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1 Introduction

Consider the estimation problem where we would like to estimate a param-
eter vector  from a sample Y1,...,Y,. Let 6, be an estimator for 0, i.e., let
6, = h(Y1,...,Y,) be a Borel measurable function of the sample. In the im-
portant special case where 5,” is a linear function of Yi,...,Y,, i.e., @\n = Ay,
where A is a nonrandom matrix and y = (Y3,...,Y,)’, we can easily express
the expected value and the variance-covariance matrix of gn in terms of the first
and second moments of y (provided those moments exist). Also, if the sample is
normally distributed, so is gn Well-known examples of linear estimators are the
OLS- and the GLS-estimator of the classical linear regression model. Frequently,
however, the estimator of interest will be a nonlinear function of the sample. In
principle, the distribution of 8,, can then be found from the distribution of the
sample by appealing to the transformation theorem for probability measures, if
the model relating the parameter 6 to the observables Y7, ...,Y,, fully specifies
the distribution of the sample. E.g., in a linear regression model with indepen-
dently and identically distributed errors this would require assuming a specific
distribution for the errors. However, supposing the researcher feels comfort-
able with making such a specific assumption, for practical purposes it will then
still often be impossible to obtain an exact expression for the distribution of 0,,
because of the complexity of the necessary calculations. (Even if 0, is linear,
but the distribution of y is non-normal, it will typically be difficult to obtain
the exact distribution of 6,,.) Similarly, obtaining expressions for, say, the first
and second moments of ﬁn will, for practical purposes, typically be infeasible
for nonlinear estimators; and even if it is feasible, the resulting expressions will
usually depend on the entire distribution of the sample, and not only on the
first and second moments as in the case of a linear estimator. A further compli-
cation arises in case the model relating 6 to the observables Y7, ...,Y, does not
fully specify the distribution of Yi,...,Y,. E.g., in a linear regression model
the errors may only be assumed to be identically and independently distributed
with zero mean and finite variance, without putting any further restrictions on
the distribution function of the disturbances. In this case we obviously cannot
get a handle on the distribution of 6, (even if 6, is linear), in the sense that
this distribution will depend on the unknown distribution of the errors.

Given the above discussed difficulties in obtaining ezact expressions for char-
acteristics of estimators like their moments or distribution functions we will often
have to be satisfied with approximations for these exact expressions. Ideally,
these approximations should be easier to obtain than the exact expressions and
they should hopefully be of a simpler form. Asymptotic theory is one way of
obtaining such approximations by essentially asking what happens to the exact
expressions as the sample size tends to infinity. For example, if we are inter-
ested in the expected value of 0,, and an exact expression for it is unavailable
or unwieldy, we could then ask if the expected value of 6,, converges to 6 as



the sample size increases (i.e., if 5n is “asymptotically unbiased”). One could
try to verify this by first showing that the estimator 0, itself “converges” to
¢ in an appropriate sense, and then by trying to obtain the convergence of the
expected value of 0,, to 6 from the “convergence” of the estimator. In order to
properly pose and answer such questions we need to study various notions of
convergence of random vectors.

The article is organized as follows: In Section 2 we define various modes of
convergence of random vectors, and discuss the properties of and the relation-
ships between these modes of convergence. Sections 3 and 4 provide results that
allow us to deduce the convergence of certain important classes of random vec-
tors from basic assumptions. In particular, in Section 3 we discuss laws of large
numbers, including uniform laws of large numbers. A discussion of central limit
theorems is given in Section 4. In Section 5 we suggest additional literature for
further reading.

We emphasize that the article only covers material that lays the foundation
for asymptotic theory. It does not provide results on the asymptotic properties of
estimators for particular models; for references see Section 5. All of the material
presented here is essentially textbook material. We provide proofs for some
selected results for the purpose of practice and since some of the proofs provide
interesting insights. For results given without a proof we provide references to
widely available textbooks.

We adopt the following notation and conventions: Throughout the paper
Z4, Za, ..., and Z denote random vectors that take their values in a Euclidean
space R*, k > 1. Furthermore, all random vectors involved in a particular
statement are assumed to be defined on a common probability space (2,§,P),
except when noted otherwise. With |.| we denote the absolute value and with
|l.|l| the Euclidean norm. All matrices considered are real matrices. If A is a
matrix, then A’ denotes its transpose; if A is a square matrix, then A~' denotes
the inverse of A. The norm of a matrix A is denoted by ||A|| and is taken to
be ||[vec(A)||, where vec(A) stands for the columnwise vectorization of A. If C,,
is a sequence of sets, then C, T C stands for C;, C C,11 for all n € N and
C = Uzozl C,,. Similarly, C,, | C stands for C,, O C)4+1 for all n € N and
C'=nz1 Cn-

2 Modes of Convergence for Sequences of Ran-
dom Vectors

In this section we define and discuss various modes of convergence for sequences
of random vectors taking their values in R*.



2.1 Convergence in Probability, Almost Surely, and in r-
th Mean

We first consider the case where k = 1, i.e., the case of real valued random
variables. Extension to the vector case are discussed later. We start by defining
convergence in probability.

Definition 2.1 (Convergence in probability) The sequence of random variables
Z, converges in probability (or stochastically) to the random variable Z if for
every € > 0

lim P(|Z, —Z| <e)=1. (2.1)

n—oo

We then write plim Z,, = Z, or Z, 2 Z, or Z, — Z i.p. as n — co.
n—oo

We next define almost sure convergence.

Definition 2.2 (Almost sure convergence) The sequence of random variables

Z,, converges almost surely (or strongly or with probability one) to the random

variable Z if there exists a set N € § with P(N) = 0 such that lim Z,(w) =
n—oo

Z(w) for every w € Q@ — N , or equivalently
P ({w €Q: lim Z,(w) = Z(w)}) =1 (2.2)

We then write Z, “3 Z, or Z, — Z a.s., or Zn — Z w.p.1 as n — oo.

The following theorem provides an alternative characterization of almost
sure convergence.

Theorem 2.3 The sequence of random variables Z,, converges almost surely to
the random variable Z if and only if

lim P({|Z; = Z| <e foralli>n})=1 (2.3)
for every e > 0.

Proof. Let
A={we: lim Z,(v) =Z(w)}

n—oo

and
A, ={weQ:]Z(w) - Z(w)| <€ for all i = n},

then (2.2) and (2.3) can be written equivalently as P(A4) = 1 and lim,, o, P(AS) =
1. Next define A° = |J7~; A% and observe that A5 1 A°. By construction A¢
is the set of all w € Q for which there exists some finite index n.(w) such
that |Z; (w) — Z (w)] < ¢ for all i > n.(w). Consequently A C A°; in fact



A = .50 A°. Now suppose (2.2) holds, i.e. P(A) = 1. Then, using the conti-
nuity theorem for probability measures, P(A%) = lim, ., P(45) > P(A) =1,
i.e., (2.3) holds. Conversely, suppose (2.3) holds, then P(A¢) = 1. Observe that
A® | Aase | 0. Choosing e = 1/k we have A = (7~ A/* and, using again the
continuity theorem for probability measures, P(A) = limy_,o, P(AY*) =1. W

The above theorem makes it evident that almost sure convergence implies
convergence in probability.

Theorem 2.4 If 7, 3 Z, then Z, 2 7.

Proof.  Obviously the event B = {w e Q:|Z, (w) — Z (w)| < e} contains
the event A5 = {w € Q:|Z; (w) — Z (w)| < e for all i > n}. Hence Theorem 2.3
implies that lim,_,., P(BZ) =1, i.e., that (2.1) holds . |

The converse of the above theorem does not hold. That is, in general, conver-
gence in probability does not imply almost sure convergence as is demonstrated
by the following well-known example.

Example 2.5 Let Q = [0,1), let § be the corresponding Borel o-field, and let
P(.) be the uniform distribution on Q, i.e., P ([a,b]) = b — a. Define

1 ifwe [ma27F (my, +1)275)
Zn(w) = { 0 otherwise

where the integers m,, and k, satisfy n = my+ 2kn and 0 < m,, < 2F~. Let
Z =0 and let A5 and B: be defined as above. Then for ¢ < 1 we have B =
Q — [mn27%, (my 4+ 1)27%) and hence P (B5) =1-2"" — 1 asn — .
This establishes that Z, converges to zero in probability. Observe further that
As =2, B = 0. Consequently Z,, does not converge to zero almost surely.
In fact, in this example Z,(w) does not converge to 0 for all w € Q, although
Z, % 0.

We next define convergence in r-th mean.

Definition 2.6 (Convergence in r-th mean) The sequence of random variables
Z,, converges in r-th mean (or in L") to the random variable Z, 0 < r < oo, if

lim E|Z, — Z|" =0.

. r—th .
We then write Z,, — Z or Z, — Z in L". For r = 2 we say the sequence
converges in quadratic mean or mean Square.

Remark 2.7 For all three modes of convergence introduced above one can show
that the limiting random variable Z is unique up to null sets. That is, suppose
Z and Z* are both limits of the sequence Z,, then P(Z = Z*) = 1.



Lyapounov’s inequality implies that F |Z,, — Z|* < {F|Z,, — Z|"}*/" for 0 <
s <r. As a consequence we have the following theorem, which tells us that the
higher the value of r, the more stringent the condition for L" convergence.

Theorem 2.8 7, rth implies Zy, sTth for0<s<r.

The following theorem gives conditions under which convergence in r-th
mean implies convergence of the r-th moments.

Theorem 2.9 ! Suppose Z, "= Z and E|Z|" < 00. Then E|Z|" < oo and
E|Z,|" — E|Z|". If, furthermore, Z" and Z" are well-defined for alln (e.g., if
Zn >0 and Z >0, or if r is a natural number), then also EZ" — EZ".

By Chebyshev’s inequality we have P{|Z, — Z| > e} < E|Z, — Z|" Je" for
r > 0. As a consequence, L"-convergence implies convergence in probability, as
stated in the following theorem.

Theorem 2.10 If Z, =y for some r >0, then Z, 2 Z.

The corollary below follows immediately from Theorem 2.10 with r = 2 by
utilizing the decomposition E|Z, — ¢|* = var(Zy) + (EZn — ¢).

Corollary 2.11 Suppose EZ,, — ¢ and var(Z,) — 0, then Z, 2.

The corollary is frequently used to show that for an estimator @n with E@n —
6 (i.e., an asymptotically unbiased estimator) and with var(6,) — 0 we have
0, % 0.

Example 2.12 Let y; be a sequence of i.i.d. distributed random variables with
Ey; =0 and var(y;) = 0 < 0o. Let 0, =n~'>"1" | y: denote the sample mean.

Then Ef, =0 and var(@n) =02/n — 0, and hence 0,, 2 6.

Theorem 2.10 and Corollary 2.11 show how convergence in probability can
be implied from the convergence of appropriate moments. The converse is not
true in general, and in particular Z, 2. Z does not imply Z, "= 7. Tn fact
even Z, 3 7 does not imply Z, "7 7 These claims are illustrated by the
following example.

IFor a proof see, e.g., Serfling (1980), p. 15.



Example 2.13 Let 2, § and P be as in Example 2.5 and define

r- (1 frechim

Then Z,(w) — 0 for allw € Q and hence Z,, “3 0. However, E|Z,| =1 for all
n and hence Z,, does not converge to 0 in L'.

The above example shows in particular that an estimator that satisfies §n 2,
0 (or 6, “% 0) need not satisfy Ef, — 0, i.e., need not be asymptotically
unbiased. Additional conditions are needed for such a conclusion to be proper.
Such conditions are given in the following theorem. The theorem states that
convergence in probability implies convergence in r-th mean, given that the
convergence is dominated.

Theorem 2.14 (Dominated convergence theorem) Suppose Z,, 2 Z, and there

exists a random variable Y satisfying |Zn| <Y a.s. for allm and EY"™ < oo.
r—th

Then Z, "—" Z and E |Z|" < co. (Of course, the theorem also holds if Z, 2> Z
is replaced by Z, “3 Z, since the latter implies the former.)

Under the assumptions of the above theorem also convergence of the r-th
moments follows in view of Theorem 2.9. We also note that the existence of
a random variable Y satisfying the requirements in Theorem 2.14 is certainly
guaranteed if there exists a real number M such that |Z,| < M a.s. for all n
(choose Y = M).

Now let Z, be a sequence of random vectors taking their values in RF.
Convergence in probability, almost surely and in the r-th mean are then defined
exactly as in the case k = 1 with the only difference that the absolute value |.| has
to be replaced by |||, the Euclidean norm on R*. Upon making this replacement
all of the results presented in this subsection generalize to the vector case with
two obvious exceptions: First, in Corollary 2.11 the condition var (Z,) — 0
has to be replaced by the conditions that the variances of the components of
Z,, converge to zero, or equivalently, that the variance covariance matrix of 7,
converges to zero. Second, the last claim in Theorem 2.9 continues to hold if
the symbol Z] is interpreted as to represent the vector of the r-th power of the
components of Z, Instead of extending the convergence notions to the vector
case by replacing the absolute value |.| by the norm ||.||, we could have defined
convergence in probability, almost surely and in r-th mean for sequences of
random vectors by requiring that each component of Z,, satisfies Definition 2.1,
2.2, or 2.6, respectively. That this leads to an equivalent definition is shown in
the following theorem.

Theorem 2.15 Let Z,, and Z be random vectors taking their values in R*, and
let ZT(LZ> and ZD denote their i-th component, respectively. Then Z, 2z if and

only if Zq(ﬁ Lo Z0) fori=1,...,k. An analogous statement holds for almost
sure convergence and for convergence in r-th mean.



The theorem follows immediately from the following simple inequality:

For sequences of random k X [-matrices W,, convergence in probability, almost
surely and in r-th mean is defined as the corresponding convergence of the
sequence vec (Wy,) .

We finally note the following simple fact: Suppose Z1, Z5, ..., and Z are
non-random vectors, then Z,, 2 Z, Z, 3 Z, and Z, "2 7 each hold if and
only if Z,, — Z asn — oo . That is, in this case all of the concepts of convergence
of random vectors introduced above coincide with the usual convergence concept
for sequences of vectors in RF.

‘ 700 _ 700

<20 -2 < VE_max (|20 - 20

2.2 Convergence in Distribution

Let 0, be an estimator for a real-valued parameter ¢ and assume 0, % 0. 1f
G, denotes the cumulative distribution function (c.d.f.) of 6,, i.e., G, (2) =

P(@n < z), then as n — oo
0 for z < 0
1 for z > 0. (24)

Gn(2) — {

To see this observe that P((Z)n <z)= P(én—O <z—-0) < P( 0, — 9‘ > 0—z) for
2<0,and P(d, < 2) = 1-P(0, > 2) = 1—-P(0,—0 > 2—0) > 1— P(|d,, — 9‘ >

z—0) for z > 0. The result in (2.4) shows that the distribution of §,, “collapses”
into the degenerate distribution at 6, i.e., into

0 forz<6
G(Z)_{ 1 for z > 0. (2:5)

Consequently, knowing that 6,, 2 6 does not provide information about the
shape of G,,. As a point of observation note that G,, (2) — G (z) for z # 0, but
G, (z) may not converge to G (z) = 1 for z = 0. For example, if 0, is distributed
symmetrically around 6, then G,, (6) = 1/2 does not converge to G(6) = 1.
This raises the question how we can obtain information about G,, based on
some limiting process. Consider, e.g., the case where 6,, is the sample mean of
i.i.d. random variables Wi:ch mean 6 and Yariance 2. Then én 29 in light
of Corollary 2.11, since Ef,, = 0 and var(#,) = 0*/n — 0. Consequently, as
discussed above, the distribution of 0, “collapses” into the degenerate distri-

bution at #. Observe, however, that the re-scaled variable \/n (én - 9) has

mean zero and variance o2. This indicates that the distribution of \/n <9n -0

will not collapse to a degenerate distribution, but its c.d.f. will “converge” to



some non-degenerate limiting c.d.f. To formalize this idea we need to define an
appropriate notion of convergence of c.d.f.’s.?

Definition 2.16 (Convergence in distribution) Let Fy, Fs, ..., and F denote
c.d.f.’s on R. Then F,, converges to F in distribution (or in law) if
lim F,(2) = F(2)

n—oo

for all z € R that are continuity points of F'. We then write F, L For F, Lp.
Let Z1, Zs, ..., and Z denote random variables with corresponding c.d.f.’s
Fi, Fo, ..., and F, respectively. We then say that Z, converges in distribution

(or in law) to Z, if F,, converges to F in distribution. We write Z, L Z or
Zn 5 7.

Remark 2.17 (a) The reason for only requiring in the above definition that
F,(z) — F(2) converges for all continuity points of F is to accommodate
situations as, e.g., the one discussed at the beginning of this subsection.
Of course, if F is continuous, then F, L FeF, (2) — F(2) for all
r € R.

(b) As is evident from the definition the concept of convergence in distribution
1s defined completely in terms of the convergence of distribution functions.
It is for that reason that the concept of convergence in distribution remains
well defined even if the random variables are mot defined on a common
probability space.

(c) To further illustrate what convergence in distribution does not mean con-
sider the following example: Let Y be a random wvariable that takes the
values +1 and —1 with probability 1/2. Define Z, =Y for n > 1 and

Z = =Y. Then clearly Z, 4 7 since Zn and Z have the same distribu-
tion, but |Z, — Z| = 2 for all n > 1. That is, convergence in distribution
does not necessarily mean that the difference between random wvariables
vanishes in the limit. More generally, if Z, 2 7 and one replaces the
sequence Z, by a sequence Z) that has the same marginal distributions,

then also 77 <4 7.

The next theorem provides several equivalent characterizations of conver-
gence in distribution.

2We note that the rescaled quantities like 1/n (@n — @) typically do not converge a.s. or

i.p., and thus a new notion of convergence is needed for these quantities.



Theorem 2.18 3 Consider the cumulative distribution functions F, Fy, Fs,

. Let Q, Q1, Q2, ... denote the corresponding probability measures on R,
and let ¢, ¢y, ¢o, ... denote the corresponding characteristic functions. Then
the following statements are equivalent:

G) F, & F

(il) lim Q,(A) = Q(A) for all Borel sets A C R that are Q-continuous, i.e.,
for all Borel sets A whose boundary 0A satisfies Q(0A) = 0.

(iii) lim [ fdF, = [ fdF for all bounded and continuous real valued functions
f onR.

(iv) nlin;o @, (1) = @(t) for allt € R.

If, furthermore the cumulative distribution functions F, Fy, Fs, ... have mo-
ment generating functions M, My, Ma, ... in some common interval [—t., t.], t. >
0, then (i), (i), (iii) or (iv) are, respectively, equivalent to

(v) nh—>H;o M, (t) = M(t) for all t € [—ty,ts].

Remark 2.19 The equivalence of (i) and (ii) of the theorem can be refor-

mulated as Z, % 7 < P(Z,€eA) — P(Z € A) for all Borel sets A with
P(Z € 0A) = 0. The equivalence of (i) and (iii) can be expressed equivalently

as Z, > 7 = Ef (Zn) — Ef (Z) for all bounded and continuous real valued
functions f on R.

The following theorem relates convergence in probability to convergence in
distribution.

Theorem 2.20 Z,, 2 Z implies Z, <4 7. (Of course, the theorem also holds

if Zy, 2. Z is replaced by Zn, 3 Z or Z, T Z, since the latter imply the
former.)

Proof. Let f(z) be any bounded and continuous real valued function, and
let C' denote the bound. Then Z, % Z implies f(Z,) 2 f(Z) by the results
on convergence in probability of transformed sequences given in Theorem 2.28
in Section 2.3. Since |f(Z,(w)| < C for all n and w € Q it then follows from
Theorems 2.14 and 2.9 that Ef (Z,,) — Ef (Z), and hence Z, . 7 by Theorem
2.18. |

3See, e.g., Billingsley (1968), p. 12, Billingsley (1979), p. 345, and Serfling (1980), p. 16.
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The converse of the above theorem does not hold in general, i.e., Z, Ny

does not imply Z, % Z. To see this consider the following example: Let
Z ~ N (0,1) and put Z, = (—1)" Z. Then Z,, does not, converge almost surely

or in probability. But since each Z, ~ N (0, 1), evidently Z, kN4
Convergence in distribution to a constant is, however, equivalent to conver-
gence in probability to that constant.

Theorem 2.21 Let c € R, then Z, < ¢ s equivalent to Z, 2.

Proof. Because of Theorem 2.20 we only have to show that Z, LA implies
Zn 5 ¢. Observe that for any € > 0

P(|Z, —c| > ¢)
P(Zy—c<—e)+P(Z,—c>¢)
P(Z,<c—¢e)—P(Z,<c+e)+1
F,(c—¢)—F,(c+e)+1

IN

where F), is the c.d.f. of Z,. The c.d.f. of Z =c is

0 z<ec
F(Z>:{ 1 z>¢

Hence, ¢ — € and ¢ + ¢ are continuity points of F. Since Z, % 7 it follows that
F,(c—e)—= F(c—¢)=0and F, (c+¢) — F(c+¢) = 1. Consequently,

0<P(|Zn—c|>e)<F,(c—e)+1—F,(c+e)—=0+1-1=0.

This shows Z,, > Z = c. [ |

In general convergence in distribution does not imply convergence of mo-
ments; in fact the moments may not even exist. However, we have the following
result.

Theorem 2.22 * Suppose Z, > 7 and suppose that sup,, E|Z,|" < oo for
some 0 <1 < 0o. Then for all0 < s < r we have E |Z|® < 0o and lim,, oo FE|Z,|° =
E|Z|°. If, furthermore, Z* and Z$ are well-defined for alln, then alsolim,, .o, EZS =
EZs.

Remark 2.23 Since Z, 2 Z and Zn %3 7 imply Zy % Z, Theorem 2.22 pro-
vides sufficient conditions under which Z, 2 Z and Z, 3 Z imply convergence
of moments. These conditions are an alternative to those of Theorem 2.14.

4See, e.g., Serfling (1980), pp. 13-14.

11



The concept of convergence in distribution can be generalized to sequences
of random vectors Z,, taking their values in R*. Contrary to the approach taken
in generalizing the notions of convergence in probability, almost surely and in
r-th mean to the vector case, the appropriate generalization is here not obtained
by simply requiring that the component sequences Zq(f) converge in distribution
for ¢ = 1,...,k. Such an attempt at generalizing the notion of convergence
in distribution would yield a nonsensical convergence concept as is illustrated
by Example 2.26 below. The proper generalization is given in the following
definition.

Definition 2.24 Let Fy, Fs, ..., and F denote c.d.f.’s on R*. Then F,, con-
verges to F in distribution (or in law) if

lim F, (z) = F(2)

n—oo

for all z € R* that are continuity points of F. We then write F, L F or
F, 5 F.

Let Zi, Zs, ..., and Z denote random vectors raking their values in RF
with corresponding c.d.f.’s Fy, Fs, ..., and F, respectively. We then say that Z,
converges in distribution (or in law) to Z, if F,, converges to F in distribution.

We write Z, 4 Z or Z, L Z.

All the results presented in this subsection so far also hold for the multivari-
ate case (with R¥ replacing R). Convergence in distribution of a sequence of
random matrices W), is defined as convergence in distribution of vec (W),).

The next theorem states that convergence in distribution of the joint distri-
butions implies convergence in distribution of the marginal distributions.

Theorem 2.25 F), 4R implies F! 4 F@ gnd Zn Ny implies Zy(f) 4, AL
where F,ﬁ” and F denote the i-th marginal distribution of F,, and F, and ZT(LZ)
and Z9 denote the i-th component of Z, and Z, respectively.

Proof. The result follows from Theorem 2.28 below, since projections are
continuous. [ |

However, as alluded to in the above discussion, the converse of Theorem 2.25
is not true. That is convergence in distribution of the marginal distributions
is not equivalent to convergence in distribution of the joint distribution, as is
illustrated by the following counter example.

Example 2.26 Let Z ~ N(0,1) and let



Clearly, each component of Z,, converges in distribution to N(0,1). However, for
n even the distribution of Z,, is concentrated on the line {(z, z) : z € R}, whereas
for n odd the distribution of Z, is concentrated on the line {(z,—z) : z € R}.
Consequently, the random vectors Z, do not converge in distribution.

The following result is frequently useful in reducing questions about con-
vergence in distribution of random vectors to corresponding questions about
convergence in distribution of random variables.

Theorem 2.27 (Cramér-Wold device) Let Z1, Za, ..., and Z denote random
vectors taking their values in R* . Then the following statements are equivalent:

4G) Z, %z
(ii) o'Z, L o'Z for alla € RF.
(iii) o'Z, 4oz for all € R* with ||af = 1.

Proof. The equivalence of (ii) and (iii) is obvious. We now prove the equiva-
lence of (i) with (iii). Let ¢,, (t) and ¢ (t) , denote respectively the characteristic
function of Z,, and Z. According to the multivariate version of Theorem 2.18
we have Z, % Z if and only if ¢, (£) — ¢ (t) for all £ = (t1,...,t;) € R¥ . Let

¢n (s) and ¢ (s) denote the characteristic functions of o’ Z,, and o'Z, respec-

tively. Again, o/ Z,, 4 W7 if and only if ¢, (s) — ¢% (s) for all s € R. Observe
that for ¢ # 0 we have

b (1) = E (exp(it' Z,)) = E (explisa’ Z,) = 65 (s)

with @ = ¢/ ||t]] and s = ||t]|. Note that ||a|| = 1. Similarly, ¢ (¢) = ¢“ (s).
Consequently, ¢,, (t) — ¢ (¢) for all t # 0 if and only if ¢;, (s) — ¢ (s) for a

s # 0 and all « with |a|| = 1. Since ¢,, (0) = ¢ (0) = 1 and ¢y, (0) = =
the proof is complete observing that ¢ = 0 if and only if s = 0. |

2.3 Convergence Properties and Transformations

We are often interested in the convergence properties of transformed random
vectors or variables. In particular, suppose Z,, converges to Z in a certain mode,
then given a function g we may ask the question whether or not g(Z,,) converges
to g(Z) in the same mode. The following theorem answers the question in the
confirmative, provided g is continuous (in the sense specified below). Part (a)
of the theorem is commonly referred to as Slutzky’s theorem.

Theorem 2.28 ° Let Z1, Zs, ..., and Z be random vectors in R¥. Further-
more, let g : R¥ — R® be a Borel-measurable function and assume that g is

5See, e.g., Serfling (1980), p. 24.
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continuous with Pyz-probability one (where Pz denotes the probability measure
induced by Z on R¥).5 Then

(a) Z, L, 7 implies 9(Z,) 2, 9(2),

a.s.

(b) Z, %3 Z implies g(Z,) “3 g(2),

(c) Z, 4z implies g(Z,) 4, 9(2).

In the special case where Z = ¢ is a constant or a vector of constants, the
continuity condition on g in the above theorem only requires that the function
g is continuous at c.

As special cases of Theorem 2.28 we have, e.g., the following corollaries.

Corollary 2.29 Let W, and V,, be sequences of k-dimensional random vectors.
Suppose W,, = W and V,, =V i.p. [a.s.], then

W,xV, -W=xV i.p. [a.s.],
W'V, — W'V i.p. [a.s.].

In case k =1,
Wy [V — WV i.p. [a.s.]

if V' #£ 0 with probability one, and where W, /V,, is set to an arbitrary value on
the event {V,, = 0}.7

Proof. The assumed convergence of W,, and V,, implies that Z, = (W,, V)
converges to Z = (W', V') ip. [a.s.] in view of Theorem 2.15. The corol-
lary then follows from Theorem 2.28(a),(b) since the maps g¢; (w,v) = w + v,
g2 (w,v) = w — v, g3 (w,v) = w'v are continuous on all of R?* | and since the
map g4 (w,v) = w/v if v # 0 and g4 (w,v) = ¢ for v = 0 (with ¢ arbitrary) is
continuous on A = Rx (R — {0}), observing furthermore that Pz (4) = 1 since
V' # 0 with probability 1. |

The proof of the following corollary is completely analogous.

Corollary 2.30 Let W, and V,, be sequences of random matrices of fized di-
mension. Suppose W,, — W and V,, =V i.p. [a.s.], then

WptV,>WxV i.p. [a.s.],
WoV, - WV i.p. [a.s.],

6That is, let A C R denote the set of continuity points of g, then Pz(A) = P(Z € A) = 1.
Of course, if g is continuous on R, then A = R* and the condition Pz(A) = 1 is trivially
satisfied.

"The event {V,, = 0} has probability approaching zero, and hence it is irrelevant which
value is assigned to Wy, /V,, on this event.
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Furthermore
WV, ' =WV =t and V,'W, - VW ip. [a.s.]

if V' is nonsigular with probability one, and where W, V,=1 and V,”'W,, are set
to an arbitrary matriz of appropriate dimension on the event {V,, singular}.
(The matrices are assumed to be of conformable dimensions.)

The following example shows that convergence in probability or almost surely
in Corollaries 2.29 and 2.30 cannot be replaced by convergence in distribution.

Example 2.31 Let U ~ N (0,1) and define W,, = U and V,, = (—1)" U. Then

2U ~ N (0,4) if n is even

W"+V”:{ 0 if n is odd

Clearly, Wy, + V,, does not converge in distribution, although W, 4 U and
d
V, — U.

The reason behind this negative result is again the fact that convergence in
distribution of the components of a random vector does in general not imply
convergence in distribution of the entire random vector. Of course, if the entire
random vector Z, = (W/, V,') converges in distribution to Z = (W', V")’ then
W, £V, w4+ Vv, W)V, LWV as a consequence of Theorem 2.28; also, if
k=1 and V # 0 with probability 1, then W,,/V,, KR W/V.

However, there is an important special case in which we can conclude that
Zn = (W, VY L z= (W', V") from knowing that W, LW and V, % V:
This is the case where V = ¢ and ¢ is a constant vector.

Theorem 2.32 Let W,, and V,, be sequences of kx 1 andl x 1 random vectors,
respectively. Let W be a k x 1 random vector and let V = ¢ be a constant vector
in RY. Suppose W, LW and Va e (or equivalently V,, 2o ¢ in light of
Theorem 2.21). Then Z, = (W, V') % 72 = (W', V') = (W', <.

Proof. Let ¢, (t) and ¢ (t) denote, respectively, the characteristic function of
Z, and Z. To show that Z, % Z it suffices to show that o, (t) = ¢ (t) for all t €
R**! in light of the multivariate version of Theorem 2.18. Let t = (s',u)’ with
s € R* and u € R! arbitrary. Observing that |exp(is'W,,)| = 1 = |exp(iu/c)|,
we have

16 (1) — 6 1) (2:6)
_ ‘E <eis’Wn ot Vi _ eis’Weiu’c>
< E [ 088" Wa | | iV _ em’c} +leve| | B (eis’Wn _ eis'W)‘
< ElewVe _giwe| 4 ’E (eis/Wn _ eis’W)‘
= B Ve — el Lo (5) - 6% (9)],
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where ¢Y (s) and ¢" (s) denote, respectively, the characteristic function of
W, and W. Since V,, & ¢ it follows from Theorem 2.28 that exp(iu/V;,) —
exp(iu/c) 2> 0. Observing that |exp(iu/Vy,) — exp(iv/c)| < 2 it follows further-
more from Theorem 2.14 that F |exp(iu'V,) — exp(iv'c)| — 0. By assumption

W, L W . Tt then follows again from the multivariate version of Theorem 2.18
that ¢7 (s) — ¢" (s). Thus both terms in the last line of (2.6) converge to
zero, and hence ¢,, (t) — ¢ (t). |

Given Theorem 2.32 the following result follows immediately from Theorem
2.28.

Corollary 2.33 Let W, and V,, be sequences of k x 1 andl x 1 random vectors,
respectively. Let W be a k x 1 random vector and c a constant vector in R'.

Suppose W, LW and Vi L (or equivalently Vi, 2o¢). Letg: RFxR! - R?

be a Borel measurable function and assume that g is continuous in every point

of Ax{c} where A C R¥ satisfies P(W € A) = 1. Then g(W,,V,) <, g (W,c).
As a further corollary we have the following useful results.

Corollary 2.34 Let W,, and V,, be sequences of k x 1 andl x 1 random vectors,
let A, and B,, be a sequences of | X k and k x k random matrices, respectively.
Furthermore, let W be a k X 1 random wvector, let ¢ be a l x 1 non-stochastic
vector, and let A and B be some non-stochastic | X k and k x k matrices.

(a) Fork=1

W, LWV, Bc implies W,+V, S W4+ec
W'V, % wee.
(If c =0, then W]V, .0 and hence also W'V, 20).
(b) Fork=1=1

WniI/V,Vngc implies Wn/VniW/c ifc#£0,
Vo /Wy % ¢/W if P(W =0) = 0.

(c)
W, SW, Vi, Boc, An B A implies AgWn + Vi, % AW + ¢,
(d)
W, 5 W, B, 5 B implies W!B,W, -5 W’'BW.

Of course, if in the above corollary W ~ N(u, X)), then AW + ¢ ~ N(Ap +
¢, AYA"). W ~ N(0, ;) and B is idempotent of rank p, then W/ BW ~ x(p).
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2.4 Orders of Magnitude

In determining the limiting behavior of sequences of random variables it is often
helpful to employ notions of orders of relative magnitudes. We start with a
review of the concepts of order of magnitudes for sequences of real numbers.

Definition 2.35 (Order of magnitude of a sequence of real numbers) Let ay,, be
a sequence of real numbers and let ¢, be a sequence of positive real numbers.
We then say an is at most of order ¢, and write a,, = O(cy), if there exists a
constant M < oo such that ¢;;* |an| < M for alln € N. We say ay, is of smaller
order than c,, and write a, = o(cy,), if ¢;* |an| — 0 as n — oo. (The definition
extends to vectors and matrices by applying the definition to each element or,
equivalently, to the norm.)

The following results concerning the algebra of order in magnitude operations
are often useful.

Theorem 2.36 Let a,, and b, be sequences of real numbers, and let ¢, and d,
be sequences of positive real numbers.

(@) Ifa, = o(cy) and b, = o(dy,), then anby, = o(cndy), |an|® = o(cs) for s >0,
an, + by, = o(max{cy,dn}) = o(c, + dy).

(®) If an = O(cyn) and b, = O(dy,), then anb, = O(cndy), lan|” = O(cs) for
s> 0, an + b, = O(max{cy,dn}) = O(c, + dp).

(c) If ap, = o(cn) and by, = O(dy,), then apb, = o(cndy,).

We now generalize the concept of order of magnitude from sequences of real
numbers to sequences of random variables.

Definition 2.37 (Order in probability of a sequence of random variables) Let
Zyn be a sequence of random variables, and let ¢, be a sequence of positive real
numbers. We then say Z, is at most of order c, in probability, and write
Zn = Op(cn), if for every e > 0 there exists a constant M. < oo such that
P(c; | Zn] > M) < e. We say Z, is of smaller order in probability than c,,
and write Z, = 0p(cn), if ¢y | Zn] 2 0 as n — oco. (The definition extends to
vectors and matrices by applying the definition to each element or, equivalently,
to the norm.)

The algebra of order in probability operations O, and o, is identical to that
of order in magnitude operations O and o presented in the theorem above; see,
e.g., Fuller (1976), p. 184.

A sequence of random variables Z,, that is O,(1) is also said to be “stochas-
tically bounded” or “bounded in probability”. The next theorem gives sufficient
conditions for a sequence to be stochastically bounded.
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Theorem 2.38 (a) Suppose E|Z,|" = O(1) for some r > 0, then Z, =
O,(1).

(b) Suppose Zy, L 7, then Z,, = 0,(1).

Proof. Part (a) follows readily from Markov’s inequality. To prove part (b)
fix ¢ > 0. Now choose M} such that F' is continuous at —M} and M7, and
F(—M?) <e/4 and F(M?) > 1—¢/4. Since every c.d.f. has at most a count-
able number of discontinuity points, such a choice is possible. By assumption
F,(z) — F(z) for all continuity points of F. Let n. be such that for all n > n,

[Fn(=MZ) = F(=M)| < e/4

and
[Fn(MZ) = F(M?)] < e/4.

Then for n > n.
P(|Zn| = M) Fp(—=MZ) — Fo(MZ) + 1

<
< F(-MY—F(M)+1+e/2<e.

Since limps 00 P(|Z;] > M) = 0 for each ¢ € N we can find an M?* such that
P(|Z;| > M) <efori=1,...,n. — 1. Now let M, = max{M*, M *}. Then
P(|Z,| > M.) < e for all n € N. |

3 Laws of Large Numbers

Let Z;, t € N, be a sequence of random variables with EZ; = p,. Further-
more let Z,, = n~1! Z?:l Z; denote the sample mean, and let i, = EZ, =

n~t 3" gy A law of large numbers (LLN) then specifies conditions under
which

Zn—EZy=n""Y (Z — ;)
t=1

converges to zero either in probability or almost surely. If the convergence is
in probability we speak of a weak LLN, if the convergence is almost surely we
speak of a strong LLN. We note that in applications the random variables Z;
may themselves be functions of other random variables.

The usefulness of LLNs stems from the fact that many estimators can be
expressed as (continuous) functions of sample averages of random variables, or
differ from such a function only by a term that can be shown to converge to
zero i.p. or a.s. Thus to establish the probability or almost sure limit of such
an estimator we may try to establish in a first step the limits for the respective
averages by means of LLNs. In a second step we may then use Theorem 2.28
to derive the actual limit for the estimator.
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Example 3.1 As an illustration consider the linear regression model y; = x:0+
e, t = 1,...,n, where y;, ¢ and & are all scalar and denote the dependent
variable, the independent variable and the disturbance term in period t. The
ordinary least squares estimator for the parameter 6 is then given by

n n
~ 3 iy nL S 2e
Op=— =0+ —=—
> a7 n=t Y xf
=1 =1

and thus §n is seen to be a function of the sample averages of ey and 3.

3.1 Independent Processes

In this subsection we discuss LLNs for independent processes.

Theorem 3.2 ® (Kolmogorov’s strong LLN for i.i.d. random variables) Let
Zy be a sequence of identically and independently distributed (i.i.d.) random

variables with E|Z1| < oo and EZy = . Then Z, “3 p (and hence Z, “p: 1)
as n — oo.

We have the following trivial but useful corollary.

Corollary 3.3 Let Z; be a sequence of i.i.d. random variables, and let f be a
Borel measurable real function satisfying E |f(Z1)| < oo, thenn™t >0 f(Z:) =5
Ef(Z1) as n — 0.

The corollary, can, in particular be used to establish convergence of sample
moments of, say, order p to the corresponding population moment by choosing
f(z) = z¢.

We now derive the probability limit of the ordinary least squares estimator
considered in Example 3.1 as an illustration.

Example 3.4 Assume the setup of Example 3.1. Assume furthermore that the
processes 1y and &; are i.i.d. with Ex? = Qu, 0 < Q. < 00, Elg] < o0,
and Fe; = 0, and that the two processes are independent of each other. Then
Tie¢ 1S 1.9.d., has finite expectation and satisfies Fxiey = FExiFEey = 0. Hence
it follows from Theorem 3.2 that n=* ) | zi&y ©30. Corollary 3.3 implies
n~t3 22 Y% Q,. Applying Theorem 2.28 then yields 0, %504 0/Q, = 0.

The assumption in Theorem 3.2 that the random variables are identically
distributed can be relaxed at the expense of maintaining additional assumptions
on the second moments.

8See, e.g., Shiryayev (1984), pp. 366.
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Theorem 3.5 ? (Kolmogorov’s strong LLN for i.d. random variables) Let Z; be
a sequence of independently distributed (i.d.) random variables with EZy = p,
and var(Z;) = o7 < oo. Suppose > oo, 02/t> < co. Then Z, — fi,, “> 0 as
n — 0o.

The condition Y ;2 07/t% < co puts a restriction on the permissible varia-
tion in the 7. For example, it is satisfied if the sequence o? is bounded.

3.2 Dependent Processes

The following weak LLN follows immediately from Corollary 2.11. In contrast to
the above LLNs this theorem does not require the variables to be independently
distributed, but only requires uncorrelatednes.

Theorem 3.6 (Chebychev’s weak LLN for uncorrelated random variables) Let
Zy be a sequence of uncorrelated random variables with EZy = p, and var(Z;) =

07 < 00. Suppose var(Zy,) =n"23 1, 07 — 0 asn — oo, then Z, — ji,, = 0.

The condition on the variance in Theorem 3.6 is weaker than the correspond-
ing condition in Theorem 3.5 in view of Kronecker’s lemma; see, e.g., Shiryayev
(1984), p. 365. The condition is clearly satisfied if the sequence o7 is bounded.

A class of dependent processes that is important in econometrics and statis-
tics is the class of martingale difference sequences. For example, the score of the
maximum likelihood estimator evaluated at the true parameter value represents
(under mild regularity conditions) a martingale difference sequence.

Definition 3.7 (Martingale difference sequence) Let F:, t > 0, be a sequence
of o-fields such that §o C §1 C ... C F. Let Z;, t > 1, be a sequence of
random variables, then Z; is said to be a martingale difference sequence (w.r.t.
the sequence §i), if Z; is §e-measurable, E|Z;| < 0o and

E(Zy | §t-1) =0

for allt > 1.

We note that if Z; is a martingale difference sequence then F(Z;) = E(E(Z; |
Ft—1)) = 0 by the law of iterated expectations. Furthermore, since E(Z;Z;j) =
E(ZyE(Ziyr | St+k—1)) = 0 for k > 1, we see that every martingale difference
sequence is uncorrelated. We also note, if Z; is a martingale difference sequence
w.r.t. the o-fields §¢, then it is also a martingale difference sequence w.r.t. the
o-fields &; where &, is generated by {Z;, Z;_1,...,Z1} and &y = {0, Q}.

We now present a strong LLN for martingale difference sequences.

9See, e.g., Shiryayev (1984), pp. 364.
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Theorem 3.8 ' Let Z; be a martingale difference sequence with var(Z;) =
07 < 0. Suppose S oo 07 /t? < 0o. Then Z, “3 0 as n — o0.

The above LLN contains Kolmogorov’s strong LLN for independent random
variables as a special case (with Z; replaced by Z; — u, ).

Many processes of interest in econometrics and statistics are correlated, and
hence not covered by the above LLNs. In the following we present a strong
LLN for strictly stationary processes, which allow for a wide range of correlation
structures.

Definition 3.9 (Strict stationarity) The sequence of random variables Zy, t >
1, is said to be strictly stationary if (Z1, Za, ..., Zy) has the same distribution
as (Z14k, Zotks -y Zntk) for allk >1 andn > 1.

Definition 3.10 ! (Invariance and ergodicity of strictly stationary sequences)
Let Zy, t > 1, be a strictly stationary sequence.

(a) Consider the event
A={weQ: (Z1(v), Z2(w),...) € B}

with B € B°°, where B°>° are the Borel sets of R>®. Then A is said to be
mvariant if

A={weQ: (Z111(w), Zosi(w),...) € B}
for all k > 1.

(b) The sequence Zy is ergodic if every invariant event has probability one or
zero.

We note that every i.i.d. sequence of random variables is strictly stationary
and ergodic. Furthermore, if 7, is strictly stationary and ergodic, and g : R>* —
R is measurable, then the sequence Y; with Y; = g(Z, Z;+1, . . .) is again strictly
stationary and ergodic.

We can now give the following strong LLN, which is often referred to as the
Ergodic Theorem. This theorem contains Kolmogorov’s strong LLN for i.i.d.
random variables as a special case.

Theorem 3.11 '2 Let Z; be a strictly stationary and ergodic sequence with
E|Z| < oo and EZy = p. Then Z, “5 1 as n — oo.

10Gee, e.g., Shiryayev (1984), pp. 487, or Davidson (1994), p. 314.
Gee, e.g., Stout (1974), p. 180.
12See, e.g., Stout (1974), p. 181.
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There is a large literature on LLNs for dependent processes beside the LLNs
presented above. LLNs for weakly stationary processes, including linear pro-
cesses and ARMA processes, can be found in Hannan (1970, Ch. IV.3); see also
Phillips and Solo (1992). Important classes of dependent processes considered
in econometrics and statistics are a-mixing, ¢-mixing, near epoch dependent
and L,-approximable processes. LLNs for such processes are discussed in some
detail in, e.g., Davidson (1974, Part IV) and Potscher and Prucha (1997, Ch.
6), and in the references given therein; see also Davidson and de Jong (1997)
for recent extensions.

3.3 Uniform Laws of Large Numbers

It is planned to include here a brief discussion of uniform laws of large num-
bers. Given space constraints, we would appreciate feedback from the editor on
whether we should complete or drop this section.

4 Central Limit Theorems

Let Z;, t € N, be a sequence of i.i.d. random variables with FZ; = p and
var(Z) = 02, 0 < 0% < co. Let Z, = n~1Y."" | Z; denote the sample mean.
By Kolmogorov’s strong LLN for i.i.d. random variables (Theorem 3.2) it then
follows that Z, — EZ, converges to zero a.s. and hence i.p. This implies that
the limiting distribution of Z,, — EZ, is degenerate at zero, and thus no insight
is gained from this limiting distribution regarding the shape of the distribution
of the sample mean for finite n; cp. the discussion at the beginning of Section
2.2. Suppose we consider the rescaled quantity

Vi (Zy —EZ,) =n~'/? i (Zi — ). (4.1)

t=1

Then the variance of the re-scaled expression is o> > 0 for all n, indicating that
its limiting distribution will not be degenerate. Theorems that provide results
concerning the limiting distribution of expressions like (4.1) are called central
limit theorems (CLTs). Rather than to center the respective random variables,
as is done in (4.1), we assume in the following without loss of generality that
the respective random variables have mean zero.

4.1 Independent Processes

4.1.1 Some Classical CLTs

In this subsection we will present several classical CLTs, starting with the
Lindeberg-Lévy CLT.

22



Theorem 4.1 '3 (Lindeberg-Lévy CLT) Let Z; be a sequence of i.i.d. Tan-

dom, variables with EZ, = 0 and var(Z;) = 0® < co. Then n=Y23" . 7, &
N(0,0?). (In case 0® = 0 the limit N (0,0) should be interpreted as the degen-
erate distribution having all its probability mass concentrated at zero.)

Of course, if 0 > 0 the conclusion of the theorem can be written equivalently

as n~ V2N 7)o <, N(0,1). Extensions of Theorem 4.1 and of any of the
following central limit theorems to the vector case are readily obtained using the
Cramér-Wold device (Theorem 2.27). To illustrate this we exemplarily extend
Theorem 4.1 to the vector case.

Example 4.2 Let Z; be a sequence of i.i.d. k-dimensional random vectors with
zero mean and finite variance covariance matriz . Let £, = n~1/2 Sy Zs,
let & ~ N(0,%) (where N(0,%) denotes a singular normal distribution if ¥ is
singular), and let o be some element of R*. Now consider the scalar random
variables /€, = n~Y/23"1 &' Z,. Clearly the summands o' Z; are i.i.d. with
mean zero and variance o' Y. It hence follows from Theorem 4.1 that /€,
converges in distribution to N(0,a'Ya). Of course /¢ ~ N(0,a'3a), and hence

'€, 4, o’€. Since o was arbitrary it follows from Theorem 2.27 that &, KR &,
which shows that the random vector n™*/2 31 | Z; converges in distribution to
N(0,%).

Theorem 4.1 postulates that the random variables Z; are i.i.d. The following
theorems relax this assumption to independence. It proves helpful to define

O'?n> = de (4.2)
t=1
2

where 07 = var(Z;). For independent Z;’s clearly o%n) = n*var (Zy,), and in
case the Z,’s are i.i.d. with variance 02 we have O’%n) = no?. To connect Theo-
rem 4.1 with the subsequent CLTs observe that within the context of Theorem

4.1 we have n=Y2 30 | Z, /o =30, Zi/o(n) (given o2 > 0).

Theorem 4.3 ' (Lindeberg-Feller CLT) Let Z; be a sequence of independent
random variables with EZ; = 0 and var(Z;) = o7 < co. Suppose that a%n) >0,
except for finitely many n. If for every e > 0

1 ¢
Tm) =1
then Y0\ Z¢/o(n) < N(0,1).
Condition (L) is called the Lindeberg condition. The next theorems employs in
place of the Lindeberg condition a condition that is stronger but easier to verify.

Theorem 4.4 '5 (Lyapounov CLT) Let Z; be a sequence of independent random

13Gee, e.g, Billingsley (1979), p. 308.
14Gee, e.g, Billingsley (1979), p. 310.
15See, e.g, Billingsley (1979), p. 312.
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variables with EZ; = 0 and var(Z;) = o7 < co. Suppose that J%H) > 0, except
for finitely many n. If for some § >0

lim > E|Z/ou | =0, (P)
t=1

then Y"1 1 Zi/o(n) <, N(0,1).

Condition (P) is called the Lyapounov condition. Condition (P) implies condi-
tion (L). It is readily seen that a sufficient condition for (P) is that

n

-1.2 _ -1 2

N0y =N Zat200n5t>0
t=1

for n sufficiently large and that

lim > E|Z/va]*" =0.
t=1

n—oo

In turn, sufficient conditions for those two conditions are, respectively,

lim n_la%n) =1, 0 <y < oo, (4.3)

n—oo
and

supn~* Z E|Z)*" < . (4.4)

t=1
We note that the conclusions of Theorems 4.3 and 4.4 can be stated equivalently

as n V230 7, KR N(0,%), whenever additionally also (4.3) holds. In this
context we also make the trivial observation, that for a sequence of independent
random variables Z; with zero mean and finite variances a% > 0 the condition

n’la% )y = 1 = 0 implies n~=1/2 S Z 20 (Corollary 2.11), which can also

n
be rewritten as n=1/23"" | 7, 4, N(0,%), ¥ =0.

The above CLTs were given for sequences of random variables (Z¢, ¢t > 1).
They can be readily generalized to cover triangular arrays of random variables
(Zin, 1 <t <n, n>1). In fact Theorems 4.3 and 4.4 hold with Z; replaced
by Zin and o? replaced by o2,; see, e.g., Billingsley (1979), pp. 310-312.

The need for CLTs for triangular arrays arises frequently in econometrics.
One example is the derivation of the limiting distribution of the least squares
estimator when different regressors grow at different rates. In this case one can
still obtain a limiting normal distribution for the least squares estimator if the
usual /n-norming is replaced with a normalization by an appropriate diagonal
matrix. In essence, this entails renormalizing the i-th regressor by the square
root of Y7, x7;, whose obvious dependence on n leads to the consideration of a
CLT for quantities of the form Z?Zl Cen Uy With uy 1.i.d.; see Theorem 4.6 below.
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4.1.2 CLTs for Regression Analysis

In this subsection we present some CLTs that are geared towards regression
analysis. As discussed above, within this context we will often need CLT's for
a sequence of ii.d. random variables multiplied by some time-varying scale
factors, that may also depend on the sample size. We first give a general CLT
that covers such situations as a corollary to the Lindeberg-Feller CLT.

Theorem 4.5 6 Let Z, be a sequence of i.i.d. random variables with EZ, = 0
and var(Z,) = 1. Furthermore, let (04, 1 <t < n, n > 1) be a triangular
array of real numbers, and define the triangular array Zi, by Zin = 0nZ;.
Suppose that O'?n) =31 0%, >0, except for finitely many n. If

2
. maxi<t<n O
lim — ==t "in

n
nmoe Yo Oty

then S0y Zin /o () > N(0,1) .

=0, (M)

A proof of the above theorem and proofs for the subsequent CLT's are given in
the appendix. All of the subsequent CLTs in this section are based on Theorem
4.5.

Theorem 4.6 Let uy, t > 1, be a sequence of i.i.d. random variables with
Euy =0 and Eu? = 0% < 0o. Let X,,, n > 1, with X,, = (x4;) be a sequence of
real nonstochastic n X k matrices with

2
. maxi<t<n T;
lim —= =Rt

w2
n—oo YTy

where it is assumed that > ;2% > 0 for all but finitely many n. Define
W, = XnS;1 where Sy, is a k X k diagonal matriz with the i-th diagonal element

equal to [S 1 x%]Y?, and assume that lim W.W, = & is finite. Let u, =

n—oo

=0 fori=1,...,k, (4.5)

[ug, ..., up], then W} u, <, N(0,02®).

The above theorem is given in Amemiya (1985), p. 97, for the case of
nonsingular 02®.17 The theorem allows for trending (non-stochastic) regressors.
For example, (4.5) holds for x4 = tP, p > 0. We note that in case of a single
regressor W/ W,, = & = 1.

Theorem 4.7 Let u;, t > 1, be a sequence of i.i.d. random variables with
Fu; = 0 and Eu? = 02 < co. Let X,,, n > 1, with X,, = (x4) be a sequence
of real nonstochastic n x k matrices with lim n='X! X, = Q finite. Let u, =

n—oo

[ui, ..., un], then n=Y/2X" u, <, N(0,02%Q).

16 The theorem is given as Problem 27.6 in Billingsley (1979), p. 319.
17The proof given in Amemiya seems not entirely rigorous in that it does not take into
account that the elements of S, and hence those of W,, depend on the sample size n.
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The theorem is, e.g., given in Theil (1971), pp. 380, for the case of nonsin-
gular 02@Q. The theorem does not require that the elements of X,, are bounded
in absolute value, as is often assumed in the literature.

We now use Theorems 4.6 and 4.7 to exemplarily give two asymptotic nor-
mality results for the least-squares estimator.

Example 4.8 (Asymptotic normality of the least squares estimator) Consider
the linear regression model

k
Yr = Ziﬂnﬂi +ug, t2>1
i=1

Suppose uy and X,, = (x4;) satisfy the assumption of Theorem 4.6. Assume fur-
thermore that the matriz ® in Theorem 4.6 is nonsingular. Then rank (X,) =k
for large n and the least squares estimator for 8 = (84,...,5;) is then given by
Bn = (X;LXn)_l X yn withyn = (y1, . .. ayn)/ . Since Bn_ﬂ = (X;zXn)_l Xyun
we have

S (Bu=B) = Su (X1Xa) ™ S8 X u = (WiWa) ™ Wi,

Since lim W)W, = ® and ® is assumed to be nonsingular, we obtain

S, (Bn - 5) 4 N (0,0%07Y)

as a consequence of Theorem 4.6. Note that this asymptotic normality result
allows for trending regressors.

Now suppose that u; and X,, = (xy;) satisfy the assumptions of Theorem 4.7
and that furthermore Q) is nonsingular. Then we obtain by similar argumenta-
tion

Jn (Bn - ﬁ) = (X, X,) " (n—%X;un) L N (0,02Q7Y).

We note that Theorem 4.7 does not hold in general if the regressors are
allowed to be triangular arrays, i.e., the elements are allowed to depend on n.
For example, suppose k =1 and X,, = [Z11,n,- - ., Tn1,n] Where

o 0 t<mn
Ttln = \/ﬁ t=n '’

then n=1X/ X,, = 1 and n_l/QXT’Lun = u,. The limiting distribution of this
expression is just the distribution of the w;’s, and hence not necessarily normal,
violating the conclusion of Theorem 4.7.

We now give a CLT where the elements of X,, are allowed to be triangular
arrays, but where we assume additionally that the elements of the X,, matrices
are bounded in absolute value.
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Theorem 4.9 Let u;, t > 1, be a sequence of i.i.d. random variables with
Fu; = 0 and Eu} = 0% < co. Let (z4ip, 1 <t <mmn >1),i=1,...,k,
be triangular arrays of real numbers that are bounded in absolute value, i.e.,
SUP,, SUP <t<p 1<i<k [Ttin| < 00. Let Xy, = (4i,n) denote corresponding se-
quences of n x k real matrices and let lim n='X! X, = Q be finite. Further-

n—oo

more, let u, = [u,...,u,|’, then n=/?X’u, 4, N(0,0%Q).

Inspection of the proof of Theorem 4.9 shows that the uniform bounded-
ness condition is stronger than is necessary and that it can be replaced by the
condition max |Zin] =0 (nl/Q) fori=1,...,k.

<t<n

4.2 Dependent Processes

There is a large literature on CLTs for dependent processes. Due to space lim-
itation we will only present here — analogously as in our discussion of LLNs —
two CLTs for dependent processes. Both CLTs are given for martingale dif-
ference sequences. As discussed, martingale difference sequences represent an
important class of stochastic processes in statistics. The first of the subsequent
two theorems assumes that the process is strictly stationary.

Theorem 4.10 '® Let Z; be a strictly stationary and ergodic martingale dif-
ference sequence with var(Z;) = 0% < co. Then n=Y2 " Z, % N(0,02). (In
case 02 = 0, the limit N (0,0) should be interpreted as the degenerate distribu-
tion having all its probability mass concentrated at zero.)

The above theorem contains the Lindeberg-Lévy CLT for ii.d. random
variables as a special case. The usefulness of Theorem 4.10 is illustrated by the
following example.

Example 4.11 Suppose y, is a stationary autoregressive process of order one

satisfying

Yt = ayYi—1 + €,
where |a| < 1 and the ;s are i.i.d. with mean zero and variance o2, 0 <
0% < oco. Then y; = Z;io a’ei—j; s strictly stationary and ergodic. The
least squares estimator calculated from a sample yo, Y1, ..., Yn 1S given by a, =

22:1 ytytfl/z,?:l ytz,l(wz'th the convention that we set @ = 0 on the event
(> oyi, =0}). Thus

n'?(a, —a) = <n1/2 Z&:%—l) / (nl ZZJ?—1> :
t=1 t=1

18Gee, e.g., Génssler and Stute (1977), p. 372.
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The denominator converges a.s. to E (yf_l) =02/ (1 — a2) > 0 by the Ergodic
Theorem (Theorem 3.11). Observe that Zy = erys—1 satisfies E (Z¢ler—1,€1—2,...) =
Yr—1F (et|ler—1,61—2,...) = y—1F (e¢) = 0 since y1—1 is a (linear) function of
€t—1,Et—2,... and since € is independent of {e1_1,e1—2,...}. Hence, Z; is a
martingale difference sequence w.r.t. Fi = o (et,e¢-1,...). As a function of
e¢ and y;—1 the sequence Zy is clearly strictly stationary and ergodic. Further-
more, var (%) = E (e}y?_1) = E (¢}) E (yi_,) = 0%/ (1 —a?®) < co. Theorem
4.10 then implies

n~1/2 Zstyt,l 4N (0, 04/(1 - a2)) .

t=1

Combining this with the already established convergence of the denominator im-
plies the asymptotic normality result

nl/z(&n—a)iN(O,l—aQ).

Theorem 4.12 Y Let Z; be a martingale difference sequence (w.r.t. §i) with
conditional variances E(Z? | §t—1) = o2. Let U%n) =>"1 07 Suppose

Yol 2, 0 < 1) < oo, (4.6)

n-

and

g s
S B (|2e/Val 1) 20 (4.7)
t=1
as n — oo for some § > 0, then n=*/23°" | Z i>N(0 )
) t=1 %t ) .

Condition (4.7) is a conditional Lyapounov condition. A sufficient condition
for (4.7) is

supn ! ZE (|Zt|2+6 |St,1> =0, (1) (4.8)
n t=1

As mentioned above, there is an enormous body of literature on CLTs for de-
pendent processes. For further CLTs for martingale difference sequences and re-
lated results see Hall and Heyde (1980). Central limit theorems for m-dependent
and linear processes can, e.g., be found in Hannan (1970, Ch. IV.4), Anderson
(1971, Ch. 7.7), or Phillips and Solo (1992). Classical references to central limit
theorems for mixingales (including a-mixing, ¢-mixing and near epoch depen-
dent processes) are McLeish (1974, 1975). For additional discussions of CLTs
see, e.g., Davidson (1974, Part V) and Pétscher and Prucha (1997, Ch.10) and
the references given therein.

19Gee, e.g., Génssler and Stute (1977), p. 365 and 370.

28



5 Further Readings

There is a large number of books available that provide a further in depth
discussions of the material (or parts of the material) presented in this article.
The list of such books includes texts by Billingsley (1968, 1979), Davidson
(1994), Serfling (1980) and Shiryayev (1984), to mention a few. Hall and Heyde
(1980) give a thorough discussion of martingale limit theory.

Recent books on asymptotic theory for least mean distance estimators (in-
cluding maximum likelihood estimators) and generalized method of moments es-
timators for general classes of nonlinear models include texts by Bierens (1994),
Gallant (1987), Gallant and White (1988), Potscher and Prucha (1997), and
White (1994). For recent surveys articles see, e.g., Newey and McFadden (1994),
and Wooldridge (1994).
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A Appendix

Proof of Theorem 4.5: Clearly, under the assumptions of the theorem the
random variables Zi,,..., Z,, are independent for each n, with FZ;, = 0
and var (Zy,) = 02, < oo. To prove the theorem it hence suffices to show
that condition (M) implies condition (L) of Theorem 4.3, which also holds
for triangular arrays as mentioned in Section 4.1.1. For brevity write a, for
maxi<¢<n O’tn/O'(n). Then for € > 0 we have

I 1 O
0 < o ;E (22,1 (1Zen| > c0())] < o ;anE (Z71(an |Z,] > €)]

E[Z31(an|Zy] > €)],

since the Z,’s are ii.d. and U%n) =Y 0%, Since a, — 0 by assumption
(M) and ¢ > 0, the event {a,, |Z,| > €} | 0. Consequently, Z71 (a,, |Z,| > ) “%
0. As this sequence of random vectors is dominated by Z7 and E (Zf) < 00
holds, the Dominated Convergence Theorem implies E [Z71 (an [Z1] > €)] — 0
as n — oo, which shows that condition (L) holds indeed.

Proof of Theorem 4.6: Using the Cramér-Wold device (Theorem 2.27) it
suffices to show that o/W)u,, 4N (0,0%/@a) for every a € R*. Consider
first the case when o’ ®a = 0 or 02 = 0. Then var (&’W)u,,) = o2a’W) W, a —
02a/®a = 0. Since E (o/W/u,,) = 0, Corollary 2.11 implies that o/W/u, = 0
and hence in distribution. By our notational convention this can be writ-
ten as o'W u, <, N (0,0) = N (0,0?«/®a). Next consider the case where
1
0?a/®a > 0. Then it suffices to establish that o/ W} u,,/ [02a’®a] < N(0,1).
Define Z, = ui/o, Ztn, = 0tnZy, and o4y = [wt,,noz]/[O/CI)oz]l/2 with wy_, =
[We1 s - - -, Wek,n] and where wy; , denotes the (¢,7)-th element of the matrix
Wy. Then o/ W),/ [0%a/®al 1z _ >t—1 Ztn. Clearly the Z,’s are i.i.d. with
zero mean and variance one. Next observe that

a%n) = Zafn = Z[a'w{_,nu;t,ma]/[a'(l)a] = o'W Wya/[o'®a) — 1.
=1

t=1

Consequently condition (M) holds if lim maxi<s<p 02 =0. Now

n—oo

k
ot = D winail®/[o/®al
i=1

k k
D wii ) afl/ I/ @a]
i=1 1

1=

IN
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[foi/[zx;]] [{Za?}/[a@a]]

and hence

juax o, < lz ax /| me] lz 71/ ®al

=1

Observing that by assumption maxi<i<, z%/[> 1, %] — 0 it follows that

maxi<t<n 03, — 0. Given condition (M) holds and O’?n) — 1 the result now
follows as a special case of Theorem 4.5. |

Proof of Theorem 4.7: Using the Cramér-Wold device it suffices to show that
n~2a/' X! u, <, N(0,0%a’Qa) for every a € R*. The case where o/Qa = 0 or

02 = 0is treated similarly as in the proof of Theorem 4.7. Next consider the case
where 0?a’Qa > 0. Then it suffices to establish that n=/2a’ X} u,,/ [020/Qq] 1/2 4,
N (0,1). Define Z, = ui/o, Zin = omZ;, and oy, = n~Y?a; with a; =
[z:.a]/[0/Qa]'/? and where ;. = [z41,. .., %) Then n= 20/ X! u, /[0?a/Qa]'/? =
Z:Zl Zyp. Clearly the Z,’s are i.i.d. with zero mean and variance one. Next
observe that

a?n) = Zafn:n_lz:af =n 1Zaxtxta [0/ Qa]
- t=1
= n'dX) X, a/[aQa}—>1
and that consequently by Theorem 3.5.5 in Amemiya (1985), p. 98,

2 2
. maxi<t<n Otp . maxi<t<n A3
lim ——===tsn7in [y o =tSn

=0
2 2 :
n—oo Y70 0%, n—oo YT ap

That is, condition (M) holds. Since O'%n) — 1 the result now follows as a special
case of Theorem 4.5. |

Proof of Theorem 4.9: The proof is similar to the proof of Theorem 4.7. In
fact, the case where o/Qa = 0 or 02 = 0 is treated identically. Considering now

the case where 02a’Qa > 0 it suffices to show that n=/2a/ X’ u,,/[02a/Qa]/? %
N(0,1). Define Z, = /0, Zin = otnZy, and o4 = n 1/2xt_7 a/[a’Qa)'/?
where x;_, = [T41,n, .- -, Ttk,n]. Then n*1/2a’X{lun/[02a’Qa]l/2 =30 Zn.

Clearly the random variables Z, are i.i.d. with zero mean and variance one.
Next observe that

=Y oh =0y aa) anna/laQa] = e/ X Xpa/[/Qal — 1.
t=1 t=1
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Consequently
2
. maxi<t<n 0
lim —— =t

n 3
n—oo 21;1 Otn

will follow, if we can show that lim maxj<t<, 07, = 0. Recall that by assump-

n—oo

tion there exists a finite constant ¢ such that |z, <cforalll <t <n,n>1,
and 1 <i¢ < k. Now

=0

k
2 -1 7.7 / —1 2 /
max o = max n ax, ,Tia,o/ad'Qa= max n E QT o' Qa
1<t<n tn 1<t<n t.,n 1 / Q 1<t<n [ - ? 1,71] / Q
i
k k k
< max n? E z2 g o?| <ntke? E a?| —0.
1<t<n ’
== i=1 i=1 i=1
Since 02 , — 1 the result now follows as a special case of Theorem 4.5. |
(n)
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