autoregressive parameter ¢ =1 in (2), and is
known as a unit root test. The alternative hypothesis that |a|< 1 corresponds to
the version of the model in which y, is trend stationary. The test can be interpreted
as a test of difference stationarity versus trend-stationarity in the time series y,.
There are now a wide variety of such tests, based on parametric, semi-parametric
and non-parametric methods and employing both classical and Bayesian principles
of statistical testing. The literature is immense. This paper seeks to cover the main
principles of testing, the most commonly used tests in practical work, a
comparison of the finite sample properties among these tests, and recent
developments.
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426 PHILLIPS AND XIAQ

2. Classical unit root tests

2.1. The Dickey-Fuller tests
Combining (1) and (2) gives the regression model

)’;=ﬁ'x,+ay,_1+ iL,. ©)

In (6) the deterministic component is constructed so that Ah,=y'Ax,=y'Ax,=
B'x,, for some matrix A and vector 5. This usually involves raising the degree of
the deterministic trends to ensure that the maximum trend degrees in (6) and (1)
are the same. Then, at least one element of the parameter vector B is zero and,
consequently, there are surplus trend variables in the regression equation {6). It
will subsequently be useful to make this redundancy explicit, and this can be done
by rewriting the trend component in (6) as Ak, =pB'x,= §'%, where % = Sx, for
some eliminator matrix § that eliminates redundant rows of x,. The formulation
(6) therefore results in some inefficiency in the regression because ¥, is of smaller
dimension than x,. There is an alternative approach that avoids this problem of
redundant variables and it will be discussed in Sections 3.1 and 3.2 below. The
regression (6) does have the advantage that the detrended data is invariant to the
parameters in the trend function in (1).

To develop an asymptotic theory it is assumed that there exists a scaling matrix
D, and a piecewise continuous function X(r) such that D,,“x[,,,]—>X (rlasn—oo
uniformly in € [0, 1). For example, if A, is a p-degree time polynomial, then
D,=diag(l,n,...,n*) and X(r)=(1,r,..., ). Correspondingly, it is also
assumed that there exists a mal:rizc F, for which F,,“.\“:[,,,]-—b}f(r) as n—eo,
uniformly in r € [0, 1]. In general, X(r) = SX(r).

The Dickey-Fuller tests (Dickey and Fuller, 1979, 1981) dealt with Gaussian
random walks with independent residuals, Let @ be the OLS estimator of a in (6)
and f, be the corresponding t-ratio statistics, under the null hypothesis @ =1, the
large sample theory for these quantities involves functionals of Brownian motion,
some of which are stochastic integrals. The limit theory forms the basis of the
unit root tests. If the shocks u, are iid(0, 0%) random variates, the large sample
theory for the coefficient estimator & and its regression #-ratio statistic t, are given
by the following functionals of Brownian motion,

n@-1)= [L: Wx(")dW(")] [L: Wx(")2] , (7}

-12

= [ [ W dW(r)] [jol Wy (r)zJ , ®)

where == signifies weak convergence, W is standard Brownian motion, and
W, (r)=W(r)~ [} WX'(J} XX’)~'X(r) is the Hilbert projection in L,[0, 1] of W
onto the space orthogonal to X. In the special case where there is no determin-
istic component x,, these limit distributions reduce to the commonly known
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Dickey-Fuller distributions given by the functionals [ Waw 1! w?)-' and

s WaW1[l; W] /2. Dickey and Fuller (1979, 1981) did not themselves use
these representations, but used equivalent R_ formulations in terms of linear
combinations of functions of iid N(0, 1) variates, rather than stochastic process
representations on function spaces. The latter first appeared, but were unproved,
in White (1958), and were later developed in progressive degrees of generality by
Lai and Wei (1982), Solo (1984) and Phillips (1987). Multivariate regression
cases were dealt with using these methods in Phillips (1986) and Phillips and
Durlauf (1986).

In the more general case where the residual process u, is stationary, the limit
distributions of & and t, have additional bias terms due to the presence of serial
correlation. These were explored in Phillips (1987a). As a result, the limiting
distributions of the two statistics in (7) and (8) become dependent on the nnisance
parameters. Such a problem can be solved in a parametric or non-parametric way,
leading to two major classes of unit root tests that are distinguished by their
treatment of the autocorrelation in the stationary residual process u,. One
approach, proposed by Phillips (1987a), adjusts & and t, based on nonparametric
estimates of the nuisance parameters to account for the serial correlation. This
approach is said to be semi-parametric since its treatment of the regression
coefficient a is parametric but it deals with the stationary residual nonparametri-
cally. The second approach, the augmented Dickey-Fuller (ADF) test, adds lags
to the autocorrelation to eliminate the effect of serial comelation on the test
statistics. Such a device relies on specifying the stationary part of the process in
terms of a parametric model (commonly an autoregression) and is therefore fully
parametric. This approach was explored by Said and Dickey (1984).

2.2. The semi-parametric Z,, and Z, tests

The semiparametric Z,, and Z, tests were developed in Phillips (1987a) and extend
the original unit root tests of Dickey and Fuller (1979, 1981), which were based
on the statistic n(@ — 1) and ¢, in the Gaussian AR(1) model. Phillips and Perron
(1988), Ouliaris ez al. (1989), and Park and Sung (1994) give various extensions
of these semiparametric tests. Following Phillips (1987a), when the residual
process u, in (4} is a general stationary time series, the asymptotic distributions
are given as follows:

-1
nié-1)= l:.[ol By(ndB(r) + l] ':_L: B;(r)dr} s )
and
! L} T
b= 0| Bxnasey+ al|[ Biar| (10)

where o] =var(x,), B(r) is Brownian motion with variance o?= o’C(1)?,
A= Z;_, E(uyu;) and By(r) is detrended Brownian motion defined by the L,{0, 1]
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Hilbert space projection of B(r) onto the space orthogonal to the span of X(r},
viz., By(r) = B(r) - (I BX")(J{ XX")"'X(r). In (9) and (10), @* and 1 are nuisance
parameters and may be consistently estimated by nonparametric kernel tech-
niques, analogous to those that are used in the estimation of the spectral density
(e.g., see Andrews, 1991). Let &2 and 1 be such estimates. Using the limit theory
in (9) and (10} and these nonparametric estimates of the nuisance parameters, the
following statistics are formed to test the unit root hypothesis:

[ -1 1 -
za=n(&-1)-2(n"zy§_,_l) =>[j0 dew][jo'wi] . an

i=2

n 1/2]-1 1 1 -1/2
Z=6,07"t, -I{é)(n'ZZyi_,_l) } = [L dew][jo Wi] . (12)
=2

where yy , is the residual from a regression of y, on x,. The limit variates shown in
(11) and (12) involve standard Brownian motion W(r)= (1/w)B(r) and the
standardized process Wy(r) = (1/w)By(r), so they are free of nuisance par-
ameters and produce similar tests for a unit root.

The limit variates {11) and (12) simplify to those of the original Dickey-Fuller
tests in the case of a fitted intercept or linear trend and can be used to construct
critical values for the tests. This is typically done by large scale simulations, since
the limit distributions are non-standard. Fuller (1976/1996) gives some numerical
tabulations for the intercept and linear trend cases. Computerized tabulations are
given in Ouliaris and Phillips (1994) for the case of polynomial trends, These
limit distributions are asymmetric and have long left tails. In the case of the zZ,
test, for instance, we reject the null hypothesis of a unit root at the 5% level if
2, <cv(Z,;5%), the 5% critical value of the test. Both the Z,, and Z, tests are ong-
sided. They measure the support in the data from a unit root against the alternative
that the data are stationary about the deterministic trend x,, When there is no
deterministic trend in the regression model, the alternative hypothesis is just
stationarity. In this case, the limit variates involve only the standard Brownian
motion W, and Wy, =W in (11) and (12).

2.3. The parametric ADF tests

The most common parametric unit root test is the augmented Dickey-Fuller
(ADF) test. This test was originally proposed by Dickey and Fuller (1979, 1981)
for the case where u, in (6) is an AR(p) process. The unit root hypothesis in (6)
corresponds to the hypothesis a = 0 in the following regression:

k-1
Ay, =ay,_, +Z<ijy,_,-+ﬁ'x,+s,. (13)

j=1

This hypothesis can be tested by means of the regression coefficient & or its 7-ratio
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statistic ¢,, which have the same lmiting distributions as those given in (7) and
(8). For more general time series processes, we can expect that, as k—w, the
autoregressive approximation will give an increasingly accurate representation of
the true process. In an important extension of Dickey and Fuller (1979), Said and
Dickey (1984) prove the validity of the ADF t-ratio test (ADF,) in general
ARMA processes of unknown order, provided the lag length in the autoregression
increases with the sample size at a rate less than n'/®, where n = sample size. This
statistic has the same limit distribution as the Z, test given in (12) and thus the
same critical values can be used in practical applications.

The limit distribution of the coefficient estimate @ is dependent on nuisance
parameters even as the lag length goes to infinity. Specifically,

na = [o K deW][m I w;‘}]—t.

which depends on unknown parameters o and w. However, w and o can
be consistently estimated. In particular, 4°=3Y £*/n is a consistent estimator
of 0% and w’® can be consistently estimated by the AR estimator (Berk, 1974)
@*=6%/(1 - X @;)%. Under the null hypothesis that a =0, it is apparent that the
modified coefficient-based test statistic, ADF_ = (&/6)nd, has the same limit
distribution as that of the Z, test and that of the original Dickey-Fuller coefficient
test. This ADF, test was developed in Xiao and Phillips (1997).

3. Towards efficient unit root tests

3.1. The von Neumnann ratio and LM tests

The regression equations of classical unit root tests like (6) and (13) involve
redundant trend variables. It is to be anticipated that elimination of redundant
components in the deterministic trend may bring an efficiency gain to the unit root
tests. One such test that successfully avoids the problem of redundant trend
variables is the von Neumann (VN) ratio test.

The von Neumann (VN) ratio is the ratio of the sample variances of the
differences and the levels of a time series. For Gaussian data this ratio leads to
well known tests of serial correlation that have good finite sample properties.
Sargan and Bhargava (1983) suggested the use of this statistic for testing the
Gaussian random walk hypothesis, and Bhargava (1986) extends it to the case of
a time trend. Using nonparametric estimates of the nuisance parameter w2, it is a
simple matter to rescale the VN ratio to provide a unit root test for model (1) and
(2) above. Stock (1995) does this for the case where there is a linear trend. Using
a different approach and working with polynomial trends, Schmidt and Phillips
(1992) show that for a Gaussian likelihood the Lagrange multiplier (LM)
principle leads to a VN test, and can be generalized by using a nonparametric
estimate of w’. The following discussion gives a generalized VN unit root test for
the model (1) and (2), allowing for ends and trend breaks.
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430 PHILLIPS AND XIAQ

If y; were observable, the VN ratio would take the form VN=3X"_,(Ay/)¥/
27.1(y/)*. The process y! is, in fact, unobserved but may be estimated from (1 )X
Note that, under the null hypothesis and after differences are taken, we get

Ay, = Ah,+ Ay;. (14)

This equation is trend stationary, so that by the Grenander—Rosenblatt theorem
(Grenander & Rosenblatt, 1957, Chapter 7) the trend function can be efficiently
estimated by an OLS regression. Doing so avoids the problem mentioned earlier
of having surplus trend variables in the detrending regression. Intuition suggests
that this should increase the power of the test, at least in the neighborhood of the
null, and simulations in Schmidt & Phillips (1992) confirm this.

Let Ay =Ay,- Ah, be the residuals from the efficient detrending regression
(14} and let ;7 =3]., AJ; be the associated estimate of y’. Let & and &7 be
consistent estimates of w” and o2 (These may be obtained in the same way
as in the construction of the Z, test, i.e. by using the residuals from the
regression (6).) Finally, let §; = § — B'x, be the residuals from an OLS regression
of y; on x,. Rescaling the von Neumann ratio then leads to the following two test
statistics

p* n”' 3, @4y ]!
Rpy= = 22 0 :[j’v,i] , (15)
60 nT Y () ¢
2ty (ayy AL
-2 ’nz nty2 =>[,[0 Vi] :
h Z,_,()’l)

The limit process V,(r) in (15) is a detrended generalized Brownian bridge,
whose precise form depends on the deterministic trend 4, in (1). Specifically,

(16)

-1
Vi(r) = V() - (jo' t“/xfr')(jo' XX) X (17)

is the projection residual of the process V, on the space spanned by X(r), and
-1

Ve(r) = W(r) - (JD' dWX) (JO' xx) [J: (18)

is a generalized Brownian bridge process. When X has a constant element (as it
usually will), it is easy to see that the process V, is tied down to the origin at the
ends of the [0, 1] interval just like a Brownian bridge, so that both V, (0) =0 and
V(1) =0. In the case of a simple linear trend, V, (r) = W(r) - #W(1) is a standard
Brownian bridge, and Vy(r)=V,(r)~[} V, is a detrended Brownian bridge.
Consonant with the efficient detrending regression A§;=Ay,—Ah, the limit
process Vy in (15) is detrended using the limiting trend function X(r), which, like
X,, involves no redundant trend variables.

Critical values of the limit variates shown in (15) and (16) must be obtained by

@ Blackwell Publishers Lid. 1998



A PRIMER ON UNIT ROOTS 431

simulation. The statistics are positive almost surely and the tests are one sided.
Schmidt & Phillips (1992) provide tabulations for Ry, in the case where h isa
lincar trend. The presence of a unit root is rejected at the 5% level if
Ry > cv(Ryy, 5%).

3.2. Quasi-difference detrended unit root tests and joint estimation of the local
parameter and trend

As discussed in Section 3.1 above, the von Neumann ratio test R, is constructed
using an efficient detrending regression under the null hypothesis in contrast to the
regression (6), where there are generally redundant trending regressors. One way
to improve the power of unit root tests is to perform the detrending regression in a
way that is efficient under the altenative hypothesis as well, an idea that was
suggested in Elliot e al. (1996) in the context of the removal of means and linear
trends. For alternatives that are distant from a unit root, this can be done directly
by means of a regression on (1) because y; is stationary with a spectral density
that is continuous at the origin and then the Grenander—Rosenblatt theorem
applies. To obtain large sample approximations, we can consider alternatives that
are closer to unity. Such alternative hypotheses can often be well modelled using
the local alternative

a=exp(n lc)~1+nl¢c 19

for some fixed c=¢, say, given the sample size n. In this case, in order to
efficiently estimate the trend coefficient under the alternative hypothesis, we
should use quasi-differencing rather than differencing in the construction of the
detrending regression. It is known that such a regression leads to estimates of the
trend coefficients that are asymptotically more efficient than an OLS regression in
levels (Phillips and Lee, 1996), and this result justifies the modified test procedure
that follows.

Define the quasi-difference operator as A, A.y,=(1-L- n~'zL)y, =
Ay, - n~'Ty,_,, take quasi-differences of (1) and run the detrending regression

Aeyr = }7’ At'xr + Afj::' (20)

We call such detrending procedures quasi-difference (QD) detrending. Using the
fitted coefficients ¥ from this OLS regression, the levels data are detrended
according to

Y=y -7 (21)

The detrended data ¥, may be used in the construction of unit root tests. For
example, we can construct the modified semi-parametric Z, test by running the
regression of the QD detrended variable §, on its one-period lagged value 7,_,
without deterministic trends in the regression, giving

¥, =4y,_, + residual.
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The modified Z, test statistic has the following form

T -1
Z, =n(G-1)- I(n“ - 1)

[l

- [jo‘ Wi]—l [ e,

where W,(ry=W(r)- I} dWX.(J} X X2)"'X(r) is the weak limit of n W2y,
W.iry=W(r)-¢ L’, W(s), 4 is a consistent estimator of A, X (P)=X'(r) - X(r)
is the limit function of the quasi-differenced deterministic trend and Xo=X'(r)is
the limiting deterministic trend function with & = 0. Note that the simple form of
(22) follows because

olfpe]

dW (1) = aw(r) - [ dwfx;(j; XEX;,)h X,(r)dr, (23)

since dX(r) = X'(r)dr = X,(r)dr. From expression (23) it is further apparent that
(@W(r))? = (dW(r))* = dr. While similar in form to (11), the limit formula (22)
depends on the process W.(r), rather than W,(r). One difference here is
the dependence of W,(r) on Z. A second and more significant difference is that
W,(r) is formed by taking a non orthogonal Hilbert projection residual of W(r)
on the space spanned by X(r) in L,[0, 1]. Such projections appear infrequently
in Hilbert space analysis, but this is an important example where they do
appear, arising from the idempotent operator that gives the optimal direction of
the projection in L,[0,1] function space — see Phillips (1996a) for more
discussion.

Using the same idea, we can construct the modified Z, tests and ADF tests and
the corresponding limit theory for these tests is

— R R - ~
ADF,Z, = [L W§] L W.dW,. 4)

By a simple application of stochastic calculus using the fact that
(AW (r)) = (@W(r))*=dr, it is apparent that the limit distribution {24) can be
written in the alternate form

1 JIWZ—I[W(I)Z—I]
2 o T 3 .

In the special case where x, is a constant or a linear trend, these formulae reduce
to those given in Stock (1994).
Since the limit theory in (22) is different from that of (11), new critical values
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A PRIMER ON UNIT ROOTS 433

are needed for this test. The limit theory depends explicitly on the trend functions,
as it does in (11), but it also depends on the posited value of the localizing
parameter € that is used in the quasi-differencing. A reasonable default choice of &
seems to be the value for which local asymptotic power (see Section 3.4 below) is
50% (see King, 1988, and Elliot et al., 1996).

The QD detrending procedure involves the choice of the prespecified local
parameter c. There is another way to proceed that does not appear in the literature
to date which we will now exposit. If we incorporate the local to unity hypothesis
(19) in models (1) and (2), we obtain the following nonlinear regression:

Ay;=B'Ax,—xﬁ’(x—:i)+ h)+ & (25)

n

This nonlinear regression provides for joint estimation of the local parameter ¢
and the trend coefficient 8. If we denote the nonlinear estimate of § and ¢ in the
above regression by £, and ¢, denote the limit of n~*/?D (8, — B) by & and the
limit of €, by », then the asymptotic behavior of these quantities is governed by
the following equations:

E=UX(NX yd ([ X, dB(r) + (c - ) [ X, ()] (r)dr),
n=c+[[ L0V [ L(ndB(r) - &' [ I, (NX.(r)dr],
where
X,(r)=g(r) - nX(r),
X.(r)=g(r) - cX(r),
Ly () =J(r)-E'X(),

and D, 'x(,, = X(r), nD;' Ax;,,,—g(r), J.(r)=[; " 9"dB(s). There is no
direct analytic solution to these equations, but the equations determine (£, 7) and
thereby the limit distributions of §,, and ¢,, which can be found by numerical
methods.

Although the local parameter ¢ can not be consistently estimated because of the
asymptotic collinearity between y,_, and x,_, in the above nonlinear regression,
this regression will still provide a more efficient estimate of the deterministic
trend (i.e., the parameter £} than regressions which do not take into account
the parameter restrictions in (25). Actually, when the u, are N(0, 0?) variates,
this nonlinear regression delivers the maximum likelithood estimates of 8 and
for model (1), (2) and (19). The improvement in efficiency from this joint
estimation procedure has been confirmed by the authors in Monte Carlo
expeniments, which we do not report here due to space constraints. Because we do
not know the true value of the local parameter ¢, this maximum likelihood
estimate of the deterministic trend can not achieve the efficiency level that applies
when the local parameter is known. Nevertheless, the approach certainly seems
worthy of use.

© Blackwell Publishers Lid. 1998



434 PHILLIPS AND XIAO

3.3. A point optimal test

In the simplest framework where the model is a Gaussian AR(1) with unit error
variance, the Neyman-Pearson lemma can be used to construct the most powerful
test of a unit root against a simple point alternative. Such a test is point optimal
for a unit root at the specific point alternative that is selected. King (1988)
provides a general discussion of such point optimal invariant tests, and Dufour
and King (1991) developed the family of exact most powerful invariant tests.
Elliot er al. (1996) apply this idea in the context of unit root tests by using the
local alternative (19) for a particular value of ¢ = 2.

If we assume u,=iidN(@0,0%) in (2), ¥6=0, and ¢ is known, then the
likelihood function for the autoregression coefficient a is proportional to

L@ ~ -107 Y (- ayiy),
s

where y'=y,~h,. If h, were known, then the likelihood function could be
calculated and a most powerful test could be constructed directly by the
Neyman-—Pearson lemma. However, as discussed in Section 3.1, h, is not known
and y; has to be estimated. Moreover, u, may be a general I(0) process and thus
the limit distribution of the point optimal test statistic depends in general on
nuisance parameters. In this case, corrections have to be made on the original LR
test so that the adjusted test statistic is free of nuisance parameters. As Dufour
and King (1991) and Elliot et al. (1996) discuss, the point optimal invariant test
(POI} statistics can be constructed based on the ratio of the sum of squared
residuals from the efficient detrending regressions under the null and alternative
hypothesis. Specifically, taking a local alternative @ =1+ n"'c with ¢ =7, using
quasi-differencing to detrend, and using a consistent nonparametric estimate & of
the nuisance parameter w?, the POI test statistic for a unit root in (1) and (2) has
the foliowing form;

Bo=o™cn™ 3 (i) - En“i:] =3[ Wi-aw.q, (26)
=2

where the notation is the same as that defined above in Section 3.2. The test is
performed by comparing the observed value of the statistic with the critical value
obtained by simulation. The presence of a unit root in the data is rejected if the
calculated value of the statistic 2 is too small. Note that in the construction of 7.,
the estimate &7 is used and this is obtained in the same way as in the Z, test, i.e.,
using residuals from the regression (6). This point is of some importance and
affects the consistency of the test — see Section 3.4 below.

3.4. Asymptotic properties and local power

All of the above test statistics are asymptotically similar in the sense that their
limit distributions are free of nuisance parameters. However, the limit distribu-
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tions do depend on whether the data has been prefiltered in any way by prelimi-
nary regression. Thus, if deterministic trends are removed by regression as in (6)
or (20), then the limit distributions of the unit root test statistics depend on
limiting versions of the deterministic trends that are used in the detrending
regressions.

The tests are also consistent against stationary alternatives provided that any
nonparametric estimator of w? that is used in the test converges in probability
under the alternative to a positive limit as n— co, The latter condition is important,
and it typically fails when estimates of w? are constructed using first differences
or quasi-differences of the data rather than regression residuals. This is because,
under the aliernative hypothesis, the data are stationary and first differences (or
quasi-differences) of stationary data have zero spectrum at the origin. (See
Phillips and Ouliaris, 1990, for further discussion of this issue.) The point is
especially important when ‘detrending after quasi-differencing’ is used, as out-
lined in Section 3.2 above, as in this case there is a natural tendency to estimate
w* from the residuals of this regression. In effect, while an efficient regression in
quasi-differences may be run to detrend the data, an inefficient regression such as
(6}, where the autoregressive coefficient is estimated, must be run to estimate the
long-run variance parameter w® Thus, some care is needed in the formulation
of tests that rely on nonparametric estimates of w? The problem also arises in
certain parametric unit root tests when nuisance parameters are estimated using
first differenced data (as in the case of Solo’s, 1984, LM test — see Saikonnen
and Luukkonen, 1993). _

Rates of divergence of the statistics under the alternative are also available. For
instance, when |e|<1, Z,, Z,, ADF,, VN =0,(n), and Z,, ADF, = 0,(n'?) as
n—eo. Thus, coefficient-based tests that rely on the estimated autoregressive
coefficient and the von Neumann ratio/LM tests diverge at a faster rate than tests
that are based on the regression t-ratio. We may therefore expect such tests to
have greater power than r-ratio tests, and this is generally borne out in simula-
tions. Heuristically, the #-ratio tests suffer because there is no need to estimate a
scale parameter when estimating the autoregressive coefficient a. The autoregres-
sive estimators @&, and &, on the other hand, are already scale invariant. Note also
that while ADF? = O,(n) and therefore has the same divergence characteristics as
Z,,Z,, ADF,, and VN, the statistic ADF 7 produces a nondirectional test, whereas
the coefficient-based tests are directional (against stationarity, or explosive
behavior).

Under the local alternative hypothesis (19), the limit theory for the above
statistics can be derived and used to analyze local asymptotic power. When
(2) and (19) hold, y; behaves asymptotically like a linear diffusion, ie.,
n~y = J.(r)=[; " "%dW(s) (see Phillips, 1987b). The limit distributions
of the unit root test statistics then involve functionals of J.(r). For example, the

Z_ statistic has the limit
-1
1 I 2
Z,=c+ [JD Jx ][}'0 ch] : 27)
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where Jx(r)=J.(r)- (§ 7.X")(J} XX')-'X(r). This limit is identical to that of
the Dickey-Fuller test that is based directly on the coefficient estimator n(& — 1)
when u, has no serial correlation and no corrections are required to make the
statistic asymptotically similar. Thus, the corrections for residual serial correlation
in the statistic Z, do not lead to any loss in asymptotic power.

The local asymptotic theory can be used to construct asymptotic power
envelopes for unit root tests. Under the hypothesis that the data is Gaussian, the
best test of a unit root against the specific local alternative with ¢ = Z is given by
the point optimal test by virtue of the Neyman-Pearson lemma. When efficient
detrending under this alternative is used, the resulting test statistic is P, as given in
(26). The limit distribution of this statistic under the specific local alternative c =¢
is

B[ Fi-aa, (28)

where Jo(r)=Jo(r) = X()(s XX) "' (i X.dW -2 [} X.J,). As we vary the
parameter , this distribution delivers a power envelope against which other tests
may be compared. Note that the limit given in (28) is attainable by the POI test
(26) only when c = # exactly. In general, the chosen value of ¢ that is used in the
QD detrending procedure on which (26) is based will be different, and hence the
power of the POI test will generally be less than that delivered by (28). In the
special case of a linear tend, computations in Stock (1995) indicate that the POI
test (26) has power that is very close to the power envelope for a wide range of
local alternatives.

3.5. Further issues on size and power

Two further issues relating to the size and power of unit root tests deserve
attention. The first of these arises from some recent work of Phillips {1998a, b)
showing that nonstationary time series admit many different representations.
The most obvious representation comes directly from the model formulation (2)
itself. However, Phillips (1998a) shows that there are valid alternative repre-
sentations in terms of deterministic functions. These representations originate
in the corresponding representation of the limiting Brownian motion for which

n~'%yt = B(r). Indeed, for B(r) we have the following L,-representation

= sin[(k—1/2)7r] =
Wir=wv2 ) ——~ -~ F = . 29
M=av23, Pyt RCPILICE 29)

where the components £, are independently and identically distributed (iid) as
N(0, 1) and the functions @, (r) form an orthogonal set in L, [0, 1). Phillips shows
that empirical regressions of y; on @y, = (@,(t/T), ..., pc(t/T))’ accurately
reproduce in the limit the first K terms of the expansion (29). Further, when
K=o and K/T—0 as T— o, such regressions succeed in reproducing the entire
representation (29). It follows that these deterministic functions are capable of
successfully representing a nonstationary time series like ¥ in the limit as T— oo,
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Such regressions on deterministic functions then become an alternate way of
modelling a nonstationary time series. A fascinating implication of this work is
that unit root tests which involve deterministic functions, like (1) above, will
inevitably lead to the rejection of the unit root hypothesis when K, T— e and in
this sense the conventional critical values used in unit root tests (like those based
on the limit functionals (11) and (12)) are invalid asymptotically when the
competing deterministic functions that appear in the maintained hypothesis
provide an alternative mechanism of modelling the non-stationarity, as in cases
like polynomial trends and trend break polynomials they will. These issues are
further explored in ongoing research in Phillips (1998b). It is too early to
comment on the full implications of this work, but the results are of obvious
importance in the empirical assessment of trend/trend-break stationarity versus
persistence in economic time series.

The second issue emerges from some recent work by Faust (1996). Faust
pointed out that while unit root tests like the Z_, Z,, and ADF, tests have limit
distributions under the null that are invariant to the nuisance parameters o2, @?
and A, the non-parametric nature of the maintained hypothesis can cause
difficulties. In particular, the key condition that underlies the unit root null
hypothesis in (2) is that C(1) #0. In fact, using the BN expansion of the operator
C{(L), we have, as in (5) above

u=C(1)e,+ &~ £, withé=C(L)e, (30)

It follows that if C(1) =0, then y; = £,~£, + y§, which is stationary. Of course, in
the I(1) class for y,; there will be some error processes u, satisfying (3) for which
C(1) is arbitrarily close to zero. Indeed, Faust shows for any real a, the set of
sequences

%©.={c=(c;)7: c;=0 for all but a finite number of j; C(1)=a}

is dense in /,, the space of square summable sequences. It follows that given a
sequence ¢ = {c;)7 of coefficients in the Wold representation of u, for which
C(1)=a=+0, there is a sequence ¢’ = (c))7 that is arbitrarily close to ¢ in /, but for
which C"(l)=2’,‘j-',,D ¢;=0. Faust concludes that the /(1) sequences, for which
C(1)+0, and the /(0) sequences, for which C(1) =0, are both dense in /,, and
hence these classes of processes are nearly observationally equivalent. {Campbell
and Perron, 1991, and Blough, 1992, also indicated that this property may affect
unit root tests.) One implication of this near observational equivalence, is that the
size of semi-parametric unit root tests will not converge to the nominal size given
by the limit distribution, at least when the size is computed by taking the
supremum of the rejection probability of the unit root test over the set
%,={c€%, |C(1)|>5>0) for any 5. (In fact, Faust shows that the actual size
of the test converges to unity). In view of (30), the restriction >0 would
normally be interpreted as setting up a buffer zone between the class of /(1) and
1(0) processes. Faust’s result shows that even this buffer zone does not prevent
size distortions in a general enough nonparametric setting for the error process.
The reason for the size distortion is that the nonparametric (composite} form of
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the null hypothesis is too broad as it stands. As is apparent from (30), the error
processes that lead to the size distortion involve sequences like ¢" = (c;)7 that are
arbitrarily close in /, to a null sequence ¢ (for which C(1)*0) but which have
C'(1) = Z7., ¢/=0. However, for these sequences ¢’ to produce data y;' that have
I(1)-like properties, the second component & = C'(L)¢, in the BN decomposition
of

u=C'(L)e,=C'(Ne, +£_,-€

must also have 7(1)-like properties. It is, in fact, quite easy to exclude this
possibility by placing a smoothness requirement on spectrum of &,. This can be
accomplished by a summability condition on the allowable sequences (7}, which
is in tum assured by a summability condition on the original sequence c’. It turns
out that a strengthening of the summability condition used in Phillips and Solo
(1992) to validate the BN decomposition is sufficient to rule out the pathology of
1{0) sequences with near /(1) behavior.

4. Finite sample properties of unit root tests

Extensive simulations have been conducted to explore the finite sample perfor-
mance of unit root tests (inter alia, Schwert, 1989; Diebold and Rudebusch, 1991;
Delong et al., 1992; Phillips and Perron, 1988; Ng and Perron, 1995; and Stock,
1995). One general conclusion to emerge is that, although differences exist across
tests and these depend on the models generating the data, the discriminatory
power in all of the tests between models with a root at unity and a root close to
unity is generally low. For instance, power is usually less than 30% for
a € [0.90, 1.0) and n = 100. Power is reduced further by detrending the data —
even larger values of the test statistics are required to achieve a rejection of the
null and the power curve is lower. Both these features mirror the asymptotic
theory. However, as the discussion in the previous section indicates, some of the
observed power reduction is spurious, because the critical values of the tests are
inappropriate when extensive deterministic detrending is done prior to testing for
unit roots.

Another interesting finding from simulation studies is the extent of the finite
sample size distortion (the difference between the nominal asymptotic size of the
test and the actual finite sample size) of the tests in cases where the true model is
close o a trend stationary process (Schwert 1989). For example, if u, in (2)
follows a moving average process u, =&+ 6¢,_, whose parameter is large and
negative, then the sample trajectories of y° more closely resembie those of a
stationary process than a random walk. In such cases there is a tendency for all of
the tests to over-reject the null of a unit root. This is an outcome that may not be
so serious in practical work if the data are indeed better modeled by a trend
stationary process, and so it is easy to overstate the importance of size distortions
in such cases.

Tests that are based directly on autoregressive coefficient estimates like the Z,
tend to be more affected by size distortion than the other tests because the bias in
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the first order autoregressive estimator is large in this case, not only in finite
samples but even in the asymptotic distribution (9), where the miscentering is
measured by the bias parameter A = 602 This is large when @ is large, and good
estimates of the bias parameter are needed to control the size distortion. The one
sided covariance parameter 1 is usually estimated in a nonparametric way by
kemel methods which often give confidence intervals with low coverage
probabilities, especially when the time series has substantial temporal dependence.
The parameter is also estimated at a slower rate than Vr, and it is therefore often
difficult to estimate well with samples of the size that are typical in many
econometric applications (with n<200). Similar comments apply to the
estimation of the long run variance parameter w?, which appears in the other
semi-parametric tests.

Recent attempts to improve the estimation of this parameter using data-
determined bandwidth choices (Andrews, 1991) coupled with prewhitening
(Andrews & Monahan, 1992), and data-based model selection and prewhitening
(Lee & Phillips, 1994} offer some promise in this direction, as does pretesting for
lag length in ADF regressions (Ng and Perron 1998). In particular, prewhitening
is shown to bring better accuracy and less variance to kernel estimators. The idea
behind prewhitening is to transform the data to reduce temporal dependence
before applying kernel estimation. The transformed data typically have a flatter
spectrum which can be estimated with less bias than the original spectrum. The
kernel density estimator for the original data can then be obtained by applying the
inverse transformation. Andrews and Monahan (1992) introduced a class of VAR
prewhitened kemnel estimators. In the scalar case, Lee and Phillips (1994) extend
this idea by employing model selection techniques in the prewhitening stage and
implement the Hannan-Rissanen recursion to efficiently estimate an ARMA model
prefilter prior to estimating the long run variance w? by kernel techniques. It is
shown that, with this method, Vn-rates of estimation are achievable with
nonparametric estimates when consistent model selection techniques are used to
determine the prefilter and the model for the errors lies within the prefiltering
class (in this case the class of finite parameter ARMA models).

The parametric ADF t-ratio test is less affected by size distortions when the true
model is close to stationarity, but generally has less power than the other tests. As
shown by simulation experiments, the coefficient-based tests and VN ratio tests
typically have better power properties than the ADF t-ratio test. Although on
theoretic grounds it is known that the lag length of the ADF regression can grow
at a rate o{n'/*), not much information is provided in this rate criterion about lag
length selection for specific sample sizes. With these tests, power is further
reduced by the inclusion of additional lagged dependent regressors in (13). It has
been found in many Monte Carlo studies that lag length selection has important
effects on the finite sample performance of ADF tests. DeJong et al. (1992) show
in their simulation results that increasing the lag length typically lowers the power
in a systematic way, although it may also reduce size distortion. Again, the use of
mode! selection methods like BIC (Schwarz, 1978; Rissanen, 1978) are useful in
this respect and provide some improvement in the finite sample performance of
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the ADF tests. Ng and Perron (1995, 1998) studied the choice of lag length in
constructing the ADF t-test and compared information-based model selection
rules, such as BIC and AIC (Akaike, 1977), with classical sequential tests in
determining lag length, such as F- and t-tests for the significance of the lag
coefficients. They show that data-dependent rules which take sample information
into account have beneficial effects on the finite sample performance of unit root
tests.

Since dewrending the data reduces power, it is to be expected that the inclusion
of surplus trend variables in regressions like (6) will do so also. Hence, efficient
detrending procedures like those discussed in Section 3.2 can be expected to
benefit all tests, and this is partly confirmed by simulations in Stock (1995). Of all
the procedures studied so far, efficient detrending by regression in quasi-
differences seems to be the most successful in increasing finite sample (and
asymptotic) power.

We provide some Monte Carlo results here, partially illustrating the findings in
existing simulation studies, with an emphasis on studying the effect of the
procedures mentioned above on the finite sample performance of common unit
root tests. In particular, we examine the effect of model selection procedures,
bandwidth selection methods, prewhitening and detrending procedures on the
finite sample power of the following unit root tests: ADF,, ADF, Z., Z, tests
combined with various detrending procedures; and VAN and PO! tests. For the
ADF tests, the BIC criterion of Schwarz (1978} and Rissanen (1978) is used in
selecting the appropriate lag length of the autoregression and the AR spectral
estimator of Berk (1974) is used for the estimation of the long run variance
parameter. Thus, in this Monte Carlo experiment, the ADF tests are all para-
metric. For the Z tests, the Andrews and Monahan prewhitened kemnel estimation
of the long run variance parameter is used. Although comparison has been made
for different kernel choices, only those results using the Parzen kernel function
are reported because no unambiguous ranking could be found among different
kemels. Size-corrected power is reported in the simulations to provide a
comparison among the different tests, although it does not reflect empirical
rejection frequencies based on the use of asymptotic critical values. The
finite sample critical values are calculated as quantiles in the simulations under
the null hypothesis of a unit root, given the model selection rules and kernel
choices.

The simulation results suggest some general findings. First, using data-based
bandwidth choice coupled with prewhitening procedures in the estimation of
nuisance parameters significantly improves the finite sample performance of the Z
tests. Second, the use of model selection procedures like BIC in choosing lag
length helps to improve the ADF tests. Third, unit root tests based on QD
detrending have reasonably good finite sample properties, especially in the case
where the deterministic trend includes a constant term.

Table A reports the size-corrected power of ADF and Z tests for the case
without deterministic trends. Four designs for the data generating process are
considered here. In each case, y,= y;, y; = ay’. y + &,, and initial values are set to
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be 0. The four different error structures are: an AR(1) process u,=pu,_, +¢, with
p=05, ~0.5 and an MA(1) process u,=¢,- 6¢,_,, with 0=0.5, -0.8, where ¢,
are iid standard normal variates. For the case with a deterministic trend, the size
corrected power properties are reported in Figures 1 to 10. Figure 1 depicts the
power of four (OLS detrended) unit root tests (Z,, Z,, ADF,, ADF ) when the
error process is AR(1) with p = 0.5, and Figure 2 reports the results for these tests
when u, is MA(1) process with 8 =0.5. Figures 3 and 4 compare different tests
based on the same detrending procedures, and Figures 5 to 8 compare the effects
of different detrending procedures on the same tests. All these experiments study
the case where u, is an iid standard normal process. Specifically, power compari-
sons among five tests (Z,, Z,, ADF,, ADF, and VN) are given in Figure 3. The
power envelope is also provided in the graph for convenience of comparison. The
power of the QD detrended versions of these tests are given in Figure 4. Figure 5
compares the power of the OLS detrended Z, test with those of the QD detrended
Z, tests for different choices of the prespecified local parameter Z, and Figures 6,
7, and 8 compare the power of Z,, ADF,, and ADF, tests respectively for different
choices of detrending procedures. Figures 9 and 10 give the power of these tests
for another form of deterministic trend.

DeJong et al. (1992) find from their Monte Carlo study that the semiparametric
Z tests have very low power when there is positive serial correlation, while the
ADF, test is reasonably well-behaved in this case. Their results were obtained
based on commonly used estimators of the nuisance parameters without
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Table A. Size corrected power of unit root tests 5% level, no deterministic trend

AR(1) AR(1) MA(1) MA(1)
Test a p=05 =-0.5 =05 f=-08
ADF, 095 0.216 0.234 0.181 0.251
09 0.458 0.524 0.478 0.566
0.85 0.622 0.717 0.650 0.758
ADF, 0.95 6.211 0.233 0.171 0.248
0.9 0.448 06.522 0.472 0.565
0.85 0.618 0.716 0.649 0.761
Z, 095 0.228 0.268 0.198 0.268
09 0.536 0.615 0.520 0.619
0.85 0.718 0.792 0.698 0.792
Z, 0.95 0.222 0.268 0.196 0.266
0.9 0.538 0.618 0.516 0.611
0.85 0.718 0.806 0.707 0.792
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prewhitening and without data-based bandwidth selection. We apply the Andrews-
Monahan procedure for estimating the long run variance parameter in the Z tests
and found that the data-based bandwidth selection and prewhitening procedures
have very important effects on the Z tests. The finite sample performance of the Z
tests improves significantly with the use of this estimator of the long run variance,
especially for the case with positive serial correlation. The size distortion,
although still present, is also decreased after using the prewhitening procedure.
Table A shows that the Z tests, with data-based bandwidth choice coupled with
prewhitening, generally have higher size corrected power than the ADF tests.
Qualitatively similar results can also be found in Figures 1 and 2 when a
deterministic trend is included. The results from Figure 1 to Figure 3 also confirm
the findings in other simulation experiments that coefficient based tests generally
have higher power than the -ratio tests, at least in large samples, and they show
the relatively good finite sample properties of the VN test.

Figures 3 to 10 show the effect of different detrending procedures on the finite
sample power of unit root tests. Two forms of deterministic trend were consid-
ered in the experiment. The first case, x,= a + b¢, includes both an intercept term
and a time trend, while the second case, x,= ¢, does not have a constant term.
Figures 3, 4, 5, 6, 7, and 8 correspond to the first case with both a constant term
and a time trend, and Figures 9 and 10 comespond to the second case with no
constant term. These figures show that QD detrending increases the finite sample
power of unit root tests, especially when the deterministic trend includes a
constant term. Among the four tests, Z,, Z,, ADF_, and ADF,, QD detrending
brings the largest power gains to the t-ratio based tests. Different choices of the
prespecified local parameter & were tried and the results show that, in the case
X,=a+ bt, for quite a wide range of choices of &, the QD detrended tests have
reasonably good power properties against alternatives close to the unit root.
Differences among the tests using different & occur when the true local para-
meter ¢ becomes larger (in absolute value), corresponding to alternatives that are
distant from a unit root. As the true value of | c| becomes large, a QD detrended
test with #= —2.5 has power lower than tests using a larger € (in absolute value).
This phenomenon is expected because, from the perspective of a point optimal
test, the power should be higher when the prespecified ¢ is closer to the true ¢
value,

Another important phenomenon we see from these figures is the difference
between the case with a constant term in the deterministic trend and the case with
no constant term. Figures 7, 8, 9, and 10 compare the ADF tests combined
with different detrending procedures for the two kinds of deterministic trend
removal. The QD detrended tests seem to be more sensitive to the choice of &
in the case without a constant term. A larger power gain from QD detrend-
ing is found in the presence of a constant term. Phillips and Lee (1996) provide
an analysis of the effects of a fitted intercept. In most practical applications,
an intercept will be included in the deterministic trend and so QD detrending

can be expected to be successful in improving the finite sample power of unit root
tests.
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5. Unit root tests against trends with structural breaks

Just as dummy variables are used in regression to deal with unusual observations
and shifts in the mean, breaks in deterministic trend functions can be employed to
capture changes in trend. This possibility is already included in the specification
of k, in (1). For instance, the trend function

. i ;|0 te{l,...,
hi= 3 £ 43 o hhere = el ml
j=0 i=0 t-my te{m+1,..,n}

(3D

allows for the presence of a structural change in the polynomial trend at the data
point t=m+ 1. Suppose u=1im,_,_(m/n)>0 is the limit of the fraction of the
sample where this structural change occurs. Then the limiting trend function X ()
corresponding to (31) has a similar break at the point 4. The unit root tests and
power functions considered above, including those that make use of efficient
detrending procedures, all continue to apply as given for such broken trend
functions. Indeed, (31) may be extended further to allow for multiple break
points in the sample and in the limit process without affecting the theory. The tests
may be interpreted as tests for the presence of a unit root in models where broken
trends may be present in the data. The alternative hypothesis in this case is that the
data are stationary about a broken deterministic trend of degree p.

In order to construct unit root tests that allow for breaking trends like (31} itis
necessary to specify the break point m. (Correspondingly, the limit theory
depends on the limit processes X(r) and X(r) and these depend on the break point
#.) In effect, the break point is exogenously determined. Perron (1989) considered
linear trends with single break points in this way. An alternative perspective is that
the break point(s) is (are) endogenous to the data and unit root tests should take
account of this fact. In this case, alternative unit root tests have been suggested
(e.g., Banerjee et al., 1990, and Zivot & Andrews, 1992) that endogenize the
break point by choosing the value of m that gives the least favorable view of the
unit root hypothesis. This has been done for the parametric ADF test and for
linear trends with breaks. If ADF(m) denotes the ADF statistic given by the t-
ratio for a in the ADF regression (13) with a broken trend function like (31), then
the trend break ADF statistic is

ADF(fn) = mg}"ir‘lﬁ ADF(m), where m = [nu}, i = [nf] and 0 <t < E < 1, (32)
and [-] signifies the integer part of its argument. The limit theory for this trend
break ADF statistic is given by

1 1 -1z
ADF(# inf W dW(|| Wil 33
(m) = e lad [.[0 Xu ][jo x‘,‘] ( )
where the limit process X, () that appears in this functional on the right side is

now dependent on the trend break point 4 over which the functional is minimized.
Similar extensions to trend breaks are possible for the other unit root tests -
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considered above. Critical values of the limiting test statistic (33) are naturally
further out in the tail than those of the exogenous trend break statistic, so it is
harder to reject the null hypothesis of a unit root when the break point is
considered to be endogenous.

Asymptotic and finite sample critical values for the endogenized trend break
ADF unit root test are given in Zivot & Andrews (1992). Simulations studies
indicate that the introduction of trend break functions leads to further reductions
in the power of unit root tests and to substantial finite sample size distortion in the
tests. Sample trajectories of a random walk are often similar to those of a process
that is stationary about a broken trend for some particular breakpoint (and even
more so when several break points are permitted in the trend). So continuing
reductions in the power of unit root tests against competing models of this type is
to be expected. In view of the fact that Brownian motion can be represented as an
infinite linear random combination of deterministic functions of time, as shown in
(29) above, there are good theoretical reasons for anticipating this outcome.
Carefully chosen trend stationary models can always be expected to provide
reasonable representations of given random walk data, but such models are certain
to fail in post sample projections as the post sample data drifts away from the
final trend line. Phillips (1998a,1998b) explores these issues in a systematic way.

6. Fractional integration

Although most attention has been focused on I(1) and 7(0) processes in
econometric applications, the concept of an integrated process generalizes to
higher order integration and fractional integration. These concepts are embodied
in the following extended version of (2)

(1-L)%y/=u, (34)

where d may be fractional and the operator (1 - L)? is defined by the formal
binomial expansion
o N (_d)j i .
(1-LY =1+ Z — L, @=-a(a+1),...(-a+j-1) (35
=1

whose convergence properties depend on the value of d. Note that (35) terminates
when d is a positive integer. The process y/ is said to be an I(d) process. With this
generalization, there may be one or several unit roots (d integer » 1) or fractional
integration (0 <d < 1). Such processes have been the subject of intensive recent
research and are reviewed in Robinson (1994a) and Baillie (1996). When
O0<d<1/2, y is stationary but strongly correlated in the sense that its lag-j
autocovariance y; decays at the rate | j|“~', which is slower than that of stationary
linear processes like u, When 1/2<d<1,y} is nonstationary, and the value
d=1/2 provides the nexus between stationary and nonstationary regions. When d
is an integer »2, it is called higher order integration. In this case, y{ has two or
more real autoregressive unit roots and is stationary after differencing d times.- A
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process with d» 1/2 has nonstationary long-memory and a variance that cxplodes
as t—oo, Such processes are, in fact, not mean reverting, although their impuise
responscs, which are obtained from the expansion
= ),
(1-Ly“‘=1 +Z-(_—)’L’
2

and have the form

dy 1 T(d+)) 1 1

@ TG+ 1@ '

decay to zero provided d<1, and so shocks in (34) are not persistent in this
case.

Within the family (34) it is possible to test for ‘unit root’ nonstationarity by
estimating d and testing the null hypothesis d =1 against the alternative d<1, or
to test for stationarity d<1/2 against d=1/2. At present, the literature has
focussed on parametric tests, because of the difficulties of a general treatment that
covers both stationary and nonstationary cases in the semiparametric case, ie.,
when #, is treated nonparametrically in estimation and inference about 4.

Robinson (1994b) took model (1) and (34) and proposed a unit root test against
fractional alternatives based on the LM principle. Consider a test of the null
hypothesis H,: d = d, in the simple case where the u, are iid N(0, 0*) variates. Let
L(m) be the negative of the log-likelihood of x,, where n=(d,y,0%), then an LM

{score) statistic is

L) [E( oL |, )}1 3L(y)

. TR T
oy dn Iy on

Let A= (1- L)? and take fractional differences of equation (1) under the null,

leading to

asj — oo,

R=

=F'F,
d=dpymy, o nd?

Ay, =y Adox, + Ady!, (36)

Under H,,, A%y, = u,. Estimating the trend coefficient ¥ by (36) and calculating
the fitted residuals %, using this trend estimator, we obtain 6% = 5! 2, 4l The LM
test statistic R can then be calculated. Under certain regularity conditions,
Robinson showed that the statistic 7 has a standard normal limit distribution, and
thus the LM test R is asymptotically distributed as 2. The asymptotic theory
justifies a one-sided test for a unit root Hy: d=1 against a fractional altemnative
H,: d<1 which rejects the null hypothesis when 7< Z,, where z, is the corre-
sponding critical value of standard normal distribution. Tanaka (1999) considered
similar parametric .M tests for the nonstationary case d» 1/2.

Under Gaussian assumptions, efficient parametric estimation of 4 can be
obtained based on the maximum likelihood principle, provided the model is fully
specified. However, since calculating these Gaussian estimates requires numerical
methods of estimation and the good large sample properties rely on correct
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specification of the short memory components of the model, simpler estimates
have been suggested that do not rely on full specification of the short memory
components. '

If u, in (34) were a white-noise sequence with spectrum f, (1) = (0%/27), then
the spectral density of y;, f(A, d, 0?) satisfies

log f(1,d, o) = log(0?/2m) - d log|1 - €*}2, 37

If we denote the periodogram of y; by I(1) = (2n)~'|Z", (y; - 7)e™ |2, with
A;=2njfn, and 3*=n"'3X7_, y?, then, the form of (37) suggests a log periodo-
gram regression of the type

log I(A)=c~dlog|1-e|*+u, (38)

If we confine attention to a set of m <n fundamental frequencies {4;}7].; in this
regression, then we can expect this procedure to give satisfactory results even
when the spectrum of u, is quite general because in that case
log(f,(4)) ~log(f, (0)) = ¢ for 1— 0+, which holds provided m/n—0. Such log
periodogram regressions have been extensively used in empirical research largely
because they are so convenient. However, the asymptotic properties of such
estimates of ¢ have only recently been obtained (Robinson, 1995; Hurvich et al.,
1998) and then only in the stationary Gaussian case. The essential difficulty was
pointed out by Kunsch (1986), viz. that the periodogram ordinates I(4;) in (38)
are asymptotically correlated for fixed j. At present, there is no published
asymptotic theory for the nonstationary case.

Another approach is to use an explicit model, like the following, to approximate
the spectrum of a process with long-range dependence (see Robinson, 1994a)

-1
f@,d.B)= CXP[PZ By cos{(k - 1)11} |1 -7
k=1

Notice that log|1 - e*|=X75_ (cos kA/k), so the above representation can be
Teparameterized as

=l = cos kA
fd,d,8)= exp[z 0, cos{(k - 1)4} - Zdz .
k=1 kw1l
where §=(6,,...,6,_,,d)". Thus, the logarithm of f(4, d, #) is a linear function
of & and linear regression of log I(;) on these components can be applied to
estimate the parameters.
Another quite different approach is to locally approximate the Gaussian

likelihood in the frequency domain, leading to the following objective function
suggested by Kinsch (1986)

m

o, Y
> |log(G4; )+—G-1x(,1,.) (39)

1
0n.(G,d) = —
m =1
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(39) are d and G = £, (0) and are estimated by minimizing Q, (G, d), so that
(G, d)=arg min Q.G d),
0

<G<od>0
which involves numerical optimization. Concentrating (39) with respect to G, we
find that the estimate d satisfies

d = arg min R(d),
d

where

. 1 & ) 1 &
Rd)=1ogG(d)~2d — 3 logd, G(d)=— > 1Ly,
m

j=1 m jaq

Recently, Robinson (1995a) analyzed the above estimators in the stationary
case where d € (-1, 1). Under rather weak regularity conditions on the smoothness
of f,(A), the innovations in the Wold representation of u, and an expansion rate
condition on m, which requires that m— eo but {m{n)—0 as n— o, Robinson
showed that d"—’,,du and G(J)-—’PGD. Under a slight strengthening of these
conditions, Robinson also established that d is asymptotically normally distributed
with the limit distribution

m'*(d - d) 5 NQ, H. (40)

This limit theory makes testing and the construction of confidence intervals for 4,
a straightforward matter in the stationary case.

In recent unpublished work, Phillips (1998c) has dealt with the nonstationary
case where d € (3, 1] and, under regularity conditions that are broadly similar to
those of Robinson (1995b), has established that

d5d, 6@ — Go+C@), 1)
and
2
m"*(d ~ dg) = MN(O, 2 _.&._2) (42)
4 (Go+Cldo))

where C(d) > 0 is a random and depends on the true value of d. Since the variance
in (42) is smaller than 1 /4, conservative confidence intervals can be constructed
for 4 that utilize the limit theory (40) and apply for both stationary and
nonstationary 4.

Another approach to estimation of 4 stems from the properties of the
autocovariances. If we approximate the spectral density f(A) by cA -2 for A close
to 0, and denote cov(y;, Y;+») by y,, then, under certain conditions {Yong, 1974),
the relation f(A)~GA™** as 1—0 is equivalent to ‘y,~ gh* ' as h—ea’, for
suitable g, providing semiparametric estimates of d based on estimates of y, for
large h. For example, if 7, are consistent estimates of ¥»» d can be consistently
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estimated by the following semiparametric estimate

4. T35, log hllog h-log h)

>l (log h-log h)?

hun=-p

where log h=p~' 3.27._log h, p increase suitably with n. Alternatively, d can

be estimated by minimizing 320 ($, - Ch*¥-1)2,

Other procedures than the ones discussed above are available and the subject is
still under intensive study. Two recent surveys on the topic are given by Beran
(1992) and Robinson (1994), and Baillie (1996) reviews many of the empirical
aspects of fractional integration. Some applications to conditional heterogeneity
are discussed in Baille er al. (1996).

7. Seasonal unit root tests
Another important extension of (2) is the seasonal unit root mode] -

(1 =LYy, = u, (43)

Notice that the polynomial 1- L* can be expressed as (1-L)(1+L)(1+ LY.
Thus, the unit roots (or roots on the unit circle) in (43) are 1, -1, i, and —~i,
comesponding to the annual (L=1) frequency, the semi-annual (L= ~1)
frequency, and the quarter and three quarter annual (L =i, ~i) frequency
respectively. The model (43) is often relevant in practical work with quarterly
data. Quarterly differencing, as in (43), is sometimes used as a seasonal adjust-
ment device, and it is of interest to test whether the data supports the implied
hypothesis of the presence of unit roots at these seasonal frequencies. Other types
of seasonal processes, say monthly data, can be analyzed in the same way.

Dickey er al. (1984) proposed a test for the presence of a single unit root at a
seasonal lag by considering the following model

h=ay. _,+e,.

The null hypothesis is @ = 1, and the alternative is @ < 1. The limit distribution of
the least squares estimate of ¢ is given and small-sample distributions for several
values of s are provided based on Monte Carlo experiments. A more general case
was studied by Hylleberg e al. (1990), extending the parametric ADF test to the
case of seasonal unit roots. In order to accommodate fourth differencing as in (43)
the autoregressive model is written in the new form

]
A= -1+ Yy + G3Yu-2+t ¥y + Z @AY+, (44)
J=1
where A,=1-L', y,=(+L)1+L%y, y,=-(1-L)(1+ LYy,  y,=
~{1=L?y,. The wansformed data Yus Y2, Y3, Tetain the unit root at the zero
frequency (long run), the semi-annual frequency (two cycles per year), and the
anmual frequency (one cycle per year}. When a, = a, =a, = a, =0, there are unit
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roots at the zero and seasonal frequencies. To test the hypothesis of a unit root
(L =1) in this seasonal model, a r-ratio test of a, =0 is used. Similarly, the test
for a semi-annual root (L = —1) is based on a t-ratio test of @, =0, and the test for
an annual root on the t-ratios for @, =0 or a,=0. If each of the a’s is different
from zero, then the series has no unit roots at all and is stationary. Details of the
implementation of this procedure are given in Hylleberg et al. (1990) and the
limit theory for the tests is developed in Chan and Wei (1988).

As an alternative approach to the conventional seasonal unit root analysis,
periodic models have been used in the study of seasonality. Under the framework
of a periodic model, parameters are allowed to vary according to the time at
which the series are observed. A definition of periodic integration and some
testing procedures are provided in Osborn ez al. (1988). Franses (1996) provides a
useful reference on periodicity in the context of models with stochastic trends.
There has also been work on seasonal versions of the fractional integration model
(Porter Hudak, 1990), and seasonal versions of error correction models and
reduced rank regressions (McAleer and Franses 1998). Hylleberg (1994) is a
useful general reference on the topic.

8. Bayesian unit root tests

While most practical work on unit root testing has utilized classical procedures of
the type discussed above, Bayesian methods offer certain advantages that are
useful in empirical research. Foremost among these is the potential that these
methods offer for embedding the unit root hypothesis in the much wider context
of model specification. Whether or not a model such as (4) has a unit root can be
viewed as part of the overall issue of model determination. Model comparison
techniques like posterior odds and predictive odds make it easy to assess the
evidence in the data in support of the hypothesis @ =1 at the same time as
decisions are made concerning other features of model specification, such as the
lag order in the autoregression (6), the degree of the deterministic trend
component, and the presence of trend breaks. A common asymptotic theory (see
Phillips and Ploberger, 1996) further facilitates this approach to model selection
and leads to an extension of the Schwarz (1978) BIC criterion to models with
some nonstationary data that is based on the idea of selecting the model that is a
posteriori the most probable. The approach has connections with prequential
probability (Dawid, 1984) and stochastic complexity (Rissanen, 1986). It can be
shown that model choices that are made in this way are completely consistent in
the sense that the probability of type I and type Il errors goes to zero as n— oo
(Phillips and Ploberger, 1994).

In the context of Bayesian analysis, a model may be selected based on the
posterior odds ratio

( g) Prir” | 4,

m) Priy” | Mi]

where M, and AL, are the two candidate models, and 7, and x, are corresponding
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prior weights on M, and M,. If M, and M, are specified as 7(0) and /(1) models
respectively, the unit root hypothesis can be tested by choosing between models
M, and M. More rigorously, consider a linear regression

y»=07z+¢,

where y, and ¢, are real valued stochastic processes on a probability space
Q.%,P), and F,CF(¢t=0,1,2,...) is a filtration to which y, and ¢, are adapted,
2, is a kx 1 vector defined on the same space and is %,_, measurable). Suppose
£,=iid N(0,0?) and then, conditional on %, and 6, the joint density of
Y,=[y, ..., y.)’ with respect to Lebesgue measure v is

pdf(Y,| %, 8) = dP}/dv
= (2n0”) """ exp{ - (1/26")(0.T, + (8,- 6)'A,(6,- ®)]), (45)

where U,=Y,~Z9,.0,=(2,2,)7'2,Y,, Z,= z,, ..., 2,], A, = Z.Z,, and P? is the
probability measure of Y,. Combining (45) with a prior density, 7(8), for 0, we
get the joint density of (6, ¥,). Conditional on %, the data density for ¥, can then
be obtained by integrating out € in the joint density of (8, Y,). For n(6) = x,,

pAf(Y, | Fg) = mo(2m0®) =" 02| 4, |12 exp( - (1/20%) 00, ).

Let O, be the (probability) measure whose density with respect to v is pdf(Y, | %,)
and choose P, = P as the reference measure, then

g,
dF,

dr?
dP,
= m,210")"? | A, | T exp{(1/20%) 8. 4,4 ).

=j 7(6) —2 dp

For all n>k, Q, as given above leads to a proper conditional probability measure
and this measure can be interpreted as the Bayesian version of the data generating
mechanism. In other words, Q, gives us the Bayesian model for the data.

A natural measure of model adequacy is provided by the data density dQ,/dP,.
If we denote Q; as the ‘Bayes model” measure given by Q, for a model with k
parameters and incorporate the index ‘&’ in what follows to signify the number of
regressors, then

k
cﬁ" = | (1/26")4,() | """ expl(1/20") 8, (A G0}, k=1,2,... k.

n

Let K be some maximum number of regressors, then QF corresponds to the ‘least
restricted” option and we may use it as the reference measure. Multiplying the
Radon-Nikodym derivatives we obtain the likelihood ratio

th_(qu(da)
dQ¥ \ ap, |\ do¥
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corresponding to the two ‘Bayes models’
H(Qf.)' Yne1= én (k)'z,”, +U:+h
H(Qrf)' Furt = én(K)'le-l + Urf+l'

In model (13), if we set K=p+gq, and k=p+g—1=K-1, where g 1s the
dimension of the deterministic trend x,, we get the following two ‘Bayes models’:

p=1
H(Qf_l):Aym-l = Z@jﬂAyﬂ+l-j+5;l'xh¢l + Epnvts and
j=1
p-1
H(Qf)iﬂynn = &yn + Z@jﬂAyn+1—j+ﬁ;xn+l +£n+l'

i=1

The first model incorporates a unit root. If we assign equal prior odds to the two
models we can test the hypothesis of a unit root, i.e., H(QX""), against trend
stationarity, i.e., H(QX, using the criterion:

Accept H(Q ") in favor of H(QX) if dQ*~'/dQ¥> 1. (46)

Thus, under the wider context of model specification, lesting for a unit root
becomes an issue of whether or not to include the lag variable (y, above) as a
regressor in the ADF regression. This criterion, as shown in Phillips and Ploberger
(1994), gives a completely consistent ‘Bayes model’ test in the sense that the
probabilities of both types of error tend to zero as n— oo,

A second advantage of Bayesian techniques in nonstationary models with unit
roots is that the asymptotic form of the posterior density is normal under rather
general conditions, a result that facilitates large sample Bayesian inference and
that contrasts with the non-standard asymptotic distribution theory of classical
estimators and tests. The fact that posterior densities have limiting normal forms
in a wider class of models than those for which the maximum likelihood estimator
is asymptotically normal has long been known (Heyde and Johnstone, 1979} but
its relevance for models with unit roots has only recently been recognized (Sims,
1990; Kim, 1994; Phillips and Ploberger, 1996). For instance, a large sample
Bayesian confidence set for the autoregressive parameter @ in (11) can be
constructed in the conventional way without having to appeal to any nonstandard
limit theory. In this respect, Bayesian theory (which leads to a symmetric
confidence set for a) differs from classical statistical analysis where the
construction of valid confidence regions is awkward because of the discontinuity
of the limit theory at @ = 1 (but may be accomplished using local asymptotics as
in Stock, 1991). This divergence can lead to quite different inferences being made
from the two approaches with the same data even when the influence of the prior
is negligible, as it is in very large samples. In small samples, the role of the prior
is important and time series models raise special concerns about the construction
of uninformative priors, primarily because a great deal is known about the
properties of simple time series models like autoregressions and their character-
istic features in advance of data analysis. How this knowledge should be used or
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ignored is a matter on which there is ongoing debate (see Phillips, 1991, and two
themed issues of the Journal of Applied Econometrics, 1991, and Econometric
Theory, 1994).

Third, Bayesian methods offer flexibility and convenience in analyzing models
with possible unit roots and endogenous trend breaks. In such cases, a prior
distribution of break points is postulated (a uniform prior across potential break
points may be appealing in the absence of other information), the posterior mass
function is calculated, and the Bayes estimate of the break point is taken as the
one with highest posterior mass (Zivot and Phillips, 1994). This approach makes
the analysis of multiple break points straightforward, a problem where classical
asymptotic theory is much more complex (For a classical analysis of multipie
breaks, see Bai, 1997; Lumsdaine and Papell, 1995, among others).

9. Bootstrapping unit root tests

The study of bootstrapping time series regression models was started by
Freedman (1984). Bose (1988) shows that under certain regularity conditions, the
bootstrap approximation to the distribution of the least squares estimator in a
stationary autoregressive model is of order o(n~'?) as., thereby improving the
normal approximation. The validity of the bootstrap for unit root models has been
studied by several authors recently. Basawa et al. (1991a) show that the standard
bootstrap least squares estimate is asymptotically invalid in unit root models, even
if the error distribution is assumed to be normal. Consider the following AR(1)
process:

n=ay._ . +u, y=0, u=iid N0, 1).

Let & be the OLS estimator of a, then under the mull hypothesis of a unit root and
when n—roo,

-2 -2
z,,=[Zy3.lJ (o‘n—a)=>%l‘*’(b“”{hI W(r)’drl : (47)

A parametric bootstrap sample y* is obtained recursively from the following
recursion:
yr=ayl i+ uk, y§=0, (48)

where {&*} is a random sample from N(0, 1). The bootstrap estimator of & can
then be calculated from the bootstrap sample {y*}, as &*=[X yE,
x {X y7%])7", and the bootstrap version of Z, is Z*= [3. Y4 12(4* - &). Basawa
et al. (1991a) show that the limit distribution of Z%¥ is not the same as that of z,,
thus invalidating the bootstrap. Specifically, consider the triangular array

Yen=bYi 1+, yo=0, (49)

where ¢, are independent N(0, 1) variates and {b,] is a sequence of numbers such
that n(b,-1)-=4. Then, (49) is a triangular system with roots b,=1+@/n)
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that are local to unity. It follows from our earlier analysis that if b*=
[Zk yk.nyk— l.n][Zk )’3—1.:-] -l' and L (bn) = [Zk .VE- 1. n]”z(b:_ bn) is the COITCSpOﬂd‘
ing sequence of scaled and centered estimators from (49), then

1/z

1 s | 1
W = Z,= [ near| [ hey=qw,

where J,(r) = [} e Mgw (5) is a linear diffusion. If the bootstrap approximation
were asymptotically valid, then along almost all paths 7,(&) would converge to
the same distribution as that of Z, = [T y2 ,1'/%(é - a) itself, viz. (47). However,
in fact, 7, (&)= n(&), as n— o, where

-1
E=3wQy - li{jo’ W(r)’dr]

since n(@ — 1)=£. A similar invalidity of the bootstrap occurs for the coefficient
based bootstrap statistic n(¢* - &).

To circumvent the asymptotic invalidity of the bootstrap, there are several
possibilities. Basawa et al. (1991b) suggested resampling the restricted residuals
under the null hypothesis of a unit root. If u** is the restricted residual Y=Y
and the bootstrap sample is generated from the following resampling scheme
under the null

* __ % % %
y; -yr-l+ur s

then the bootstrap t-ratio statistic Z* has the same asymptotic distribution as Z,.
As an alternative, Ferretti and Romo (1994) consider the unrestricted residuals
' =y —@y,_, and generate the pseudo data y/" under the null of a unit root. They
show that the corresponding bootstrap test statistics are asymptotically valid.
Another possibility is to use model selection to determine whether to sample from
a unit root process or the fitted regression. In this case, a natural procedure is to
use the model selection method outlined in (46) above, which gives a consistent
model choice procedure in which the type I and type Il errors both tend to zero in
probability as n— ce, In consequence, the correct model is chosen asymptotically
and the resulting bootstrap test statistics are asymptotically valid.

None of the above methods work when the underlying model is a near
integrated process, because there in this case there is mo way in which the
localizing parameter can be consistently estimated from the sample data.

For unit root models with deterministic trends, the problem of redundant
deterministic trend variables discussed in Section 2 surfaces again. Although we
use regression models like (6), which include redundant trend variables, to
calculate the DF test statistics and to obtain the bootstrap residuals ¥, the
redundant variables should be excluded from the resampling scheme to make the
bootstrap DF test asymptotically valid. Nankervis and Savin (1994) present some
simulation results on bootstrapping unit root tests for the following model

Y=gttt +ay,_ +e,
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under different error distributions. Their sampling scheme is based on restricted
residuals and the bootstrap sample data is generated under the null hypothesis. The
bootstrap DF test has basically the same power as the original DF test, except for
some non-Gaussian distribution cases where the bootstrap tests perform slightly
better. Another study of the asymptotic properties of bootstrap procedures in unit
root models with a drift is Giersbergen (1995).

10. Testing stationarity

Many empirical analyses, like those of Nelson and Plosser (1982) and subsequent
studies, lead to the conclusion that aggregate economic time series are unit root
nonstationary. One explanation that has been suggested for these empirical
outcomes is that the standard tests are all based on the null hypothesis of a unit
root, which assures that the hypothesis will be accepted at conventional
significance levels (of 5% and 1%) unless there is strong evidence against it. As a
result, there is considerable interest in tests for which the null hypothesis is trend
stationary.

Such tests are easily developed by working from the components representation
of the time series y,. In particular, if we add a stationary component v, to {1} and
(2), we get the so-called components model

y=h+y +v, Yi=Yiat+v, (50}

which decomposes the time series y, into a deterministic trend A,, a stochastic
trend y;, and a stationary residual v,. The stochastic trend in (50) is annihilated
when o= var(r,) =0, which therefore corresponds to a null hypothesis of trend
stationarity. Under Gaussian assumptions and iid error conditions, the hypothesis
can be tested in a simple way using the LM principle. Let é, be the residuals from
the regression of y, on the deterministic trend x, and 62=n""' Y &2, then the LM
statistic can be constructed as follows:

where §, is the partial sum process of the residuals Zi.1 é. Under the nuill
hypothesis of stationarity, this LM statistic converges to [} V2, where
Vi(r)=W(r) = [fg X' 11§ XX'17*[} XdW] is a generalized Brownian bridge
process, like (18) above. This procedure can easily be extended to more general
cases where there is serial dependence by replacing &} with corresponding
estimates of the long run variance of v, based on nonparametric methods. This
was done in Kwiatkowski et al. (1992), where a general approach was developed.

Defining w,= y;+ v, and writing differences as Aw, = (1 -~ 8L)z,, where n, is
stationary, it is clear that 0} =0 in (50} corresponds to the null hypothesis of a
moving average unit root 6=1 in this representation. Thus, there is a formal
correspondence between testing for stationarity and testing for a moving average
unit root (Saikonnen and Luukkonen, 1993). The asymptotic theory for the
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maximum likelihood estimator in the moving average unit root case is known, but
has a complex point process representation (Davis and Dunsmuir, 1995). This
makes a likelihood ratio approach awkward and the LM test attractive in practice.
Leybourne and McCabe (1994) suggested a similar test for stationarity which
differs from the test of Kwiatkowski et al. (1992) in its treatment of autocorrela-
tion and applies when the null hypothesis is an AR(k) process.

11. Applications and empirical evidence

Most empirical applications of unit root tests have been in the field of econ-
omics. Martingales play a key role in the mathematical theory of efficient
financial markets (Duffie, 1988) and in the macroeconomic theory of the
aggregate consumption behavior of rational economic agents (Hall, 1978). In
consequence, economists have been intrigned by the prospect of testing these
theories. In the first moder attempt to do so using unit root tests, Nelson and
Plosser (1982) tested fourteen historical macroeconomic time series for the
United States by the ADF test. The time series start around 1860 to 1909 and end
in 1970. Nelson and Plosser analyzed the logarithms of all of these series
{(except for interest rates, which was treated in levels) and found empirical
evidence to support a unit root for thirteen of them (the exception being
unemployment). Since then, these series have been re-tested hundreds of times
with other methods, and thousands of other time series have been examined in
the literature. Meese and Singleton (1982) studied various exchange rate time
series and could not reject the null hypothesis of a unit root; and Perron (1988)
applied the semiparametric Z tests to the Nelson—Piosser data and some other
macroeconomic time series and basically confirmed the conclusion reached by
Nelson and Plosser. While it is recognized that the discriminatory power of unit
root tests is often low, there is a mounting body of evidence that many economic
and financial time series are well characterized by models with roots at or near
unity,

Although standard tests of the unit root hypothesis against trend stationary
alternatives usually cannot reject the nul! hypothesis, other approaches do find
different results. For example, performing a test for the null hypothesis of
stationarity against the alternative of a unit root, Kwiatkowski et al. (1992)
revisited the Nelson-Plosser data and could not reject the hypothesis of trend
stationarity in many of these time series (including real per capita GNP,
employment, unemployment rate, GNP deflator, wages and money). Tests based
on efficient detrending by quasi-differencing have also been applied to macroecon-
omic time series and various results have been reported. For instance, applying the
QD detrended ADF test to the U.S. GNP data, Cheung and Chin (1995) could not
reject the unit root hypothesis in quarterly data but did get different results with
annual data,

Gil-Alana and Robinson (1997) applied the LM test for a unit root against
fractional alternatives to the extended Nelson-Plosser series (Schotman and van
Dijk, 1991). Although their results vary across the fourteen series and across
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different model structures for the stationary component u,, they found the most
nonstationary evidence for the consumer price and money stock series, trend
stationary evidence for industrial production and stationary evidence for the
unemployment rate data,

Using the Nelson-Plosser data and a U.S. postwar quarterly real GNP series,
Perron (1989) argues that if the Great Depression in 1929 and the oil price shock
in 1973 are treated as exogenous events that caused structural changes, then a
trend stationary representation with structural change is favored over a unit root
representation with structural change. By allowing for these structural breaks,
Perron rejected the unit root hypothesis at the 5% level of significance for all of
the Nelson-Plosser series except consumer prices, velocity, and bond yields.
Christiano (1992), Banerjee et al. (1990), and Zivot and Andrews (1992) argue
that Perron’s tests for a unit root with structural change are biased because the
choices of the break points are correlated with the data. Christiano (1992)
suggested that the date of the break should be treated as unknown and, by using
tests based on bootstrap critical values, reached different conclusions from Perron
(1989). Zivot and Andrews (1992) allowed the breakpoint to be endogenous and
suggested pre-testing procedures to estimate the structural change points, finding
less compelling evidence against the unit root hypothesis.

In recent years, various Bayesian analyses have been conducted on unit root-
testing. Using flat prior Bayesian techniques, DeJong and Whiteman (1989a,b,c)
tested the Nelson-Plosser series, stock prices and dividend data, and postwar
quarterly real GNP for the U.S.A(50 }. Their results challenged the classical unit
root tests results in many cases. Schotman and van Dijk (1991) analyzed the
random walk hypothesis for real exchange rates and found more evidence in favor
of the trend stationary model than classical unit root tests. Contrary to the
conclusion of Delong and Whiteman, Phillips (1991) provided an alternative
Bayesian approach using a Jeffreys’ prior, and found more support for the unit
root model for some series. Using a modified information matrix-based prior,
Zivot and Phillips (1994) considered autoregressive models with fitted determin-
istic trends allowing for certain types of structural change. Their results are
generally in accord with those of Phillips (1991). In addition, their Bayesian
analysis also shows evidence of trend breaks in some of the macroeconomic
series with breaks occurring around 1929, partially supporting the conclusion
reached by Perron (1989). It is also shown in Zivot and Phillips (1994) and in
other work that the choice of prior can be important in distinguishing between
different models. Using the extended Nelson-Plosser data and a Bayesian
Procedure that consistently classifies the time series as I(1) or I{0), Stock (1994)
obtain results largely supporting the unit root hypothesis. Applying the model
selection criterion ‘PIC’ to the Nelson-Plosser data and allowing for model
selection of deterministic trend components and lag length in the autoregressions,
Phillips and Ploberger (1994) found eleven out of the fourteen time series to be
stochastically nonstationary.

Of course, unit root issues in multivariate time series have also attracted a good
deal of research, and the ADF and semi-parametric Z tests have been extensively
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used to test for the presence of cointegration using residual based approaches. The
tests are used in the same way as standard unit root tests and have the same null
hypothesis, but the data are the residuals from a least squares cointegrating
regression, and the alternative hypothesis (of cointegration) is now the main
hypothesis of interest (Engle and Granger, 1987; Phillips and Quliaris, 1990).
The model is analogous to (1), but both variables ¥, and x, have unit roots and y!
is stationary under the alternative hypothesis and unit root nonstationary under the
null. The limit theory for these residual based tests was developed in Phillips and
Ouliaris (1990). There are also approaches to cointegration testing that rely on
likelihood ratio methods (Johansen, 1996) in vector autoregressions and these
lead to tests with asymptotic distributions that are simple multivariate analogues
of those given in (8) and (12). A large empirical literature has developed around
these techniques. More recently, model selection methods have been advocated in
Phillips (1996) and Chao and Phillips (1996, 1997). In this work, mode] selection
is used to simultaneously choose the lag length and cointegrating rank in a VAR
of possible reduced rank. The method is extremely easy to use and like the PIC
test for a unit root that is discussed in Section, produces consistent estimates of
lag length and cointegrating rank. The methods have been used with some success
in simulations (Phillips, 1998d) and in ex ante forecasting exercises with
macroeconomic data for the USA and several Asia-Pacific countries (Phillips,
1995).

Unit root theory plays a major role in modem time series econometrics and
weak convergence methods and function space asymptotics have opened up the
econometric analysis of nonstationary regression models. While a multitude of
test procedures are available for evaluating evidence in support of unit root
nonstationarity, fractional integration and short memory stationarity, the main
principles of statistical testing are analogous to those in stationary time series
and many of the same issues figure in the analysis. However, the nonstandard
limit theory of unit root tests does complicate classical inference and there
are important new issues that arise from the nonparametric treatment of the
stationary component and the existence of valid alternative models for nonstation-
ary data, as discussed in Section 3.5. Further, unit root models provide an
interesting case of divergence between the asymptotic behavior of Bayesian and
classical estimators and tests. They also provide an instance of the asymptotic
failure of the bootstrap. With these interesting characteristics, it is hardly
surprising that the field has attracted so much attention in the last 15 years.
Additionally, most economic time series have clearly evident nonstationary
empirical characteristics, and there are strong reasons in economic theory for
giving attention to the martingale hypothesis and for wanting to distinguish
between models with persistent and non persistent shocks. For all these reasons,
the field has atiracted a full spread of participants from empirical macroecon-
omists interested in growth and finance theorists interested in efficient markets,
through to econometricians and statisticians interested in the development of new
testing procedures, asymptotic theory and unified methods of inference for data
of this type.
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